How To Color In A Coloring Book

Henry Lieberman

Artificial Intelligence Laboratory
Massachusetts Institute of Technology

CR Category: 8.2 (Computer Graphics)
Keywords: Shading (or filling, flooding) closed curves
raster graphics

Abstract

Children’s coloring books contain line drawings which a
child can filt in with a crayon to produce colored pictures.
Two dimensional colored areas can be produced on a raster
display by an analogous method. After drawing a closed
curve with line drawing commands, the graphics system can
fill the area bordered by the curve. This paper presents an
algorithm for filling in areas of any size or shape. The area
may be filled with any color, texture, or "wallpaper” pattern.
The algorithm is simple, flexible and efficient, optimized to
take advantage of the the memory organization of most
current raster graphics systems.

1. Introduction

For years, the predominance of vector displays for computer
graphics has limited computer generated pictures to drawings
consisting solely of lines and points. Now, the development
of raster displays allows pictures containing two dimensional
solid and textured areas. What are good ways of describing
regions of various sizes, shapes and colors to the computer?
This paper explores one answer to this question.

The computer’s display screen can be treated like a child’s
coloring book. The coloring book supplies line drawings
indicating the borders of areas to be filled in The child
takes a crayon, picks a place in the interior of an area, and
fills it in by continually expanding the colored area until it
hits the boundary lines between areas.

Most currently available computer graphics systems provide
a wide range of facilities for making line drawings. These
can be used to draw the outlines of regions to be filled in.
The graphics system can be extended with a primitive called
SHADE (FLOOD in some systems), which is given an interior
point, and fills in the 2rea. A “crayon”.of any color may be
chosen, or textures, shading or wallpaper patterns may be
used to fill the area in instead of a solid color. (See Figure
{1] - Figure [2])

This provides a conceptually simple and flexible means of
creating and ‘manipulating two dimensional areas. The
program doesn’t have to know. the size or shape of the region
in advance. Since it searches the screen to fina the extent of

111

Figure [1]

Here’s a simple example of the shading program at work. We
start out with a line drawing of Snoopy, similar to the kind of
drawing that might appear in a child’s coloring book.

We tell the system which area we want to fill by picking a
point with the graphics cursor. A shading pattern tells the
system how to fill the area. In this example, Snoopy’s body is
fitled with diagonal lines, his hat and scarf with random points,
his arm with vertical lines.

the area, it is not tied to a particular representation for the
region’s boundary. The outline of the region may be
produced by a line drawing program, hand drawn by an
artist using a tablet or other graphic input device, or taken
from a photograph or television picture. This is a popular
operation in "paint” programs, which allow a user to input
line drawings on a tablet, outlining areas, and have the
computer paint by number, filling in each area with a paint of
a chosen color.

Here’s another way of thinking about the problem: Consider
the task of building a robot vacuum cleaner. The robot
should be able to vacuum a room of any size or shape,
containing furniture or other obstacles. It should make sure
to clean every spot on the floor, without getting stuck by
hitting the walls or furniture. It must also avoid getting into
an infinite loop cleaning the same spot over and over again,
and must be able to tell when it is finished. Since computer
vision systems are expensive and difficult to buiid, and the
robot should be simple and cheap, a further restriction will
be imposed that the robot will be blind - it won't have a TV
camera to watch for obstacles. Instead, it will be equipped
with touch sensors, so it will be able to detect when it hits
something or brushes up against it. It can only tell whether
there’s an obstacle adjacent to it in front or on the side.
Given these constraints, the procedure presented in this
paper will enable the robet vacuum cleaner to efficiently get
the job done.



'

2. Description of the Algorithm

‘The shading process starts out with a point known to be in

the interior of the figure to be shaded. (Of course, the
process should not depend upon which initial poini is
chosen.) The procedure determines the extent of the figure
by continually examining points adjacent to known interior
points. If a point adjacent to an interior paint is the same
color as the interior, it can also be considered an interjor
point. If a color change is noted, then that point is part of
the boundary of the region.

In what order shall the points on the screen be examined?
This choice is crucial to the efficiency of the resulting
procedure. One possibility is to spiral out from the initial
point, looking at points at ever increasing distance from the
initial point. Another might be to have some procedure for
following the boundary of a figure.

Since the screen memory in most raster graphics systems is
organized into words, where the memory representing, severa)
horizontally adjacent points occupies a single word, the scan
for the boundary of the figure should be made horizontally as
much as possible. It is often the case that several points
which are horizontally adjacent may be read or written with
a single memory operation, whereas manipulation of points
on separate lines may require a separate memory operation
for each point. Further, the choice of using horizontal scans
minimizes the amount of state information the procedure
must maintain to keep track of what parts of the figure it has
already covered. The result of scanning horizontally can be
represented as the left and right X values and one Y value,
rather than a list of points chosen in some arbitrary order.

The procedure, then, will be built up out of horizontal scans.
Each scan starts at an interior point, looking to the left until
a color change indicating the boundary of the figure has
been reached, then looking to the right until the scan hits the
boundary. ' This will yield a set of horizontally adjacent
points known to lie entirely within the boundary of the
figure. Those points can be shaded by applying the shading
‘pattern.

Let’s consider what the shading procedure must do wnen it is
moving from one line to the next. The procedure must now
scan vertically, picking a new interior point adjacent to the
previously shaded line on the line above or below, and
performing a horizontal scan from that point. ’

If there are no such points, if all points adjacent to the
previously shaded line are boundary points, then it is an
indication that the top or bottom of the region has been
reached. The boundary then completely encloses the area
shaded, and the job has been completed.

A simple tigure such as a square or a circle could be shaded
by starting two vertical scans from the initial peint. After
performing a horizontal scan, the procedure would move up
to the next line, continuing until the top of the figure was
reached. It would return to the initial point, then shade
downward to the bottom of the figure. However, this simple
method would fail to work for more complex figures

112

L OOOOOOOOOOOOOOOOOOOOOOC) SOABDEEEE 'x I!K-l 2ot WNXN
S5O '-:- :x :-:-: -:-: x: Y
Ay
‘ 120000000000 % %% %6 % % % %% 4
S
Figure [3] Figure [4]

The next group of figures shows some of the control structure
of the shading process as it fills a region. The picture consists
of a large circle, with a hole in the middle and an overlapping
circle at the bottom. The procedure must, of course, avoid
shading inside the hole, and . must shade around the
overlapping circle. :

The procedure scans horizontally on each line, to the left and
right until the boundary of the area is reached, then displays
the shading pattern. It then moves down to the next line and
continues.

Eventually, it encounters the top of the overlapping circle. It
continues down the left side of the circle, but remembers that
it has to return later and complete the right side. It saves an
imaginary boundary line from the top of the circle to the right
side of the area on an agenda list. The imaginary boundary
line allows the procedure to pretend that it .has already
completed the area to the right of the small circle.

s te’]

O

.-:':':% X

s
X

58
‘!"nl

Figure [6] Figure [6]

Upon completing the area to the left of the small circle, the
procedure returns to the agenda list to see if anything more
remains to be completed. It finds that both the right side of
the circle and the area above the initial point need to be
shaded. It picks the one going downward, as it always prefers
to continue in the same direction as the last vertical scan.

Now, the only task left is filling the area above the initial point. .
The procedure proceeds upward, to the left of the hole. Two
imaginary boundary lines are now placed on the agenda, one
going upward from the bottom of the hole, one going
downward from the top. At this point, the program can't tell
that they would both attempt to cover the same area!



: ' xx..
% : 2 200 n,b(‘ 5%
e
ln“;ntxnn\ 3% a" IN&.I'II
QRN X .{i St
7 ARSI
ORRN 2 2R RER
AR 3 RS
5 sl
Figure [7] Figure [8]

When the top of the large circle is reached, it starts shading
upward from the bottom of the hole. After finishing one
horizontal line, it always checks to see if it hits an imaginary
boundary line before moving up or down to the next line. Thus,
the procedure will hit the line from the top of the hole. When
that happens, the vertical scan is stopped, and the line with
which it collided is also removed.

Now, all of the figure has been shaded. There are no more
lines left on the agenda, so the procedure stops.

containing concave portions. If we tried to shade a U-shaped
“figure starting from the bottom, the procedure would go up
one branch, and ignore the other one!

After shadiﬁg' a line, the procedure must then cover all
interior points adjacent to that line. Instead of stopping after
one horizontal scan, it must examine all points adjacent to
the shaded line, possibly yielding several more lines to be
shaded, rather than just one. Further, after shading the new
line, all points on the old line adjacent to the newly shaded
line must be examined as well. If the new line is longer,
there may be interior points adjacent to the new line, but
separated horizontally from the old line by boundary points.
The new interior points on the old line should start another
vertical scan going in the opposite direction from the scan
that discovered them, so these are called U-turns. The new
points adjacent to the previously shaded line initiate a new
scan in the same direction, and are called S-turns.

If the system allows parallel processing, a new vertical
scanning process can be started for each new line found. On
a serial machine, one of the lines must be chosen to continue
the current vertical -scanning process (by convention, we
choose the leftmost line). The program then remembers the
other lines on an agenda list, as a reminder that it must do
another vertical scan. At the conclusion of the current scan,
the agenda is checked to see if anything more remains to be
done, and the program loops until the agenda has emptied.

There’s just one more problem to worry abouy: What it the
figure has a fkole in it? As described so far, the procedure
would just keep circling around and around the hole forever!

The process must therefore have some method for keeping
-track of what areas of the screen it has already covered, and
Stop whenever it retraces its footsteps. If we were limiting
the program to shading in an area with a solid color, there
would be no problem, as previously shaded areas would

113

provide a barrier which would stop any other scan runping
into them. Allowing arbitrary patterns means. that the
procedure cannot use the screen to record such information.
Expensive solutions such as keeping an auxiliary array to
record which points have been shaded are out of the
question.

If we think about all the vertical scanning processes running
in parallel, the agenda represents a list of leading edges of-
the scans as they proceed to shade more and more of the
figure. The shaded area grows by shading new lines
adjacent to previously shaded areas. We can recognize that
the area shaded is always completely enclosed by the
boundary of the figure, the current line being shaded and
the lines on the agenda. Thus, it is sufficient merely to check
if the scan is colliding with a line on the agenda to prevent it
from shading an area already covered.

The lines on the agenda serve as imaginary boundary lines
and stop the progress of the search as do the real boundary
lines of the figure. Once the process collides with an
imaginary boundary line, the imaginary boundary is
removed from the agenda, so that it will not start another
scan itself.

To minimize searching and comparisons, it is convenient to
keep the agenda in the form of two lists, one of scans to be
performed in the upward direction and one for downward
scans. Each [ist is kept ordered by Y value, upward, scans
from top to bottom, downward from bottom to top.

The top level procedure, then, starts out with an agenda
containing an upward scan and a downward scan starting
from the initial point. Each of the vertical scans might res'ultl
in other scans being added to the agenda, in both difections.
The top level procedure does all the scans in one direction at.
a time, then reverses djrection and chooses scans.from the
other list. Each time, the procedure chooses the highest scan
if it is going upward (or lowest one if it is proceeding
downward). This insures that it is only necessary to check
against the list of scans going in the opposite direction. That
list is ordered in' the direction of the current scan so only the
remainder of that list which lies beyond the current point
need by checked. When both lists have been exhausted, the
region has been completely shaded, and ‘the procedure is
finished.

8. Proof of the Shading Procedure

Can we be sure that the shading procedure actually performs
as intended? What follows is an informal sketch of.a proof
that the procedure outlined above has the desired result.

First, it is necessary to check that the shading procedure
shades only points which lie in the interior of the figure.
This is true since the procedure starts out at a point known
to be in the interior of the figure, and at each step, only
shades points which are not beundary points, and which are
adjacent to points already known to be interior points.



Interior points

Boundary points
Imaginary boundary points
Shaded points

Scan in direction of arrow

Figure [9]

The next group of illustrations will show the operation of the
shading procedure in more detail, down to the level of moving
from point to point on the screen. Individual points (or pixels)
will be represented by one of five different types of boxes.
Points in the interior of the figure will be shown as blank
boxes. Boundary points, those of a different color surrounding
the figure will be shown with cross-hatching. The points will
start out as either interior points or boundary points. As the
shading procedure passes over a point, it will either shade the
point (which will then appear as a box with diagonal lines), or
consider it as an imaginary boundary point (shown with dots).
Imaginary boundary points are placed on an agende list to be
shaded later. The current point being scanned is indicated by a
box with an arrow pointing in the direction of the scan.

Figure [10]

We start shading a line of interior points, with two boundary
points at either end. The scan starts rightward from the first
point.

N

Figure [11]

Figure [12]

The scan then proceeds leftward from the initial point until the
left boundary is reached.

Figure [13]

/—’/ 7 T AR, I m
T30 A

Figure [14]

We will assume that the scan is proceeding vertically upward.
A new point on the line above is chosen, the leftmost interior
point adjacent to the previously shaded line.

T T
GRUULUULLY,
Figure [15]

The horizontal scan continues shading to the left untit a
boundary point is reached. Now, the scan continues past the
boundary, looking at points adjacent to the previously shaded
line, since these are also part of the interior of the area.

114

N

A

Figure [16]

The procedure will defer shading these points until later. A
notation is made on the agenda list that a new scanning
process must be initiated shading upward from those points.
This is called an S-turn, since the new process will shade in
the same vertical direction as the one which discovered it.
The points are marked as imaginary boundary points. Any
other scan which tries to shade past them will be stopped,
since the area below has already been shaded. They stop the
progress of the shading procedure as do the real boundary
lines of the area.

u T

\\
N

DHIHALLGL Y

Figure [17]

Another S-turn has been found. Now, the procedure shades
points on the lower line which are adjacent to shaded points
on the upper line, as these are also part of the interior. These
start a new vertical scan going downward. Since these
reverse the vertical direction of the scan which discovered
them, they are called U-turns.

IT T 1T
7
Figure [18]

A third line is now started, beginning from the leftmost interior
point adjacent to the second tine shaded.

IO
I
)?

Figure [19]

Two situations can terminate a vertical scan. If, after shading
a line, every point adjacent to the line is found to be a
boundary point, then the top or bottom of the figure has been
reached and the vertical scan stops.

SOUUGG YUY
Figure [20]

If every point adjacent to the shaded line is an imaginary
boundary point, this indicates that the region on the other side
of the imaginary boundary has already been shaded earlier in
the process. This situation arises when shading around holes
in the area. There’s nothing left for the vertical scan to do, so
it stops. The imaginary boundary is also removed from the
agenda, since it would normally start a new vertical scan
downward, but this is no longer necessary.



The procedure must be verified to shade all of the interior
points. Suppose there’s some point which has been missed
by the shading procedure but is still inside the region. It
must be adjacent to some point which has been shaded. We
will show that this cannot occur, that if a point has heen
shaded, every interior point adjacent to it must also have
been shaded. Each point, P, has four neighbors in the raster
grid, one on each side horizontally, one on the line above
and one below. Since each horizontal scan starts out on a
leftmost interior point and proceeds rightward, the horizontal
neighbors of P must be shaded if P has been. Consider the
neighbor of P on the line above, its upstairs neighbor. If
there is no boundary point between the start of the
horizontal scan on that line and P’s upstairs neighbor, then
the horizontal scan will cover it. But if there is, the part of
the shading procedure which detects turns will detect this
situation and put a new scan on the agenda which will cover
P’s upstairs neighbor (in this case an S-turn, if we take the
vertical scan to be going upward). A similar argument will
show that the downstairs neighbor of P will be covéred by a
U-turn.

The procedure never retraces a point which it has already
shaded. This is true because the following property remains
invariant during the execution of the program. At all times,
the area shaded by the procedure is completely bounded by
the boundary of the figure, the imaginary boundary lines on
the agenda, and the line currently being scanned. The
procedure is designed so that it stops whenever the scan hits
the boundary of the figure, or an imaginary boundary line,
so the scan can never break through a real or imaginary
boundary to retrace part of the area it has already covered.

Finally, the procedure must be shown to terminate. Since it
continually shades more and more points, never retracing a
point that it has already shaded, and the number of interiar
points is finite, the procedure eventually stops.

4. Shading Patterns

How does the shading procedure decide what to display on
the screen to fill the area once it's discovered where the
boundary lies? The set of directions for filling the area, the
shading pattern, is itself a procedure, to afford flexibility in
choosing different methods of shading. The system supplies
a small predefined set of patterns, which are usuaily
sufficient for common uses of the shading feature to
distinguish visually between several neighboring regions, like
countries on a map. These patterns include solid colors,
horizontal, vertical and diagonal lines, and crosshatching.
An interesting fexture effect is created by turning on
randomly chosen points within the area.

Saved pictures, containing any mixture of lines, points, text,
or other areas, may also be used as shading patterns. The
pictures are normally stored by the system as bit arrays or
using run length encoding (called windows in [1]). If the
region to be filled is larger than the saved picture, the
picture is repeated “walipaper” style as necessary. If the
region is smaller than the boundary, it is clipped against the
boundary of the figure. The ability to clip a picture against
an arbitrary boundary is an operation which is often useful
in its own right.

Alternatively, the user may provide his or her own function
to do any specialized computation. For example, it might-be
desired to check the distance of a point from a light source
before deciding on the brightness of the point. The shading
pattern function accepts coordinates on the screen, and is
responsible for updating the display. Rather than apply the
shading function once for each point, it is called to shade a
whole line instead, to take advantage of the fact that
accessing points horizontally is especially efficient. A further
area of experimentation would be to create higher level
means of specifying shading patterns, which would not be so
closely tied to the coordinates of the place being shaded..

5. Implementation

The shading program is part of the TV Turtle, a graphics
system for raster displays developed by the author and
described in [1) and [2). It is implemented in MacLisp [5]
on the PDP 10, and can be used either from Lisp or our Lisp
implementation of Logo.

Implementations of a shading procedure for raster displays
have also been developed at the MIT Architecture Machine
Group, shown in (3], Xerox PARC [6], and several others,
but details of the operation of these systems have not been
previously published in the literature to my knowledge. For
previous work concerned with the somewhat different
problem of shading a figure whose boundary is given by a
vector display list, (which also forms the basis for many
hidden surface algorithms) see [4].

We now present a sketch of an implementation of the
algorithm. (Names of important functions and variables are
capitalized.)

Define SHADE:
* The arguments to SHADE are:
* The ORIGIN, an interior point to start
shading from, and
X A SHADING-PATTERN to fill the area.
Let INTERIOR-COLOR be the color of the ORIGIN.
Set the VERTICAL-DIRECTION to be UP.
INITIALIZE-THE-AGENDA.
Repeat until the agenda is empty in both
directions:
Vertical Shading Loop:
* If * The agenda in the current
VERTICAL-DIRECTION is empty,
then * Switch directions.
% Choose a vertical scan from the agenda.
* SHADE-VERTICALLY in the
current VERTICAL-DIRECTION.
End Vertical Shading Loop.

% % % %

Define INITIALIZE-THE-AGENDA:
* Enter a scan starting UPward from the ORIGIN.
% Enter a scan starting DOWNward from the ORIGIN.



Define SHADE-VERTICALLY:

®* The arguments to SHADE-VERTICALLY are:

* A VERTICAL-DIRECTION, either UP or DOWN, and
* A.starting POINT from which to begin shading.
* Repeat until

* either * All points adjacent to the
previously shaded line are boundary
points, '

or * All such points are contained in

lines on the agenda.
Horizontal Shading Loop:
* SHADE-HORIZONTALLY from the POINT.
= |, OOK-FOR-TURNS.
* Move the POINT up or down,
in the current VERTICAL-DIRECTION.
End Horizontal Shading Loop.

Define SHADE-HORIZONTALLY:
% Start at a POINT, known as an interior point.
* Look at successive points to the LEFT
until a color change occurs, indicating
the boundary has been reached.
* Look RIGHT until the boundary is encountered.
% Remember the points where the boundary was
found as LEFT-BOUNDARY and RIGHT-BOUNDARY.
% Fill in the SHADING-PATTERN on the line
between the boundaries.

Define LOOK-FOR-TURNS:
* LOOK-FOR-S-TURNS.
* LOOK-FOR-U-TURNS.

Define LOOK-FOR-S-TURNS:

* If * There are interior points on the
new line adjacent to the previously
shaded line, )

then * Add these as to the agenda a new

imaginary boundary line, starting
a scan going in the current
VERTICAL-DIRECTION.

Define LOOK-FOR-U-TURNS:
* If * There are interior points on the
previous line adjacent to the
newly shaded line,
* Add them to the agenda as an
imaginary boundary line going in the
opposite direction to the current
VERTICAL-DIRECTION.

then

Acknowledgments

I would like to thank Ken Kahn for many stimulating
discussions and helpful ideas. Ken has had a major
influence on my thinking about graphics, and as a user of
my graphics system, has put some of my ideas to a practical
test. Hal Abelson made insightful comments on an earlier

116

draft of this paper and discovered an important bug in a
previous version of the algorithm. Carl Hewitt, Bruce
Edwards, Ron Lebel, Gerhard Fischer, Andy Di Sessa and
others at the MIT Al Lab and MIT Architecture Machine
Group also deserve thanks.

Bibliography

[1] Lieberman, H., The TV Turtle: A Logo Graphics System
for Raster Displays, ACM SigGraph/SigPlan Graphics
Languages Symposium, April 1976

[2] Goldstein, 1., Lieberman, H., Bochner, H.,, Miller, M.,
LLogo: An Implementation of Logo in Lisp, Logo memo II,
MIT Artificial Inteltigence Lab, March 1975

[31 Kahn, K., Lieberman, H., Computer Animation: Snow
White's Dream Machine, Technology Review, October 1977

(4] Reynolds, C, A Multiprocess Approach to Computer
Animation, MIT Master’s Thesis, August 1975 '

[5} Moon, D. A, MacLisp Reference Manual, MIT

Laboratory for Computer Science {formerly Project Mac)

(6] Learning Research Group, Personal Dynamic Media,
Xerox Palo Alto Research Center technical report

[7] Negroponte, N., Raster Scan ‘Approaches to Computer .,
Graphics, Computer Graphics, Vol. 2, No. 3




