
H o w To C o l o r I n A C o l o r i n g Book

H e n r y L i e b e r m a n

A r t i f i c i a l I n t e l l i g e n c e L a b o r a t o r y .
M a s s a c h u s e t t s I n s t i t u t e of Technology

CR Category: 8.2 (Computer Graphics)
Keywords: Shading (or filling, flooding) closed curves
raster graphics

A b s t r a c t

Chi ldren's coloring books contain line drawings which a
chi ld can f i l l in with a crayon to produce colored pictures.
T w o dimensional colored areas can be produced on a raster
display by an analogous method. After drawing a closed
curve wi th line drawing commands, the graphics system can
f i l l the area bordered by the curve. This paper presents an
a lgor i thm for f i l l ing in areas of any size or shape. The area
may be fi l led with any color, texture, or "wallpaper" pattern.
T h e algor i thm is simple, flexible and efficient, optimized to
take advantage of the the memory organization of most
current raster graphics systems~

1. I n t r o d u c t i o n

For years, the predominance of vector displays for computer
graphics has l imited computer generated pictures to drawings
consisting solely of lines and points. Now, the development
of raster displays allows pictures containing two dimensional
solid and textured areas. What are good ways of describing
regions of various sizes, shapes" and colors to the computer?
This paper explores one answer to this question.

The computer's display screen can be treated like a child's
coloring booh. The coloring book supplies line drawings
indicat ing the borders of areas to be filled in The child
takes a crayon, picks a place in the interior of an area, and
f i l ls i t in by continually expanding the colored area until it
hits the boundary lines between areas.

Most currently available computer graphics systems provide
a wide range of facilities for making line drawings. These
can be used to draw the outlines of regions to be filled in.
T h e graphics system can be extended with a primitive called
,SHADE (FLOOD in some systems), which is given an interior
point, and fills in the ~rea. A "crayon" of any color may be
chosen, or textures, shading or wallpaper patterns may be
used to f i l l the area in instead of a solid color. (See Figure
[I] - Figure [2].)

Th i s provides a conceptually simple and flexible means of
creating and manipulat ing two dimensional areas. The
program doesn't have to know. the size or shape of the region
in advance. Since i t searches the screen to fincl the extent of

Figure [l] Figure [2]

Here's a simple example of the shading program at work. We
start out with a line drawing of Snoopy, similar to the kind of
drawing that might appear in a child's coloring book.

We tell the system which area we want to fill by picking a
point with the graphics cursor. A shading pattern tells the
system how to fill the area. In this example, Snoopy's body is
fi l led with diagonal lines, his" hat and scarf with random points,
his arm with vertical lines.

the area, i t is not tied to a particular representation for the
region's boundary. The outline of the region may be
produced by a line drawing program, hand drawn by an
art ist using a tablet or other graphic input device, or taken
f rom a photograph or television picture. This is a popular
operat ion in "paint" programs, which allow a user to input
l ine drawings on a tablet, outlining areas, and have the
computer paint b~ number, f i l l ing in each area with a paint of
a chosen color.

Here's another way of thinking about the problem: Consider
the task of bui ld ing a robot vacuum cleaner. The robot
should be able to vacuum a room of any size or shape,
containing furni ture or other obstacles. It should make sure
to clean every spot on the floor, without getting stuck by
h i t t ing the walls or furniture. It must also avoid getting into
an inf in i te loop cleaning the same spot over and over again,
and must be able to tell when it is finished. Since computer
vision systems are expensive and difficult to build, and the
robot should be simple and cheap, a further restriction will
be imposed that the robot wil l be blind - it won't have a T V
camera to watch for obstacles. Instead, Jt will be equipped
wi th touch sensors, so i t wi l l be able to detect when it hits
something or brushes up against it. It can only tell whether
there's an obstacle adjacent to it in front or on the side.
Given these constraints, the procedure presented in this
paper wi l l enable the robot vacuum cleaner to efficiently get
the j ob done.

iii

9.. D e s c r i p t i o n of t h e A l g o r i t h m

T h e shad!ng process starts out with a point known to be in
the in ter ior of the f igure to be shaded. (Of course, the
process should not depend upo n which init ial point is
chosen.) T h e procedure determines the extent of the figure
by cont inual ly e~camining points adjacent to known interior
points. I f a point adjacent to an interior pcdnt i s the same
color as .the inter ior, it can also be considered an Interior
po int . I f a color change is noted, then that point is part of'
the boundary of the region.

In wha t order shall the points on the screen be examined?
T h i s choice is crucial to the efficiency ~f the .resulting
procedure. One possibil i ty is to spiral out from the init ial
po in t , look ing at points at ever increasing distance from the
in i t i a l po in t . Another might be to have some procedure for
f o l l ow ing the boundary of a figure.

,Since the screen memory in most raster graphics systems is
o rgan ized into words, where the memory representing, several
hor izon ta l l y adjacent points occupies a single word, the scan
for the boundary of the f igure should be made horizontall~ as
much as possible. I t is often the case that several points
wh ich are hor izontal ly adjacent may be read or written ,with
a single memory operation, whereas manipulation of points
on separate lines may require a separate memory operation
f o r each point. Further, the choice of using horizontal scans
min im izes the amount of state information the procedure
must ma in ta in to keep track of what parts of the fig~Jre It has
a l ready covered. The result of scanning horizontally can be
represented as the let~ and r ight X values and one Y value,
ra the r than a list o f points chosen in some arbitrary order.

T h e procedure, then, wi l l be bui l t up out of horizontal Scans.
Each scan starts at an inter ior point, looking to the left until
a color change indicat ing the boundary of the figure has
been reached, then looking to the r ight until the scan hits the
boundary . T h i s wi l l yield a set of horizontally adjacent
po ints known to lie entirely wi th in the boundary o f the

. f igure. Those points can be shaded by applying the' shading
pat tern.

Let 's consider what the shading procedure must do wnen it is
m o v i n g f rom one .line to the next. The procedure mustnow
scan vertically, pick ing a new interior point adjacent to the
prev ious ly shaded line on the line above or below, and
pe r f o rm ing a hor izontal scan from that point.

] f there are no such points, i f all points adjacen t to the
prev ious ly shaded l ine are boundary points, then it is an
ind ica t ion that the top or bottom of the region has been
reached. T h e boundary then completely encloses the. area
shaded, and the job has been completed.

A s imple f igure such as a square or a circle could be shaded
by s tar t ing two vert ical scans from the init ial point~ After
pe r f o rm ing a hor izontal scan, the procedure would move up
to the next line, cont inuing unt i l the top of the figure was
reached. I t would return to the ini t ial point, then shade
d o w n w a r d to the bottom of the 'figure. However, this simple
method wou ld fai l to work for more complex figures

Figure [3] Figure [4]

The next group of figures shows some of the control structure
of the shading process as it fills a region. The picture consists
of a large circle, with a hole in the middle and an overlapping
circle at the bottom. The procedure must, of course, avoid
shading inside the hole, a n d must shade around the
over lapping circle.
The procedure scans horizontally on each line, to the left and
r ight until the boundary of the area is reached, then displays
the shading pattern. It then moves down to the next line and
continues.

Eventually, it encounters the top of the overlapping circle. It
continues down tt~e left side of the circle, but remembers that
it has to return later and complete the right side. It saves an
imaginary beundory llne from the top of the circle to the right
side of the area on an agenda list. The imaginary boundary
line allows the procedure to pretend that it .has already
completed the area to the right of the small circle.

Fig, ure [5] Figure [6]

Upon completing the area to the left of the small circle, the
procedure returns to the agenda list to see if anything more
remains to be ~completed. i t finds that both the right side of
the circle and the area above the initial point need to be
shaded. It picks the one going downward, as it always prefers
to continue in the same direction as the last vertical scan.

Now, the only task left is filling the area above the initial point. ~
The procedure proceeds upward, to the left of the hole. Two
imaginary boundary lines are now placed on the agenda, one
going upward from the bottom of the hole, one going
downward from the top. At this point, the program can't tell
that they would both attempt to cover the same area!

112

Figure [7] F!gure [8]

When the top of the large circle is reached, it slarts shading
upward from the bo| lom of lhe hole. After finishing one
hor izonta l line, it always checks to see if it hits an imaginary
boundary l ine before moving up or down to the next line. Thus,
the procedure will hit the line from the top of the hole. When
that happens, the vert ical scan is stopped, and the line with
which it col l ided is also removed.
Now, all of the f igure has been shaded. There are no more
l ines left on the agenda, so the procedure stops.

c o n t a i n i n g concave portions. If we tried to shade a U-shaped
f i g u r e s tar t ing from the bottom, the procedure would go up
one b r anch , and ignore the other one!

After s h a d i n g a line, the procedure must then cover aN
in te r io r points adjacent to that line. Instead of stopping afte[
one hor izonta l scan, it must examine all points adjacent lo
t he shaded line, possibly yielding several more lines to be
shaded , r a the r than just one. Further, after shading the new
line, all points on the old line adjacent to the newly shaded
l ine mus t be examined as well. If the new line is longer,
t he re may be interior points adjacent to the new line, but
separa ted horizontally from the old line by boundary points.
T h e new inter ior points on the old line should start another
ver t ica l scan going in the opposite direction from the scan
t h a t discovered them, so these are called U-turns. The new
po in t s ad jacent to the previously shaded line initiate a n e w
scan in the same direction, and are called S-turns.

If the system allows parallel processing, a new vertical
s c a n n i n g process can be started for each new line found. On
a serial machine , one of the lines must be chosen to continue
t he cur ren t vertical .scanning process (by convention, we
choose the leftmost line). T h e program then remembers the
o t h e r lines on an agenda list, as a reminder that it must do
a n o t h e r vertical scan. At the conclusion of the current scan,
the a g e n d a is checked to see if anything more remains to be
done , and the program loops until the agenda has emptied.

T h e r e ' s jus t one more problem to worry abou.~: What it the
f igure has a hole in it? As described'so far, the procedure
would jus t keep circling around and around the hole forever!

T h e process must therefore have some method for keeping
-track of what areas of the screen it has already covered, and
.~op wheneve r it retraces its footsteps. If we were limiting
t he p r o g r a m to shad ing in a n area with a solid color, there

w o u l d be no problem, as previously shaded arears would

p r o v i d e a bar r ie r which would stop any other scan running
in to them. Allowing arbitrary patterns means, that the
p rocedu re cannot use the screen to record such information,
E x p e n s i v e solutions such as keeping an auxiliary array to
record which points have been shaded are out of the
quest ion.

I f we th ink abou t all the vertical scanning processes running
in parallel , the agenda represents a list of leading edges of-
t he scans as they proceed to shade more and more of the
f igure. T h e shaded area grows by shading new lines
ad j acen t to previously shaded areas. We can recognize that
t he area shaded is always completely enclosed by the
b o u n d a r y of the figure, the current line being shaded and
the lines on the agenda. Thus,. it is sufficient merely to check
i f t he scan is colliding, with a line on the agenda to prevent it
f rom s h a d i n g an area already covered.

T h e lines on the agenda serve as imagZnczry bourtdar~lines
a n d stop the progress of the search as do.the real boundary
lines of the figure. Once the process collides with an
i m a g i n a r y boundary line, the imaginary boundary is
r emoved from the agenda, so that it will not start another
scan itself.

T o m i n i m i z e searching and comparisons, it is convenient to
keep the agenda in the form of two lists, one of scans to be
pe r fo rmed in the upward direction and one for downward
scans. Each list is kept ordered by Y value, upward.scans
f r o m top to bottom, downward from bottom to top.

T h e top level procedure, then, starts out with an agenda
c o n t a i n i n g an upward scan and a downwarcl scan start!ng
f rom the init ial point. Each of the vertical scans might result.
in o the r scans being added to the agenda, in both directions.
T h e top level procedure does all t.he scans in one direction at.
a time, then reverses direction and chooses scans.from the
o t h e r list. Each time, the procedure chooses the highest scan
if it is going upward (or lowest one if ' it is proceeding
downward) . T h i s insures that it is only necessary to check
aga in s t the list of scans going in the opposite direction. Tha t
list is ordered in the direction of the current scan so 0nly the
r e m a i n d e r of tha t list which lies beyond the current point
need by checked. When both iist~; have been. exhausted, t'he
reg ion has been completely shaded, and t he procedure is
f in i shed .

3 . P r o o f o f t h e S h a d i n g P r o c e d u r e

C a n we be .sure tha t the shading procedure act.,ally performs
as in tended? W h a t follows is an informal sketch of:a proof
t h a t the procedure outlined above has the desired result.

First, i t is necessary to check that the ~hading procedure
s h a d e s only points which lie in the interior of t-he figure.
T h i s is t rue sin.ce the procedure starts out at a point known
to be in the interior of the figure, and at each step, only
s h a d e s points which are not boundary points, and which are
ad jacen t to points already known to be interior points.

113

[] Interior points
[] Boundary points
[] hnaglnary boundary points
[] Shaded points
[] Scan in direction of arrow

Figure [9]
The next group of illustrations will show the operation of the
shading procedure in more detail, down to the level of moving
from point to point on the screen. Individual points (or pizel~)
wil l be represented by one of five different types of boxes.
Points in the interior of the figure will be shown as blank
boxes. Boundary points, those of a different color surrounding
the f igure will be shown with cross-hatching. The points will
s tar t out as either interior points or boundary points. As the
shading procedure passes over a point, it will either shade the
point (which will then appear as a box with diagonal lines), or
consider it as an im./~i..ry ho~n~.ry point (shown with dots).
Imaginary boundary points are placed on an e~e.nde list to be
shaded later. The current point being scanned is indicated by a
box wi th an arrow pointing in the direction of the scan.

I ~ I I I I I-'1 I I I I ~

Figure [10]

We start shading a line of interior points, with two boundary
points at either end. The scan starts rightward from the first
point.

I I I I I~-";T/~-'~I "" ~

Figure [11]

Points are shaded until the boundary point is reached.

Figure [12]

The scan then proceeds leftward from the initial point until the
left boundary is reached.

Figure [13]

Figure [14]

We wil l assume that the scan is proceeding vertically upward.
A new point on the line above is chosen, the leftmost interior
point adjacent to the previously shaded line.

~//j;,-/i//2"/t,'/ip'//p'////t~'////J~l

Figure [1.5]

The horizontal scan continues shading to the left until a
boundary point is reached. Now, the scan continues past the
boundary, looking at points adjacent to the previously shaded
line, since these are also part of the interior of the area.

1"

Figure [16]

The procedure will defer shading these points until later. A
notat ion is made on the ,gend, list that a new scanning
process must be initiated shading upward from those points.
This is called an S-turn, since the new process will shade in
the same vertical direction as the one which discovered it.
The points are marked as imaginary boztn~ary points. Any
o ther scan which tries to shade past them will be stopped,
since the area below has already been shaded. They stop the
progress of the shading procedure as do the real boundary
l ines of the area.

1" 1"

~;/~,¢~::."I;:."..L:.:.~:::.+L::.'..L::.'..L::.'..I~

Figure [17]

Another S-turn has been found. Now, the procedure shades
points on the lower line which are adjacent to shaded points
on the upper line, as these are also part of the interior. These
star t a new vertical scan going downward. Since these
reverse the vertical direction of the scan which discovered
them, they are called U-turns.

Figure [18]

A th i rd line is now started, beginning from the leftmost interior
point adjacent to the second line shaded.

Figure [19]

Two situations can terminate a vertical scan. If, after shading
a line, every point adjacent to the line is found to be a
boundary point, then the top or bottom of the figure has been
reached and the vertical scan stops.

Figure [20]

If e v e r y point adjacent to the shaded line is an imaginary
boundary point, this indicates that the region on the other side
of the imaginary boundary has already been shaded earlier in
the process. This situation arises when shading around holes
in the area. There's nothing left for the vertical scan to do, so
it stops. The imaginary boundary is also removed from the
agenda, since it would normally start a new vertical scan
downward, but this is no longer necessary.

114

T h e procedure must be verified to shade all of the interior
points . Suppose there's some point which has been missed
by the s h a d i n g procedure but is still inside the region. It
mus t be adjacent to some point which has been shaded. We
will show tha t this cannot occur, that if a point has been
shaded , every interior point adjacent to it must also have
been shaded . Each point, P, has four neighbors in the raster
gr id , one on each side horizontally, one on the line above
a n d one below. Since each horizontal scan starts out on a
leftmost in ter ior point and proceeds rightward, the horizontal
n e i g h b o r s of P must be shaded if P h~s been. Consider the
n e i g h b o r of P on the line above, its upstairs neigttbor. If
t he re is no boundary "point between the start of the.
ho r i zon ta l scan on that line and P's upstairs neighbor, then
the hor izonta l scan will cover it. But if there is, the part of
~he s h a d i n g procedure which detects turns will detect this
s i tua t ion and put a new scan on the agenda which will cover
P ' s ups ta i rs ne ighbor (in this case an S-turn, if we take the
ver t ical scan to be going upward). A similar argument will
show tha t the downstairs neighbor of P will be covered by a
U- tu rn .

T h e procedure never retraces a point which it has already
shaded. This is true because the following property remains
ino(lri(znt dur ing the execution of the program. At all times,
the area shaded by the procedure is completely botJnded by
the boundary of the figure, the imaginary boundary lines on
the agenda, and the line currently being scanned~ The
procedure is designed so that it stops whenever th.e scan hits
the boundary of the figure, or an imaginary boundary line,
so the scan can never break through a real or imaginary
boundary to retrace part of the area it has already covered.

Final ly, the procedure must be shown to terminate. Since it
con t inua l ly shades more and more points, never retracing a
po in t t ha t it has already shaded, and the number of mteriQr
po in t s is finite, the procedure eventually stops.

4 . S h a d i n g P a t t e r n s

How does the shad ing procedure decide what to display on
t he screen to fill the area once it's discovered where the
b o u n d a r y lies? T h e set of directions for filling the area, the
shading pattern, is itself a procedure, to afford flexibility in
choos ing different methods of shading. The system supplies
a small predef ined set of patterns, which are usually
suff icient for common uses of the shading feature to
d i s t i ngu i sh visually between several neighboring regions, like
count r ies on a map. These patterns include solid, colors,
hor izon ta l , vertical and diagonal lines, and crosshatching.
A n interes t ing texture effect is created by turning on
randoml~ chosen points within the area.

S a v e d pictures, containing any mixture of lines, points, text,
or o the r areas, may also be used as shading pattprns. The
p ic tures are normally stored by the system as bit arrays or
u s i n g run length encoding (called windows in [I]). If the
reg ion to be filled is larger than the saved picture, the
p ic tu re is repeated "wallpaper" style as necessary. If the
reg ion is smaller than the boundary, it is clipped against the
b o u n d a r y of the figure. T h e ability to clip a picture against
a n a rb i t r a ry boundary is an operation .which is often useful
in its own right.

Al ternat ively, the user may provide his or her own function
to do any specialized computation. For example, it might.be
des i red to check the distance of a point from a light source
before dec id ing on the brightness of the point. The shading
pa t t e rn function accepts coordinates on the screen, and is
respons ib le for upda t ing the display. Rather than apply the
s h a d i n g function once for each point, it is called to shade a
whole line instead, to take advantage of the fact that
accessing points horizontally is especially efficient. A further
a rea of exper imentat ion would be to create higher level
m e a n s of specifying shading patterns, which would not b~ so
closely tied to the coordinates of the place being shaded..

5 . I m p l e m e n t a t i o n

T h e s h a d i n g program is part of the TV Turtle, a graphics
system for raster displays developed by the author and
descr ibed in [I] and [2]. It is implemented in MacLisp [5]
on the P D P 10, and can be used either from Lisp or our Lisp
implementa t ion of Logo.

Implementations of a shading procedure for raster displays
have also been developed at the M I T Architecture Machine
Group, shown in [3], Xerox PARC [6], and several others,
but details of the operation of these systems have not been
previously published in the literature to my knowledge. For
previous work concerned with the. somewhat different
problem of shading a figure whose boundary is given by a
vector display list, (which also forms the basis fqr many
hidden surface algorithms) see [4].

We now present a sketch of an implementation of the
a lgor i thm. (Names of important functions and variables are
capitalized.)

D e f i n e SHADE:
* The arguments to SHADE are:

R The ORIGIN, an I n t e r i o r po in t to s t a r t
shad ing f rom, and

* A SHADING-PATTERN t o f i l l the area.
* Let INTERIOR-COLOR be the color of the ORIGIN.

Set the VERTICAL-DIRECTION to be UP.
* INITIALIZE-THE-AGENDA.

Repeat u n t i l the agenda Is empty In both
d i r e c t i o n s :
V e r t i c a l Shading Loop:

* I f f The agenda In the cur ren t
VERTICAL-DIRECTION is empty,

then * Swi tch d i r e c t i o n s .
* Choose a v e r t i c a l scan from the agenda.
* SHADE-VERTICALLY in the

c u r r e n t VERTICAL-DIRECTION.
End V e r t i c a l Shading Loop.

Define INITIALIZE-THE-AGENDA:
Enter a scan s tar t ing UPward from the ORIGIN.

* En te r a scan s t a r t i n g DOWNward from the ORIGIN.

115

D e f i n e SHADE-VERTICALLY:
The arguments to SHADE-VERTICALLY are :

* A VERTICAL-DIRECTION, e i t h e r UP or DOWN, and
* A. s t a r t l n g POINT from which to begin shadlng.

* Repea t u n t i l
* e i t h e r * A l l p o i n t s ad jacen t to the

p r e v i o u s l y shaded l i n e are boundary
p o i n t s ,

o r * A l l such p o i n t s are conta ined in
l i n e s on the agenda.

H o r i z o n t a l Shading Loop:
* SHADE-HORIZONTALLY from the POINT.
*' LOOK-FOR-TURNS.
* Move t he POINT up or down,

I n t h e c u r r e n t VERTICAL-DIRECTION."
End H o r i z o n t a l Shading Loop.

D e f i n e SHADE-HORIZONTALLY:
* S t a r t a t a POINT, known as an i n t e r i o r p o i n t .
* Look a t successive p o i n t s t o ' t he ' LEFT

u n t i l a c o l o r change occurs , i n d l c a t t n g
t h e bounda ry has been reached.

* Look RIGHT u n t i l the boundary i s encountered.
* Remember t he p o i n t s where the boundary was

f o u n d as LEFT-BOUNDARY and RIGHT-BOUNDARY.
* F111 i n t he SHADING-PATTERN on the l i n e

be tween t he bounda r i es .

D e f i n e LOOK;FOR-TURNS:
* LOOK-FOR-S-TURNS.
* LOOK-FOR-U-TURNS.

D e f i n e LOOK-FOR-S-TURNS:
I f * There a re i n t e r l o r p o i n t s on the

new l i n e ad jacen t t o the p r e v i o u s l y
shaded l i n e ,

t h e n * Add these as to the agenda a new
i m a g i n a r y boundary l i n e , s t a r t i n g
a scan go ing In the c u r r e n t
VERTICAL-DIRECTION.

D e f i n e LOOK-FOR-U-TURNS:
* I f * There a re i n t e r i o r po i n t s on the

p r e v i o u s l i n e ad jacen t to the
new ly shaded l i n e ,

t h e n * Add them t o the agenda as an
i m a g i n a r y boundary l i n e going In the
o p p o s i t e d i r e c t i o n to the cu r ren t
VERTICAL-DIRECTION.

draft of this paper and discovered, an important bug in a
previous version of the algorithm. Carl Hewjtt, Bruce
Edwards, Ron Lebel, Gerhard Fischer, Andy Di Sessa and
others at the MIT AI Lab and MIT Architecture Machine
Group also deserve thanks.

B i b l i o g r a p h y .

[I] Liebermanl H., The TV Turtle: A Logo Graphics Syste m
for Raster Displays , ACM SigOraphlSigPlan Graphics
Languages Symposium, April 1976

[2] Goldstein, I., Lieberman, H., Bochner, H., Miller, M.,
LLoKo: An Implementation of Logo in Lisp, Logo memo II,
M I T Artificial Intelligence Lab,.March 1975

[3] Kahn, K., Lieberman, H., Computer Animation: Snow
White 's Dream Machine, Technology Review, October 19.7"/- ""

[4] Reynolds, C., A Multiprocess Approach to Computer
An imat ion , M I T Master's Thesis, August 1975

[5] Moon, D. A., MacLisp Reference Manual, MIT
Laboratory for Computer Science (formerly Project Mac)

[6] Learn ing Research Group, Personal Dynamic. Media,
X e r o x Palo Alto Research Center technical report

[7] Negroponte, N., Raster Scan Approaches to Computer..
Graphics, Computer Graphics, Vol. 2, No. 3

A c k n o w l e d g m e n t s

I would l ike tO thank Ken Kahn for many stimulating
discussions and helpful ideas. Ken has had a major
inf luence on my th ink ing about graphics, and as a user of
my graphics system, has put some of my ideas to a pracUcal
test. Ha l Abelson made insightful comments' on an.earlier

116

