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Abstract

Referring expressions such as “a long meeting” and “a
restaurant near my brother’s” depend on information
from the context to be accurately resolved. Interpreting
these expressions requires pragmatic inferences that go
beyond what the speaker said to what she meant; and to
do this one must consider the speaker’s decisions with
respect to her initial belief state and the alternative lin-
guistic options she may have had. Modeling reference
generation as a planning problem, where actions corre-
spond to words that change a belief state, suggests that
interpretation can also be viewed as recognizing belief-
state plans that contain implicit actions. In this paper,
we describe how planners can be adapted and used to
interpret uncertain referring expressions.

Recognizing and Synthesizing Phrase-Level
Plans

Although plan recognition has a long connection with nat-
ural language processing (NLP), historically researchers
have focused on two high-level problems: (1) inferring a
speaker’s communicational and task goals from a speech
act (Allen and Perrault 1980; Litman and Allen 1984;
Hußmann and Genzmann 1990) and (2) identifying a plan
embedded in the content of text (Bruce 1977; Charniak and
Goldman 1993; Raghavan and Mooney 2011). In this paper,
we examine plan recognition at a finer grained level of lin-
guistic analysis, where observed actions correspond to indi-
vidual words1 and the plans correspond to referring expres-
sions.

Researchers in the NLP sub-field of natural language gen-
eration (NLG) have deployed AI planning techniques to
the problem of sentence planning (Koller and Stone 2007;
Bauer 2009; Koller, Gargett, and Garoufi 2010; Garoufi and
Koller 2010). These planning approaches treat the lexicon
as the domain theory from automated planning: each action
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1There is no good reason to require words to be the primitive ac-
tions. A more general theory would include all lexical units: mor-
phemes to words to idiomatic phrases. Here, we describe our ac-
tions as “words” for lack of a better lexical unit.

(word) is annotated with a description of its meaning (im-
plementing a theory of lexical semantics) including the lan-
guage’s serialization constraints, expressed by a lexicalized
grammar theory. The planner’s objective is to choose a se-
quence of words that adhere to syntactic, semantic and prag-
matic constraints in order to achieve the communicational
goals while minimizing costs.

In this paper, we describe the problems of generating and
interpreting referring expressions, and formulate them as
planning and plan-recognition problems. Next, we review
two cost-difference approaches to plan recognition and in-
vestigate where they can contribute to interpreting referring
expressions.

What is plan recognition?
Imagine you see a robot at position s2, equidistant from two
goal states: g1 and g2 (Figure 1). Without additional knowl-
edge, you must concede that both goals are equally likely.

However, if you are also given (or estimate) the robot’s
initial state, s0, and some observed actions O = 〈a1, a2〉,
then you can reason about the possible decisions it made
to get from s0 to s2. This may give you more information:
that the robot’s intention was more likely g2, which you may
have inferred by reasoning along the lines “if it had wanted
to go to g1, it would have taken a left sooner than at s1.”

a2

a1

g1

g2

s0 s1

s2

Figure 1: A robot’s path from s0 to s2 along 〈a1, a2〉.

Now, suppose a stranger approaches you on the street and
hands you a picture of two men, Ronald Reagan and Marvin



Minsky, and asks you “Who is that guy?” Let the ambigu-
ous referring expression be O = 〈that, guy〉, and suppose
it resolves equally to two disjoint goal states g1 = Minsky
and g2 = Reagan. Depending on your estimations of this
stranger’s background knowledge2 you may decide to rule
out one candidate after considering the possible linguistic
choices in light of a presumed initial belief state: e.g., “ev-
erybody knows who Marvin Minsky is, therefore the stranger
probably intended ‘that guy’ to mean Ronald Reagan.”

In both cases, inferring the goal involves abductive rea-
soning (Charniak and Goldman 1993). Abduction (infor-
mally: “guessing”) is an inference to the best explanation:
given thatB was observed, along with possible explanations
A1 → B and A2 → B, an abductive process selects the best
Ai that accounts for B, where “best” is usually a quantifica-
tion of the trade-off between benefits and costs. Abduction
has been used to address problems in NLU that require mak-
ing assumptions, such as resolving ambiguity, metonymy
and unpacking compound nominals (Hobbs et al. 1993) and
reasoning about conversational implicatures (Benotti 2010).
In the context of planning, if the observed sentence plan is
incomplete (i.e., due to ellipsis, conversational implicature,
or presuppositions) or the actions are only partially observed
(i.e., due to vagueness or ambiguity), then plan recognition
can be used to augment the speaker’s observed plan with
the listener’s assumptions, by abductively inferring implicit
actions.3 By putting language generation and interpretation
into the framework of planning and plan-recognition, the
concrete computational ideas from planning may shed light
on challenging NLP problems.

Two Tasks: Generating and Interpreting
Referring Expressions

Of the innumerable functions of communication, referring
is perhaps the most common and has been studied exten-
sively across disciplines; its aim is to convey the identity of
an object, agent, event or collection thereof to an audience.

Depending on the participant’s role in an exchange of lin-
guistic reference, he will complete one of two tasks: The
speaker completes a reference generation task: given the
possible interpretations, called the context set (Stalnaker
2004), and a designated member of the context set contain-
ing the intended referent(s), called the target set, his goal is
to produce a referring expression, a noun phrase, that allows
the listener to isolate the target set from the remainder of

2(Clark, Schreuder, and Buttrick 1983) conducted a similar ex-
periment and were able to reliably change the listener’s interpreta-
tion depending on how the question was framed. In planning ter-
minology, this question caused the listener to infer that the speaker
began his language plan from a different initial belief state.

3Which inferences are justified is often up to fiat. Imagine you
are next to a box of chocolate candies, with one large and one small
candy remaining. Your friend, who you know is on a diet, asks you
to pass him “a candy.” His use of the indefinite article, “a”, sug-
gests that he is giving you permission to disambiguate. However, if
he used the definite article “the” you would have to decide whether
you want to cooperate with his short-term or longer-term goal, or
whether you should ask him for clarification.

elements in the context set, called the distractors:

+
Context Set

“the green ones”

Target Set Referring Expression

T

Given the speaker’s referring expression and an assumed
context set, the listener is faced with the reference inter-
pretation task: infer the targets that the speaker intended to
communicate:

+ “the green ones”

Context Set Referring Expression Interpretation

T

For the generation task, the desired semantic content is
fixed and the linguistic choices are open; while for inter-
pretation, the linguistic contents are relatively fixed and the
semantic possibilities are open.

Running example: The CIRCLES referential domain
Throughout this paper, we will use the following three cir-
cles to illustrate examples of reference tasks:

c1 c2 c3

Figure 2: The CIRCLES referential domain containing three
referents: c1, c2 and c3.

Given the R referents in Figure 2, a valid inter-
pretation is any non-empty grouping of these refer-
ents: {c1}, {c2}, {c3}, {c1, c2}, {c1, c3}, {c2, c3} and
{c1, c2, c3}. An invalid interpretation is represented by the
empty set. For both generation and interpretation tasks,
any one of these sets can be a target that the speaker
intends to encode using a referring expression. However,
because of problems like vagueness and ambiguity, re-
ferring expressions can lead to interpretive uncertainty:
when a single referring expression evokes more than one
different interpretation. With uncertainty, any one of these
2R − 1 = 7 valid sets can either be a known target (in all
interpretations), a known distractor (excluded from all inter-
pretations), or unknown (in some but not all interpretations).
Therefore uncertain referring expressions can theoretically
have up to 32|R|

distinct outcomes!



The result of interpreting a referring expression is a de-
notation, represented with the J·K symbol, and is comprised
of the set of elements it refers to, given a context set. For
example, J“the green ones”K = {c1, c2}.

Generating Reference as Planning
The NLG community has given the reference generation
task much attention (see (Krahmer and van Deemter 2012)
for a good overview). The original formulation of the prob-
lem, often attributed to (Dale and Reiter 1995), restricts the
task to content determination—selecting the information
a referring expression should contain, while deferring the
natural language generation to subsequent processing. The
output of the content determination is a description that dis-
tinguishes the target set from the distractors. For example, if
the target set is {c1, c2}, then a valid output from a content
determination algorithm is this description, usually in either
attribute-value matrix or logical form:

s =
[

TYPE circle
COLOR green

]
s = TYPE(x0,circle)

∧ COLOR(x0,green)

The content s would then be handed to the next step in an
NLG pipeline (c.f. (Mellish et al. 2004)) with the ultimate
goal of becoming a referring expression (e.g. “the green cir-
cles,” “the two green circles,” “some green circles”), em-
bedded in a larger construct, like a sentence. Two compo-
nents of the so-called “sentence-planning” pipeline include
lexical choice, choosing the words that express the pres-
elected meaning, and surface realization, organizing the
syntactic form of the sentence.

A strict pipeline limits the information that is shared be-
tween the processes in undesirable ways (Stone and Web-
ber 1998; Krahmer and Theune 2002). As (Horacek 2004)
noted, the precise representation of the content may depend
on what expressive resources are available to the surface and
lexical choice modules. For example, suppose you are trying
to generate a referring expression to identify one out of two
men, and the target has a full head of hair but the distractor
is bald. Instead of the content selection algorithm producing
the logical formula, HAS HAIR(x1), it may be preferable to
instead use the logically equivalent formula ¬ BALD(x1)
because it has a simpler surface form and can be expressed
as “not bald,” whereas in English there is no succinct mod-
ifier for HAS HAIR(x1).

Beginning with the SPUD system (Stone et al. 2003), the
modular, pipelined approach to the miscellaneous sentence-
planning tasks was abandoned for a “lexicalized approach”
that defines each word’s syntactic, semantic, and (conven-
tional) pragmatic contributions together in its lexical entry,
collectively stored in a lexicon. Each word asserts informa-
tion that constrains which targets are possible or which ele-
ments in the context are distractors.

The exact representational details of these lexical entries
leave plenty of design decisions open; however, this ap-
proach requires a lexicalized, incremental theory of gram-

mar to specify how the meanings of individual words (ac-
tions) interact. In SPUD and its derivatives, syntactic con-
straints are expressed using a lexicalized version of the tree-
adjoining grammar (LTAG) theory, in which larger trees are
assembled from smaller elementary trees using only two
compositional operations: substitution and adjunction.

(Koller and Stone 2007) observed that this approach could
be represented as a classical Strips planning problem and
provided examples in a system called CRISP. The plan-
ner’s domain theory is an implementation of a lexicon whose
entries describe belief-dynamics of the speaker and listen-
ers’ information states, rather than changing a description
of the state of the world. CRISP defines word-actions in
PDDL, whereby each action has a precondition that requires
the appropriate substitution or adjunction site for the word’s
elementary tree and effects that describe its semantic con-
tent and syntactic constraints.4 The goal-test function veri-
fies that the state’s syntax is a proper LTAG tree (a single
parse tree without any unbound substitution nodes) and that
the desired semantic content is asserted. (Garoufi and Koller
2010; Koller, Gargett, and Garoufi 2010) showed that the
planning approach of CRISP could also incorporate world
context into generation: in addition to manipulating the dis-
course context, words can be designed to constrain extra-
linguistic context by using preconditions that hinge upon the
state of a simulated world. The idea is to interpret referring
expressions such as “[take] the second door to your left,”
which, assuming the door is out of view, requires the lis-
tener to update his non-linguistic context by performing the
physical action of moving to the left. This captures some of
the so-called presuppositions and conventional implicatures,
whereby a word’s meaning constrains the previous context
set and requires the listener to reason backwards to align her
context set with the speaker’s.

Despite the apparent advantages of a planning approach,
(Koller and Petrick 2011; Koller and Hoffmann 2010) ini-
tially reported difficulty designing a domain that could fea-
sibly be searched by a leading heuristic-search planner, FF
(Hoffmann 2001). Later, they overcame some of the in-
efficiencies by modifying FF so that it removed tautolo-
gies from the planning domain during preprocessing and re-
stricted actions to those that were beneficial in solving a re-
laxed version of the planning problem. This leads us to sus-
pect that alternative formulations of planning domains will
be able to overcome these performance problems.

Interpretation and Generation with AIGRE We have
developed a fast belief-state planner, AIGRE, that can gen-
erate and interpret simple English referring expressions. The
current implementation handles noun phrases with deter-
miners, cardinals, ordinals, crisp and gradable adjectives
(base, comparative and superlative forms), and nouns (sin-
gular and plural). AIGRE’s approach is to plan over belief-
states, which represent complete interpretations—implicitly
representing all possible targets. Because of the asym-
metry of the two tasks, interpretation is a much simpler

4It should be noted that the SPUD and CRISP systems do not
perform content selection–the content to be expressed is given in-
put in logical form.



search problem (over belief-changing word-producing ac-
tions) than generation. For interpretation, AIGRE uses a
complete, optimal A* search toward valid interpretations.
For generation, it uses a stochastic heuristic search toward
a communication goal (see (Smith and Lieberman 2013) for
more details). Because states are complete interpretations,
the planner is incremental and a denotation can be output at
any stage. For example, here is its word-by-word interpreta-
tion of “the green ones:”

0.0 0.5 1.0
Relative likelihood of denotation

ones

green

the

Incremental Interpretation of “the green ones”

Possible Targets

{c1}
{c2}
{c3}
{c1, c2}
{c1, c3}
{c2, c3}
{c1, c2, c3}

Figure 3: All denotations’ relative likelihoods during incre-
mental interpretation of “the green ones,” with respect to
the CIRCLES domain. More than one color in a bar indicates
the interpretation at that point is uncertain.

Reference Interpretation as Plan Recognition
In this section, we will review two approaches to plan recog-
nition that are based on classical planning. Second, we will
show some idiosyncrasies of the interpretation problem.
Last, we will compare the two approaches with a baseline.

Plan recognition is often viewed as an inversion of plan-
ning (Carberry 1990); however, until recently, these prob-
lems were rarely5 addressed together. Perhaps due to ad-
vancements in automated planning and Moore’s law, re-
cently hybrid approaches have been developed for decision-
theoretic (Baker, Tenenbaum, and Saxe 2007) and classi-
cal heuristic-search planners (Ramı́rez and Geffner 2009;
2010). These hybrid approaches allow the same resources
that were used for generation to also be used for interpreta-
tion. Here, we restrict our attention to the classical planning
approach because of its better scalability.

5An exception is the unique approach proposed by (Wilensky
1981) that suggests using meta-knowledge about “how to plan” to
characterize the planning process, thereby enabling the problems
of planning and plan recognition to be described declaratively as
meta-goals. One merit of this approach is its ability to recognize
meta-goals; for example, from the story of “[being married and]
going out with one’s secretary,” it would hypothesize a ‘Resolve-
Goal-Conflict’ meta-goal.

Cost-based approaches to plan recognition
Ramı́rez and Geffner presented two cost-difference ap-
proaches to hybrid planning and plan recognition, which
we call R&G-1 (Ramı́rez and Geffner 2009) and R&G-
2 (Ramı́rez and Geffner 2010). Both approaches work by
generating plans that contain the observations as a subse-
quence for each possible goal, and then comparing the plans’
costs. Like our example in Figure 1, these approaches were
founded upon the assumption that the observed actions were
performed by a rational agent and were chosen to most effi-
ciently achieve goals. The only difference between the two
approaches is how they calculate the costs: R&G-1 esti-
mates the likelihood of candidate goals by comparing the
difference between a plan that contains the observations
and an optimal plan that possibly includes observed actions,
whereas R&G-2 compares costs of plans to achieve the goal
with and without the observed actions.

We follow the authors by describing the approach in
terms of a Strips-based planning domain; however, these ap-
proaches are more general. Beginning with a description of
actions, A, they receive as input (1) a set of goal states, G,
(2) a sequence of observed actions, O = 〈a0, a1 . . . an〉
where all of the observed actions are in A, and (3) an initial
state s0 preceding the first observed action.

The actions inA that produce observations inO are trans-
formed so that they create a new fluent (a time-indexed
propositional variable) that indicates that the action has been
observed. For example, if O = 〈left,right〉 then two
fluents will be introduced, pleft and pright. The first obser-
vation in the sequence is transformed differently than the rest
of the observed actions: in this example, right is modified
to introduce a positive effect (in Strips, this means a literal
is added to the add list):

• the fluent pleft is added to left’s effects.

The rest of the actions in the observation sequence are aug-
mented with a conditional effect so that the fluent is only
added when all previous observations in the sequence have
been observed:

• the conditional effect6, when pleft then pright, is added
to right’s effects.

For the goal transformations, the set of candidate goals, G,
is redefined into two new goal sets: GO and GŌ. For GO,
each original goal sG ∈ G is extended to also require that all
observations have been observed:

sGO = sG ∧ pright︸ ︷︷ ︸
fluent of last action inO

(1)

Similarly, for constructing our negated goal set, GŌ, we
introduce a modified version of the original goal where the

6Conditional effects are a convenient sugaring of the Strips for-
malism that can be rewritten equivalently as two actions: one action
with the condition moved into its precondition and the conditional
effect a normal effect, and a second action with the negation of the
condition moved into the precondition that does not introduce the
conditional effect (Gazen and Knoblock 1997).



observation sequence is not a subsequence of the resulting
plan:

sGŌ = sG ∧ p̄right︸ ︷︷ ︸
negated fluent of last action inO

(2)

(We use the notation π(s0, sG) = 〈a0, a1 . . . aj〉 to denote
a plan that transforms the initial state, s0, into the goal state,
sG.) Each plan has a cumulative cost, denoted c(π(· , · )) =∑
c(ai), equal to the sum of its actions’ costs.
R&G-1 proceeds by computing two optimal plans’ costs

for each goal: (1) c(π(s0, sGO)) with its goal sGO from the
set of transformed goals GO and (2) c(π(s0, sG) the cost of
the plan achieving sG regardless of O. The cost difference
for a given goal sG and observations O is computed by sub-
tracting the costs:

∆(sG,O) = |c(π(s0, sGO))− c(π(s0, sG))| (3)

For example if ∆(sG,O) = 0, it means that to achieve
sG, the agent did not incur any additional costs in mak-
ing the observed actions; whereas if ∆(sG,O) = 3, then
the observations are suboptimal for sG. This metric doesn’t
take into account the possibility that there are other optimal
plans that also achieve the goal without including the obser-
vation sequence. In other words, this metric fails to account
for whether the observations were necessary for achieving
the plan. R&G-2 adds this feature by instead comparing the
costs of (1) c(π(s0, sGO)) with its goal sGO from the set of
transformed goals GO and (2) c(π(s0, sGŌ)) for the corre-
sponding goal sGŌ in the transformed goals GŌ:

∆(sG,O) = |c(π(s0, sGO))− c(π(s0, sGŌ))| (4)

The cost functions for both approaches are inverted and
multiplied by a goal prior, P (sG), (in our experiments, the
prior is uninformative) to get an equation proportional to the
desired goal posterior:

P (sG|O) ∝ ∆(sG,O)−1P (sG) (5)
And from 5, to recognize the goal, we search for the

goal(s) with the maximal posterior probability:

argmax
sG∈G

P (sG|O) (6)

Adapting cost-difference approaches to NLU
Although we have been emphasizing the similarities be-
tween language interpretation and plan recognition, this
problem domain has several differences:

Observed words frequently map to multiple actions
Ambiguities arise when a single word has multiple
meanings, for instance when a surface lexical unit corre-
sponds to multiple actions, or when components can be
combined in multiple ways, for example when multiple
tree merging operations are possible. Lexical ambiguity
can be seen as partially observed actions, whereas the
syntactic decisions can be viewed as non-determinism,
where a given action has multiple effects.

Observed sentences (plans) rarely omit words (actions)
In both original formulations of R&G-1 and R&G-2 the
plan recognizer is allowed to hypothesize any sequence
of actions as long as it contains the observations as a
subsequence when computing sGO. In natural language,
words are only omitted in very special cases, such as
when a word is elided. For example, the expression “the
biggest” contains an omitted noun “the biggest [one]”;
however the listener is not be licensed to supply any noun
she choses, because convention constrains what values
the defaults can take on.

Observed sentences (plans) are communicated intentionally
Linguistic actions are being conveyed by the speaker
to his audience during the communication act, conse-
quently the keyhole methods for recognizing plans of an
uncooperative agent do not appear to apply.

A simple baseline: MinCost
Given these differences, plan recognition approaches can
make an even stronger assumption when interpreting nat-
ural language: that possible actions are restricted to those
whose lexical units produce the text in the remaining ob-
servation sequence. In AIGRE, we implemented this by fil-
tering actions according to (1) a language model, and (2)
the remaining observation sequence: implicit actions (i.e.
assumptions, and elided words) are only introduced when
no action’s surface text matches the next observation. This
search is extremely efficient, and the average interpretation
time is≈ 100ms to generate and test the entire search space.
Goals states are defined as those that have accounted for all
the observations. When there are multiple alternative inter-
pretations, then the result of MinCost is the goal state(s)
whose plan has the minimal cost:

arg min
sG∈G

= c(π(s0, sGO)) (7)

Comparing the three approaches
In this section we compare the three approaches: a baseline
MinCost, and the two cost-difference approaches: R&G-
1 (Ramı́rez and Geffner 2009) and R&G-2 (Ramı́rez and
Geffner 2010). As input, these are given (1) a sequence of
n partial observations of a plan: O = 〈a0, a1 . . . an〉, (2) a
set of possible goal states, G, and (3) an initial state s0 pre-
ceding the first observed action. As output, they produce a
ranking over the possible goals, which can be used to derive
the single most likely goal given the observations.

• MinCost Derives the plans that contain all observations
for each goal, and then selects the goal(s) with the mini-
mal cost.

• R&G-1 (Ramı́rez and Geffner 2009) selects the goal(s)
with plans whose cost (i.e., the outcome of MinCost)
minimally deviates from the cost of the optimal plan for
the goal.

• R&G-2 (Ramı́rez and Geffner 2010) selects the goal(s)
with plans whose cost minimally deviates from the cost
of an optimal plan for the goal that does not include the
observed plan.
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Figure 4: The results of AIGRE’s interpretations using MinCost, R&G-1, and R&G-2. For each approach, the bars represent
the net relative likelihoods of the denotations for 5 referring expressions in the CIRCLES domain.

The baseline, MinCost, ranks the alternative interpreta-
tions by simply comparing the likelihood of the plans. The
cost-difference approaches look only at the goals G that are
output by MinCost, generate alternative optimal plans for
each of them, and then rerank them by the cost differences.
In terms of language, the cost-difference approaches com-
pare each possible way to interpret what the speaker said
and compare that against the alternative ways the speaker
could have said it to infer the intended meaning.

When are cost-difference approaches useful? The cost-
difference approaches are useful for arbitrating between
multiple hypothetical interpretations: a situation that arrises
when interpreting text that is uncertain. They are not needed
for understanding text for which a single interpretation can
be clearly ascertained. Referring to the results in Figure 4,
the problematic referring expressions are those that produce
multiple outcomes, represented by bars containing multiple
colors (all but “the biggest green circle”). These referring
expressions are problematic for the following reasons:

• The referring expression “the second biggest green one”
has a syntactic ambiguity: which modifier, ‘green’ or ‘sec-
ond biggest,’ is applied to the noun first? Although (to
the authors) ‘green’ seems to clearly come before ‘second
biggest’, when we surveyed 108 people over Mechanical
Turk, about 1 in 3 selected the alternative reading.

• The gradable adjective ‘big’ in “the big ones” suffers
from vagueness and leads to borderline cases. When grad-
able adjectives take the positive form and modify a plu-
ral noun, they can be open to multiple interpretations
and depend upon an implicit choice of comparison class
and standard of reference. In this example context set,
there are two alternative interpretations: (1) only the two
biggest are BIG, or (2) all of the circles are BIG.

• The indefinite article in “a green circle” leaves the exact
outcome intentionally undecided. It conveys that the in-
terpreter is allowed to pick one of the green circles from
a set that contains more than one.

• With “any two circles,” any conveys a choice in a similar
way as the indefinite article.

How do we avoid planning for 2|R| goals? The goal-test
function for the MinCost search process selects any plan
that accounts for all observations, and the action proposal
function is restricted to actions that can produce the ob-
servation sequence. These hard constraints allow us to ex-
plore the entire search space, and enumerate all of the inter-
pretations that are consistent with the observations. Conse-
quently, we can restrict our hypothesis space to these goals.
The two cost-difference approaches also involve generation
tasks, which are much more computationally expensive than
interpretation.

Analyzing the outcomes of the three approaches How
do the cost-difference approaches to plan recognition influ-
ence the overall ranking of alternative interpretations? Let’s
review the results of Figure 4:

• MinCost The resulting preference ordering of interpreta-
tions:
– the second biggest green one {c2} ≺ {c1}
– the big ones {c2, c2, c3} ≺ {c1, c3}
– a green circle {c1} ∼ {c2}
– the biggest green circle {c2}
– any two circles {c1, c2} ∼ {c1, c3} ∼ {c2, c3}

• R&G-1 The likelihoods changed for all but “the biggest
green circle”, however the orderings were the same as
MinCost, except:
– the second biggest green one {c1} ≺ {c2}
– a green circle {c1} ≺ {c2}
– any two circles {c2, c3} ≺ {c1, c2} ≺ {c1, c3}

• R&G-2 Although the likelihoods were different from
R&G-1, it produced the same orderings.

These three approaches ranked interpretations as a func-
tion of the aggregate costs of a plan’s actions. In all ex-
periments reported here, AIGRE’s word costs were derived
from their inverse token frequencies in the Open American
National Corpus (Ide and Macleod 2001). Clearly word fre-
quencies are only an approximation and do not precisely
quantify the costs of human linguistic decisions. Conse-
quently, the specific outcomes of AIGRE is less important



TARGETS MEAN TIME (SEC) AIGRE’S REFERRING EXPRESSIONS
{c1} 7.03± 4.9 the left one (1.9), the small one (1.9)
{c2} 2.37± 1.3 the medium-sized one (1.9), the right small one (2.9)
{c3} 9.14± 7.8 the blue one (1.9), the rightmost one (1.9)
{c1, c2} 0.50± 0.0 the green ones (2.0), the left circles (2.0), the 2 green circles (3.0)
{c1, c3} 13.93± 9.6 the 2 not center ones (3.9), the 2 not center circles (3.9), the 2 not medium-sized ones (3.9)
{c2, c3} 0.51± 0.1 the right circles (2.0), the big ones (2.0), the two right circles (2.3)
{c1, c2, c3} 0.17± 0.1 the ones (1.0), the circles (1.0)

Table 1: Example of AIGRE’s generative output for all 7 valid targets in CIRCLES. The bold referring expressions have been
automatically flagged by the AIGRE’s interpreter as problematic, because they can be interpreted in multiple ways.

than the details of the general approach for reasoning about
alternative linguistic decisions.

Discussion of the results The cost-difference approaches
R&G-1 and R&G-2 changed the relative likelihoods for all
problematic referring expressions (they didn’t change “the
biggest green circle” because there was nothing to change).
Despite this, they both changed the ordering and the most
likely interpretation(s) in only 3 of the 4 problematic cases.

For “the second biggest green one” (3.99), MinCost had
a small bias in favor of c1, because of AIGRE minor syn-
tactic preference for evaluating subsective adjectives in a
LIFO rather than FIFO order. R&G-1 compared, against its
optimal alternatives, “the small one” (cost: 1.9397) for c1
and “the right small one” (2.9144) for c2; and R&G-2 pro-
duced “the small shape” (1.9916) for c1 and “the right small
shape” (2.9664) for c2. This was marginally enough to tip
the scale in favor of c2 for both approaches.

For “a green circle” (2.59), MinCost put both interpreta-
tions c1 and c2 into an equivalence class. Yet again, the high
cost of the optimal plan for referring to c2 resolved the ambi-
guity in favor of c2 by a extremely small margin for R&G-1.
The margin for R&G-1 was much smaller than in the pre-
vious expression, because “a green circle”’s difference in
cost to the optimal “the small one” was not nearly as large
as it was with “the second biggest green one”’s distance to
“the small one:” it had a smaller cost differential. We want
to stress that it is most important to look at the relative mag-
nitude of the change, because the costs could be set or scaled
differently to make these minor fluctuations become signifi-
cant changes.

Lastly, we note that the very minor change among the
three options for “any two circles” (although impercepti-
ble in Figure 4) was created by the following optimal refer-
ring expressions, which were the same for both R&G-1 and
R&G-2: {c1, c2} “the small ones” (1.9896); {c2, c3} “the
right ones” (1.9717); and {c1, c3}, which had the smallest
cost differential with “the 2 not center ones” (3.38783).

In conclusion, this demonstrated is that the approaches of
R&G-1 and R&G-2 succeed in reranking the interpretations
based on the alternative, optimal ways of referring to them.
What this means for the language understanding domain is
that if an ambiguous utterance U yields two mutually exclu-
sive interpretations, x and y, then R&G-1 and R&G-2 will
pick the interpretation whose optimal description is closest
in cost to the cost of U . At the moment, there is not enough

evidence to suggest one of the two cost-difference methods
is superior to the other.

Conclusion
In this paper, we described a promising direction for deal-
ing with the uncertainty created by context-dependent refer-
ring expressions, based on reasoning about alternative lin-
guistic decisions. For the problem of generation, planning
allows the costs of speech acts to be pitted against achieve-
ment of communication goals. For the problem of interpre-
tation, plan recognition offers an abductive framework for
balancing the costs of potentially ad-hoc interpretation deci-
sions against the benefits—loosely defined as “a successful
interpretation.” Additionally, hybrid approaches give a uni-
fied framework in which components can be shared between
generation and interpretation tasks, and lead to a mutually
cooperative division of labor between the two tasks. The re-
search described in this paper explored the possibility of us-
ing generation to improve interpretation, via cost-difference
approaches to plan recognition. Similarly, we can take ad-
vantage of interpretation to detect when the outcome of a
generation task is problematic, as we show in Table 1.

The primary drawback of the cost-difference approaches
is that they are highly sensitive to the costs that are assigned
to each action. The resulting behavior depends on the plan’s
cost, the contents of the lexicon, and the referring task at
hand. Further, corpus estimates of costs like those used in
AIGRE omit the syntactic and cognitive costs of comput-
ing a word’s meaning, inter alia. Corpus-estimated costs are
a crude approximation for quantifying true human linguis-
tic behavior; learning costs that accurately reflect the per-
formance of a population of human language users makes a
challenging follow-up research project. Still, we believe the
general idea behind this approach will be useful for dialogue
systems that need to perform pragmatic inferences.
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