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Abstract 

This work aims to bring the power of visualization to 
understanding knowledge bases and the operation of 
inference engines in AI. We present Alar, a visualization 
system for the knowledge base ConceptNet and inference 
engine AnalogySpace. Alar presents dynamically 
controllable node-and-arc graphs of concepts, and of 
assertions both supplied to the system and inferred.  The 
links represent semantic similarity between entities, 
allowing a user to get an overview of a relevant 
neighborhood of a semantic space, rather than query it one 
assertion at a time.  
 
Alar is designed to help the user answer the questions: 
 
• How “liberal vs. conservative” should the inference be? 
Essentially, how easy is it to jump to conclusions vs. the 
risk of making false conclusions?  
• How good is the knowledge in the KB? Are there incorrect 
assertions? Are there missing concepts or assertions that 
would enable desirable inferences? 
 
We present a user study testing the efficacy of debugging a 
KB with Alar vs. a textual representation; and an empirical 
evaluation of our similarity measure for assertions, a key 
contribution.  
 

The problem of understanding inference in AI 
AI programs do inference. Therein lies their power. But 
also therein, lies a challenge. Because inference is often a 
black box to end-users, it is sometimes hard for people to 
develop confidence in AI programs. We believe that one 
route to increasing confidence in AI inference and AI 
applications is to open up the black box, and to provide a 
route for understanding in-depth the operation of AI 
algorithms. We also believe visualization will be valuable 
for AI application developers to help debug their programs 
and assure that they meet users' needs. 
 
As in other scientific fields, graphical visualization is a 
very powerful tool for achieving understanding. It uses the 
enormous parallel computational power of the visual 
system to enable users to grasp the effect of a program on 
many examples at once. Interactive controls of graphical 
visualizations permit performing a multitude of 
experiments in the flash of an eye. However, very little 

prior work in AI is concerned with visualizing inference 

processes (we will survey related work later in the paper). 
 
We present Alar, a visualization system for a large 
commonsense knowledge base, ConceptNet, and its 
associated heuristic inference technique, AnalogySpace 
[Speer et al 08]. Alar can visualize both graphs of 
concepts, and also graphs of assertions, as in Figure 1.  We 
believe the visualization of assertion graphs to be novel.  
 
There are many kinds of inference in AI: logical inference, 
cognitive modeling of human inference, and many kinds of 
statistical inference in modern machine learning. Some 
kinds of inference will merit their own specific 
visualizations. Other kinds of visualizations may be valid 
across many different inference techniques. Inference 
techniques typically come with a large number of control 
parameters, which regulate things like weighting of 
particular kinds of knowledge sources, breadth-first vs. 
depth-first, and other tradeoffs. Visualization can be a 
powerful tool to tune these kinds of parameters. 
 
Another role for visualization is to do quality assurance on 
the knowledge sources themselves. Incorrect inferences are 
sometimes due to incorrect knowledge. When evaluating 
inference, the gold standard is human inference, and it is 
sometimes difficult for a person to jump out of their own 

 
 
Figure 1. An Alar visualization, centered on the assertion 
“Orange is a food”.  Inferred assertions use related 
knowledge about food to infer new assertions, e.g. 
“Orange AtLocation grocery store”. 



skin enough to see why a program is or isn't making a 
particular inference. Visualization externalizes the 
inference process so that people can see what is taking 
place. 

ConceptNet and AnalogySpace 
 
We are most interested in the problem of representing 
commonsense knowledge and commonsense inference. We 
use the knowledge base ConceptNet [Havasi et al 09], 
roughly similar in goals (though not in details) to Cyc 
[Lenat 95]. Assertions are derived from natural language 
sentences.  Knowledge is represented via concepts (named 
by a word or noun phrase in natural language), and 
assertions, here a triple of two concepts and a relation: 
“Fork UsedFor Eating”.  
 
The basic inference is not strictly logical, nor probabilistic 
inference, but a kind of analogical inference called 
AnalogySpace. AnalogySpace uses similarity of concepts 
to infer new assertions, and similarity of assertions to infer 
similarity of concepts.  Mathematically, it makes a matrix 
whose cells are the truth values of assertions, and computes 
the principal components via Singular Value 
Decomposition (SVD). Since the subject here is 
visualization and not the inference per se, it is not 
necessary to understand the algorithm. Knowledgeable 
readers can find a full explanation in [Speer et al 08], and 
the central equation below.  
 

 
The thing to note is that there is an approximation 
parameter k, controlling dimensionality – roughly, how 
“liberal” (easy to jump to conclusions) vs. “conservative” 
(requiring a lot of evidence before concluding) the 
inference is. We would like the visualization to control this 

parameter in real time. Many statistical or inexact 
inference algorithms also include parameters that control 
this aspect, and so some of our visualization and 
computational techniques will also apply. 
 
Here’s a simplified example. If we know “A fork is used 
for eating”, we might ask “Is a spoon used for eating?” If 
one of the axes happens to represent things that are found 
in a kitchen, the approximation may cause differences 
between a spoon and a fork to disappear and conclude that 
indeed, a spoon is used for eating, too.   

Alar’s interface 
Alar’s interface revolves around a graph representation of a 
portion of the semantic space. It can either show graphs of 
concepts, or graphs of assertions. The links represents the 
similarity of the entities. The thicker and shorter the link, 
the more similar the two entities it connects. 
 
Alar treats nodes as charged particles which repel each 

other and links as springs which draw its respective nodes 
together. Links with higher semantic relatedness pull their 
nodes closer together. Spatial relationships within 
connected components express similarities, but absolute X-
Y position of each node is not significant.  
 
The visualization dynamically adjusts using the force-
directed layout of the visualization toolkit D3JS [Bostock 
14]. There are three interactive controls over the 
visualization, shown in Figure 3. 

 
Figure 3. Interactive control over permissiveness of the 
inference, layout, and level of detail 

 
Figure 2. The central equation of AnalogySpace inference. 
It computes k “axes” which represent important semantic 
distinctions, like “good vs. bad”. K controls how “liberal 
vs conservative” the inference is.  



First, dimensionality, which controls how liberal or 
conservative the inference is. For concepts, liberal 
inference results in more links; for assertions, more 
inferences.  Spacing supplies “negative gravity” that 
counteracts the pull of the inferential associations, making 
semantic clusters more readable. The link strength is a 
movable slider on a histogram of number of links vs. 
strength. Only links to the right of the slider are displayed; 
to the left is the “below water”, thus invisible, part of the 
iceberg. This gives control over the level of detail 
displayed, and previews the effect of moving the slider.  
 
The interface is seeded with one or more initial concepts 
(e.g. “Orange”) or assertions (“Orange is a food”). The 
operation, “Add Related Nodes” finds the most similar 
concepts (or assertions) to the seeds and expands the graph. 
Figure 4 shows a concept graph centered around “Orange” 
that clearly delineates semantic clusters for the word’s 
meaning as a color, and its alternative meaning as a fruit.  
[Havasi et al. 10] details the potential of commonsense 
knowledge for word-sense disambiguation.  

Exploring assertion spaces in Alar 
When Alar displays graphs of assertions, the size of the 
node’s dot indicates the degree of truth ascribed to that 
assertion. Assertions that appear in the original sparse 
knowledge base (the axioms, in terms of traditional logic) 
are represented as black dots, the inferred assertions as 
green dots. Links between assertions represent similarity of 
assertions, as they do for similarity between concepts. 
They don’t indicate directly that one assertion is derived 
from another, as they do in proof-tree visualizations like 
the Transparent Prolog Machine.  
 
One of the uses of the visualization is to get a feeling for 

how the dimensionality interacts with the truth of a set of 
related assertions. In general, lower dimensionality will 
result in stronger connections between assertions, but less 
confidence in the truth of similar assertions.  
 
Figure 5 shows an assertion graph seeded with the 
assertion, “Water IsA Drink”. To the upper left is a set of 
connected assertions that seem reasonable, such as “Water 
AtLocation Beach”, and “Water HasProperty Drink”. At 
the upper right is a nonsense assertion “Cup IsA Drink” (it 
was probably supposed to be “Cup UsedFor Drink”). 
Nonsense assertions can appear in the knowledge base for 
a number of reasons. They can be entered by malicious or 
careless users. They can result from a failure of the natural 
language parser. They can result from a failure of inference 
caused by missing but essential information, or other 
reasons.  However, the assertion “Cup IsA Drink” appears 
as a relatively small dot, indicating that the system does 
not consider it very likely that it is true. 
 
As we decrease the dimensionality, as in Figure 6, we can 
see in this case that there is little effect on the cluster of 
assertions above and to the left of the original “Water IsA 
Drink”.  Since we’re performing more inference, we do get 
additional plausible inferences such as “Water HasProperty 

 
Figure 4. A concept graph. The two senses of “orange” 
{color, fruit} are clearly distinguished in semantic 
clusters. 

 

 
 
 
Figure 5. An assertion graph at high dimensionality. Near 
the seed “Water IsA Drink” are some reasonable 
assertions, but the nonsense “Cup IsA Drink” at middle 
right and “Glass IsA Drink” at upper right, are false 
(small dots).  

 
 

 
 
Figure 6. An assertion graph at lower dimensionality.  
Assertions about water are still pretty reasonable, but the 
false “Glass IsA Drink” is now given more credulity 
(larger dot). 



Good”, above and to the right of the original assertion. 
However, the dot representing the nonsense assertion 
“Glass IsA Drink” is also larger, which is undesirable.  If 
we wanted to investigate further, we could move the link 
strength slider to the left, which would reveal a more 
detailed network containing more related assertions.  
 

 
In this case, the  “Cup IsA Drink” was inferred from 
another bogus assertion, “Glass IsA Drink” that appeared 
in the knowledge base. Removing the cup assertion would 
also eliminate the glass assertion.  
 
A static picture doesn’t fully convey the feeling of 
interacting with this visualization. In knowledge bases that 
are reasonably well behaved, it is often possible to visually 
arrive at good intermediate values by interactively playing 
with the slider. 

Implementation 
Alar is implemented as a single Web page in HTML and 
Javascript, with Ajax requests to the server. D3JS’s 
[Bostock 14] physics simulation with “spring-loaded” links 
provide smooth transitions as the user drags nodes. Links 
higher above the threshold have more gravity than others, 
contributing to smoothness as links enter and leave the 
display.  
 
The key implementation challenge is how to avoid 
unnecessary recomputation in order to keep the interface 
responsive. When dimensionality changes, we must update 

relatedness of concepts or assertions, and the truth of an 
assertion. So, when a node or link is to be added to the 
graph, the server also supplies the coefficients of the 
polynomial at the current dimensionality, then returns the 
current value to be displayed. In this way, the frontend 
merely executes a function call per data point, without 
needing to communicate with the server. 
 
First, for a total of k dimensions, the value of each data 
point in question is found exactly for each of the k 
dimensions. Then, a closest fit polynomial of order k-1 is 
used. So the value of the polynomial evaluated at any 
integer dimension is the answer. Furthermore, there isn’t a 
well-defined answer for any inferred value at anything 
other than an integer number of singular values. However, 
the slider itself is real valued in the interface and makes a 
much more fluid transition between dimensions. So, the 
polynomials smoothly change the values at play as the 
slider changes. 
 
Alar represents both concepts and assertions as vectors in 
k-dimensional space, where k is the rank of approximated 
matrix. Per AnalogySpace, the concept vectors are formed 
from each row of the U matrix. Alar presents a novel 
formulation of the assertion vectors. Specifically, it is the 
change in its inferred truth at each of the k dimensions. 
This is a row of Us scaled by a row in V, for the concept 
and feature which form the assertion. This is motivated by 
the semantics, because assertions with similar vectors 
indicate they were inferred to be true or false at similar 
times in the reconstruction process. Normalized similarities 
of both concepts and assertions are found by finding the 
inner product of their vectors normalized by their norm, 
nicely mapping them to [-1,1]. 
 
We are able to render results in the interface immediately, 
at any dimensionality, because the results of the SVD for k 
dimensions can be used to find the results of the SVD at all 
dimensions k' < k. We truncate the concept or assertion 
vector in question to the first k' entries, as an SVD of k' 
dimensions is equivalent to zeroing out all but the top k' 
values in the top k’ values in the Σ  found with k. This 
means only the left k' columns are ever considered in U, Σ 
and V, which would result in truncating the vectors.  
 
Now that these values are efficiently found, they are 
communicated to the interface as the coefficients of the 
order k-1 polynomial of the value of the metric in question 
over all k dimensions. This is the only possible polynomial 
of its order to exactly go through each value at each 
dimension, so answers are kept very close to the truth 
without overfitting. The coefficients are sent to the client to 
be reconstructed as a function in Javascript and re-
evaluated each time the dimensionality slider changes, 

 
 
Figure 7. An expanded network showing that “Cup IsA 
Drink” was inferred from another bogus assertion, “Glass 
IsA Drink”.  



allowing the user to smoothly vary the results of inference 
with dimensionality. 
 

Evaluation 
 
We present two different evaluations. The first is a 
usability evaluation of Alar’s interface. It supports our 
claim that Alar is useful as a debugging tool. We ask 
subjects to perform a task of finding a bug in a particular 
knowledge base (a false assertion that causes several 
incorrect inferences to be made), and we compare Alar’s 
visual representation versus a textual representation, the 
conventional alternative.  
 
The second is an empirical evaluation of the metric for 
semantic relatedness of assertions. Recall that Alar 
provides a dynamic display of a subset of assertions most 
related to one or more seed assertions chosen by the user. 
What makes Alar possible is that this can be computed and 
displayed in real time for realistically-sized knowledge 
bases. We cannot invoke heavyweight inference 
mechanisms for large sets of assertions on every mouse 
movement or redisplay.  This evaluation checks that the 
metric is a good proxy for determining which assertions 
caused other assertions to be inferred. 
 
Usability Test 
 
Five users who were experienced computer users (but not 
AI experts), were given a knowledge base where we 
pointed out an obviously incorrect assertion. The task was 
to determine, within 10 minutes, what other assertions in 
the KB might have contributed to the incorrect inference 
(we are testing people’s ability to generate hypotheses 
about what may have gone wrong, not to make definitive 
judgments about what did go wrong).    There were asked 
to do this twice, once using a Microsoft Excel spreadsheet 
of all the original assertions (they could use any 
spreadsheet tools like sorting or searching for navigating 
the assertion set), once using Alar (randomizing the order). 
Again, since this was not intended to be a test of the 
inference algorithm itself, we relied on the users’ own 
judgment as to whether the hypotheses they found were 
useful in the debugging process (but see below for our 
independent test of assertion relatedness). Replies to the 
following questions are on a Likert-5 scale. C2 = (1,N = 5) 
>=6.75; p <=0.01 for all tests. All users said they preferred 
Alar to the spreadsheet when asked to choose between the 
two for daily use.  

 

• This interface was easy to use. 
• I was able to find the facts I needed to know.  
• I was confident the facts I suggested led to the given 
incorrect fact being generated.  
• I enjoyed using the interface. 

 
Assertion Relatedness 
 
Users would often search for the given assertion, and 
would subsequently examine assertions which made sense 
to them as being related. In this setting, assertion 
relatedness serves a good proxy for identifying assertions 
that led to the central assertion being inferred.  
 
For the assertion used in user testing, "cup IsA drink," the 
40 most related assertions were calculated. Then, starting 
with the most related, it would remove assertions from the 
KB and recalculate the inferred truth of "cup IsA drink." It 
then calculated how much the inferred truth of "cup IsA 
drink" changed, as a fraction of its original truth. For 
example, "something AtLocation cup" was found to be the 
most related assertion. So its entries in the original 
assertion matrix were set to 0, the inference process 
redone, the truth of "cup IsA drink" recomputed, and 
compared to the value originally found. 
 
This was repeated for the forty most related assertions. At 
each step, the previously zeroed entries in the assertion 
matrix were left to be zero, so the results indicate the 
impact of removing all the first n related assertions, not 
just that particular one. This isn't a very viable option for a 
user interface because an SVD of a matrix of the scale used 
takes at least several seconds, and an SVD must be 
computed for each of the top assertions we are considering. 
 

 
 
Figure 8. Usability evaluation of Alar vs. spreadsheet for 
finding potentially incorrect assertions.  



In summary, the 40 most related assertions to "cup IsA 
drink" accounted for 78% of the inference. That is, it 
identified the 0.00000156% of the 2.5 billion assertions 
that could have potentially contributed to this inference. 
We feel this is grounds to claim that the relatedness metric 
in a good proxy by which users can identify assertions 
which may have caused other assertions to be inferred. 

Related Work 
There has been surprisingly little work in visualizing 
inference in AI.  
 
In AI approaches that use logical inference, there has been 
work on visualizing the proof process itself. Most 
visualizations take the form of proof trees of the derivation 
of an assertion. Perhaps the best known of these is the 
Transparent Prolog Machine [Eisenstadt et al 91], a 
debugging tool for Prolog programs that visualizes the 
resolution proof procedure.  It is especially useful for 
understanding backtracking.  But few prior works treat the 
inference of sets of assertions not part of a inference chain.  
 
Of course, there have been many visualizations of static 
structures, such as visualizations of ontologies. [Katifori et 
al 07] surveys such systems. A good example is Protegé 
[Protegé 14], which provides a gallery of visualizations, 
including node-and-arc diagrams, tag clouds, treemaps, 
and other views of hierarchical structures.  
 
In statistical approaches, work has concentrated on 
visualizing the result of an inference process on a large 

data set, usually specific to the kind of data involved. But 
visualizing the output of an inference process sometimes 
doesn't deliver much insight into "what the machine is 
thinking". [Amershi et al 11] does organize sets of 
examples into visualization spaces, providing some insight 
into internal abstractions of learning algorithms. Amershi’s 
work is one of the few to stress the importance of visual 
feedback in AI inference algorithms.  
 
Visualizing control parameters of machine learning 
algorithms also helps, but requires nontrivial understanding 
of the algorithms.  [Olden 02] visualizes neural networks; 
[Cossalter et al 11] and [Becker et al 01] visualize 
Bayesian networks; [Talbot et al 09] show a confusion 
matrix for ensemble machine learning methods.  
 
Previous work in visualization specifically for ConceptNet 
and AnalogySpace appears in [Speer et al 10].  This 
computes "semantic dimensions" that represent a spectrum 
of distinctions between concepts, such as "good vs. bad”. 
Each concept is a point in this multi-dimensional space, 
and it can be explored through a standard 3D fly-through 
visualization.  It doesn't directly visualize assertions.  

Conclusion 
 
We have presented Alar, a visualization system for the 
ConceptNet knowledge base and AnalogySpace inference 
technique. It dynamically visualizes networks of concepts 
or assertions related by semantic similarity. It provides 
interactive control over the level of detail displayed. It uses 
a physics simulation visualization package to provide a 
smooth (and entertaining!) graphical presentation.  
 
Alar is especially suited for graphical exploration of how 
“liberal vs. conservative” the inference is allowed to be, 
and of finding incorrect or missing assertions that might be 
causing expected inference to fail.  Alar also makes a 
contribution in working out how to incrementally update a 
large-scale visualization of inference to maintain a lively 
interactive response.  
 
We believe the present paper is one of the first works to 
address the problem of large-scale visualization of 
symbolic inference of multiple assertions. We hope that 
this paper will spark others to explore the very rich space 
of graphical and semantic possibilities for visualization of 
inference. We’re not sure what the best way to do 
inference in AI really is, but maybe we’ll know it when we 
see it.  

 
Figure 9. The relationship between relatedness and cause 
of inference between assertions for the assertion "cup IsA 
drink", which was used in user testing. It reveals, for the x 
most related assertions, what fraction of "cup IsA 
drink's" inferred truth value came from them. 
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