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ABSTRACT

As Web services become more diverse and powerful, end
user programming (EUP) systems for the Web become
increasingly compelling. However, many user workflows
do not exist exclusively online. To support these workflows
completely, EUP systems must allow the user to program
across multiple domains. To this end, we introduce the
notion of pluggable domain models—independently
generated action models for different application domains
that can combine to support the learning of cross-domain
procedures—and we present guidelines for the development
of such domain models. In the context of our work on an
Integrated Task Learning (ITL) system, we discuss how to
use pluggable domain models to facilitate cross-domain
instrumentation and automation. We also explore what
impact such a model has on the systems that reason over,
learn, and visualize procedures. Along the way, we provide
prescriptive suggestions for engineering real-world cross-
domain EUP systems as well as suggestions for what sorts
of user activities such as system should support. Finally, we
briefly discuss some open questions that cross-domain EUP
systems will need to address in the future.

A WORLD WIDER THAN THE WEB

Today’s rapid proliferation of Web services, particularly
with the emergence of Web 2.0, has prompted an
increasingly varied use of the Web to support users’
everyday tasks [8]. In the office, Web services now support
many business processes: travel authorization and
reimbursement, equipment purchase and requisition, and
conference facilities management are just some processes
that often rely on dedicated Web-based applications. At
home, we visit a variety of websites to purchase books,
make travel arrangements, and manage our finances.
However, many user workflows, particularly in business
environments, still involve non-Web applications [10].
Even as some applications begin to transition to the Web—
for example, email and calendar tools—the workflows will
continue to involve multiple, disparate application domains.
Thus, any end-user programming (EUP) tool, particularly
those designed for the business environment, must
accommodate procedures learned over a variety of
applications, on the Web and beyond.

Aaron Spaulding

SRI International

333 Ravenswood Ave.
Menlo Park, CA 94025 USA
spaulding@ai.sri.com

Jim Blythe

USC Information Sciences Institute
4676 Admiralty Way

Marina del Rey, CA 90292 USA
blythe@isi.edu

Consider the job of Alice, who is responsible for
maintaining a website listing all the publications by the
members of a university laboratory.! Whenever someone in
the lab produces a report, they notify Alice by email. The
email message contains the citation for the paper as well as
an attached electronic version of the work. The attachment
may be in a single-file format, such as a PDF or Microsoft
Word document, or in a multi-file format such as LaTeX. In
the case of multiple files, it may come as several files or as
a single, compressed folder. Alice saves the file(s), and if
the paper is not already a PDF, she must convert it before
renaming the file to conform to a standard YYYY-
FirstAuthorLastName-Venue.pdf format. She then uploads
the PDF file using the site administrator’s Web interface.
This includes filling out a form with the citation
information for the paper, uploading the paper, verifying
that the uploaded paper is downloadable. Finally, Alice
replies to the email message, copying the direct URL link to
the paper into the message for the author’s benefit.

This is a task Alice repeats several dozen times a year, and
she would clearly benefit by automating it. However, since
it touches several different applications, including an email
client, the file system, word-processing software, PDF
converters, and a Web browser, any EUP tool designed for
a single application can only automate part of Alice’s
workflow. For example, Alice could use a Web EUP
system to automate the segment involving uploading the
paper and citation information to the website. However, she
must still manually process the email, perform the file
operations, provide values for the Web form, and reply to
the email. Additional single-application EUP systems could
potentially automate more segments, but they would require
Alice not only to learn several different interfaces but also
to manually link the data from one system to another. In
contrast, an EUP tool that can be used across domains could
potentially automate the entire workflow, providing a
significantly greater benefit for Alice.

" This use case was adapted from a contextual inquiry user
study [2] we conducted in 2007 to observe office workers
performing potentially automatable tasks on their
computers.



While cross-domain EUP would clearly be valuable, it also
presents many design and implementation challenges.
There is a clear reason why most EUP systems tackle a
single application domain: it is much easier to engineer
instrumentation and automation for a single platform, the
relations between different domain actions are obvious, and
the procedures that can be learned are bounded.
Nevertheless, we argue that the benefits provided by cross-
domain EUP make it well worth attempting to meet its
unique challenges.

Here, we present our approach for achieving cross-domain
EUP. We introduce the notion of pluggable domain
models—independently generated action models for
different application domains that can combine to support
the learning of cross-domain procedures—and we present
guidelines for the development of such domain models. We
then discuss the often-underappreciated task of
instrumentation and automation, noting the additional
challenges that occur when learning procedures across
domains. Given these pluggable domain models, we
describe the various issues and opportunities raised for
reasoning, learning, and visualization, grounding the
discussion within our work on an Integrated Task Learning
(ITL) system [25]. Finally, we present avenues for future
work and conclusions.

CREATING PLUGGABLE DOMAIN MODELS

To get the most mileage out of EUP systems, domain
knowledge must be encoded in such a way as to support
reasoning across different applications. One possible
approach, realized in the CALO cognitive desktop assistant,
is to develop a master shared ontology for representing not
just all the objects in the world and relations between them,
but also the actions or tasks involving them [7]. The
different  applications are required to  publish
instrumentation events that adhere to this ontology, and the
various modules can use the centralized knowledge base.
Such an approach is very powerful, supporting deep
reasoning over actions and objects spanning different
applications [15]. However, this power comes at a very
high engineering and maintenance cost. The knowledge
engineers must develop an all-encompassing ontology and
component developers must commit to the shared
representation to model their domains. Any changes to the
ontology must thus be carefully vetted to avoid unintended
consequences and to avoid significant re-engineering. In a
large, distributed EUP system comprising applications that
are only loosely, if at all, connected, these concerns likely
present an unacceptable cost. Instead, we recommend an
extensible architecture that models each domain as a
separate, pluggable module. In this section, we lay out the
issues that arise when specifying such domain models and
we present prescriptive guidelines for the development of
these models.

Action-Oriented Domain Model

EUP is concerned primarily with automation, so the domain
actions must be the primary focus of modeling. We
prescribe a dataflow model of actions, where the effects of
executing an action are characterized by the action’s inputs
and outputs. Specifically, each action is a named operation
with a set of typed input and output parameters such that, in
a procedure, outputs of actions serve as inputs to
succeeding actions.

The dataflow model is particularly well suited to modeling
Web services and service-oriented architectures in general,
since services can be modeled straightforwardly as
operations taking particular inputs and producing certain
outputs. Moreover, many actions in the desktop world
operate on artifacts such as email, files, and calendar entries
and can thus also be easily cast into this modeling
framework. For the remainder of this chapter, we will
represent actions in the form name [parameters] where
parameters are of the form +|-paramName:paramType
with + indicating an input and - indicating an output.
Figure 1 shows some representative actions for a Web
browser and an email client.

Browser:

openURL +url:string
submitForm +formInputs:List<string>
—url:webAddress

Email:

openComposeEmailWindow
+sender:List<emailAddress>
+subject:string +body:string
—frameID:framelID

sendEmail +email:email

Figure 1: Some Possible Actions.

In Web service domains, it is often easier and more
intuitive to implement instrumentation to generate events in
terms of these actions rather than in terms of the changes
they have on the world state. For example, uploading a
paper to a Web server through a Web interface might be
captured as an action that takes as input the publication
information and generates as output the URL for the
uploaded paper. Alternatively, it could be modeled in terms
of the state of the browser window (and maybe the paper
database) before the Submit button is pressed, and the state
of the window (and maybe the paper database) after. If one
were using citation information copied from an email
message, then state-based instrumentation must also capture
the state of the email client window. In general, state-based
instrumentation must capture not just the conditions that
may be affected by the current action, but also the
conditions affected by previous and succeeding actions.
Action-oriented instrumentation can be more narrowly
focused and, at the same time, also more readily extensible.



However, it imposes the constraint that instrumentation and
automation be modeled as direct inverses of each other—
i.e., any observed action must also be directly executable.

Given a dataflow model of actions, a procedure learner can
reason about the support relationships between the
prerequisites and results of discrete end-user actions. This
reasoning lets it perform procedure validation, provide
editing support, and perform parameter and structure
generalization [25]. Later, we discuss how we can extend
our reasoning capabilities by attaching additional metadata
to actions.

Modeling Human-Level Actions

When constructing a dataflow model, one of the keys to
successful procedure representation and learning is to
capture actions at the right level of granularity. Ideally,
actions should be modeled at the level at which humans
would typically describe their own actions and should
expose the objects that humans would find relevant to the
actions as arguments. For example, in an email application,
it is preferable to model the actions
openComposeWindow, sendEmailAttachment, and
sendEmail, rather than low-level actions like
moveMouse or leftClickOnMouse, or high-level
actions like sendReceiptsToAdmin, or
sendQuarterlyReport.

Capturing actions at low levels will generally result in
much more compact action models, simplifying
instrumentation and automation. However, it is likely to
yield incomprehensible learned procedures—for example a
procedure composed entirely of mouse drags and clicks.
Meanwhile, capturing actions at too high a level will
generally impose an impractical reasoning burden on the
instrumentation to map what can actually be observed to the
user’s intent—imagine having to determine the purpose of
sending an email message. Further, such high-level actions
compose poorly because the user cannot break them down
into smaller units should they want to realign them.

When modeling actions that match how users think of
themselves interacting with applications, one is more likely
to strike the right balance between the cost of
instrumentation and user comprehension of the learned
procedures. Such comprehension is essential if we ever
expect to create systems that allow users to later modify and
debug their procedures [25]. A user with a learned
procedure that operates as a black box may not be any
better off than a user who does not have the technical skills
to read a scripting language. Modeling domain actions at
human level is a service both to the learning algorithms and
end users.

Beyond Actions: Modeling Objects and Relations

As discussed above, an action-oriented domain model
presents a number of advantages for a cross-domain EUP
system. However, judicious modeling of the objects in a
domain and the relations between them can often simplify

action modeling while also improving our ability to learn
and reason over procedures. For example, suppose that the
correct recipient of an email containing a travel expense
report is the administrative assistant attached to the project
that funded the trip. Without a representation for these
relations it would not be possible to notice this requirement
in an action trace, or represent it in a procedure. We can
also use relations and properties as tests in conditional
branches in procedures.

In ITL, we store relation models for each application along
with the action models, preserving modularity. Technically,
a relation such as “the project funding the trip” can be
represented either as a relation or an operation, in this case:
“look up the project funding the trip”. However, there may
not always be an observable user action to query for the
relation. The choice of whether to use a relation or
information-producing action in each particular case should
be largely governed by what is more natural for users of the
application who generate and edit procedures.

Referring explicitly to properties and relations of objects
does require additional mechanisms to be defined to support
querying for object properties or relations when a procedure
is executed. Compared with an alternative approach that
represents each object as a tuple of its properties, however,
this approach provides two distinct advantages. First, the
properties themselves may be more natural for users to
view and edit in their native interface. Second, the object
properties may be mutable—that is, they may change
concurrently within the domain application. In determining
whether it is the same object referred to in different actions,
care must thus be taken to distinguish mutable from
immutable properties and to compare only the immutable
properties. Third, forcing relations between objects into
properties of the object tuples is often awkward and
unwieldy. In situations where these factors are significant,
the advantages of representing objects as references may be
well worth the additional overhead.

Extensible Type System

Recall that we define an action as taking a set of fyped
inputs and outputs. These types are used to allow the
learners to make reasonable comparisons and substitutions
between actions operating on compatible types of data.
Figure 1 shows a variety of types, ranging from simple
primitives such as string to more complex types such as
email.

Much like actions, it is preferable to allow application
domain models to specify arbitrary types rather than
restricting model authors to a finite set of possible types.
Since the type system is very important in procedures that
tie together steps from several different applications, it is
important that compatible information provided by one
application and used in another can be identified as such.
For example, both an email client and a Web browser can
understand email addresses, and it is important that they
both settle on a common representation. We can achieve



this agreement either by having the two domains use the
same name for these object types, or by providing a central
module that asserts the equivalence of the types and that
perhaps contains a set of operations providing object
conversion as needed. Providing shared type names or
conversions does not in itself solve the problem of bridging
information across multiple domains by matching types.
This problem is similar to the ontology alignment or
database integration problems, where a lot of work has been
done [12,23]. Our general approach here has been to keep a
lightweight central type system that is relatively easy to
align to. ITL includes a module to automatically align types
into a central system based on observed values [17].

In addition we suggest a more powerful hierarchical
approach that allows application domain models to build up
complex data types from primitive data types and collection
data types. To illustrate this approach, consider the
hierarchical type system supported by the ITL system. ITL
allows domain models to build from complex types from
string, integer, float, and Boolean primitives and list, object,
and named types. More complex types are built by creating
lists, which consist of typed parameters; objects, which
consist of typed fields; or named types, which are types that
structurally represented by another primitive or complex
type but are not considered equivalent to that type. Figure 2
shows how to build an email type in such a scheme:

Named emailAddress string

Object email:
List<emailAddress> recipients
emailAddress sender
string subject
string body

Figure 2: Building the emailAddress and email types

As we can see, one can build arbitrarily complex data types
out of the components, while still allowing the learning
systems to reason about the internals of complex types.
Another useful addition to such a type system are relations
between types such as “is a” and “has a.” Such additional
metadata is not strictly necessary, but may extend the
reasoning ability of the learners [7].

The key to the above approach is that it parallels the
specification of application domain models in that it allows
domain modelers to create expressive models without
forcing all model engineering to happen upfront. One can
declare types for an application alongside the actions and
register to allow learning in a just-in-time fashion. Thus, we
can define any given application domain model as simply
the set of actions, types, and relations that describe all user-
level operations over which our learners can reason and
build procedures. The full domain model is then just the
conjunction of all actions, types, and relations from all the
application domain models that we wish to consider. Hence,
we can build a large full domain model without the upfront

design and continuing maintenance costs required by a
monolithic master ontology.

ENGINEERING INSTRUMENTATION AND AUTOMATION
Despite a great deal of clever reasoning, in the end, an EUP
system is only as good as the instrumentation that it can
reason over. Likewise, EUP execution engines are
worthless without robust automation hooks. Unfortunately,
to work in non-trivial, non-custom environments,
instrumentation and automation must touch a number of
applications and websites, the vast majority of which were
not originally designed to support such intrusions. Given
such a high cost of entry and high benefit for cross-domain
EUP, we suggest budgeting a large percentage of time to
handle such concerns.

The following sections provide an overview of the common
engineering challenges faced by application developers who
wish to attach their applications to a cross-domain EUP
system. Then, using ITL as a motivating example, we
provide some prescriptive guidance that may reduce the
programming burden associated with
instrumentation/automation.

Plugging in to an End User Programming System

Let us first consider instrumentation. In a dataflow action,
collecting instrumentation consists of recording the values
of the input parameters in the target application, waiting for
the action to be performed, then recording the values of the
output parameters and sending the whole package to the
learners. One possibility is to provide the target application
with a way to notify the learners when an action has been
executed. In this case, we can simplify the process
somewhat by using the domain model to create a registry of
action notifications with accompanying containers for
storing inputs and outputs. Here, we can leverage the
organization of a good domain model to take much of the
burden off the application programmer. However, be aware
that the mapping from application functions and state to
domain actions is almost never one-to-one. As such, it is
key to provide the programmer with flexibility, as it can be
particularly onerous to restructure application logic to fit in
with a given action model.

Automation is somewhat easier for the application
programmer, but it can be difficult for an EUP system
engineer to provide a general-purpose framework for cross-
domain automation that can collect the necessary
application context to execute an arbitrary domain action.
For example, when executing an openURL action, we have
access to the URL to open as an action input, but in most
browsers we also require other information such as a
reference to the active tab. Not all context is appropriate to
expose to the learners via the domain model, so we must
have another way to access the context on demand. One
solution to the problem is to create a callback framework
that attaches the ability to execute arbitrary application code
to each action in the domain model. As with



instrumentation, this approach must be flexible enough both
to execute application operations and to gather all the
program context necessary to allow such objects to operate
correctly.

In summary, while instrumentation/automation engineering
may not present grand Al challenges, it is a critical, under-
appreciated issue for EUP, especially across domains. In the
next section, we will provide some more detail as to how
we have engineered the ITL application programmer’s API
to facilitate instrumentation and automation for third-party
applications.

Crafting the Programming Model

In our deployment of ITL, we learned that
instrumentation/automation is a consistent bottleneck in
crafting a useful EUP system. Over several iterations, we
have developed a few approaches that improve the
programming model for associating application code with
the actions to which it relates. While these approaches may
not be necessary for all cross-domain applications, we
stress that flexibility is the key programming concern in
instrumenting/automating EUP client applications.

For instrumentation, we sought to address three key
engineering concerns, interoperability, immutable state and
crosscutting. Interoperability concerns the fact that
equivalent types may be represented in heterogeneous ways
across different applications. We earlier discussed the
importance of lightweight type systems, and it turns out that
we can leverage this concept for inter-application
communication. In ITL, we settled on a canonical wire
format for all data, recursively built out of primitives, lists,
and maps based on the data type descriptions contained in
the domain model. In this way, application programmers
must only provide data conversion functions for their
primitive application types and the framework can handle
the rest of the conversion automatically.

Immutable State

The immutable state issue crops up because action inputs
and outputs must be immutable values that reflect the state
of the application before and after the user-level operation.
If the operation or some application side effect mutates the
item, the invariants of the action are violated, negatively
impacting the learners. It is up to application developers to
make sure that such erroneous mutation does not occur. In
practice, defensive copying of the parameters solves this
issue [3]. In ITL, we provide API support to deep-copy the
parameters at the points which the application programmer
takes the before and after operation snapshots of the
application’s state.

Crosscutting

Crosscutting refers to the tendency of some self-contained
aspects (concerns) of a program to cut across a number of
modules. Such code is hard to read and maintain [16].
Consider instrumentation, which requires the application
developer to place a call to the EUP system wherever she

wants to log program state. If something about these calls
were to change, the developer would have to hunt down
every occurrence that is entangled in code that is otherwise
unrelated to the EUP system. With standard object-oriented
approaches, it is impossible to fully encapsulate a
crosscutting concern like instrumentation.

In ITL we decided to follow an aspect-oriented approach to
solve this problem [16]. Aspect-oriented programming uses
code execution intercept to factor out cross-cutting
concerns; while it is not possible in all programming
languages, it provides a clean solution to this problem for
the increasing number of languages that support it. In our
scheme, for each action, the application programmer need
only specify methods to gather input and output states.
Then, she simply provides locations at which the
instrumentation will be triggered. The result keeps all
instrumentation in one module and makes it easy to ship
instrumented and uninstrumented versions of the client
application. Even without aspect orientation, we suggest
keeping the gathering methods in a single module and
limiting the penetration of calls to this module from other
modules to a minimum.

Context Gathering

As described earlier, the major problem of automation is
context gathering—i.e., ensuring that the necessary
program context is available for executing the action. We
suggest abstract factory pattern as an elegant solution to
this issue [13]. In ITL, each action uses an abstract factory
to create a context object that knows how to gather context
and execute the necessary code to make execution
successful. In this way, one only needs to provide the
template for gathering context rather than attempt to pass
the context to each callback explicitly.

The ITL approach certainly is not the only method to
instrument and automate a number of heterogeneous
applications, but we feel that it demonstrates a number of
engineering best practices for instrumentation/automation.
We hope that by sharing some patterns for making this
difficult process easier, we can allow EUP systems to
gather more data and focus on better serving the user. Now
that we have facilitated appropriate instrumentation and
automation, we can focus on some interesting learning
issues.

LEARNING CROSS-DOMAIN PROCEDURES

The action-oriented dataflow paradigm both presents new
opportunities for learning and affords useful information
that can help in the learning process. In this section, we
describe various issues that arise in learning dataflow
procedures across domains and present the solutions we
have explored thus far within ITL.

Integrating Web Services and Other Data Sources

By representing actions in terms of their inputs and outputs,
we can naturally represent procedures learned over them as
higher-level actions with inputs and outputs. A beneficial



consequence of this is that we can integrate Web services
and other action-oriented data sources in whole or in part
into ITL. For example, if instrumentation and automation
are provided at the level of the browser operations within a
Web service for providing driving directions, ITL could be
used to learn a procedure to drive the browser interaction.
Alternatively, instead instrumentation and automation could
be at the level of the Web service itself, modeling the
procedure as a single action taking in the origin and
destination addresses and providing the driving directions
URL as output. This could use the Web service API directly
or some intermediary such as the execution component of
some other learning system tailored specifically to that Web
service. This flexibility allows ITL to learn at the primitive
action level but also at the level of procedures learned by
other components. As long as the other learner creates an
action with inputs and outputs, ITL can incorporate it into
larger dataflow procedures.

To support such composability, it is critical that the inputs
and outputs of the different services or learned procedures
be semantically aligned. One approach is to omit semantic
typing and annotate parameters with only their basic data—
for example, type the parameter to a browser navigation
command as a string rather than as a URL. While this
approach will work, it leads to an explosion in the search
space for matching parameters and to inefficient learning.
Thus, as discussed earlier, instead we advocate the use of a
lightweight type system into which the inputs and outputs
of the different actions can then be mapped. In the past, we
have used the semantic mapping component of PrimTL [17]
to integrate new data sources. However, conceptually, other
techniques for ontology alignment can be used to relate
inputs and outputs of different services.

Programming by Demonstration

Programming by demonstration (PBD) or programming by
example has been a popular EUP paradigm since its
introduction a few decades ago [9,19]. PBD is a particularly
attractive methodology for nontechnical end users because
it relies on a very natural form of interaction—
demonstration—that requires minimal input from the user.
Recent years have seen resurgence in enhanced PBD
approaches as adaptive Al systems have begun to tackle the
acquisition of complex workflows (e.g., [1,6]).

Within the dataflow paradigm, we can characterize the
basic learning task as one of generalizing a demonstration
comprising a sequence of executed actions into a procedure
that can be used to achieve the same task in future similar
situations. There are two basic aspects to generalization: 1)
parameter generalization to essentially convert observed
constants into variables and 2) structure generalization to
induce procedural structure over the observed straightline
sequence.

A dataflow-oriented action model introduces a number of
more specific issues for learning procedures from
demonstration. First is dataflow validation—ensuring that

every input is supported by a previous output. Second is the
related issue of parameter generalization through expression
formulation—essentially, determining how to replace
constants not simply with variables but with functional
expressions over previous variables. The third issue is the
induction of loops over collections of objects, in contrast to
counting loops or while loops.

In ITL, the PBD capability is provided by the LAPDOG
procedure learning component [14,15]. LAPDOG was
designed specifically to learn dataflow procedures,
addressing each of the issues above while taking advantage
of the inherent structure provided by the action-oriented
data model discussed previously. We now present each of
the issues in dataflow procedure learning in turn, discussing
our approach to handling them in LAPDOG and remaining
open problems.

Dataflow Validation

To be executable, the inputs of every action in a dataflow
procedure must be supported by previous outputs. In the
simplest case, an input is directly supported by an output—
i.e., they are the same value. A slightly more complex case
involves inputs that can be supported by expressions over
previous outputs; this is discussed further in the next
section.

The most interesting case arises when no such directly or
easily derivable supports can be found based on the
observed demonstration. Discounting the situation where
this occurs due to insufficient instrumentation, missing
supports may occur due to unobservable mental actions that
the user performs in the process of accomplishing a task.
For example, a user might search for all Italian restaurants
in a city and then proceed to email the names and links for
only the five-star-rated ones. However, all that a PBD
system will observe is that the user sent out some
information from some subset of the list of restaurants. The
fact that it was the five-star-rated subset is something that
needs to be inferred.

In LAPDOG, we address this problem through two main
techniques for dataflow completion. The first involves a
heuristic search in the space of possible relations within a
knowledge base [15]. The second might be characterized as
planning in the space of information-producing actions,
such as string manipulation operations, named entity
extractors, and classification operations [14]. While the first
involves search over a relatively static knowledge base, the
second involves search over dynamically generated data.
Both techniques leverage aspects of the domain model
prescribed earlier: the first involving relations between
objects accessible through some query mechanism and the
second involving non-observable but executable
information-producing actions.

Extended Parameter Generalization
In a specialized case of inferred relations between known
outputs and required inputs, we can consider accessor and



construction operations over lists and tuples. LAPDOG
utilizes unlimited tuple field access and limited list element
access. Specifically, individual values may be supported by
any field value of a tuple but only by the first or last
element of a list. The rationale is that while the individual
fields of a tuple as well as the first and last elements of a list
are meaningful, the other elements of a list are rarely so.
LAPDOG also utilizes list and tuple construction, allowing
list and tuple values to be supported by constructor
operations over values matching their constituent parts.

Loop Induction

Within the dataflow paradigm, one of the most common
loops involves a loop over the elements of a collection (i.e.
a set or a list). In the case where the loop is over a
collection that is explicitly observed in the demonstration
(e.g., the output of a previous action), we can leverage this
information to detect loops. Intuitively, if we can find a
similar sequence of actions operating over each element of
the collection, we can induce a loop. In LAPDOG, we
leverage this information to find loops over collections,
where the loop body is identical over all iterations [11].

A more interesting situation arises when loops occur over
collections that are not explicitly observed but can be
inferred from previous outputs. A simple case of this
involves a sorting operation on a list to generate another,
potentially differently ordered, list. For example, a set of
person names may be sorted alphabetically while a list of
employee IDs may be sorted in increasing numeric order. A
straightforward extension involves the application of
predefined actions that generate lists. For example, a travel
system might have an operation that takes a set of travel
authorization requests and outputs the list awaiting approval
or another that takes an employee ID and a date range and
outputs the list of all travel within that specified dates.
Inserting these kinds of actions into the learned procedure is
a natural extension of LAPDOG’s dataflow completion
capabilities [14,15].

Another interesting situation involves a loop that uses the
accumulated outputs of a previous loop. For example,
imagine an administrative assistant making online hotel
reservations registrations for a number of people and then
emailing each person with their reservation confirmation
ID. This presents an interesting learning challenge because
it requires the preceding loop to be learned in order to
determine that it will generate the list that the succeeding
loop needs [11].

Combining the notion of having to infer a collection of
objects and accumulating a new list within a loop, we get
the situation where we have a loop over a collection for
which the learning system must propose a loop that will
generate the required list from a previously known list. For
example, imagine needing a list of employee IDs. Given a
list of employee records, we could generate this list by
looping over the employee records and collecting the
employee ID from each.

VISUALIZING CROSS-DOMAIN PROCEDURES

End-user programming is fundamentally a programming
task and, as such, it inevitably involves abstraction. For
non-programmers, dealing with abstract procedures is
difficult because such users tend to think of programs as the
set of concrete actions that end users experience at runtime,
rather than as more general abstract control structures [22].
Rode and Rosson demonstrated this difficulty in the Web
domain and, from our deployment of ITL, we also conclude
that in complex, cross-domain environments, the user’s
need to understand abstract procedures is both vital and
difficult to support [24]. Fortunately, by augmenting
pluggable domain-models, we can support the user without
having to know about every domain in advance.

To leverage the end user’s tendency to conceive of
procedures in terms of runtime actions, we can combine an
appropriately abstract domain model with human-readable
annotations to make action specifications more concrete.
First, remember that we recommend defining the domain
model in terms of atomic user interactions. This level of
abstraction affords a straightforward mapping from action
to a human-readable displayed step that reflects an atomic
GUI interaction with the end user. In ITL, we implemented
this mapping using a femplate approach that adds metadata
to domain model actions to specify a human-readable
display as well as to specify pointers domain application
properties that must be queried for missing display
information. Figure 3 illustrates this approach.

Raw Source:

openComposeEmailWindow

+sender: [“haines@ai.sri.com”]
+subject:”Explaining Templates”
+body:”An explanation” —-frameID:ID12345

Action Template:
openComposeEmailWindow := Opened window:
$frameID

Apply Action Template:
Open window: ID12345

Data Type Template:
frameID := Compose $framelID.subject

Apply Data Type Template:

Teach PAL

COpened window: Compose (no subject)

_l-Impurt Data-__ __-Delete Items-__

Learn It! =>

Figure 3. Action Metadata Application—Before and After



The action template indicates that the
openComposeEmailWindow action should display as
“Open window:” concatenated to the display value of the
the frameID parameter, which in this case refers to an
application property, the identifier of the window in which
the email will be composed. Next, we include a template for
the frameID data type, which queries the application to
find an application-specific representation—in this case, the
subject displayed in the frame. If the frameID instead
happened to be a variable, we would instead display just the
variable’s name.

Also important to note is that this template does not present
all arguments of an action to the user—in particular, the
input arguments of the openComposeEmailWindow
action are never shown. Our research indicates that some
parameters simply complicate a user’s understanding of the
overall procedure flow [25]. For example, though the
procedure executor might need to know screen pixel
positions, such information is irrelevant to most end users.
As such, adding the ability to suppress parameters and even
entire actions to a “details” view is another simple way to
improve user comprehension of complex procedures.
Further, users may not perform a certain demonstration
perfectly, making and correcting mistakes along the way.
Indicative of this are certain combinations of actions that
negate each other, such as a file being open then
immediately closed, or an email compose window being
created and edited but not saved or sent. These could also
be hidden to simplify the event trace.

MODIFYING CROSS-DOMAIN PROCEDURES

A complete framework for end-user programming should
support editing of procedures as well as their learning by
demonstration. Given an understandable representation of
their procedures, users want to make changes that cover a
range of complexity, from changing constant parameters in
steps to adding conditions and iterative loops. Simple edits
may often be required when the task to be performed by an
existing procedure changes slightly or to correct an initial
hypothesis from another learning component. Support for
multiple domains increases the chance that users will also
need to add new steps to procedures, modify step ordering,
or change the structure of the procedure. This is because
domains may be more or less reliant on a graphical
interface, where demonstration-based techniques are
natural, leading the user to supplement demonstration by
choosing available actions from a menu or describing them,
and composing within an editor.

In the dataflow-oriented model, full user support for editing
poses many of the same challenges faced by demonstration-
based learning. For example, users may insert an action but
omit auxiliary steps or queries that provide inputs for that
action. In a dataflow model, those missing steps must
themselves make use of inputs that are established earlier in
the procedure. The use of typing in our domain
specification allows us to cast the problem of inferring

missing steps as compositional search over a graph of data
types in which queries or steps are composed to form a path
from existing inputs to those that are needed.

An editing tool for a typed dataflow model should provide
at least two kinds of support. First, it should provide editing
support for users, not only to add primitive steps, but also to
add conditions or loops by suggesting candidates based on
queries and lists that are available. Second, it should warn
the user if the edited procedure misses critical inputs or
otherwise has potential flaws and should use dataflow
information to suggest potential fixes. A third, desirable
characteristic is to allow users to copy steps between
procedures to facilitate best practices, while using the
dataflow model to ensure the resulting procedure is
executable.

In ITL, Tailor is used to provide a procedure editing
capability [4,25]. Tailor exhibits all these desired
characteristics, as we describe below. Tailor allows users to
add or delete steps, add conditions and iterative loops, and
to copy steps between procedures. It searches over possible
queries and actions arranged in the same space to find
plausible missing steps, composing steps and queries if
needed.

Support for Adding Conditions and Loops

Tailor uses compositional search over a graph of data types
to infer missing steps or queries when users add steps. In
general, however, users find the process of adding a brand
new step difficult and do not perform it often, preferring to
copy or move steps. The same search technique, however,
can support a wide range of activities, including copying
steps, generating potential fixes for flaws, and, as we
describe here, adding conditions or loops.

When the user invokes Tailor in ITL, she may choose to
add a condition or loop around a set of steps without
providing any information about the condition or loop. This
lack of specificity simplifies the interface and reduces the
cognitive burden on the user, who may find it difficult to
specify a conditional or loop without assistance. Tailor uses
compositional search along with heuristics to generate a set
of reasonable candidate specifications. Once Tailor arrives
at a set of candidates for a new action, condition, loop or a
change to a parameter value, the user interface can present
them as options. Here it is critical that the user can
understand both the current procedure and the available
alternatives in order to make a reasoned choice. The
alternatives are displayed within the procedure visualization
described above and should use similar templates to provide
a uniform view. By presenting the user with appropriate
bounds, we make it easier to create complex control
structures and limit the user’s capacity to make errors.

Support for Editing Errors or Flaws

Nevertheless, users still often make errors when editing
procedures. After the user makes a modification, Tailor
checks a procedure for simple errors, for example if a step



has been deleted although it produced a value that was used
later in the procedure [4]. To do this check, Tailor performs
a symbolic analysis of the procedure, aiming to find
important errors before the procedure is executed. This
means that it does not know, for example, which of several
conditional branches may be taken during execution or how
long a loop will be followed. ITL’s execution engine is also
capable of interleaving many concurrent actions, and this
means that one cannot prove that global variables will be
unavailable when a step is to be run [20]. Because of this,
Tailor only provides a warning for an unbound global
variable at the time that a modification removes or reorders
a step or query that provides a value.

For each warning, Tailor uses templates to provide a set of
potential fixes that may include reordering steps, removing
them, or undoing user’s last edit. In some cases,
modifications requiring several coordinated edits can be
made by picking one edit and choosing the appropriate
recovery steps. Further, Tailor can use compositional search
to suggest steps that may be added to provide missing
inputs.

Support for Copying Steps Between Procedures

Our user interviews revealed that users frequently desire the
ability to copy steps from a previously learned procedure to
a new one [25]. This request makes sense; by copying all or
part of a procedure, users can reuse long demonstrations or
complex constructs, such as conditions and loops. The
procedures learned in ITL use no global variables, so the
variables in the steps that are copied must be replaced by
terms in the target procedure, either by (1) changing them
to an existing variable, (2) changing them to a constant, or
(3) adding auxiliary steps to establish a new variable. Tailor
finds potential replacements of all kinds using the same
compositional search technique [5]. This method naturally
prefers to use an existing variable or constant for each
copied variable, as this leads to a shorter solution. We
extended this capability to enable copying sequences of
steps, by composing the variable mappings of the
component steps. We also added domain-specific heuristics
that replace variables with constants when the intended
value is known.

DISCUSSION AND FUTURE WORK

Clearly, there are both large benefits and considerable costs
associated with an extensible cross-domain EUP system
such as ITL. We have explored in detail some of the
concerns associated with creating such a system, but there
are a number of other challenges and potential benefits that
we have not explored in detail to date. Here we briefly
discuss a few of the issues that we hope to explore.

Consistency in a Heterogeneous Environment

A widely recognized design principle, consistency [21] is
difficult enough to achieve in an unregulated environment
like the Web. When attempting to integrate Web
applications with desktop applications, the concept of

consistency becomes even more vague. One option is to
return to the native application to edit procedure
parameters. While this leverages users’ familiarity with that
application and makes sense for certain dialogs (such as
save as options) it is problematic for other operations like
defining loops. A second option, managing editing
operations entirely within the EUP tool raises new
questions. Should the EUP system follow platform
conventions, Web standards, or some other standard
entirely? An extensible visualization system like the one in
ITL should allow us to test various approaches with end
users, but there are currently no clear answers.

Supporting Procedure Reuse

In addition to reusing one’s own procedures, an EUP
system should support users sharing procedures. Given that
making procedures understandable to the author is difficult,
making them understandable to others is even harder. This
problem is compounded when there is a wide range in the
computational literacy of the user population. Advanced
users may be comfortable with complex structures, such as
conditionals and iteration, which may confuse novice users
who attempt to take advantage of shared procedures. A
simple improvement that we have explored is to create a
means for users to explicitly define arbitrary steps within a
procedure and to enter descriptions summarizing the
procedure and individual steps. Similar to comments in
code, this metadata can help users understand and evaluate
shared procedures; however, they will only be useful if
users are motivated to add them to their procedures.

Another issue that arises with shared procedures is that a
given procedure may contain certain types of personal data,
such as names, emails, and mailing addresses. These types
of information will need to be identified and personalized in
order for a user to take advantage of a shared procedure.
Creating a personal data store for these data types, as
CoScripter (formally Koala) does [18], may help to avoid
confusion.

SUMMARY AND CONCLUSIONS

In this chapter, we discussed the benefits of implementing a
cross-domain EUP system as well as the unique challenges
associated with such an endeavor. Using our experience
building the cross-domain ITL system, we recommend
building an action-oriented set of pluggable domain models.
Leveraging such a model, we see that we can reduce the
burden of instrumentation and automation as well as
support the learning of, reasoning over, and visualization of
cross-domain procedures. By modeling the world around us
in a modular, extensible way, we can better allow end users
to automate their workflows on the desktop, the Web, and
perhaps beyond.
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