
Collaborative Scripting for the Web

Allen Cypher, Clemens Drews, Eben Haber, Eser Kandogan, James Lin,
Tessa Lau, Gilly Leshed, Tara Matthews, Eric Wilcox

INTRODUCTION
Employees in modern enterprises engage in a wide variety
of complex, multi-step processes as part of their day-to-day
work. Some of these processes are routine and tedious, such
as reserving conference rooms or monitoring call queues.
Other processes are performed less frequently but involve
intricate domain knowledge, such as making travel arrange-
ments, ordering new equipment, or selecting insurance bene-
ficiaries. Knowledge about how to complete these processes
is distributed throughout the enterprise; for the more com-
plex or obscure tasks, employees may spend more time dis-
covering how to do process than in actually completing it.

However, what is complex or obscure for one employee may
be routine and tedious for another. Someone who books con-
ference rooms regularly should be able to share this knowl-
edge with someone for whom reserving rooms is a rare event.
The goal of our CoScripter project is to provide tools that
facilitate the capture of how-to knowledge around enterprise
processes, share this knowledge as human-readable scripts
in a centralized repository, and make it easy for people to
run these scripts in order to learn about and automate these
processes.

Our “social scripting” approach has been inspired by the
growing class of social bookmarking tools such as del.icio.
us [4] and dogear [7]. Social bookmarking systems began as
personal information management tools to help users man-
age their bookmarks. However they quickly demonstrated a
social side-effect, where the shared repository of bookmarks
became a useful resource for others to consult about inter-
esting pages on the web. In a similar vein, we anticipate Co-
Scripter being used initially as a personal task automation
tool, for early adopters to automate tasks they find repeti-
tive and tedious. When shared in a central repository, these
automation scripts become a shared resource that others can
consult to learn how to accomplish common tasks in the en-
terprise.

RELATED WORK

Under review.

CoScripter was inspired by Chickenfoot [1], which enabled
end users to customize web pages by writing simplified JavaScript
commands that used keyword pattern matching to identify
web page components. CoScripter uses similar heuristics to
label targets on web pages, but CoScripter’s natural language
representation for scripts requires less programming ability
than Chickenfoot’s JavaScript-based language.

Keyword Commands [6] allowed users to enter unstructured
text which the system would interpret as a command to take
on the current web page (by compiling it down to a Chicken-
foot statement). While a previous version of CoScripter used
a similar approach to interpret script steps, feedback from
users indicated that the unstructured approach produced too
many false interpretations, leading to the current implemen-
tation that requires steps to obey a specific grammar.

Tools for doing automated capture and replay of web tasks
include iMacros1 and Selenium2. Both tools function as full-
featured macro recorder and playback systems. However
CoScripter is different in that scripts are recorded as natu-
ral language scripts that can be modified by the user without
having to understand a programming language.

CoScripter’s playback functionality was inspired by interac-
tive tutorial systems such as Eager [2] and Stencils [3]. Both
systems used visual cues to direct user attention to the right
place on the screen to complete their task. CoScripter ex-
pands upon both of those systems by providing a built-in
sharing mechanism for people to create and reuse each oth-
ers’ scripts.

THE COSCRIPTER SYSTEM

CoScripter interface
CoScripter consists of two main parts: a centralized, online
repository of scripts (Figure 1), and a Firefox extension that
facilitates creating and running scripts (Figure 2). The two
work together to provide a seamless experience. Users start
by browsing the repository to find interesting scripts; the site
supports full-text search as well as user-contributed tags and
various sort mechanisms to help users identify scripts of in-
terest.

Once a script has been found, the user can click a button to
load the script into the CoScripter sidebar. The sidebar pro-
vides an interface to step through the script, line by line. At
1http://www.iopus.com/imacros/firefox/
2http://seleniumhq.org/

1

Figure 1. CoScripter script repository

Figure 2. CoScripter sidebar (Firefox extension)

each step, CoScripter highlights the step to be performed by
drawing a green box around the target on the webpage. By
clicking CoScripter’s “step” button, the user indicates that
CoScripter should perform this step automatically and the
script advances to the following step.

Scripts can also be run automatically to completion. The
system iterates through the lines in the script, automatically
performing each action until either a step is found that can-
not be completed, or the script reaches the end. Steps that
cannot be completed include steps that instruct the user to
click a button that does not exist, or to fill in a field without
having sufficient information to do so.

CoScripter also provides the ability to record scripts by demon-
stration. Using the same sidebar interface, users can create
a new blank script. The user may then start demonstrating
a task by performing it directly in the web browser. As the
user performs actions on the web, CoScripter records a script
describing the actions being taken. The resulting script can
be saved directly to the wiki. Scripts can be either public
(visible to all) or private (visible only to the creator).

Scripting language
CoScripter’s script representation consists of a structured form
of English. Steps in a script are both human-readable and
machine-interpretable. Because they are human-readable,
scripts double as written instructions for performing a task
on the web. Because they are machine-interpretable, we can
provide tools that can automatically record and understand
scripts in order to execute them on a user’s behalf.

Examples of script steps include:

• go to “http://google.com”

• enter “sustainability” into the “Search” textbox

• click the “Google Search” button

Recording works by adding event listeners to clicks and other
events on the HTML DOM. When a user action is detected,
we generate a step in the script that describes the user’s ac-
tion. Each step is generated by filling out a template cor-
responding to the type of action being performed. For ex-
ample, click actions always take the form “click the Tar-
getLabel TargetType”. The TargetType is derived from the
type of DOM node on which the event listener was trig-
gered (e.g., an anchor tag has type “link”, while an <INPUT
type="text"> has type “textbox”). The TargetLabel is
extracted from the source of the HTML page using heuris-
tics, as described below in the “Human-readable labels” sec-
tion.

Keyword-based interpreter
The first generation CoScripter (described in [5]) used a keyword-
based algorithm to parse and interpret script steps within the
context of the current web page. The algorithm begins by
enumerating all elements on the page with which users can
interact (e.g., links, buttons, text fields). Each element is an-
notated with a set of keywords that describe its function (e.g.,

2

click and link for a hypertext link; enter and field
for a textbox). It is also annotated with a set of words that
describe the element, including its label, caption, accessibil-
ity text, or words nearby. A score is then assigned to each
element by comparing the bag of words in the input step with
the bag of words associated with the element; words that ap-
pear in both contribute to a higher score. The highest scoring
element is output as the predicted target.

Once an element has been found, its type dictates the action
to be performed. For example, if the element is a link, the
action will be to click on it; if the element is a textbox,
the action will be to enter something into it. Certain ac-
tions, such as enter, also require a value. This value is ex-
tracted by removing words from the instruction that match
the words associated with the element; the remaining words
are predicted to be the value.

The design of the keyword-based algorithm causes it to al-
ways predict some action, regardless of the input given. While
this approach worked surprisingly well at guessing which
command to execute on each page, the user study results
below demonstrate that this approach often produced unpre-
dictable results.

Grammar-based interpreter
The second generation CoScripter used a grammar-based ap-
proach to parse script steps. Script steps are parsed using a
LR(1) parser, which converts from the textual representation
of the step to an object representing a web command, includ-
ing the parameters necessary to interpret that command on a
given web page (such as the label and type of the interaction
target).

The verb at the beginning of each step indicates the action
to perform. Optionally a value can be specified, followed by
a description of the target label and an optional target type.
Figure 3 shows an excerpt of the BNF grammar recognized
by this parser, for click actions.

Human-readable labels
CoScripter’s natural-language script representation requires
specialized algorithms to be able to record user actions and
play them back. These algorithms are based on a set of
heuristics for accurately generating a human-readable label
for interactive widgets on web pages, and for finding such a
widget on a page given the human-readable label.

CoScripter’s labelling heuristics take advantage of accessi-
bility metadata, if available, to identify labels for textboxes
and other fields on web pages. However, many of today’s
web pages are not fully accessible. In those situations, Co-
Scripter incorporates a large library of heuristics that use the

Click ::= click {on} the TargetSpec
TargetSpec ::= TargetLabel {TargetType}
TargetLabel ::= “String”
TargetType ::= link | button | item | area

Figure 3. Excerpt from CoScripter’s grammar

DOM structure to guess labels for a variety of elements. For
example, to find a label for a textbox, we might look for text
to the left of the box (represented as children of the textbox’s
parents that come before it in the DOM hierarchy), or we
might use the textbox’s name or tooltip.

Our algorithm for interpreting a label relative to a given web
page consists of iterating through all candidate widgets of
the desired type (e.g., textboxes) and generating the label for
the widget. If the label matches the target label, then we
have found the target, otherwise we keep searching until we
have exhausted all the candidates on the current page.

Variables and the personal database
CoScripter provides a simple mechanism to generalize scripts,
using a feature we call the “personal database.” Most scripts
include some steps that enter data into forms. This data is
often user-specific, such as a name or a phone number. A
script that always entered “Joe Smith” when prompted for a
name would not be useful to many people besides Joe. To
make scripts more appealing to a wider variety of users, we
wanted to provide an easy mechanism for script authors to
generalize their scripts and abstract out variables that should
be user-dependent, such as names and phone numbers.

Variabilization is provided through a small extension to the
sloppy scripting language. Anywhere a literal text string can
appear, we also support the use of the keyword “your” fol-
lowed by a variable name reference. For example:

• enter your “full name” into the “Search” textbox

These variabilized steps can be recorded at script creation
time if the corresponding variable appears in the script au-
thor’s personal database. The personal database is a text
file containing a list of name-value pairs (lower left corner
of Figure 2). Each name value pair is interpreted as the
name of a variable and its value, so that for example the text
“full name = Mary Jones” would be interpreted as a vari-
able named “full name” with value “Mary Jones”. During
recording, if the user enters a value into a form field that
matches the value of one of the personal database variables,
the system automatically records a variabilized script step as
shown above, rather than recording the user’s literal action.
Users can also variabilize steps post-hoc by editing the text
of the script and changing the literal string to a variabilized
reference.

Variables are automatically dereferenced at runtime in order
to insert each user’s personal inforamtion into the script dur-
ing execution. When a variable reference is encountered, the
personal database is queried for a variable with the specified
name. If found, the variable’s value will be substituted as
the desired value for that script step. If not found, script ex-
ecution will pause and ask the user to manually enter in the
desired information (either directly in to the web form, or
into the personal database where it will be picked up during
the next execution).

EVALUATING COSCRIPTER’S EFFECTIVENESS

3

We have conducted several studies to measure CoScripter’s
effectiveness at facilitating knowledge sharing for web-based
tasks across the enterprise. For our first study, we inter-
viewed 18 employees of a large corporation to understand
what business processes were important in their jobs, and to
identify existing practices and needs for learning and sharing
these processes.

In a second study, we deployed CoScripter in a large orga-
nization for a period of several months. Based on usage log
analysis and interviews with prominent users, we were able
to determine how well CoScripter supported the needs dis-
covered in the initial study, and learn how users were adapt-
ing the tool to fit their usage patterns. We also identified
opportunities for future development.

STUDY 1: UNDERSTANDING USER NEEDS

Participants
We recruited 18 employees of the large corporation in which
CoScripter was deployed. Since our goal was to understand
business process use and sharing, we contacted employees
who were familiar with the organization’s business processes
and for whom procedures were a substantial part of their ev-
eryday work. Our participants had worked at the corporation
for an average of 19.4 years (ranging from a few weeks to 31
years, with a median of 24 years). Twelve participants were
female. Seven participants served as assistants to managers,
either administrative or technical; 6 held technological po-
sitions such as engineers and system administrators; 3 were
managers; and 2 held human resource positions. The tech-
nology inclination ranged from engineers and system admin-
istrators on the high end to administrative assistants on the
low end. All but two worked at the same site within the or-
ganization.

Method
We met our participants in their offices. Our interviews were
semi-structured; we asked participants about their daily jobs,
directing them to discuss processes they do both frequently
and infrequently. We prompted participants to demonstrate
how they carry out these procedures, and probed to deter-
mine how they obtained the knowledge to perform them and
their practices for sharing them. Sessions lasted approxi-
mately one hour and were video-recorded with participants’
permission (only one participant declined to be recorded).

Results
We analyzed data collected in the study by carefully ex-
amining the materials video-recordings, their transcripts,
and field notes. We coded the materials, marking points
and themes that referred to our exploratory research goals:
(1) common, important business processes, and (2) practices
and needs for learning and sharing processes.

Note that with our study method, we did not examine the
full spectrum of the interviewees’ practices, but only those
that they chose to talk about and demonstrate. Nonetheless,
for some of the findings we present quantified results based
on the coded data. In the rest of this chapter, wherever a

reference is made to a specific participant, they are identified
by a code comprised of two letters and a number.

What Processes Do Participants Do?
We asked our participants to describe business processes they
perform both frequently and infrequently. The tasks they
described included web-based processes, other online pro-
cesses (e.g., processes involving company-specific tools, email,
and calendars), and non-computer-based processes. Given
that CoScripter is limited to a Firefox web browser, we fo-
cused on the details of web-based tasks, but it is clear that
many business processes take place outside a browser.

We found that there was a significant amount of overlap
in the processes participants followed. Seventeen partici-
pants discussed processes that were mentioned by at least
one other participant. Further, we found that a core set of
processes was performed by many participants. For exam-
ple, 14 participants described their interactions with the on-
line expense reimbursement system. Some other frequently
mentioned processes include making travel arrangements in
an online travel reservation system, searching for and reserv-
ing conference rooms, and purchasing items in the procure-
ment system. These findings show that there exists a com-
mon base of processes that many employees are responsible
for performing.

Despite a common base of processes, we observed consid-
erable personal variation, both within a single process and
across the processes participants performed. A common cause
for variation within a single process was that the exact input
values to online tools were often different for each person
or situation. For example, DS1 typically travels to a spe-
cific destination, whereas LH2 flies to many different des-
tinations. We observed variations like these for all partici-
pants. Secondly, there were a number of processes that were
used by only a small number of people. Eleven participants
used web-based processes not mentioned by others. For in-
stance, TD1, a human resource professional, was the only
participant to mention using an online system for calculat-
ing salary base payments. These findings suggest that any
process automation solution would need to enable personal-
ization for each employee’s particular needs.

Our participants referred to their processes using various qual-
ities, including familiarity, complexity, frequency, involve-
ment, etc. Some of these qualities, such as complexity, were
dependent on the task. For example, purchasing items on the
company’s procurement system was a challenging task for
most participants. Other qualities, such as familiarity and
frequency, varied with the user. For example, when demon-
strating the use of the online travel system, we saw CP1,
a frequent user, going smoothly through steps which DM1
struggled with and could not remember well. We observed
that tasks that were frequent or hard-to-remember for a user
may be particularly amenable to automation.

Frequent processes. Participants talked about 26 different
processes they performed frequently, considering them te-
dious and time-consuming. For example, JC1 said: “[I] pay

4

my stupid networking bill through procurement, and it’s the
same values every month, nothing ever changes.” Automa-
tion of frequent processes could benefit users by speeding up
the execution of the task.

Hard-to-remember processes. At least 8 participants men-
tioned processes they found hard to remember. We observed
two factors that affected procedure recall: its complexity
and its frequency (though this alignment was not absolute).
In general, tasks completed infrequently, or that had com-
plex steps, were often considered hard-to-remember. For
example, a user of the procurement system said, “It’s not
so straightforward, so I always have to contact my assis-
tant who contacts someone in finance to tell me these are
the right codes that you should be using.” Alternatively, al-
though AB1 frequently needed to order business cards for
new employees, it involved filling out multiple data fields
she found hard to remember. Automation could benefit users
of hard-to-remember tasks by relieving the need to memorize
their steps.

How Do Participants Share Knowledge?
An important goal of our interviews was to develop an un-
derstanding of the sharing practices that exist for procedural
knowledge. Thus, we asked participants how they learned to
perform important processes, how they captured their proce-
dural knowledge, and how and with whom they shared their
own procedural knowledge.

Learning. Participants listed a variety of ways by which
they learned procedures, most of them listing more than one
approach. Figure 1 shows the different ways people learned
procedures. Note that the categories are not mutually exclu-
sive. Rather, the boundaries between contacting an expert,
a colleague, and a mentor were often blurred. For exam-
ple, KR1 needed help with a particular system and men-
tioned contacting her colleague from next door, who was
also an expert with the system. Participants often said they
would start with one learning approach and move to another
if they were unsuccessful. Interestingly, although each par-
ticipant had developed a network of contacts from which to
learn, they still use trial-and-error as a primary way of get-
ting through procedures: 13 out of 18 participants mentioned
this approach for obtaining how-to knowledge. This finding
indicates that learning new procedures can be difficult, and
people largely rely on trial-and-error.

For maintaining the acquired knowledge, 15 out of 18 par-
ticipants kept or consulted private and/or public repositories
for maintaining their knowledge. For the private reposito-
ries, participants kept bookmarks in their browsers as point-
ers for procedures, text files with “copy-paste” chunks of
instructions on their computer desktops, emails with lists of
instructions, as well as physical binders, folders, and cork-
boards with printouts of how-to instructions. Figure 2 shows
sample personal repositories. Users create their own repos-
itories to remember how to perform tasks.

One participant noted an important problem with respect to
capturing procedural knowledge: “Writing instructions can

be pretty tedious. So, if you could automatically record a
screen movie or something, that would make it easier to
[capture] some of the instructions. It would be easy to get
screenshots instead of having to type the stories.” This feed-
back indicates that an automatic procedure recording mech-
anism would ease the burden of capturing how-to knowledge
(for personal or public use).

Sharing. Eleven participants reported that they maintain
public repositories of processes and “best practices” they
considered useful for their community of practice or depart-
ment. These repositories were commonly shared as databases
accessible through the corporate email client. Four partici-
pants noted that although their repository was publicly open
for posting and reading, they were the sole users of it. DS2
said: “I developed this, and I sent a link to everyone. Peo-
ple still come to me, and so I tell them: well you know it is
posted, but let me tell you.” Using public repositories sug-
gests that participants sought an open forum for others to
find and share their how-to knowledge. However, knowl-
edge was distributed across multiple single-authored repos-
itories, which may have made it harder for learners to find.
In fact, seven participants reported that they had resorted to
more proactive sharing methods, such as sending colleagues
useful procedures via email.

Fifteen participants said they serve as sources of informa-
tion for many others (this number is high due to our focus
on recruiting senior members of the organization or people
with information sharing as a job function). These partici-
pants earned their position as knowledge sharers by serving
as mentors for other employees; by assuming this role as part
of their position (e.g., administrative assistants, HR profes-
sionals, etc.); and by simply being known in their commu-
nity as experts for various processes.

People in need find experts in a variety of ways. One par-
ticipant said, “I’m usually one of the people who gets called
and [contacted via IM] and emailed because I’ve been at it
for too long.” An experienced administrative assistant was
listed as an expert for the administrative assistants’ commu-
nity in the company’s directory: “They will contact you if
they have questions regarding, let’s say, archiving. Because
I’m on the list, they’ll call me.”

These results give examples of employees who seek to share
their how-to knowledge within the company and ways in
which learners find the knowledge. Nonetheless, our re-
sults show that sharing is time-consuming for experts and
shared repositories are seldom used by learners, suggesting
that sharing could be bolstered by new mechanisms for dis-
tributing procedural knowledge.

Discussion
Our initial study has shown that there is a need for tools that
support the automation and sharing of how-to knowledge in
the enterprise. We observed a core set of processes used
by many participants, as well as less-common processes.
Processes that participants used frequently were considered
routine and tedious, whereas others were considered hard-

5

to-remember. Automating such procedures could accelerate
frequent procedures and overcome the problem of recalling
hard-to-remember tasks. Our data also suggest that exist-
ing solutions do not adequately support the needs of people
learning new processes. Despite rich repositories and social
ties with experts, mentors, and colleagues, people habitu-
ally apply trial-and-error in learning how to perform their
tasks. New mechanisms are needed for collecting procedu-
ral knowledge to help people find and learn from it.

We also found that people who were sources of how-to knowl-
edge needed better ways for capturing and sharing their knowl-
edge. These people were overloaded by writing lengthy in-
structions, maintaining repositories with “best practices,” and
responding to requests from others. Also, distribution of
their knowledge was restricted due to limited use of reposi-
tories and bounds on the time they could spend helping oth-
ers. As such, automating the creation and sharing of instruc-
tions could assist experts in providing their knowledge to
their community and colleagues.

STUDY 2: REAL-WORLD USAGE
The first interview study explored needs and practices of
sharing how-to information. In a second study, we exam-
ined how well CoScripter supports these needs and practices
through analysis of usage logs and interviews with regular
users. The purpose of these studies was threefold: (1) de-
termine how well CoScripter supported the user needs dis-
covered in Study 1, (2) learn how users had adapted Co-
Scripter to their needs, and (3) uncover outstanding prob-
lems to guide future CoScripter development.

Log Analysis: Recorded User Activity
CoScripter has been available for use within the IBM cor-
poration starting from November 2006 through the time of
this research (September 2007). Usage logs provide a broad
overview of how CoScripter has been used in one company,
while the interviews in the following section provide more
in-depth examples of use. In this section we present an ini-
tial analysis of quantitative usage, with a content analysis left
to future work. The data reported here excludes the activities
of CoScripter developers.

Script Usage Patterns
Users are able to view scripts on the CoScripter wiki anony-
mously; registration is only required to create, modify, or run
scripts. Of the 1200 users who registered, 601 went on to try
out the system. A smaller subset of those became regular
users, either recently or in the past.

We define active users as people who have run scripts at least
five times with CoScripter, used it for a week or more, and
used it within the past two months. Fifty-four users (9% of
601 users) are active users. These users, on average, created
2.1 scripts; ran 5.4 distinct scripts; ran scripts 28.6 times
total; and ran a script once every 4.5 days. While 9% may
seem to be a relatively low fraction, we are impressed by the
fact that 54 people have voluntarily adopted CoScripter, and
derive enough value from it to make it a part of their work
practices.

We define past users as those who were active users in the
past, but have not used CoScripter in the past two months.
This category consists of 43 users (7%). Finally, we define
experimenters as those who tried CoScripter without becom-
ing active users, of which we have 504 users (84%). The
logs suggest that individual users are automating frequent
tasks, with 23 scripts run 10 or more times by single users
at a moderate interval (ranging from every day to twice per
month).

Collaborating over Scripts
One of the goals of CoScripter is to support sharing of how-
to knowledge. The logs imply that sharing is relatively com-
mon: 24% of 307 user-created scripts were run by two or
more different users, and 5% were run by six or more users.
People often run scripts created by others: 465 (78%) of the
user population ran scripts they did not create, running 2.3
scripts created by others on average. There is also evidence
that users are sharing knowledge of infrequent processes:
we found 16 scripts that automate known business processes
within our company (e.g., updating emergency contact info),
that were run once or twice each by more than ten different
users.

In addition to the ability to run and edit others’ scripts, Co-
Scripter supports four other collaborative features: editing
others’ scripts, end-user rating of scripts, tagging of scripts,
and free-form comments added to scripts. We found surpris-
ingly little use of these collaborative features: fewer than
10% of the scripts were edited by others, rated, tagged, or
commented on. Further research is needed to determine whether
and how these features can be made more valuable in a busi-
ness context.

Email Survey of Lapsed Users
To learn why employees stopped using CoScripter, we sent
a short email survey to all the experimenters and past users,
noting their lack of recent use and asking for reasons that
CoScripter might not have met their needs. Thirty people
replied, and 23 gave one or more reasons related to Co-
Scripter. Of the topics mentioned, ten people described reli-
ability problems where CoScripter did not work consistently,
or did not handle particular web page features (e.g., popup
windows and image buttons); five people said their tasks re-
quired advanced features not supported in CoScripter (most
commonly requested were parameters, iteration, and branch-
ing); three people reported problems coordinating mixed ini-
tiative scripts, where the user and CoScripter alternate ac-
tions; and two had privacy concerns (i.e., they did not like
scripts being public by default). Finally, seven people re-
ported that their jobs did not involve enough tasks suitable
for automation using CoScripter.

INTERVIEWS WITH COSCRIPTER USERS
As part of Study 2, we explored the actual usage of Co-
Scripter by conducting a set of interviews with users who
had made CoScripter part of their work practices.

Participants

6

Based on usage log analysis, we chose people who had used
one or more scripts at least 30 times. We also selected a
few people who exhibited interesting behavior (e.g., editing
other peoples’ scripts or sharing a script with others). We
contacted 14 people who met these usage criteria; 8 agreed
to an interview.

Seven interviewees were active CoScripter users, one had
used the tool for five months and stopped 3 1/2 months be-
fore the interview. Participants had used CoScripter for an
average of roughly 4 months (minimum of 1, maximum of
9). They had discovered the tool either via email from a
coworker or on an internal website promoting experimen-
tal tools for early adopters. Seven participants were male,
and they worked in 8 sites across 4 countries, with an av-
erage of 10 years tenure at the company. We interviewed
4 managers, 1 communications manager, 1 IT specialist, 1
administrative services representative, and 1 technical assis-
tant to a manager / software engineer. Overall, our partici-
pants were technology savvy, and five of them had created
a macro or scripts before CoScripter. However, only two of
them claimed software development expertise.

Method
We conducted all but one of our interviews over the phone,
due to geographically dispersed participants, using NetMeet-
ing to view the participant’s Firefox browser. Interviews
lasted between 30 and 60 minutes and were audio-recorded
with participants’ permission in all cases but one.

We conducted a semi-structured interview based on ques-
tions that were designed to gather data about how partici-
pants used CoScripter, why they used it, and what problems
they had using the tool. In addition to the predetermined
questions, we probed additional topics that arose during the
interview, such as script privacy and usability. We also asked
participants to run and edit their scripts so we could see how
they interacted with CoScripter.

Results
Study 1 established user needs for automating frequent or
hard-to-remember tasks, and sharing how-to knowledge. Study
2 explored how well CoScripter meets these user needs and
areas where it falls short.

Automating Frequent or Hard-to-Remember Tasks
Four participants described CoScripter as very useful for au-
tomating one or more frequent, routine tasks. Each person
had different tasks to automate, highlighting various benefits
of CoScripter as an automation tool. Table 1 lists the most
frequent routine tasks that were automated.

Those four subjects described instances where CoScripter
saved them time and reduced their effort. For example, CR1
said, “Two benefits: one, save me time — click on a but-
ton and it happens — two, I wouldn’t have to worry about
remembering what the address is of the messaging system
here.” PV1 also appreciated reduced effort to check voice-
mail inboxes, “I set up [CoScripter] to with one click get
onto the message center.” AM1 used his service pack regis-

tration script for a similar reason, saying it was “really attrac-
tive not to have to [enter the details] for every single service
pack I had to register.” JL1 runs his script many times during
non-business hours. He would not be able to do this without
some script (unless, as he said, “I didn’t want to sleep”).

These participants, none of whom have significant software
development experience, also demonstrate an important ben-
efit of CoScripter: it lowered the barrier for automation,
since it required no programming skills.

Though most participants interacted with CoScripter via the
sidebar or the wiki, JL1 and PV1 invoked CoScripter in un-
expected ways. JL1 used the Windows Task Scheduler to
automatically run his script periodically in the background.
Thus, after creating his script, JL1 had no contact with the
CoScripter user interface. PV1 created a bookmark to auto-
matically run each of his two scripts, and added them to his
Firefox Bookmarks Toolbar. To run the scripts, he simply
clicked on the bookmarks — within a few seconds he could
check both voicemail inboxes.

In addition to automating frequent tasks, CoScripter can act
as a memory aid for hard-to-remember tasks. For example,
DG1 created scripts for two new processes he had to do for
his job. Both scripts used an online tool to create and send
reports related to customer care. Creating the report involved
a number of complicated steps, and CoScripter made them
easier to remember:

[CoScripter] meant I didn’t have to remember each step.
There were probably six or seven distinct steps when
you have to choose drop-downs or check-boxes. It meant
I didn’t have to remember what to do on each step. An-
other benefit is I had to choose eight different check-
boxes from a list of about forty. To always scan the list
and find those eight that I need was a big pain, whereas
[CoScripter] finds them in a second. It was very useful
for that.

After using CoScripter to execute these scripts repeatedly
using the step-by-step play mode (at least 28 times for one
script, 9 times for the other) for five months, DG1 stopped
using them. He explained: “It got to the point that I mem-
orized the script, so I stopped using it.” This highlights an
interesting use case for CoScripter: helping a user memorize
a process that they want to eventually perform on their own.

Participant LH1 found CoScripter useful in supporting hard-
to-remember tasks, by searching the wiki and finding scripts
others had already recorded: “I found the voicemail one, it’s
really useful because I received a long email instruction how
to check my voicemail. It was too long so I didn’t read it and
after a while I had several voicemails and then I found the
[CoScripter] script. It’s really useful.”

Automation Limitations and Issues. Despite generally pos-
itive feedback, participants cited two main issues that limited
their use of CoScripter as an automation tool, both of which
were named by lapsed users who were surveyed by email:

7

reliability problems and a need for more advanced features.

Four out of eight participants noted experiencing problems
with the reliability and robustness of CoScripter’s automa-
tion capability. All of these participants reported problems
related to CoScripter misinterpreting instructions. Misinter-
pretation was a result of CoScripter’s original human-readable
scripting system [5], which did not enforce any particular
syntax, but instead did a best-effort interpretation of arbi-
trary text. For example, one user reported running a script
that incorrectly clicked the wrong links and navigated to un-
predictable pages (e.g., an instruction to “click the Health
link,” when interpreted on a page that does not have a link
labeled “Health,” would instead click a random link on the
page). Another user reported that his script could not find
a textbox named in one of the instructions and paused exe-
cution. Misinterpretation problems were exacerbated by the
dynamic and unpredictable nature of the web, where links
and interface elements could be changed or removed.

Five users reported wanting more advanced programming
language features, to properly automate their tasks. In par-
ticular, participants expressed a need for automatic script
restart after mixed-initiative user input, iteration, script de-
bugging help, and conditionals.

Sharing How-To Knowledge
Our interviews revealed some of the different ways CoScripter
has been used to share how-to knowledge. These included
teaching tasks to others, promoting information sources and
teaching people how to access them, and learning how to use
CoScripter itself by examining or repurposing other peoples’
scripts.

Participants used CoScripter to teach other people how to
complete tasks, but in very different ways. The first person,
LH1, recorded scripts to teach her manager how to do sev-
eral tasks (e.g., creating a blog). LH1 then emailed her man-
ager a link to the CoScripter script, and the manager used
CoScripter to complete the task. The second person, DG1,
managed support representatives and frequently sent them
how-to information about various topics, from generating re-
ports online to using an online vacation planner. DG1 used
CoScripter to record how to do the tasks, and then copied
and pasted CoScripter’s textual step-by-step instructions into
emails to his colleagues:

When I want to give people instructions on how to do
something on the Internet, it was great for doing that so
I didn’t have to write them out. I found it very useful
for that, creating clear instructions on what to do. I sent
the text, but I never sent the link so that they could just
run it. I never actually sent a script to someone because
I didn’t know anyone who used the tool. I could have
asked people to install it, but I never did. I tend to work
with others who are afraid of new technology. I used
that a number of times. For that it did exactly what I
needed.

DG1’s use of CoScripter highlights a benefit of its human-

readable approach to scripting. The scripts recorded by Co-
Scripter are clearly readable, since DG1’s colleagues were
able to use them as textual instructions.

Another participant, MW1, a communications manager, used
CoScripter to promote information that is relevant to em-
ployees in a large department and to teach them how to ac-
cess that information. He created one script for adding a
news feed to employees’ custom intranet profile and a sec-
ond script to make that feed accessible from their intranet
homepage. He promoted these scripts to 7000 employees by
posting a notice on a departmental homepage and he plans
to send links to the scripts in an upcoming email. Before
using CoScripter, MW1 said he did not have a good method
for sharing this how-to information with a wide audience.
With such a large audience, however, correctly generalizing
the script was a challenge; MW1 said he spent two to three
hours getting the scripts to work for others. Still, MW1
was so pleased that he evangelized the tool to one of his
colleagues, who has since used CoScripter to share similar
how-to knowledge with a department of 5000 employees.

Participants used CoScripter for a third sharing purpose: three
people talked about using other peoples’ scripts to learn how
to create their own scripts. For example, PV1 told us that
his first bug-free script was created by duplicating and then
editing someone else’s script.

Sharing Limitations and Issues. Though some participants
found CoScripter a valuable tool for sharing, these partici-
pants noted limitations of critical mass and others raised is-
sues about the sharing model, generalizability, and privacy,
which were barriers to sharing.

Sharing has been limited by the narrow user base (so far)
within the enterprise. As CR1 said, critical mass affected
his sharing (“I haven’t shared [this script] with anyone else.
But there are other people I would share it with if they were
CoScripter users.”), and his learning (“I think I would get a
lot more value out of it if other people were using it. More
sharing, more ideas. Yet most of the people I work with
are not early adopters. These people wouldn’t recognize the
difference between Firefox and Internet Explorer.”). DG1,
who sent CoScripter-generated instructions to his coworkers
via email, could have more easily shared the scripts if his
coworkers had been CoScripter users.

We also saw problems when users misunderstood the wiki-
style sharing model. For example, PV1 edited and modified
another person’s script to use a different online tool. He did
not realize that his edits would affect the other person’s script
until later: “I started out by editing someone else’s script and
messing them up. So I had to modify them so they were back
to what they were before they were messed up, and then I
made copies.” A second participant, PC1, had deleted all the
contents of a script and did not realize this until the script
was discussed in the interview: “That was an accident. I
didn’t know that [I deleted it]. When I look at those scripts,
I don’t realize that they are public and that I can blow them
away. They come up [on the sidebar] and they look like

8

examples.”

Easy and effective ways to generalize scripts so that many
people can use them is essential to sharing. Though users
are able to generalize CoScripter scripts, participants told
us it is not yet an easy process. For example, MW1 cre-
ated a script for 7000 people, but spent a few hours getting
it to work correctly for others. Also, while CoScripter’s
personal database feature allows users to write scripts that
substitute user-specified values at runtime, not all processes
can be generalized using this mechanism. For example, PV1
copied another person’s script for logging into voicemail in
one country and modified it to login to voicemail in his coun-
try, since each country uses a different web application.

Finally, sharing was further limited when participants’ were
concerned about revealing private information. Three par-
ticipants created private scripts to protect private informa-
tion they had embedded in the scripts. AC1 said: “There
is some private information here — my team liaison’s tele-
phone number, things like that. I don’t know, I just felt like
making it private. It’s not really private, but I just didn’t feel
like making it public.” Others used the personal database
variables to store private information and made their scripts
public. This privacy mechanism was important to them:
“Without the personal variables, I would not be able to use
the product [CoScripter]. I have all this confidential infor-
mation like PIN numbers. It wouldn’t be very wise to put
them in the scripts.” However, one participant was wary of
the personal variables, “The issue I have with that is that I
don’t know where that is stored ... If I knew the data was
encrypted, yeah.”

Summary
These findings show that, while not perfect, CoScripter is be-
ginning to overcome some of the barriers to sharing procedu-
ral knowledge uncovered in Study 1. First, CoScripter pro-
vides a single public repository of procedural knowledge that
our interviewees used (e.g., several participants used scripts
created by other people). Second, CoScripter eliminates the
tedious task of writing instructions (e.g., DG1 used it to cre-
ate textual instructions for non-CoScripter users). Third, Co-
Scripter provides mechanisms to generalize instructions to a
broad audience so that experts can record their knowledge
once for use by many learners (e.g., MW1 generalized his
scripts to work for 7000 employees).

GENERAL ISSUES AND FUTURE WORK
By helping users automate and share how-to knowledge in a
company, CoScripter is a good starting point for supporting
the issues uncovered in Study 1. User feedback, however,
highlights several opportunities for improvement. While some
of the feedback pointed out usability flaws in our particu-
lar implementation, a significant number of comments ad-
dressed more general issues related to PBD-based knowl-
edge sharing systems. Participants raised two issues that
highlight general automation challenges — reliability chal-
lenges and the need for advanced features — and four collab-
oration issues that will need to be addressed by any knowl-
edge sharing system — the sharing model, script generaliza-

tion, privacy, and critical mass.

One of the most common complaints concerned the need for
improved reliability and robustness of the system’s automa-
tion capability. These errors affected both users relying on
the system to automate repetitive tasks, and those relying on
the system to teach them how to complete infrequent tasks.
Without correct and consistent execution, users fail to gain
trust in the system and adoption is limited.

Users also reported wanting more advanced programming
language features, such as iteration, conditionals, and script
debugging help, to properly automate their tasks. These re-
quests illustrate a tradeoff between simplicity — allowing
novice users to learn the system easily — and a more com-
plex set of features to support the needs of advanced users.
For example, running a script that has iterations or condition-
als might be akin to using a debugger, which requires signif-
icant programming expertise. A challenge for CoScripter or
any similar system will be to support the needs of advanced
users while enabling simple script creation for the broader
user base.

Our studies also raise several collaboration issues that must
be addressed by any PBD-based knowledge sharing tool:
the sharing model, privacy, script generalization, and critical
mass. The wiki-style sharing model was confusing to some
users. Users should be able to easily tell who can see a script
and who will be affected by their edits, especially given the
common base of processes being performed by many em-
ployees. A more understandable sharing model could also
help address privacy concerns, as would a more fine-grained
access control mechanism that enabled users to share scripts
with an explicit list of authorized persons. Finer-grained pri-
vacy controls might encourage more users to share scripts
with those who have a business need to view them. For
generalization, we learned that personal database variables
were a good start, but we are uncertain as to what degree
this solution appropriately supports users with no familiarity
of variables and other programming concepts. One way to
better support generalization and personalization could be to
enable users to record different versions of a script for use in
different contexts, and automatically redirect potential users
to the version targeted for their particular situation. Finally,
a small user base limited further use of the system. We hope
that solving all the issues above will lower the barriers to
adoption and improve our chances of reaching critical mass.

Finally, one important area for future work is to study the use
of CoScripter outside the enterprise. While we conducted
the studies in a very large organization with diverse employ-
ees and we believe their tasks are representative of knowl-
edge workers as a whole, the results we have obtained may
not be generalized to users of CoScripter outside the enter-
prise. CoScripter was made available to the public in August
2007 (see http://coscripter.research.ibm.com/), and more re-
search on its use is needed to examine automation and shar-
ing practices in this larger setting.

CONCLUSION

9

In summary, we have presented the CoScripter system, a
platform for capturing, sharing, and automating how-to knowl-
edge for web-based tasks. We have described CoScripter’s
user interface and some of its key technical features. The
empirical studies we have presented show that CoScripter
has made it easier for people to share how-to knowledge in-
side the enterprise.

ACKNOWLEDGEMENTS
We thank Greg Little for the initial inspiration for the Co-
Scripter project and Jeffrey Nichols for invaluable discus-
sions and architectural design.

REFERENCES
1. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.

Miller. Automation and customization of rendered web
pages. In UIST ’05: Proceedings of the 18th annual
ACM symposium on User interface software and
technology, pages 163–172, New York, NY, USA, 2005.
ACM.

2. A. Cypher. Eager: programming repetitive tasks by
example. In CHI ’91: Proceedings of the SIGCHI
conference on Human factors in computing systems,
pages 33–39, New York, NY, USA, 1991. ACM.

3. C. Kelleher and R. Pausch. Stencils-based tutorials:
design and evaluation. In Proceedings of the SIGCHI
conference on Human factors in computing systems (CHI
’05), pages 541–550, Portland, Oregon, USA, 2005.

4. K. J. Lee. What goes around comes around: an analysis
of del.icio.us as social space. In CSCW ’06: Proceedings
of the 2006 20th anniversary conference on Computer
supported cooperative work, pages 191–194, New York,
NY, USA, 2006. ACM.

5. G. Little, T. A. Lau, A. Cypher, J. Lin, E. M. Haber, and
E. Kandogan. Koala: capture, share, automate,
personalize business processes on the web. In CHI ’07:
Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 943–946, New
York, NY, USA, 2007. ACM.

6. G. Little and R. C. Miller. Translating keyword
commands into executable code. In UIST ’06:
Proceedings of the 19th annual ACM symposium on
User interface software and technology, pages 135–144,
New York, NY, USA, 2006. ACM.

7. D. R. Millen, J. Feinberg, and B. Kerr. Dogear: Social
bookmarking in the enterprise. In CHI ’06: Proceedings
of the SIGCHI conference on Human Factors in
computing systems, pages 111–120, New York, NY,
USA, 2006. ACM.

10

	Introduction
	Related work
	The CoScripter system
	CoScripter interface
	Scripting language
	Keyword-based interpreter
	Grammar-based interpreter

	Human-readable labels
	Variables and the personal database

	Evaluating CoScripter's Effectiveness
	Study 1: understanding user needs
	Participants
	Method
	Results
	What Processes Do Participants Do?
	How Do Participants Share Knowledge?

	Discussion

	Study 2: real-world usage
	Log Analysis: Recorded User Activity
	Script Usage Patterns
	Collaborating over Scripts

	Email Survey of Lapsed Users

	Interviews with CoScripter users
	Participants
	Method
	Results
	Automating Frequent or Hard-to-Remember Tasks
	Sharing How-To Knowledge

	Summary

	General Issues and future work
	Conclusion
	Acknowledgements
	REFERENCES

