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ABSTRACT 
An innovative task learning system called PLOW 
(Procedure Learning On the Web) lets end-users teach 
procedural tasks to automate their various web activities. 
Deep natural understanding and mixed-initiative interaction 
in PLOW makes the teaching process very natural and 
intuitive while producing efficient/workable procedures. 

INTRODUCTION 
The web has become the main medium for providing 
services and information for our daily activities at home or 
work. Many web activities involve the execution of a series 
of procedural steps involving Web-browser actions. 
Programmatically automating such tasks to increase 
productivity is feasible but out of reach for many end users. 

Programming-by-demonstration (PBD) is an innovative 
paradigm that can enable novice users to build a program 
by just showing a computer what a user intends to do [6]. 
However, in this approach, numerous examples are often 
needed for the system to infer a workable task. 

We aim to build a system with which a novice user can 
teach tasks by using a single example without requiring too 
much or too specialized work from the novice user. This 
goal poses significant challenges because the observed 
sequence of actions is only one instance of a task to teach 
and the user’s decision-making process that drives his/her 
actions is not revealed in the demonstration. 

To achieve this challenging goal, we have developed a 
novel approach in which a user not only demonstrates a task 
but also explains the task with a play-by-play description. 
In the PLOW system, demonstration is accompanied by 
natural language (NL) explanation, which makes it possible 
for PLOW to infer a task structure that is not easily 
inferable from observations alone but represents what the 
user intended. Furthermore, the semantic information 
encoded in NL enables PLOW to reliably identify objects in 
dynamic HTML files. 

Another key aspect that makes PLOW more efficient is the 
mixed-initiative interaction that dramatically reduces the 
complexity of teaching a task by proactively initiating 

execution for verification and asking timely questions to 
solicit necessary information to build the task. This chapter 
presents the challenges, innovations and lessons in 
developing the PLOW system.  

MOTIVATING EXAMPLE 
Information extraction from the Web is a routine action for 
many users, and travel arrangement (e.g., booking 
hotels/flights/cars) is one of time-consuming activities that 
require collecting information from multiple resources. 
Figure 1 shows a sample dialogue in which a user teaches 
PLOW how to find close hotels near an address for his/her 
travel using a popular website such as mapquest.com.  

In Figure 1, user actions (described in bold italic texts) are 
accompanied by user’s natural language description. Note 
that a user in a normal setting without PLOW would not 
perform the actions that highlight a text or an area with 
mouse click and drag (underlined texts). However, those 
actions are easy-to-perform special actions that tell PLOW 
which information a user is interested in.  

While user actions on a browser provides useful 
information, it is very difficult for a system to identify key 
high-level task information from the demonstration alone: 
 Identifying a task goal: What is the final goal of the 

current task? What is the input and the output? 
 Identifying correct parameterization: What values are 

required to perform the task? Is a value a constant or a 
variable? For variables, what is the relation among 
them? 

 Identifying iteration control structure: What is the 
boundary of iteration? What actions to repeat? When to 
stop? 

 Identifying task hierarchy: When a new (sub) task 
starts or ends? 

With PBD based on conventional machine learning 
approaches such as [3,14,16], to identify the above key 
aspects of a task, multiple examples will be required to 
generalize learned knowledge. However, to build a task 
from a single demonstration, PLOW exploits the rich 
information from the play-by-play description by a user. 
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Another major point is PLOW’s proactive interaction with a 
user in a natural and unobtrusive manner (in Figure 1, upper 

case texts and the actions in angled brackets, both labeled 
with PLOW). For instance, PLOW makes queries (Line 
32), reports its status (Line 36), and verifies its knowledge 
of the task under construction by presenting what it 
recognizes (Line 19 ~ 20) or executing an action or a set of 
actions that it has just learned (Line 23, 26, 28, 35). 

Furthermore, the contextual information for an action 
enables PLOW to identify Web objects (e.g., textfield, link, 
etc.) in dynamic HTML pages. For instance, Line 11 (“Put 
the city here”) explains the action to type a city name into a 
field labeled with “City”. The NL description is used to find 
the city field in future execution with a new page format 
(e.g., new ads inserted at the top, reordering input fields in 
the search box, etc.). 

With this play-by-play and mixed-initiative approach, 
PLOW is able to build a robust and flexible task from a 
single demonstration. Learned tasks can be easily improved 
and modified with a new example, and they can be also 
reused to build a larger task and shared with other users. 

PLOW ARCHITECTURE 
PLOW is an extension to TRIPS [8], a dialogue-based 
collaborative problem solving system that has been applied 
to many real world applications. 

The TRIPS System 
The TRIPS system provides the architecture and domain-
independent capabilities for supporting mixed-initiative 
dialogue in various applications and domains.  Its central 
components are based on a domain independent 
representation, including a linguistically based semantic 
form, illocutionary acts, and a collaborative problem-
solving model.  The system can be tailored to individual 
domains through an ontology mapping system that maps 

1. USER: “LET ME TEACH YOU HOW TO FIND 
HOTELS NEAR AN ADDRESS” 

2. USER: "GO TO THIS WEBSITE" 
3. USER: [Enters a URL, http://www.mapquest.com, in 

the browser and hits enter] 
4. USER: “PUT HOTELS HERE”  
5. USER: [Types “hotels” in the business type field] 
6. USER: "YOU NEED TO KNOW THE ADDRESS" 
7. PLOW: “WHAT IS THE ADDRESS?” 
8. USER: [Types an address, “40 South Alcaniz Street, 

Pensacola, FL”, in a special GUI for inputs] 
9. USER: "PUT THE STREET ADDRESS HERE” 
10. User: [Types the street address, “40 South Alcaniz 

Street”, in the street field] 
11. USER: “PUT THE CITY HERE” 
12. USER: [Types “Pensacola” in the city field] 
13. USER: “PUT THE STATE HERE” 
14. USER: [Types “FL” in the state field] 
15. USER: “CLICK THE SEARCH BUTTON” 
16. USER: [Presses a button with a label “Search”] 
17. USER: “HERE IS THE LIST OF HOTELS” 
18. USER: [Highlights an area with a list of hotels] 
19. PLOW: “CAN YOU CHECK IF I UNDERSTAND 

THE LIST?” 
20. PLOW: <Displays a special GUI that shows the 

contents of the hotel list> 
21. USER: “THIS IS THE HOTEL NAME” 
22. USER: [Highlights the name of a hotel in the special 

GUI] 
23. PLOW: <Identifies hotel names for the other hotels 

and display the names> 
24. USER: “THIS IS THE HOTEL ADDRESS” 
25. USER: [Highlights the address of a hotel] 
26. PLOW: <Identifies hotel addresses for the other 

hotels and display them> 
27. USER: “THIS IS THE HOTEL DISTANCE” 
28. USER: [Highlights the distance for a hotel] 
29. PLOW: <Identifies distances for the other hotels and 

display them> 
30. USER: “CLICK THE NEXT LINK TO GET MORE 

RESULTS” 
31. USER: [Click the link labeled “next”] 
32. PLOW: “WHEN SHOULD I STOP SEARCHING?” 
33. USER: “WHEN THE DISTANCE IS GREATER 

THAN TWO MILES” 
34. PLOW: “I WILL TRY THAT” 
35. PLOW: <Visits multiple pages and extracts 

information (i.e., hotel name/address/distance) until 
the iteration termination condition is met and displays 
the results in the special GUI> 

36. PLOW: “I AM FINISHED” 
37. USER: “I AM DONE” 
 

Figure 1: A Dialogue to Find Hotels Near an Address 

 

Figure 2: TRIPS architecture 
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Figure 3: The PLOW Interface 

domain-independent representations into domain-specific 
representations.  

Figure 2 shows the core components of TRIPS: (i) a toolkit 
for rapid development of language models for the Sphinx-
III speech recognition system, (ii) a robust parsing system 
that uses a broad coverage grammar and lexicon of spoken 
language, (iii) an interpretation manager (IM) that provides 
contextual interpretation based on the current discourse 
context, including reference resolution, ellipsis processing 
and the generation of intended speech act hypotheses, (iv) 
an ontology manager (OM) that translates between 
representations, and (v) generation manager (GM) and 
surface generator that generate system utterances from the 
domain-independent logical form.  

The IM coordinates the interpretation of utterances and 
observed cyber actions. IM draws from the Discourse 
Context module as well to help resolve ambiguities in the 
input, and coordinates the synchronization of the user’s 
utterances and observed actions. Then IM interacts with a 
behavioral agent (BA) to identify the most likely intended 
interpretations in terms of collaborative problem solving 
acts (e.g., propose an action, accept a problem solving act 
or ignore it, work on something more pressing, etc.) BA 
gets supports from additional reasoning modules 
specialized for each application domain and reports its 
status to GM that plans a linguistic act to communicate the 
BA’s intentions to the user.  

TRIPS components interact with each other by exchanging 
messages through a communication facilitator. Thu, they 
can be distributed among networked computers. The rest of 
this chapter will focus on the PLOW components. For 
further information about the TRIPS system, refer to [2,8].  

PLOW Interface 
While the core reasoning modules of PLOW are 
domain/application-independent, PLOW focuses on tasks 
that can be performed within a web browser. Figure 3 
shows PLOW’s user interface. The main window on the left 
is the Firefox browser instrumented so that PLOW can 

monitor user actions and execute actions for learned tasks. 
Through the instrumentation, PLOW accesses and 
manipulates a tree-structured logical model of web pages, 
called DOM (Document Object Model). On the right is a 
GUI that summarizes a task under construction, highlights 
steps in execution for verification, and provides tools to 
manage learned tasks. A chat window at the bottom shows 
speech interaction and the user can switch between speech 
and keyboard anytime. 

The domain independent aspect of PLOW was recently 
demonstrated in the work for a Military Health System for 
appointment booking. Most of PLOW codes were reused 
for a system called CHCS that was a terminal-based but still 
widely used legacy system. The major work involved 
instrumenting the terminal environment (e.g., observing key 
strokes, checking screen update, etc.) as well as extending 
the ontology for the healthcare domain. From a user’s point 
of view, only noticeable major change to adapt was the 
replacement of a browser with a terminal. 

Collaborative Problem Solving in PLOW  
Figure 4 shows a high-level view of the PLOW system. At 
the center lies a CPS (Collaborative Problem Solving) agent 
that acts as a behavioral agent in the TRIPS architecture. 
The CPS agent (henceforth, called CPSA) computes the 
most likely intended intention in the given problem-solving 
context (based on the interaction with IM). CPSA also 
coordinates and drives other parts of the system to learn 
what a user intends to build as a task and invoke execution 
when needed.  

The CPSA understands the interaction as a dialogue 
between itself and a user. The dialogue provides the context 
for interpreting human utterances and actions, and provides 
the structure for deciding what to do in response. In this 
approach, PLOW appears to a user as a competent 
collaborative partner, working together towards the shared 
goal of one shot learning. 

To give an overview of the collaborative problem solving, 
assume that a user introduced a new step. CPSA first 

 
Figure 4: PLOW Architecture 
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checks if it knows how to perform the step and, if so, 
initiates a dialogue to find out if the user wants to use a 
known task for the step in the current task. If the user says 
so, CPSA invokes another dialogue to check if the user 
wants to execute the reused task or not. Depending on 
user’s responses, CPSA shows a different behavior. In the 
case of execution, CPSA enters into an execution mode and 
presents results when successful. If failed in execution, 
PLOW invokes a debugging dialogue, showing where it 
failed.  

In some cases, the system takes proactive execution mixed 
with learning, following an explicit model of problem 
solving. In particular, this type of collaborative execution 
during learning is very critical in learning iteration without 
requiring the user to tediously demonstrate each loop over a 
significant period. Refer to [2] for the background and the 
formal model of collaborative problem solving in TRIPS. 

TEACHING WEB TASKS WITH PLAY-BY-PLAY 

Task Representation 
A task is built as a series of steps and each step may be 
primitive (i.e., a self-contained terminal action) or 
correspond to another task (i.e., calling a subtask). 
However, a task model is more than a collection of steps. A 

task model needs to contain information such as an overall 
task goal, pre/post-conditions, the relationship between 
steps, the hierarchical structure of a task among others.  

Information in TRIPS is expressed in AKRL (Abstract 
Knowledge Representation Language), a frame-like 
representation that describes objects with a domain-specific 
ontology using cross-domain syntax. AKRL retains the 
aspects of natural language that must be handled by the 
reasoning modules. While the complete specification of 
AKRL is not presented in this chapter due to limited space, 
examples will show how AKRL is used in PLOW. 

A task model should be designed in such a way that it is 
easily executable by the system as well as applicable to 
further reasoning. Figure 4 shows an abstract task model in 
PLOW. The model includes a task goal, supplemental 
records, various conditions (pre/post/triggering/completion-
condition), and step description. Each step consists of the 
name/preconditions/parameters/primitive-actions. Action 
definition includes its name and parameters. 

Currently, it is assumed that the steps listed in the task 
model are executed sequentially in the listed ordering. 
However, the task model will be extended to include 
ordering constraints for flexibility (e.g., mutually exclusive 
steps could be performed in parallel). 

Some attributes in the task model could be inferred from 
step definition if needed. For instance, if a variable is used 
in a step but there is no preceding step that provides its 
value, the variable should be considered as a task input. 
However, explicit representation of input parameters in the 
task model makes task execution and reasoning faster and 
easier.  

Following sections will show how a task model is 
constructed through the collaboration between a user and 
PLOW that involves multiple communicative acts and 
highly sophisticated reasoning in PLOW. Additional 
information for PLOW can be also found at [1,13]. 

Task Goal Definition 
The task model is incrementally built as a user performs 
play-by-play demonstration. Figure 5 shows a part of the 
task model built from the dialogue in Figure 1. Given the 
user utterance “Let me teach you to find hotels near an 
address” (Line 1 in Figure 1), TRIPS natural language 
understanding modules parse and interpret it. IM computes 
multiple hypotheses and sends a request below to CPSA for 
evaluation: 
 (request :content (evaluate :content (cps-act :id 

CA1268 :content (propose :who user :to plow :id x126 
:what v103 :as goal) :context ((reln v103 :instance-of 
Teach :object v114 :recipient v105 :agent v108) (the 
v108 :instance-of Person :equals user) (the v105 
:instance-of System :equals plow) (reln v114 :instance-
of Find :object v115) (a v115 :instance-of Set :element-
type v116) (kind v116 :instance-of Hotel :is-near v117) 

(task :id <a unique identifier> 
         :goal <task goal> 
         :description <NL description of the task>  
         :documentation <notes generated by PLOW  
                                     but editable by a user afterward> 
         :trigger <triggering conditions, if any> 
         :pre-condition  <required inputs  
                                    & propositions to satisfy>  
         :post-condition <task outputs  
                                     & propositions to assert>   
         :completion-condition <a system state for  
                     completion that includes a list of actions  
                     to be completed & propositions 
                     to be satisfied> 
         :steps  
           ((step :preconditions <a list of propositions 
                                               to satisfy>  
                     :id <a unique identifier> 
                     :description <NL description of the step>  
                     :name <step name> 
                     :parameters <a list of parameter  
                                            description> 
                    :actions 
                       ((action :name <action name> 
                                   :parameters <a list of parameter 
                                                          description>) 
                         (action …) …)) 
                ….                
               (step :name ….)) 
 

Figure 4: Abstract Task Model 



 

 5 

(a v117 :instance-of Mailing-Address)) :channel 
desktop)) :reply-with IM126) 

CPSA reasons about the validity of the proposal and make a 
decision, accept or refusal. Here, the proposal is to teach a 
finding action the target of which is a set of hotels near a 
mailing address. When it is accepted, IM requests CPSA to 
commit to the proposal. Then, CPSA requests a task-
learning module, henceforth called TL, to start the learning 
process: 
 (request :receiver TL :content (akrl-expression :content 

p126 :context ((reln p126 :instance-of start-learn :task 
v114) (reln v114 :instance-of Find :object v115) (a v115 
:instance-of Set :element-type v116) (kind v116 
:instance-of Hotel :is-near v117) (a v117 :instance-of 
Mailing-Address))) :reply-with CPSA126 :sender CPSA) 

Receiving the above request, TL reasons about its 
feasibility. If feasible, TL accepts the task goal (Figure 5-a) 
and starts a learning process. Given TL’s acceptance 
notification, CPSA updates its collaborative problem 
solving state and waits for the user to define a step. 

The task model also includes other useful information such 
as task description (Figure 5-b) and documentation (Figure 
5-c). Note that the task description is not the text directly 
from speech recognition. Instead, it is a text that the TRIPS 
surface generator produced from the internal representation 
of the task goal, which clearly shows that the system 
understands what a user said. The same goes for the step 
description in the task model. These reverse-generated NL 
description is used to describe the current task in the  
PLOW interface (the right side window in Figure 3). 
PLOW automatically generates the documentation part but 
a user can edit the text later. 

A task may also have a trigger: e.g., when a user says, “Let 
me teach you how to book hotels near an airport when a 

flight is canceled”, the even of a canceled flight (that can be 
notified in various forms) is captured as a trigger and 
recorded in the task model. While PLOW is running, if such 
an event is notified, PLOW finds a task with a matching 
triggering condition and, if any, execute it. 

Task Step Definition 

High-level Step Description in Play-by-Play 
When a user describes a step by saying “Go to this website” 
(Line 2 in Figure 1), IM and CPSA collaboratively interpret 
and reason about the utterance. Then, CPSA requests TL to 
identify a step by sending a message that contains step 
description: 
 (request :sender CPSA :receiver TL :content (akrl-

expression :content i132 :context (reln i132 :instance-of 
identify-substep :content v127 :task-id p344) (reln 
v127 :instance-of Navigate :web-destination v128 
:agent v132) (the v128 :instance-of Webpage) (a v132 
:instance-of System :equals PLOW))) :reply-with p327) 

 
Given the information in this request, TL creates a step that 
does not have actions yet and inserted the step definition 
into the current task model: 
 (Step :preconditions ((ordering :constraint (directly-after 

nil))) :name Navigate :parameters ((para :name Web-
destination :value ((the v128 :instance-of Webpage))) 
:id p351 :description “go to the website” :actions null) 

When there is no specific precondition, the precondition 
part has a simple ordering constraint that normally indicates 
a step can be performed after the completion of a preceding 
step: for the first step, the preceding step is NIL. 

Primitive Actions of a Step 
Following the step description, a user performs a normal 
navigation action in the browser and the action is detected 

(task :id p344  
         :goal ((reln v114 :instance-of Find :object v115) → (a) 
                   (a v115 :instance-of set :element-type v116)        
                   (kind v116 :instance-of Hotel :is-near v117)  
                   (a  v117  :instance-of Mailing-Address)) 
         :description "find hotels near an address"→ (b) 
         :documentation "id: p344, created: 03/03/2009 12:49:34, user: hjung" → (c) 
         :precondition (condition :inputs ((role :id p456 :task-id p344 :step-id p497              
                                                                      :value ((a v117 :instance-of Mailing-Address)))) → (d) 
         :postcondition (condition :outputs  
          ((role … :value ((the v199 :instance-of Name :associated-with v200) → (e) 
                                     (kind v200 :instance-of Hotel))) 
           (role … :value ((the v213 :instance-of Mailing-Address  :associated-with v214) → (f) 
                                    (kind v214 :instance-of Hotel))) 
          (role … :value ((the v243 :instance-of Distance :associated-with v244) → (g) 
                                    (kind v244 :instance-of Hotel))))) 
         :completion-condition (condition :completed-actions (p456 … p786)) 
         :steps … )  
 

Figure 5: A Task Model Example 



 

 6 

by the Firefox instrumentation. IM receives the action and 
checks with CPSA. Then, after checking the validity of the 
action, CPSA requests TL to learn the action: 
 (request :sender CPSA :receiver TL :content (akrl-

expression :content i331 :context ((reln i331 :instance-
of identify-example :content gui304 :step-id p351 
:taks-id p344 :cps-act pursue-goal) (reln gui304 
:instance-of Open-URI :actor nil :object 
“http://www.mapquest.com”))) :reply-with p377) 

Using the information in this request, TL extends the action 
part in the step definition above: 
 (Step … :actions ((action :name Open-URI 

:parameters ((para :name window :value (opened at 
step p351)) (para :name object :value 
“http://www.mapquest.com”))) (action :name Wait-
Condition :parameters ((para :name content :value 
Open-URI))))) 

Note that TL inserts additional information into the action 
definition based on its domain knowledge. To handle 
multiple windows, a browser window to perform the 
current action is specified. In addition, an action to wait for 
complete web page loading is inserted. Without such 
synchronization, subsequent actions could fail, in particular, 
on a slow network (e.g., trying to select a menu when the 
target menu does not appear yet). In navigating to a link, 
there can be multiple page loading events (e.g., some travel 
websites show intermediate web pages while waiting for 
search results). PLOW observes how many page loading 
events have occurred and inserts waiting actions 
accordingly.  

Figure 6 shows the PLOW interface after this step 
demonstration. The right side window for the current task 
under construction has a traffic signal light at the bottom 
portion. The signal changes colors (green/red/yellow) based 
on PLOW’s internal processing state and its expectation of 
the application environment, telling if it is deemed OK for a 
user to provide inputs to PLOW (green) or not (red). 
Yellow implies that PLOW is not sure since, in this case, 
there can be multiple page loading events controlled by the 
web site server.  

Dynamic Web Objects in Primitive Actions 
In Figure 1, there is a step created by saying “Put the city 
here” and typing a city name into a text field labeled with 
“City”. Here, the observed action from the browser 
instrumentation is an action that fills a text (e.g., 
“Pensacola”) into a text field. However, the semantic 
description helps PLOW to find the text field in a dynamic 
HTML file.  

Figure 7 is a screenshot of Firefox DOM Inspector that 
shows DOM nodes and their attributes/structure accessed 
by PLOW for its learning how to identify dynamic objects. 
For the step to put a city, PLOW finds a match for "city" in 
one of the attributes of the INPUT node (i.e., 
id="startCity"). PLOW learns the relation between the 
semantic concept and the node attribute as a rule for future 
execution. Linguistic variation (e.g., cities) or similar 
ontological concepts (e.g., town, municipality) are also 
considered for the match. Right after learning this new rule, 
PLOW verifies it by applying the rule in the current page 
and checking if the object (i.e., a text-field) found by the 
rule is equal to the object observed in demonstration. 

PLOW also uses other heuristics to learn a rule. For 
instance, when the node identified in the demonstration 
does not have any semantic relation, it finds another 
reference node traversing the DOM tree and, if found, 
computes the relation between the node observed in 
demonstration and the reference node found elsewhere. 
With this sophisticated approach, even when there is a web 
page format change, PLOW is able to find a node as long as 
there are no significant local changes around the node in 
focus. For further information of PLOW’s dynamic web 
object identification, refer to [3]. 

Parameter Identification 
Identifying parameters is challenging even for a simple task 
and, without special domain knowledge, it is almost 

 
Figure 6: PLOW Interface after Step Demonstration 

 
Figure 7: DOM structure of a Web Page 
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impossible with only a single observation. When an object 
is used in a task, the system should determine if it is a 
constant or a variable. In the case of a variable, it also has 
to figure out the relation between variables. Figure 8 shows 
how natural language plays a critical role in PLOW’s 
parameter identification, enabling it to identify parameters 
from a play-by-play single demonstration.  

Furthermore, TRIPS’ reference resolution capability also 
identifies the relation between parameters. For instance, the 
city instance in one step (Line 11 in Figure 1) is related to 
the address mentioned earlier (Line 1 and Line 6). The 
semantic concept CITY is a role of another concept 
ADDRESS in the TRIPS ontology. A special address parser 
helps to reason that the typed city name “Pensacola” in the 
demonstrated action (Line 12) matches a city part of the 
given full address provided by a user (Line 6 ~ 8). Without 
this dependency relation from language understanding and 
the verification by the address parser, PLOW will add the 
city as a separate input parameter. Note that, in the final 
task model, there is only a single input parameter, an 
address, (Figure 5-d). 

NL description also helps to identify output parameters. 
From the utterances that specify which information to 
extract (Line 21, 24, 27 in Figure 1), PLOW figures out that 
the objects to find in those steps are related to the task 
output defined in the task definition (i.e., hotel in Line 1). 
Therefore, they are added as output parameters (Figure 5-
e,f,g). 

Task Hierarchy 
PLOW uses simple heuristics to identify the beginning/end 
of a sub task. Any statement that explicitly identifies a goal 
(e.g., “Let me show you how …”) is seen as the beginning 
of a new (sub) task. User’s explicit statement such as “I’m 
done” or another goal statement indicates the end of the 
current (sub) task. Our anecdotal experience is that users 
easily get familiar with this intuitive teaching style. 

Control Constructs 

Conditionals 
Conditionals have a basic structure of ‘if X, then do Y’, 
optionally followed by ‘otherwise do Z’. However, the 
action trace for conditionals includes only one action, either 
Y or Z, based on the truth-value of the condition X. In 
general, identifying X is very difficult, since the entire 
context of demonstration should be checked and reasoned 
about. However, in the play-by-play demonstration, when a 
user specifies a condition, PLOW can interpret correctly the 
condition from language. 

Assume that a user adds a conditional step by saying “If  a 
zipcode is available, put the zipcode here”. Then, in the 
precondition part, the step definition will include the 
following proposition that states the existence of the 
zipcode property: 

 (step … :preconditions (…((reln v380 :instance-of 
Have-Property :property v346 :force true) (a v346 
:instance-of Zip-code))) …)  

Iteration 
The main difficulty in identifying iterative procedures from 
a single example is that the action trace (a sequence of 
actions) alone does not fully reveal the iterative structure. 
For iteration, a system needs to identify these key aspects: 
(i) the list to iterate over; (ii) what actions to take for each 
element; (iii) how to add more list elements; and (iv) when 
to stop.  

For a system to reason about these aspects on its own, in 
addition to repetitive examples, full understanding of the 
action context (beyond observed actions) and special 
domain knowledge will be required (e.g., what and how 
many list items were potentially available, which ones were 
included in the observed actions, how and when web page 
transition works, etc.). Furthermore, a user would not want 
to demonstrate lengthy iterations. In PLOW, natural 
language again plays a key role. As shown below, we 
designed the system GUI and dialogue to guide a user 
through the demonstration for iteration: mixed-initiative 
interaction with proactive execution and simple queries 
makes the process much easier and intuitive. 

In Figure 9, a user is teaching PLOW how to find hotels 
near an address. When the user highlights a list of results 
(Figure 9-a) and says, “Here is a list of results”, PLOW 
infers that an iteration over elements in the list will follow. 
Then, PLOW enters into an iteration-learning mode with 
the goal of identifying the key aspects stated above. First, 
by analyzing the DOM structure for the list object, PLOW 
identifies individual elements of the list and then presents 
the parsed list in a dedicated GUI window with each 
element (essentially a portion of the original web page) 
contained in a separate cell (Figure 9-b).  

This GUI-based approach lets the user quickly verify the 
list parsing result and easily teach what to do for each 
element. Note that list and table HTML objects that contain 
the desired list may also be used for other purposes (e.g., 
formatting, inserting ads, etc.), so it is fairly common that 

Utterance 
(Action) 

Interpretation Key features 

hotels  
output 

- Bare plural 
- Object of an 
information producing 
action “find” 

Let me show you 
how to find hotels 
near an address 

an address  
input 

- Indefinite 
- No decision action 

Put hotels (Type 
“hotels”) 

Hotels  
constant 

- Bare plural 
- Identical to the typed 
text in the action 

Put the city (Type 
“Pensacola”) 

a city  
related to the 
address  input 

- Definite 
- City is a role of an 
address in Ontology 

Figure 8: Interpretation of Noun Phrases 
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Figure 9: Learning Iteration 

some irrelevant information may appear to be part of the 
list; PLOW uses clustering and similarity based techniques 
to weed out such information. 

After presenting the parsed list, PLOW waits for user’s 
demonstration for an element. For instance, the user says, 
“This is the hotel name”, and highlights the hotel name in 
one of small cells in the GUI (Figure 9-c). Given this 
information, PLOW learns the extraction pattern and 
proactively applies the rule to the rest of elements (Figure 
9-d). Note that a composite action (e.g., navigating to a 
page from a link, extracting data from the new page and so 
on) can be also defined for each element.  

If there is an error, the user can notify PLOW with the 
problem by saying, “This is wrong”, and show a new 
example. Then, PLOW learns a new extraction pattern and 
reapplies it to all list elements for further verification. This 
correction interaction may continue until a comprehensive 
pattern is learned. 

Next, the user teaches PLOW how to iterate over multiple 
lists by introducing a special action (e.g., “Click the next 
link for more results”  see Figure 9-e). This helps PLOW 
to recognize the user’s intention to repeat what he/she 
demonstrated in the first list on other lists. Here, to identify 
the duration of the iteration, PLOW asks for a termination 
condition by saying, “When should I stop searching?” For 
this query, it can understand a range of user responses such 
as “Get two pages,” “Twenty items”, “Get all”. 

The conditions can be defined on the information extracted 
for each element, as in “Until the distance is greater than 2 
miles”. In the case of getting all results, the system also 
asks for how to recognize the ending, and the user can tell 
and show what to check (e.g., “When you don’t see the next 
link” or “When you see the end sign”). For verification, 
PLOW executes the learned iterative procedure until the 
termination condition is satisfied and presents the results to 
the user using the special GUI. The user can sort and/or 

filter the results with certain conditions (e.g., “sort the 
results by distance”,  “keep the first three results”, etc.). 

UTILIZING & IMPROVING TAUGHT WEB TASKS 

Persistent and Sharable Tasks 
After teaching a task, a user can save the task into a 
persistent repository. Figure 5 shows the “Saved Tasks” 
panel in the PLOW interface that shows a list of a user’s 
private tasks. A pop-up menu is provided for task 
management, and one of its capabilities is exporting a task 
to a public repository for sharing the task with others. A 
user can import shared tasks from the “Public Tasks” panel. 

Task Invocation 
Tasks in the private repository can be invoked through the 
GUI  (Figure 5) or in natural language (e.g., “Find me 
hotels near an airport”). If the selected task requires input 
parameters, PLOW asks for their values (e.g., “What is the 
airport?”), and the user can provide parameter values using 
the GUI or natural language.  

Users can invoke a task and provide input parameters in a 
single utterance, e.g., “Find me hotels near LAX” or “Find 
me hotels near an airport. The airport is LAX.” Results can 
also be presented via the GUI or in natural language. This 
NL-based invocation capability allows users to use indirect 
channels, as well. For example, we built an email agent that 
interprets an email subject and body so that a user can 

 
 

Figure 10: Task Management 
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invoke a task by sending an email and receive the execution 
results as a reply.  

Here, given a user request, PLOW finds a matching task 
with its natural language understanding and ontological 
reasoning capabilities. A user does not necessarily have to 
use the same task description used in teaching. “Get me 
restaurants in a city” or “Look for eatery in a town” would 
select a task to find restaurants in a city. 

Reusing Tasks 
In teaching a task, existing tasks can be included as 
subtasks. When a user gives the description of a new step, 
PLOW checks if the step matches one of the known tasks; 
if a matching task is found, it is inserted as a subtask with 
parameter binding between the current task and the reused 
task. For instance, in one teaching session, a user has taught 
how to book a flight and wants to reserve a hotel. For a step 
introduced by saying, “Book a hotel for the arrival date”, 
PLOW will check for a matching task for the step.  

If the user already has a task to reserve a hotel with a 
check-in date and a number of nights, PLOW will mark the 
step as reusing another task so that, in execution, the reused 
task can be called. PLOW will also infer that the arrival 
date should be bound to the check-in date and consider the 
number of nights as a new input parameter if there is no 
related object in the current task. 

Editing Tasks 
To fix obsolete tasks (e.g., to update them after web site 
changes) or to improve/simplify a task, PLOW lets a user 

add or delete steps. To reach a step to edit, PLOW supports 
(i) step-by-step execution (the default mode for 
verification) and  (ii) partial execution up to a certain step. 
Figure 6 shows a GUI snapshot in which highlighted steps 
are the ones to be executed next. One can invoke the two 
modes by saying, “Let’s practice step by step” and “Execute 
the task up to this step” (after clicking a step in the GUI) 
respectively.  

Setting up the action context (i.e., browser setting, extracted 
objects, available parameter values, etc.) with real 
execution is critical since the context is used in PLOW’s 
reasoning for the action to edit. Figure 11 shows the 
interaction between a user (USR) and PLOW (SYS) for 
task editing that was to add a new step to select a check-box 
for a special military rate in booking a hotel. Note that, 
before the dialogue in the chat window, the user selected 
the step described as “Put the check out date” in the current 
task window (marked with a stop sign).  

Improving Tasks from Execution Failure 
Execution failure from unnecessary or missing steps can be 
corrected by task editing. Major web site redesigns will 
sometimes trigger web object identification failures. When 
PLOW detects an execution error, it stops at the failed 
action, notifies the user and initiates a debugging process by 
asking for a new example from which it learns an additional 
extraction pattern. 

In Figure 12, the task is to find hotel per diem rates for a 
city and a state. The failure occurred at the step to find a per 
diem rate list for Nebraska (marked with a ladybug). In 

 
Figure 11: Task Editing 
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teaching the task, another state that has multiple 
destinations was used. However, this Nebraska table with 
one destination has a significant different structure and 
PLOW failed to identify the list. The dialogue in the chat 
window shows how PLOW and a user interact with each 
other from the start of task execution. As shown in the 
browser window, the user gives a new example by 
highlighting the per diem rate list for the failed step. Now, 
the constructed task has become more robust with more 
knowledge to handle different list structures. 

EVALUATION 
In 2006 and 2007, PLOW was evaluated along with other 
task building systems by an independent agency as a part of 
DARPA CALO project [18]. Sixteen human subjects 
received training on each system and they were given ten 
problems that can be performed on various web sites: 
1. To whom should a travel itinerary be emailed? 
2. List all publications from the work funded by a project 
3. List top N candidates for given product specifications 
4. Retrieve N product reviews for a product 
5. List restaurants within a certain distance from an 

address 
6. In what conference an article was published? 
7. What articles are cited in a given article? 
8. What articles cite a given article? 
9. Who else is traveling to a location on the same day 

with a person of interest? 
10. What roles does a person play in an institution? 

PLOW did very well in both tests, receiving a grade of  
2.82 (2006) and 3.47 (2007) out of 4 (exceeding the project 
goals in both cases). Furthermore, in a separate test in 2006, 
test subjects were given a set of new 10 “surprise” problems  
some of which were substantially different from the original 
ten problems. They were free to choose from different 
systems. But, PLOW was the system of choice among the 
subjects: 30 out of 55 tasks were created in the surprise test 
using PLOW and 13 out of 16 used PLOW at least once. 
PLOW also received the highest average score (2.2 out of 
4) for the constructed tasks in the test. In addition to high 
test scores, anecdotal comments from the subjects in 2007 
were that they were impressed by PLOW’s user 
convenience with various GUI/NL interaction. 

RELATED WORK 
A major technique in task learning is an observation-based 
approach in which agents learn task models through 
observation of the actions performed by an expert [3,14,16]. 
However, a significant drawback of these approaches is that 
they require multiple examples, making them infeasible for 
one-shot learning in most cases without very special 
domain knowledge. 

Researchers also investigated techniques that do not require 
observation. [11, 15] proposed techniques to encode 
experts’ knowledge with annotation. A collaborative 
scripting system (called Coscripter) with pseudo natural 
language was developed to automate online tasks and the 
information in the pseudo NL was used to identify web 
objects [17]. A specialized GUI system for task editing and 
modification was also developed as a part of the CALO 
project [4]. While these approaches are useful and novel, 

 
Figure 12: Failure Correction with a New Example 
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without the help of demonstration observation, the task 
learning can be difficult for complex control constructs 
such as iteration and dynamic web object identification. 
Creo is a PBD system that can learn a task from a single 
example but it has significant limitation in the range of 
actions and web objects [8]. 

Many mashup systems were developed to extract and 
integrate information from the Web [7,10,12]. While they 
are powerful tools, their capability and complexity are 
positively correlated (i.e., complex interfaces are provided 
to provide advanced functionalities). Furthermore, there is 
limitation in handling dynamic objects and understanding 
extracted information for further reasoning. 

CONCLUSION 
PLOW demonstrates that NL is a powerful intuitive tool for 
end-users to build web tasks with significant complexity 
using only a single demonstration. The natural play-by-play 
demonstration that would occur in human-human teaching 
provides enough information for the system to generalize 
demonstrated actions. Mixed-initiative interaction also 
makes the task building process much more convenient and 
intuitive. Without the system’s proactive involvement in 
learning, the human instructor’s job could become very 
tedious, difficult, and complex. Semantic information in NL 
description also makes the system more robust by letting it 
handle the dynamic nature of the Web. 

While PLOW sheds more light on NL’s roles and the 
collaborative problem solving aspects in the end-user 
programming on the Web, significant challenges still exist 
and new ones will emerge as application domains are 
expanded. Better reasoning about tasks, broader coverage 
of language understanding, and handling the dynamic 
nature of web contents will be needed to address the 
challenges. 
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