Mixing the reactive with the personal:
Opportunities for end user programming in
Personal information management

Max Van Kleek', Paul André?, David R. Karger', and m.c. schraefel?

'CSAIL, MIT
32 Vassar St.
Cambridge, MA, 02139, USA

{emax, karger}@csail.mit.edu

Most people rely on their ability to effectively draw upon,
process, and use a wide variety of information in order to plan and
execute their work and leisure activities each day. The field of
personal information management (PIM) has sought to understand
and build tools to support people's information needs, in particular
to help people effectively remember, manage and recall large
quantities of information. Today, several classes of such tools
dominate the PIM landscape; in particular, electronic calendars, e-
mail clients, address books, to-do item managers and various
note-taking tools.

While these tools have become increasingly capable and available
to us pervasively through the web and our mobile devices, they all
exhibit a simple limitation -- they require explicit user interaction.
By contrast, human personal assistants (PAs), such as secretaries
and administrative assistants, routinely do things on behalf of their
supervisors, such as taking calls, handling visitors, coordinating
meetings and daily schedules, to name a few. Our perspective is
that in order for personal information management tools to start to
approach the helpfulness of human personal assistants, they will
require some degree of autonomy, and ability to work on the
behalf of a user without explicit human attention.

Designing PIM tools to approach the helpfulness of human PAs
is, of course, difficult for a number of reasons. Human PAs
possess rich extensive general knowledge of the world, deep
domain knowledge pertaining to the tasks they need to perform
(as professionals), and a thorough understanding of the person(s)
whom they serve, including the person's preferences and needs.
Building a digital personal assistant endowed with such levels of
expertise and competence, while conceivable, is outside our
present capabilities.

One alternative approach is to let users specify their desired
autonomous or reactive autonomous behaviors directly,
essentially programming PIM software to perform tasks for them.
In the same way that computer system administrators routinely
automate their workflows using tools such as shell scripting
languages and cron [4], users should be able to delegate simple,
ordinarily attention-intensive but well-defined personal
information-related tasks to their personal information tools. A
simple example of PIM automation features that have become
already commonplace are e-mail filters and calendar
alarm/reminder functions, which reduce the attentional demands
of our e-mail clients and calendaring tools, respectively. In this
chapter, we describe an experiment in expanding the role of end-
user automation towards other kinds of more general personal
PIM tasks, through a rule-based reactive programming language
designed for end users, driven by rich Web-based personal
information sources.

®Electronics and Computer Science
University of Southampton
S0O17 1BJ, United Kingdom

{pa2, mc}@ecs.soton.ac.uk

1. Personal reactive automation through

aggregated information from the Web

The growth of web-based PIM applications (such as Google
Calendar', RememberTheMilk 2 and del.icio.us3) and social
networking and activity sharing portals (such as Facebook”,
last.fm > s Twitter(’, and Plazes7) have made available an
unprecedented quantity of rich personal information about people
and their activities on the Web. Several of these sites (including
Plazes and last.fm) publish near-real-time updates of people's
locations and activities through automatic tracking software
installed on users' personal devices.

In this chapter, we describe a system called AtomsMasher® (AM)
that applies the rich, timely information published about people on
the Web to trigger and drive end-user constructed adaptive,
reactive behaviors that can be made to perform simple and useful
PIM-related tasks. For example, AM can be used to set up an
adaptive "Away responder" that can automatically determine,
based on a user's calendar entries or location, when and how to
automatically reply to messages of particular types. (See Section
3.1 for example AM behaviors.)

To support reactive behaviors using Web 2.0 information sources,
we need to bridge two lines of research. Mash-ups [5][26]
typically blend two or three data sources to re-present a view of
the sources' data, but usually provide no means of scripting
actions based on this data. Active scripting in end-user
programming [3][14] affords customizable actions to be assigned
to particular conditions, but so far have been built for closed
domains where entities and actions are known and specified in
advance.

By contrast, AM dynamically builds a data model based on
information aggregated from heterogeneous sources on the web
and maintains this model in a simple RDF representation. A
simple rule chainer at the heart of the system triggers based on
changes to this model, and maintains an open registry of simple

" Google Calendar: http://calendar.google.com

2 Remember The Milk: http://www.rememberthemilk.com
3 del.icio.us : http://del.icio.us

4 Facebook : http://www.facebook.com

3 last.fm : http://www.twitter.com

® Twitter : http://www.twitter.com

7 Plazes : http://www.plazes.com

8 AtomsMasher is open source under the MIT License and can be
downloaded at http://plum.csail.mit.edu/atomsmasher

predicates and actions. Together, these components create a
complete reactive rule-based system based on data derived from
web information sources. To make specifying behaviors in AM
intuitive and easy for end-user non-programmers, AM provides a
constrained simplified natural language (CSNL) UI, with which
users state simply what they want to happen and when they want
the behavior to be activated. This CNL UI is intended to let
programming behaviors resemble instructing a human PA to do
something later, except using a simplified constrained vocabulary
to simplify interpretation.

In designing AM, we sought to answer the following questions: a)
whether current data feeds have sufficient, timely information to
drive useful reactivity b) finding a flexible and scalable method
for consolidating and integrating heterogeneous information from
diverse web sources c¢) whether a CLUI would make the
specification of desired automation easy and error-free. In the
following sections we consider related work, followed by a brief
walkthrough of AM's Ul and some examples of its use. We then
provide a detailed overview of the AM framework, discuss how
the framework can be extended to new data sources and
capabilities, and describe ongoing work towards making AM
behaviors sharable and rule conditions easier to express.

2. Related Work

AtomsMasher draws on work from several fields: it is an end user,
reactive behavioral programming environment, for personal
information tasks, driven by heterogeneous web data sources. We
report on the most similar and seminal works in the following
related areas: symbolic rule based expert and control systems
(AI), end-user programming, context-aware computing, and most
recently web mash-up and semantic web research.

An early system that combined similar goals with a similar
approach (rule based system) was the Information Lens [15], a
system that introduced end-user constructed rules for more
effective filing and management of (the closed world of) e-mail.
With respect to featuring context-sensitive reactivity, context-
aware and ubiquitous computing systems have sought to achieve

physical, environmental and user task context-aware applications
based on perceptions primarily from sensors. A few of these
systems focused on end-user construction of reactive behaviors.
These included: a macro recording system in the Intelligent Room
let users program macros physically by example [7], iCAP [20]
which let end-users sketch their desired situations and actions, and
CAMP [20] which used a magnetic-poetry metaphor for the
construction of similar behaviors.

With respect to end-user programming on the web, Chickenfoot
[3] and Co-Scripter [14] introduced programming environments
for letting users automate common repetitive web tasks and
customizing pages with additional functionality. These systems
dealt primarily with the domain of the web page, with objects and
actions pertaining to pages, their structure, and navigation.
AtomsMasher extends these systems by providing a rule engine
for automatic execution of scripts, a repository of external
information that scripts can use in their actions to be more
adaptive, and actions that support scripting "off the page", e.g.
web services.

With respect to combining information from multiple web
domains in end-user web environments, web mash-ups have
recently popularized the act of taking live data provided by one
site and using it in the context of another, such as for producing
visualizations. One paper [24] surveyed 22 such mash-ups and
their function, and concluded that most mash-ups surrounded the
construction of custom views of data, or bringing data to the
desktop. There was an absence of any mash-ups which produced
reactive behaviors (e.g., action) based on data from multiple
sources.

The end-user construction of such mash-ups has been the focus of
a number of web-based tools including Marmite [23], MashMaker
[5], and Pipes [26]. The focus of these tools has been in
facilitating the creation of combined feeds, views and simple
visualizations of combined information from arbitrary feeds or
services on the web. AtomsMasher's approach in retrieving and
aligning sources differs in several ways. We use a relational
representation in RDF (unlike most mashups that align at the

create a new rule
when who or what property or action i (i where? do what? about what?
[A |[I to call Mom
i activity is within _ miles of | | Home | | remind me [
whenever | |my | music listened to | |is near CSAIL 32-224 | ' email me |
every time ‘ai kunze tatus not near CC iveitto
next time | watson watson | location "‘1 is within I ‘aubon pain kendall | ‘setmy]
in 1 min brian jacobson birthday is CSAIL 32-G531 run function
1: 2 :l:: parul vora affiliations Kendall T courtyard
il i i i :
in 15 mins aln jchang an::’:hang friends CSAIL student st
in 30 mins Z;na:rs‘:rr:vliratne o CSAIL forbes
in an ho photos CSAIL 32123
inan hour dugan hayes blog MIT W20 readi
in 3 hours john sted! bookmarks g reading mc‘
tomorrow sacha zyto AIM usermame
tonight harold fox fb usemame
‘ every moming | L— | todos
1 next time my location is Home remind me to: buy milk
2 next time my activity is Haystack meeting show list of Note items with tag: Haystack
3 next time i am with Paul André remind me to: Give him $20
4 whenever my activity is DarkBOT OTA set my Facebook state to: DJing live on WMBR - tune in!
5 whenever sarah palin posts a tweet that contains science run function: function() { my.palin_points++..
6 when my location is Home remind me: to call Mom

Add new behavior

Figure 1: AtomsMasher's simplified Constrained Natural Language (CNL) interface for rule specification, described in S3.1

syntactic or structural level), which supports rich linking of
related data items, simplifies integration and scaling to new data
sources and types, and reduces dependence on the source
representation. AM also supports the integration of private data
sources such as e-mail and sources on the user's desktop.

From the semantic web community, AM relies on various RDF
technologies including OWL [16] for expression of its internal
representation, and toolkit Jena [9] for storage, reasoning and
query. As described in section 4.4, AM's Ul was inspired by work
on constrained input and simplified natural language interfaces
(NLI), particularly GINO [1] and GINSENG [13] method of
constrained input interaction.

3. Overview

AtomsMasher helps users by letting them delegate simple actions
to perform when certain conditions are met. These reactive
conditional actions are called behaviors, and are expressed in the
system as sets of rules (section 4.2). Like in standard rule-based
systems, each rule contains an expression of the condition(s)
under which it should execute, and the action to be performed
when its antecedent is satisfied. In AM, rule antecedents are
comprised of conjunctions of predicates which represent relational
constraints between entities in AM's internal model, known as
AM's knowledgebase (KB). These predicates and relations,
described in section 4.3.1, typically are surrogates for tangible
real-world things in the user's life, such as people, places, and
events, and real-world properties/relations among those things,
The AM KB is constructed and maintained by AM data source
modules, which, as described in section 4.3.2, use information
from both web and desktop based sources to build the KB. The
updates that these data source modules perform to the KB cause
conditions of rules to be satisfied, which, in turn, drives AM to
perform actions, described in section [4.2.2].

3.1 Walkthrough and Examples

Prior to describing the system components, we run through an
example of how a user interacts with AM to set up a simple
reactive behavior. Following this, we provide a number of other
examples of typical uses for AM.

Figure 1 illustrates AM's main interface and the process of rule
creation. In the figure, the user, Xaria, is setting up a simple rule
for AM to remind her to call her mother when she gets home.
When Xaria selects the AM bookmark on her browser, AM's rule
user interface appears (bottom of figure). From this UI she can
add new rules, monitor their execution (not shown) or selectively
enable and disable rules in her collection.

In this scenario, she clicks "Add new behavior". Here she begins
to specify the antecedent for her rule, which describes the
situations under which the rule should run. AM prompts her with
an auto-complete input box labeled "when". AM is asking her
whether she wants her rule to run at a specific time (which she can
type directly) or based upon some event or situation. She types
"when", which indicates to the system that she wants it to run the
rule only once. (She could have typed "whenever" if she wished
for the rule to run whenever she got home). AM then prompts her
with a second input box: "What?". This box is pre-populated with
a list of entities in her life: people she knows, places she has been
(and heard of through event web sites), and files on her computer.
It also includes the special terms "some <type>" and "new
<type>", where types correspond to the major types of things AM
knows about: people, places, web sites, and events. She selects
"my", indicating to AM that she wants the rule to run when one of
her properties assumes a particular value. AM then asks her to

specify which property (she selects "location"), a comparison verb
phrase (she "is"), and finally, the name of a place ("Home"). In
each step, AM only presents possible options that are valid based
upon what she has specified thus far. Finally, AM prompts for the
(re-)action to take and arguments, in this case “remind me”, “to
call Mom”. This new behavior is then saved to the rule interface.
The “remind me” action can be configured to deliver its reminder
notifications through a variety of channels, including desktop-
based (Growl, IM, email, synthesized TTS) or mobile (SMS). A
further example of context-based reminding can be seen in a
social-contact event, for example:

next time 1 am with Max Van Kleek

remind me to “tell him about short film festival”
With respect to facilitating focus on particular tasks, AM can be
used to automatically retrieve information depending on a user’s
location or activity, set via their calendar for example.

next time my activity is Haystack meeting
show bookmarks tagged “haystack”
open document http://groups.csail.mit.edu/haystack/blog

Social Co-ordination and Awareness. AtomsMasher can be
used to publish custom feeds tracking particular updates in a user's
life activities. This is to allow users to better control their privacy
while allowing their coworkers and friends alike to keep track of
their whereabouts.. To do this, an AM user can simply set up a
behavior to post to a particular feed, identified by a name. If a
feed of that name does not exist already, AM creates one. In the
following simple example, Xaria has specified a rule for having
posted on a feed known to lab colleagues only when she's at lab:

whenever my location is some place
and that place is located in or part of MIT CSAIL
then post to feed labmates-feed
“Xaria is now at ”’, my location

In addition to generating ATOM/RSS feeds, AM can be used to
post updates to social networks (such as updating an IM state,
Facebook status or Twitter).

Communications Mediation. Social coordination overhead often
occurs due to lack of awareness in both synchronous and
asynchronous communication. For example, it may be difficult to
tell an appropriate time to interrupt someone over IM, or how long
to one might have to wait to expect a reply via e-mail. AM can be
used to assist in such situations in several ways. In addition to
automatically setting one's IM/away status based on aspects of a
user's recent activity, AM can also be used to route and handle
personal communication. This is an example of a deluxe e-mail
"auto responder” which engages automatically when the user has
not been at their computer for two days, and supports the option
of forwarding messages automatically to one's mobile phone
based upon who sent the email.

whenever I receive new Email
and that email’s sender is some Person
and that Person in Friends
and my idle time is greater than 1 day
and yesterday not in holidays
and yesterday is a weekday

send reply to that Email with contents “Hi, Sorry (...) If your
message is urgent, please reply with subject starting “urgent...”

whenever I receive a new Email
and that email’s subject starts with “urgent”
and that email’s sender in my friends

send a text message to me with that email

Mobile Information Retrieval. AM can be used to retrieve
private information from your personal calendar, workstation or
social network using SMS text messages, e-mail or your
communications medium of choice.

whenever I receive a new IM

and that IM is from me

and that IM contents is "@am today"

then find all events with start date is today
send reply to that IM with those events

This last example used a special construct (find/those) which
syntactically resembles an antecedent and returns the entire set of
bindings that satisfy the clauses. In the next section, we examine
the individual components of AtomsMasher needed to realize
these examples.

4. Architecture and Data Model

In this section we describe how AtomsMasher works, including
how rules are evaluated, predicates and actions are implemented,
and AM's KB is built from external information. We highlight the
key issues in each.

4.1 System Architecture

AtomsMasher differs from traditional web applications in that it
runs entirely on the client (the user's workstation). It requires a
browser (currently Firefox 3.0+ is supported) and a background
(Java-based) process running on the user's machine. The browser
hosts AM's user interface and web-based data components,
including data sources, web-based predicates and action functions.
The Java process maintains persistent state and the core rule
monitoring/execution loop, as well as integration with PLUM
[21], a desktop activity monitoring framework .

This browser-Java split was motivated by three major reasons.
First, it enabled the use of a large number of convenient APIs
available on both sides. For the UI, AM relies on various web
APIs including (YUI [27], Google Maps [8], Simile Exhibit,
Timeline and Timegrid [19], flot [6]) and animation tools (jQuery

Browser
World Wide Web
Web Services
ATOM / RSS feeds
R eation and Manageme J
= Action Set facebook status RSS feeds for
del.icio.us social sharing
Executor
fce
Web Sources XML RPC Svr
PLUM framework (Java) peRSSona
Entity Updates AM KB
(isonrdf) Rule Engine
\ AM Vocab
Desktop Activity
Monitoring Loop | Entities KB
Platform | .NET/ || Apple | praceisn dena
Modules | COM || Script wif ' MySQL

Figure 2. AtomsMasher architecture and components

[11]). For connectivity to web-based data sources, AM relies on
various web service client libraries (Google Calendar Client,
Facebook Connect API), and facilities for retrieving and parsing
XML from feeds easily and efficiently (jQuery). For persistence,

AM uses a Java RDF graph API that provides OWL reasoning
(jena [9]) and reliable persistent storage (JDBC to
mysql/postgresql).

The second motivation for splitting the architecture was that
several components that were considerably compute-intensive —
rule based trigger evaluation and RDFS reasoning [18] over
entities. By pushing these to the Java process, we are liberated
from single-process/thread JavaScript limitations in browsers, and
can readily take advantage of multi-core architectures when
permitted by the Java VM. The final reason to split the
architecture was motivated by the desire to support code-sharing
and end-user extension to new data sources, operators, and actions
We therefore designed these components to be modular and
implemented in JavaScript. The two halves of AM communicate
using an RDF data model [17] expressed in JSON syntax [12]
over XML-RPC [25].

4.2 Rules in AtomsMasher

Rules constitute the basic unit of AtomsMasher's reactive
behaviors. Like rules of other rule-based systems, each of AM's
rules consist of a set of conditions that characterise the situation
under which a rule should be executed (known as the antecedent
or if-part), and the set of actions to be carried out when these
conditions are met (known as the consequent, or then-part). The
conditions in the antecedent are expressed as simple conjunctions
of predicates, each of which may take entities or values as
arguments.

While AM internally makes no distinction among rule types, in
practice rules in AM consist of one of two types: those that update
AM’s internal world model based on new events arriving
externally (also known as updatelets), and behavior rules that take
external action based on updates to the internal model. As
described later, keeping rules separated into these types decouples
knowledge sources from action, making it easier to scale AM to
new sources and actions.

4.2.1 Rule triggering conditions (Antecedents)
Antecedents for rules in AtomsMasher are either time or relation-
based. To make it convenient for users to create behaviors that
only execute once, all antecedents may be declared to be one-
shot, triggering only the next time an event that satisfies the
conditions arrives, or recurring, triggering for each new event that
occurs indefinitely.

In their most basic form, time-based constraints let users specify
an exact date and time of execution e.g., "11:00am Monday
November 3, 2008", like standard alarms available in many
applications today. However, AM also permits time constraints to
be partially left unspecified, such as the day, hour, or minute.
This capability was motivated by our prior work in information
scraps [2], in which we found that people rarely specified times
to-the-minute; instead, they often used relative specifiers and
more vague descriptors of time such as "tonight", "tomorrow
morning" and "next week". Since the goal of AM was to be a
personal automation assistant, we felt it important to support
these natural forms of time expression. Finally, since events in the
world are often repeated, time-based antecedents can also be
recurring, such as "every weekday morning", "every third
Sunday".

While time-based antecedents only specify the time to execute a
rule, relation-based constraints specify conditions on relations
among entities in AM's knowledgebase. Such constraints are
arranged as a conjunction of predicates applied to one or more
operands. These operands can stand for a specific entity (e.g., a

person, place or thing), a property of a specific entity (e.g., the
name/latitude/start date of a person, place or thing), or any entity
of a specific type (e.g., the arrival of a new e-mail, calendar event
or friend profile). The most common predicate, "is", when
applied to a property of an entity, merely checks for the presence
of a particular relation between entities in the KB. Other
predicates can be used to test more elaborate relations between
entities, including relationships not explicitly stated in KB model.

4.2.2 Rule Consequents

Rule consequents (“then parts”) consist of a sequence of calls to
action functions. These action functions, described further in
section 4.3.1, are applied similarly to predicates; they can take any
number of operands, each of which may be an entity or a
primitive value. These operands may consist of references to
entities bound in the antecedent, using pronouns, as described in
section 4.4.

4.2.3 Triggering and execution semantics

The rule scheduler ensures that rules are run precisely when their
antecedent conditions are met. To make this process
computationally feasible (e.g., to not have to test every rule
antecedent every second), AM’s scheduler only considers rule
antecedents when they might trigger. This process is described as
follows.

AM's scheduler first determines whether rule antecedents are
time-dependent or event-dependent or both, and the specific types
of events upon which they depend This event could be the
creation of a new entity, or the modification of a property of a
particular entity. When such an event occurs, the scheduler only
considers the rules that could be affected by that event. For

example, a rule that conditions only on the user’s location would
only be considered whenever the user’s location changes, while a
rule conditioning on the user’s location and new arriving email
would be considered whenever either event occurred.

Rules with time dependencies are also scheduled lazily when
possible. For rules with simple time constraints (such as “3pm
tomorrow”), AM’s scheduler registers a system timer callback to
signal when to next consider the rule. For recurring time
constraints, the scheduler sets an alarm for the soonest definite
moment that the event will be satisfied, which is re-scheduled
when triggered. The remaining discussion surrounds time
constraints that result from antecedent clauses comparing
properties of entities to “now”, such as “whenever an event’s start
time is now”. For such antecedent clauses, the scheduler’s policy
depends on the predicate being applied; for “is”, “intersects” or
“is after”, AM’s scheduler reads the property’s value and sets an
alarm callback to check back at that moment. For “is sooner
than” AM merely includes the rule as a candidate until the tested
time expires, and removes it afterwards. If AM’s scheduler
cannot figure out how to lazily handle an expression involving
“now” (such as with new operators in the future), it schedules it
for consideration once a minute.

Once a rule antecedent has been evaluated and if it is satisfied,
AM will immediately execute the actions named in the
antecedent. If the rule antecedent is evaluated and not satisfied, it
does not have to take any particular action because the rule will be
re-considered when the operands of the clause(s) preventing
satisfaction receive updates. This combination of event and time-
based lazy triggering evaluation saves considerable computational
burden by reducing the need to evaluate rule antecedents

Web sources:
Event information from calendars

google calendar Event

twitter Retrieves all posts by people user is following Tweet

facebook Retrieves personal info and updated status of all friends Person

plazes Retrieves Plazer sightings of friends and self Sighting

last.fm Retrieves scrobbled music listening activity for friends and self MusicListeningAction

upcoming.org

rememberthemilk Retrieves task items created on the RTM service Todo

iwantsandy Retrieves to-do list items created on the Sandy service Todo

PLUM sources:

IMAP Retrieves and indexes all emails Email

PlumPlaces Identifies current location using WiFi (and Intel Placelab) Location
Outlook/AppleMail Logs message view, compose actions EmailAction

MS Office Identifies which documents are being viewed/edited DocumentAction
iTunes Identifies which songs are being played MusicListeningAction
Firefox & IE Identifies web pages visited/tabs switched WebpageViewAction
Adium/iChat Identifies chats IMAction

HIDIdle Identifies periods of inactivity at the keyboard/mouse UserldleAction

Finder/Explorer Identifies use of Finder/Explorer

fsevent/md Identifies filesystem modficiation

MarcoPolo (in progress)

Figure 3. AtomsMasher Web and PLUM-based data sources

Retrieves musical & performing arts-related events in local area

Identifies various low-level system state changes in OS X

FllemanagerAction
FilesystemEvent

SystemStateChange

repeatedly, and is entirely transparent to the user.

4.2.4 Rule inconsistency detection

Inconsistent rules can be problematic in a reactive behavioral
system because they can create infinite execution loops. AM does
limited testing for such problems by analyzing its firing log for a
sequence of re-firings of a rule, where a re-firing is defined as
firings immediately occurring after a previous finding without
additional information from any external data sources. Note that
this only catches loops internal to AM; detecting loops caused by
inconsistent rules firing through actions and perceived through
external data sources is more difficult. Investigation into
techniques for efficiently doing so is currently underway.

4.3 Data Model

AtomsMasher's data model grounds the meaning of the AM's
predicates used in rule antecedents, and actions in rule
consequents. As mentioned previously, these predicates and
actions operate over representations called entities that are
surrogates for real-world tangible things such as people, places,
and resources, as well as abstract quantities such as events and
observations of actions or changes. These representations are
created and maintained by data sources, which bring information
from external sources into the system. These representations are
expressed as an RDF graph, and stored in a persistent triplestore
kept on the user's machine. This section describes each of the
aforementioned components.

4.3.1 Predicates and Actions

As described earlier, AtomsMasher’s predicates are boolean
functions that make up rule antecedents and are used to express
constraints for forming the conditions under which the rule should
fire. While most predicates consist of graph queries over the
underlying AM KB, AM does not limit predicates to KB queries.
Specifically, predicates may also be functions that compute some
derived value of the graph (for example, "number of friends"), or
rely on external sources of information. An important example of
such a predicate is the “is within distance of” predicate, which
requires multiple calls to the Google Maps API. To prevent such
external operators from having to be called incessantly, predicate
applications are by default cached for a given set of arguments.

Predicates within AtomsMasher are declared to take parameters of
specific types, which are either entity or primitive (XSD) types.
When multiple applicable predicates with the same name but
different parameter types are declared, AtomsMasher chooses the
most specific predicate by determining at runtime the predicate
with types that (cumulatively) have the smallest graph distance to
the types of the arguments.

set <entity> <property> <entity or value>
enable/disable rule <rule>

remind/notify me (via growl, SMS, IM, speech) with <entity> <text>
send email/text/IM to <person> <text>
post tweet <text>

set IM/Facebook status <text>

post to feed <feed> <text>

show <document / web page>

set note / todo / RSS reader filter

say <entity/text>

play (song/media)

set system power state/volume

search flickr/google images/wikipedia
run function.... < code >

Figure 4. Sample list of AtomsMasher actions

Action, used in rule consequents, are implemented similarly to
predicates in that they are modular (Javascript) functions with
strictly typed parameters. However, action functions are not
assumed functional or idempotent, and therefore no execution
caching is performed. Figure 4 lists a few of AM’s actions. The
simplest action, “set”, assigns a property for a particular entity to
a particular value, specified in its operands. Set is used for rules
that we previously referred to as updatelets responsible for
updating AM’s state given new incoming items (see Figure 6).
Most of the other actions involve manipulating something external
to the system; this is usually performed through a web API call
(when available). However, several actions have non-web
destinations. For example, actions affecting the user’s local
machine, such as the “play media” “show document” action, are
made through PLUM. Still other actions, such as “filter
notes/todos/RSS” pertain to actions affecting Firefox extensions
(an RSS reader and an in-browser note taking client) and thus are
dispatched to components directly within Firefox.

4.3.2 Data Sources

Data sources in AtomsMasher play the role of keeping AM's
internal knowledgebase up-to-date based on information from the
outside world. Each data source is typically responsible for
creating or updating a single type of entity: people, places,
resources (documents, web sites, media files), messages, events,
or activity observations.

AM's data sources come in two flavors. Web-based data sources
consist of Javascript code modules that fetch items from web
services (via REST APIs) and feeds (such as RSS or ATOM).
PLUM data sources, on the other hand, are designed to capture in
real time activities that the user performs through his or her
computer. These activities include viewing an editing documents
or web pages, reading and sending e-mails, watching movies,
listening to music, and changing physical locations (by carrying
one's laptop). Through integration with various PIM and desktop
applications, PLUM also harvests resources such as files, e-mails,
and personal contact information, making these entities available
to AM through the KB. PLUM is described in greater detail in
[21].

The role of data sources in AM distinguishes it from other web
based mash-ups. While data mash-ups focus on alignment and
syntax reconciliation from multiple structured data feeds, AM's
data sources extract information from feeds for updating its
internal model, the AM KB. Unlike schema alignment, this
extraction process often involves full parsing of particular fields
of feeds (such as dates and times), and resolution of references to
named entities to corresponding entities in AM’s model.

4.3.3 Semantic reconciliation

An important constraint in AM is for entities in the real world to
have at most a single corresponding entity in AM’s model.
Without such an assumption, multiple representations for a single
logical thing may appear in the user interface, which could
confuse users. Even worse, this could result in model graph
fragmentation, resulting in inconsistent behavior. This suggests
the need to address the entity resolution (or “semantic
reconciliation”) problem [2], which can be described as follows:
given two extensionally different descriptions for an entity, how
can a system determine whether these descriptions intentionally
refer to the same entity (e.g., person place or thing), or to two
different entities? In the context of AM, this question is faced by
data sources, which are beset with the responsibility of updating
AM’s internal KB: given some external description of an entity,
(arriving from some web feed or PLUM observation, for

example,) should it update an existing entity in the KB or create a
new one?

Due to the potentially thorny nature of this problem, AM manages
semantic reconciliation in three ways: through support for entity-
resolution strategies for data sources, reasoning-supported entity
equivalence heuristics in the KB, and as a last resort, an interface
by which users can manually correct the system. We briefly
describe each of these facilities below.

4.3.3.1 Data source strategies

AM prescribes two basic strategies to data sources for mapping
updates onto entities in the KB. The first is “update only what
I’ve written”, in which data sources are responsible only for the
data they have contributed to the pool. To ensure that entities can
later be unambiguously identified as derived from a particular
source record, data sources rely on URIs (when available) or hints
to function as URIs generated by source-specific identifiers. The
benefit of this strategy is that it is simple to understand and
implement (for new data sources); the disadvantage is that it relies
on the other mechanisms (equivalence reasoning or manual
reconciliation below) to merge representations from disparate
sources.

3

The second, more aggressive strategy is “update the best one”.
Using this strategy, data sources use an a entity resolution
function to identify the closest entity in the KB matching a
particular new piece of datum, and have to make a decision
whether this is in fact the intended entity To make this process
easier, AM provides several convenient entity resolution methods
in its core API for data source writers. These methods perform
either name or structure comparison, additionally several methods
encode custom name-mangling logic for several common types,
such as persons, places and events.

These same entity resolution methods are also used to link records
to entity mentions (in both strategies). For example, if a data
source encoding information about an event has a list of attendees,
and a named location, it must attempt to resolve these references
so that entities may be linked properly in the underlying model.

4.3.3.2 Equivalence reasoning in the KB

The idea with the second approach is to take advantage of
ontology-based reasoning to make entities that are actually
disparate in the KB appear to be the same to all consumers of that
KB. One particular instantiation of that idea is the use of inverse
functional properties. This strategy suggested by others [9] relies
on the insight that entities often have properties that uniquely
identify a particular for a particular value of that property, i.e.,
that no two entities share the same value for a property. AM
comes with a pre-set list of functional properties for its built-in
types, and lets advanced users configure which properties are
inverse functional (which we call “uniquely identifying
properties”); such declarations are then asserted into the
underlying KB. The OWL reasoning engine takes care of
merging the view of inferred intentionally equal entries in its view
of the graph.

4.3.3.3 Manual entity reconciliation

AM provides a final resort for semantic reconciliation: manual
override. To let users specify that two entities are really the same,
the AM Ul includes a “glossary” view which let users construct
“simple rules” that states that two entities are the same (using an
interaction method similar to but simpler than, rule antecedent
specification, i.e., entityl is same as entity2). While these are
meant to look like rules to preserve a uniform UI across AM’s
interfaces, internally these become simple OWL sameAs [16]

assertions which get added to the AM KB. AM’s internal OWL
reasoner takes care of the rest.

4.4 Controlled NLI for rule creation

Section 3.1 walked through the AM rule creation process for a
user. This UI design was chosen because it supported the natural
expression of rules in an English-like syntax, but mapped
unambiguously to logical expressions that could be used by the
system. This design was inspired by previous work in "controlled
english" natural language interfaces to semantic KBs, in particular
GINO [1] which were used to allow the encoding of formal
knowledge in a natural-seeming way, and GINSENG [13], which
allowed for the controlled expression of queries.

We extend their approach in two ways to make their approach
suitable and convenient for rule expression. First, we introduce
wildcard types "new <type>" and "some <type>" to match new
entities of a particular (RDF) class, or any entities of a particular
class. This greatly expanded the expressiveness of rules beyond
named entities as arguments to predicates. The challenge,
however, with the use of these wildcard specifiers is the
following: if such a specifier is used several times in an
antecedent, should it always refer to the same entity or different
entities?

We have opted to side with English and to support both, through
the simple use of demonstrative pronouns. To refer back to a
particular entity previously identified using a wildcard specifier,
one can use the simple demonstrative phrases “this <type>" and
“that <type>". Between these two, the distal (“that”) refers to the
further of the two closest previous bindings for a particular type,
whereas the proximal (“this”) refers to the closer. For
convenience, the AM UI also adds the pronoun aliases "him" and
"her" for "this person" and "it" for all other types.

For example, in the rule:

whenever some person's status contains “sick”,
send an email to him with text “Get well soon!”

the wildcard entity specifier “some person” gets bound to a
particular person when their status contains the string “sick”, and
co-refers to the same person as the pronoun "him", an alias for the
phrase “this person” in the action.

Besides these extensions, the applications of ideas from the
aforementioned previous systems

whenever a new plazes story arrives and

that story's location is some location and

that story's author is some person then

set that person's location to that location

whenever some event's start time is now and

that event's source is my personal calendar then

set my activity to that event

whenever some person's location is my location then

set my with people to that person

Figure 6: Updatelets specify rules that connect new incoming
events to property updates of existing entities in AM's KB

atomsmasher.ds.register({

type : "http://plum.csail.mit.edu/08/10/plum.n3#AtomsMasherDataSource",

uri : "http://geo.bar.org#MyFirstGeolLocator",
settings: [{ username: ""
preferred_update_freq: atomsmasher.constants.HOURLY,
async: true,
impTementation: function(continuation) {

var this_ = this;

jQ.ajax({ type: "GET", url:this.settings.service_url,
arguments: { username: this.settings.username },

dataType: "xml",
success: function(xml){

, service_url: "http://geo.bar.org/api/locations"”, spotted_entity: "me" }],

//This function be called with a Tist of stories representing
//sightings in atom0.95+geo, some of which we have seen before

var results = [];
jQ("feed > entry", xml).each(function(){

var timestamp_ = atomsmasher.util.parseDateIS08601(jQ("timestamp"”,this).text());

var id_ = jQ(*id”).text(Q.trimQ;

var lat_ = parseFloat(jQ("geo\\:Tat",this).text());
var long_ = parseFloat(jQ("geo\\:Tong",this).text());
// the first thing we do is find out whether we've already posted

var match = atomsmasher.entities.matcher({
type: atomsmasher.ontology.Sighting,

ds: this_.uri,
siteid: id

B
if (match.length == 0) {

// we dont have this entry yet, so create a new Sighting entity to be posted
results.push(new atomsmasher.ontology.Sighting({ds: this_, siteid:id_,

observation_time :

timestamp_, lat :

Tat_, long : Tong,

spotted_entity: atomsmasher.settings.User)

H
} else { /* no need to do anything, since this service never modifies old entities */ }

s
continuation.success(results);

error: continuation.fail

b
}
DN

Figure 5: A self-contained example of an AM data source for a geolocation service. Such data sources construct AM entities out of
information contained in various feeds from web sources.

4.5 Simulating rules using history

Since specifying correct (accurate and complete) antecedents for
rules is often tricky for end-users but necessary for such rules to
behave as desired, AM attempts to help the user immediately
verify the behavior of their rules by simulating the rule using
events from the user's recent past. AM searches backwards in its
history from the moment the command was invoked, to find the
(N=5) most recent situations in which the particular rule would
have triggered, and what the resulting action would have been.
The output of this simulation is displayed in a simple textual
summary beneath the rule creation interface. The effects of
actions are described by combining the descriptions of the action
operators invoked and the bindings that would have been in effect
for the operands of these operators in each situation.

4.6 Sharing slices of your life: your peRSSona
To make it easy for users to share updates about their activities,
location and state with their friends, AtomsMasher can be
configured to output personalized, filtered histories of state
changes to its internal entity KB in RSS 1.0 feeds. This feature,
which we call your peRSSona can be configured to generate feeds
containing a history of changes to any entity in the KB, optionally
filtered to a particular set of properties. This enables users to set
up feeds that provide differing degrees of disclosure for their
activities. For example, a user might publish a public feed
containing information about their contractibility but not their
precise activity, while posting different perRSSonas containing
more detailed activity information for their trusted friends --

information such as their whereabouts, music listening and web
page browsing history. Users desiring more control over what
gets posted to feeds can manually create feed entities, and set up
rules that post to these feeds under arbitrary conditions. In the
future, we plan to extend peRSSona support to provide differing
levels of detail for a single property, for example, via
summarization.

PeRSSona feeds can be served directly from AM, or published to
any WebDAV server, set via AM's preferences. Since most users
are not likely to be running AM on a machine that has a static,
world-visible IP address, we provide a publicly usable WebDAV
server at our laboratory that is selected by default.

5. Extensibility and robustness to change
AtomsMasher was designed to accommodate changing data
sources and web resources in two ways. The first, which is the
primary topic of this section, is to design the system to be
extensible to new data sources, predicates, and actions (services).
We describe how this is done next.

The second pertains to robustness against failure of data sources
and services. AM supports graceful degradation from failure of
web data sources in part directly through its world model. By
acting as a strict abstraction barrier between data sources and use,
the model prevents rules from relying on a specific source. Thus
if a user merely adds redundant sources of data for particular
types, behavioral rules will continue to operate unaided.

5.1.1 Connecting AM to new data sources

One of the primary advantages of using an RDF data model
should be in sharing data with external data sources, such as web
sites. When such RDF data sources become available, it should
be possible to make adding a new data source to AM as easy as
pointing AM to the URL of a service description document or
feed. In order for this to work, a generic AM data source would
have to read the ontology of the service, and automatically
determine an effective mapping between structures in the services
ontology and those of AM's. However, due to the lack of
availability of services offering such RDF feeds and the
complexity of this process, we have not been able to demonstrate
the general feasibility of such an approach.

In the meantime, our strategy has been to make it easy for
advanced users to build wrapper code for transforming arbitrary
source formats into AM-RDF. These source-specific data source
modules can be implemented in Javascript, to be able to take
advantage of the various client-side web service libraries
becoming available. Figure 5 lists the complete, self-contained
code for a simple data source wrapper of a hypothetical geo-
location service that produces an ATOM feed of the user’s
movements. This specification declares a simple JS object which
declares its URI, type, preferences for scheduling, user-settings
and implementation. The implementation function performs
actual data retrieval; it first retrieves new information from the
feed and walks over the results using jQuery. Then, for each such
entry, it creates a new AM Sighting entity for each new record it
creates. Since this (hypothetical) service (like many others) never
modifies old entries after they are published, entities
corresponding to previously created entities are skipped.

5.1.2 Adding new predicates and actions

Adding new predicates or actions is a very similar process. Two
additionally required fields for action and predicate specifiers are
the list of arguments (and their types), as well as a readable
English phrase to use in the NLI.

5.1.3 Extending the vocabulary

If a user wishes to create new data types or extend any of AM’s
existing types with new properties, AM makes it possible to
extends its ontology using two methods: by directly modifying the
definition (declared in N3); and programmatically through AM’s
JS entities API. This API lets users effectively add arbitrary
definitions to the ontology directly from code such as a data
source, predicate or action.

6. Future work

The current status of AM demonstrates an approach that can
support user-defined reactive behaviors based on extant Web 2.0
data feeds. There are several challenges related to user interaction,
however, that we are addressing to enable us to optimize the
usability of this currently rather novel way of engaging with web
based information sources. We touch on these briefly here as we
hypothesize they will be significant for greater tool uptake by
everyday web users.

6.1 Social sharing: Atom Stasher

In section 5 we state that a motivation for decoupling rules that
updated AM’s KB given external events (‘“updatelets”) from those
that performed useful external action was that this decoupling
allowed updatelets (which were fairly generic across users) to be
made shareable.

To make such sharing easy, we are undertaking the construction
of the AtomStasher, a site for supporting a community of AM

users by letting users post behaviors and extensions (data sources,
predicates and actions) they create, show off their creations, and
exchange ideas and behaviors with others. The needs for
AtomStasher are several. First, not all users of AM will be
comfortable writing their own behaviors.. The AtomStasher
provides a mechanism let anyone put behaviors to use without
having to role their own. Second, sharing behaviors may both
reduce duplication effort. Third, opportunities to share and extend
existing code will accelerate the development of code that will
integrate AM with other services.

6.2 Antecedents by example: Situation
Picker

We plan to make it easier for everyday users to determine rule
conditions and gain a better visualization of rule effects. For the
former, a Situation Picker will present users’ recent activity and
context history in a timeline, and let users simply select an
example that best resembles a situation where they wished for AM
to act. AM will then automatically create an antecedent based on
that example a starting point for the user’s rule’s antecedent. For
the latter, to simulate rule actions, AM’s Ul will output simulated
actions from the user’s past, using the same visualization, to make
it easier to see if the rule is executing at the desired moments.

6.3 Planned study and deployment

While we have some insights already from research in end user
programming on how to facilitate user-based programming, we
need a significantly refined understanding of how users will
engage with such a global system as AM. We are currently
working on a study to improve aspects of AM’s user interface in
preparation for a full-scale deployment of AM. Our approach will
be two fold: a longitudinal field study with a dozen participants to
be followed by a general web-based beta release. With these
releases our key questions will be to investigate the kinds of
behaviors users sought to have AM support and the degree to
which AM satisfied those goals. We anticipate this study will
help us understand how better to tune attributes such as interface,
language expressivity and system responsiveness.

7. Summary

In this chapter, we have described AM, a framework that enables
the use of the web as a platform for context-sensitive personal
reactive automation. In so doing, we demonstrated that with
appropriate manipulation, many of the web data sources and APIs
available today are suitable as information sources, operators, and
actions for driving a variety of simple but useful reactive personal
information processes. These reactive processes can serve many
roles in personal information workflow, including context-aware
reminding and information filtering, awareness sharing,
communications mediation, and mobile information retrieval.

AtomsMasher benefited from several key architectural decisions.
The first was the use of a single persistent internal representation
containing simple key representations of people, places, events
and resources. This intermediate representation ultimately served
three important roles in the system. The first was in simplifying
representation reconciliation; having a single representation as a
basis of aligning external sources of information avoids the
pairwise-alignment problem that serves as a scalability limitation
to many mash-ups today. The second surrounded its role as a
single, unambiguous world model for the AM rule chainer. Third,
this representation serves as an important abstraction barrier that
decouples behavior rules from information sources; allowing
information sources to be exchanged freely (or added for
redundancy) without having to modify users behaviors.

Our second architectural insight was that web services and data
feeds are increasingly useful sources for domain-specific
knowledge about the world, and are thus suitable for use as
predicates in evaluating relational information about specific data
types such as locations, people and events.

An additional contribution is a simplified interface for supporting
end-user programming across heterogeneous data types using a
constrained simplified natural language interface. This approach
reduces errors by eliminating the need for named entity reference
resolution, making syntactic errors impossible, and providing just-
in-time assistance that enumerates all possible values at each stage
of rule specification. A rule simulator further reduces the
possibility for error by immediately demonstrating the behavior of
a rule on the user's past historical data.

In summary, we have shown that web based personal information
sources can be applied to enable a wide variety of simple but
useful reactive processes. These personal reactive processes
provide a glimpse of the potential for web data to do more for us,
with less effort, than we may have previously imagined possible.

8. Acknowledgements

This project was funded by MIT CSAIL and Nokia Research
through the MIT Nokia alliance. It was also supported by WSRI
and a Royal Academy of Engineering Senior Research Fellowship
We thank our collaborators Mikko Pertunnen and Jamey Hicks for
their contirbutions to the project, and Ora Lassila Mark Adler
Brennan Moore, Wendy Mackay, and Michel Beaudoin-Lafon for
their many ideas and suggestions.

9. REFERENCES
[1] Bernstein, A. and Kaufmann, E. GINO - A Guided Input
Natural Language Ontology Editor. ISWC '06.

[2] Bernstein, M., Van Kleek, M., Karger, D. and schraefel, m.c.
Information Scraps: How and Why Information Eludes our
Personal Information Management Tools. ACM Trans. Inf.
Syst. 26, 4 (Sep. 2008), 1-46.

[3] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C.
Automation and customization of rendered web pages. UIST
'05.

[4] Cron. http://en.wikipedia.org/wiki/Cron

[5] Ennals, R. J. and Garofalakis, M. N. MashMaker: mashups
for the masses. SIGMOD '07.

[6] Flot. Javascript plotting library.
http://code.google.com/p/flot/

[7] Gajos, K., Fox, H., and Shrobe H. " Alfred: End User
Empowerment in Human Centered Pervasive Computing",
Pervasive 2002

[8] Google Maps API. http://code.google.com/apis/maps/

[9] Hogan, A., Harth, A., Decker, S. Performing object
consolidation on the semantic web data graph. In
Proceedings of 1st I3: Identity, Identifiers, Identification
Workshop, 2007.

[10] Jena. Semantic Web Framework for Java.
http://jena.sourceforge.net/

[11] jQuery JavaScript Library. http://jquery.com/
[12] JSON. JavaScript Object Notation. http://www.json.org/

[13] Kaiser, C. Ginseng—A Natural Language User Interface for
Semantic Web Search. Thesis, Universitit Ziirich, 2004.

[14] Leshed, G., Haber, E. M., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge in the
enterprise. CHI '08.

[15] Malone, T. W., Grant, K. R., and Turbak, F. A. The
information lens: an intelligent system for information
sharing in organizations. CHI '86.

[16] OWL. Web Ontology Language. http://www.w3.org/TR/owl-
features/

[17] RDEF. Resource Description Framework.
http://www.w3.org/TR/rdf-concepts/

[18] RDFS. Resource Description Framework Schema.
http://www.w3.org/TR/rdf-schema/

[19] SIMILE projects. http://simile.mit.edu/

[20] Sohn, T. and Dey, A. iCAP: an informal tool for interactive
prototyping of context-aware applications. CHI '03.

[21] Truong, K.N., Huang, E.M., Abowd, G.D. CAMP: A
Magnetic Poetry Interface for End-User Programming of
Capture Applications for the Home. UbiComp '04.

[22] Van Kleek, M. and Shrobe, H.E. A Practical Activity
Capture Framework for Personal, Lifetime User Modeling.
UM '07.

[23] Wong, J. and Hong, J. I. Making mashups with marmite:
towards end-user programming for the web. CHI '07.

[24] Wong, J. and Hong, J. What do we "mashup" when we make
mashups? WEUSE '08.

[25] XMLRPC. http://www.xmlrpc.com
[26] Yahoo! Pipes. http://pipes.yahoo.com/pipes/

[27] YUIL Yahoo! User Interface Library.
http://developer.yahoo.com/yui/

