The Evolution of End User Programming

For as long as there have been computers to program, there have been attempts to
make programming easier, less technical, and available to a broader audience. End
User Programming has been an area of academic research for thirty years. So why
aren't end users programming? The field has had a few notable successes, several
waves of interest, and a variety of quiet failures.

The lack of widespread success is due to a few serious obstacles which have yet to
be overcome. We shall see how researchers have tried to overcome these problems
in the past, and how, fortunately, the current environment of computer use is
dramatically different from previous eras, and has some important new features
that may overcome these long-standing obstacles. End User Programming on the
Web has the potential for widespread success that can change the way people use
computers.

The term "end user programming" proposes that although computer users do not
know how to program, they would appreciate having some of the power of
programming if only it could be obtained with little effort. Back in the 1960's,
using a computer meant programming a computer. There was no need for the
concept of "end user programming" because all end users were programmers. The
80's were a time of transition: I had a friend who—in 1980 —wrote her
Comparative Literature thesis on punch cards. Then the Macintosh came out in
1984, and soon computers meant “desktop computers”, command languages were
replaced by direct manipulation, and end users strove for computer literacy. End
users were no longer programmers; “literacy” meant knowing how to point-and-
click in a word processor or spreadsheet. Now, in the new millennium, children
can use a mouse before they can talk and they acquire 'literacy' skills by picking up
a new application and using it. The generation where literacy was taught and
computers were intimidating is now retiring from the work force.

End User Programming researchers point to spreadsheets as their big success.
There are now millions of non-programmers who write spreadsheet commands.
While this is true, it is an unsatisfying success for the field. Contemporary
computer use has moved beyond word processing and spreadsheets; it involves
interpersonal communication, web browsing, and internet shopping. Moving
beyond the desktop, it includes cell phones and pdas, with text messaging, user-
generated content on youtube, and traffic conditions on Google maps.
Furthermore, true success will come not when the need for end user programming

is so great that users are compelled to learn a complex command syntax, but when
programming becomes easy enough and natural enough that end users see it as a
welcome opportunity that is both useful and enjoyable.

What's hard about regular programming languages is that the text you have to write
to get something done is very remote from what is being done. To click on a

button, you have to write something like this:

theEvent.initMouseEvent ("mousedown", true, true, contentWindow,
1, (contentWindow.screenX + clickLocH), (contentWindow.screenY +
clickLocV), clickLocH, clickLocV, ctrlP, false, false, false, O,
null)

The syntax is obscure and unforgiving, and many of the details are abstract and
only indirectly related to the simple action being performed. In short, traditional
programming languages are obscure, abstract, and indirect.

End User Programming (EUP) systems are able to simplify programming by
addressing a limited domain and offering limited power. There have been two main
approaches: Scripting Languages and Programming by Demonstration (PbD).

Scripting Languages

Scripting languages are special-purpose languages designed to handle a specific
domain, such as spreadsheets or email or photo editing. While a programming
language needs to be able to express arbitrary commands like the
initMouseEvent command above, a scripting language may only need to express
a few actions, such as send and delete, and a few objects, such as messages and
attachments. So instead of the myriad possibilities of commands using the
obscure format of the initMouseEvent command, a scripting language can use
simplified formats like send the message.

Scripting languages walk a fine line between power and ease of use. The formulas
used in spreadsheets have opted for considerable power, at the expense of requiring
significant effort to learn. This design choice has been quite successful, in part
because spreadsheets are used to perform numerical calculations, so their users are
already resigned to working with mathematical formulas. While it’s true that it is
easier to learn to write =sUM[A1:A12] than to create commands like the
initMouseEvent shown above, this is still a far cry from the simplicity required to
turn most computer users into end user programmers. One approach that has
helped make scripting languages easier to use is the “structure editor”: the

end user creates commands by selecting words from menus, and the editor
guarantees that only legal combinations of words can be selected.

croate a new rule

when who or what property or action satisfios (ishas/does) where? do what? about what?

[when [get an email is within _ miles of Home remind me
whenever my getan IM is near CSAIL 32-224 email me
every time ol kunze 20 not near cC veitto
next time | watson watson activity is within

to call Mom

au bon pain kendall | set my

in 1 min brian jacobson music is CSAIL 32-G531 run function
in 3 mins parul vora status Kendall T courtyard

in 5 mins anjchang anjchang location CSAIL student st

in 15 mins stan zanarotti CSAIL forbes

in 30 mins oshani seneviratne CASIL 32123
in an hour

! dugan hayes MIT W20 reading roc
in 3 hours john sted!

tomorrow sacha zyto

tonight harold fox
every moming - -

1 next time my location is remind me to

2 next time my activity is X show list of Note items with tag
3 next time [am with ; remind me to

4 whenover my activity is . A set my Facebook state to:

5 whenover sarah palin posts a tweet that contains run function:

6 when my location remind me

Add new behavior

Figure 1. AtomsMasher’s combined natural language and structure editor.

A big change that has come to end user programming in the last several years is the
introduction of natural language systems. This is a great leap in ease of use that
discards the need for a rigid syntax and allows the end user to express commands
in English, or some other natural language. Five of the systems presented in this
book use natural language, and the AtomsMasher system combines natural
language with a structure editor (see Figure 1).

Programming by Demonstration

The end user of a Programming by Demonstration (PbD) system demonstrates an
activity, and the system writes a program to perform that activity. This simplifies
program creation in two ways: First, it eliminates indirectness, since the user
interacts directly with an application by clicking its buttons, typing into its boxes,
and dragging its objects. There is no need to know that the button that was clicked
isthe dijit form ComboBox 0.downArrowNode. Second, it eliminates the
problems of an obscure syntax, since the system writes the commands for the user.

The classic challenges that must be addressed in creating programs from user
demonstrations are 1) how to infer the user’s intent, 2) how to present the created
programs to the user, and 3) how to deal with special cases and messy, real-word
data. In addition, a practical obstacle that has greatly limited the success of PbD
systems has been the multitude of incompatible applications and computer
operating systems, and the absence of scriptability and recordability in those

applications. We will see how these issues have been addressed in the past, and
how present circumstances offer significant new opportunities for progress.

Inferring intent

I have a list of addresses that I want to add to my online Address Book (see Figure
2). After adding a few by hand, I wish I had a program that would finish this
activity for me. In 1988, Witten and Mo [ref xx] created a PbD system that could
automate this kind of activity.

John Bix, 2416 22 St., N.W., Calgary, T2M 3Y7. 284-4983

Tom Bryce, Suite 1, 2741 Banff Blvd., N.W., Calgary, T2L 1j4. 229-4567

Brent Little, 2429 Cheroka Dr., N.W., Calgary, T2L 2j6. 289-5678

Mike Hermann, 3604 Caritre Street, N.W., Calgary, T2M 3X7. 2340001

Helen Binnie, 2416 22 St., Vancouver, E2D R4T. (405)220-6578

Mark Willianms, 456 45Ave., S.E., London, F6E Y3R, (678)234-9876

Gorden Scott, Apt. 201, 3023 Blakiston Dr., N.W., Calgary, T2L 1L7. 289-8880
Phil Gee, 1124 Brentwood Dr., N.W., Calgary, T2L 1L4. 286-7680

Figure 2. A list of unformatted addresses.

Semantics

Ideally, one would teach a PbD system just as one would teach another person: you
would select John, and say “copy the first name and paste it into the First Name
box in the Address Book”. Actually, with a human assistant, you would just say
“copy this information into the Address Book”. Both approaches rely on the fact
that a human understands the semantic concepts of people’s names, addresses and
phone numbers, and has enough experience with them to be able to identify those
items in the text.

The main reason this task is difficult for a PbD system is that the system doesn’t
understand this real-world semantic knowledge. This problem is actually not
unique to end user programming: it is a fundamental challenge behind all computer
programming. A professional programmer who wants to make a program that will
take postal address information from a page of text and use it to fill in an address
form on a web page has to deal with exactly the same problem: how do you write a
computer program that will figure out which part of the text is the first name, the
last name, the street number, the street address, and so on?

Witten and Mo’s system did what a programmer might do: it looked for patterns in
the syntax—such as a series of digits followed by a space followed by a series of
letters and then a space followed by the letters “Dr.,” or “Rd.,” or “Ave.,” —that
corresponded to the semantics. When a user selects Bix in this example, the system

can make many inferences about why that word was selected: because it is the
second word, the first three-letter word, the first word that is followed by a comma
and a space, or perhaps the second capitalized word. Or, if the system had semantic
information available, it might infer that the user was selecting a person’s Last
Name or the first word after a First Name. Deciding on the appropriate
interpretation is termed inferring intent in a PbD system, and the correct inference
is often a matter of semantics.

What’s new and ground-breaking in the age of the Internet is that 1) large-scale
semantic information is being collected by search engines and in knowledge bases
like ConceptNet [ref xx], 2) programmers are writing detailed programs called
data detectors [ref xx] to recognize semi-structured information like addresses, 3)
web sites are formatting this information on their pages with microformats [ref xx],
and, most importantly, 4) this information and these programs are readily
available, free of charge, and are being continually updated. As a result, one of the
major barriers to successful End User Programming systems is coming down. It is
now becoming possible for PbD systems to circumvent the entire problem
confronted in Witten and Mo’s example by simply utilizing data detectors for
names and addresses. The Citrine system, for instance, can take a line of text like
that in Figure 1 and—in a single action—paste the appropriate parts into the
various fields of a web form (see Figure 3). There will still be plenty of
idiosyncratic tasks for PbD systems to automate, but now, those systems won’t be
annoyingly “stupid” because they don’t have access to basic semantic concepts.

5000 Forbes Avenue £ | http://maps.yahoo.com/ £ | http:/Imaps.yahoo.com/
[Pyt bm' PA 15213 bT_ddrg>> Address
(a)

Undo 5000 Forbes Avenue
Select All
Print City, State Cut City, State or Zip
Copy Pittsburgh, PA 15213
Copy form
Countrv Count
mory - paste ounty
United St¢ v

- R United States
1) Detected address = Paste into this field = » —_—
- . ‘ —
5000 Forbes Avenue |_GetMap | GetMep |

Pittsburgh, PA 15213 Reset form
Delete

(b) (c) (d)

Figure 3. Citrine’s address detector.

Choosing the right abstraction

Semantics account for many of the inferences that PbD systems need to make, but
there are plenty more that are not a matter of semantics. For example, consider the
possible reasons why I might click on a link on a web page. In order to do the right
thing the next time I run my PbD-generated program on that web site, it’s
important to make the correct inference. When I visit my banking web site, I
always look at the charges for the second date in the list, since that is the most
recently completed bill (see Figure 4 (a)). Inferring from my demonstration that I
always want to pick February 3, 2009 would be wrong. On the other hand, when I
check the current traffic on cbs5.com, I always pick the information for South Bay.
Sometimes this is the fourth item in the list, sometimes it’s the sixth, and
sometimes it doesn’t appear at all (see Figure 4 (b)).

B.com KPIXW

Traffic Report

- W Jump to: Bay Area Bridges | East Bay | San Francisco | South Bay | Peninsula | Bay Area
=] .'- ACHOVIL soutn oy

East Bay

12:40 PM Accident (CONCORD) 4 EASTBOUND AT WILLOW PASS D ACCIDENT . IN THE CLEARING

n STAGES. THE LEFT LANE MAY STILL BE BLOCKED... BACKED UP TO PORT CHICAGO HWY
View Accounts | Transfer Fun((958)

12:45PM_Stall (OAKLAND) 880 SOUTHBOUND BEFORE FRUITVALE AV DISABLED VEHICLE. LEFT
My Accounts | Account Activity | | LANE BLOCKED . (JIM) ... AND NB 880 IS STILL SLOW AFTER AN EARLIER ACCIDENT,

FROM DAVIS ST PAST 23RD AVE

- San Francisco

2} ACCOUNT ACTIVITY

12:50 PM _Accident (SAN FRANCISCO) 280 NOATHBOUND AT ARMY/CESAR CHAVEZ AGCIDENT
SOLO SPINOUT IN THE LEFT LANE (1038)

PerIOd End Da‘e. p— —— 12:42 PM Stall (SAN FRANCISCO) 101 SOUTHBOUND BEFORE PAUL AV DISABLED VEHICLE
Current Period el € Go BLOCKING THE LEFT LANE--PETER

Current Period

Bay Area Bridges

+ January 3, 2009
- December 3, 2008

12:48 PM Major Probiem (CARQUINEZ BRIDGE) 80 EASTBOUND BEFORE THE TOLL PLAZA
ACCIDENT . TWO LEFT LANES BLOCKED... BACKED UP ACROSS THE SPAN---BRIAN

November 3, 2008 2 (1084)

October 3, 2008 Gt 12:24 PM Traftic Advisory (BAY BRIDGE) TRAFFIC FLOWING FREELY ... METERING LIGHTS OFF
| September 3, 2008 M 12:24 PM Traffic Advisory (GOLDEN GATE BRIDGE) TRAFFIC FLOWING FREELY IN BOTH
{ August 3, 2008 LL DIRECTIONS

! July 3, 2008
! june 3, 2008 South Bay
I MBY 3, 2008 12:31 PM Accident (SUNNYVALE) 101 NORTHBOUND RAMP TO LAWHENCE EXPWY NO RAMP.

| April 3, 2008
0Z2r8r2o0s U. 9r2003
02(1RI2009 02/17/2009

It
S
ﬂ INJURY ACCIDENT . OVERTURNED VEHICLE ON THE SHOULDER OF THE OFFRAMP, BUT
g EMERGENCY CREWS HAVE THE RIGHT LANE SHUT DOWN (987)

DF

Figure 4. The correct inference for the item in (a) is the second item, while the
correct inference for the item in (b) is the “South Bay” item.

Presenting programs to the user

As the examples in Figure 4 show, a PbD system can’t always make the correct
inference. Instead, the best that PbD systems can do is to generate the
“reasonable” alternatives and let the user pick the right one. As Alan Kay has said,
“When a human is using a computer, there is one intelligence there.” [ref xx] A
PbD system is nonetheless a great help to an end user, since recognizing the
command for the correct inference is much easier than writing that command
yourself.

In order for users to choose an interpretation, PbD systems need to be able to
present their inferences to the user. Presenting programs to the user is therefore an
important part of a PbD system. Witten and Mo’s TELS system was able to
generate fairly sophisticated programs for automating users’ tasks, but it had no
means of presenting those programs to the user. In addition to allowing users to
select a correct inference, presenting programs is also important for establishing a
user’s trust in a program. When users do not really know what a program is going
to do, they will be wary of running it. A third benefit of presenting programs to the
user is that it enables users to correct and improve their programs. My Stagecast
system [ref xx] presented programs visually, showing “before-and-after” pictures
of what a command would do. Figure 5 (a) shows a command to make a train
move forward along a track. A comparison with an equivalent scripting language
program for the same train (see Figure 5 (b)) shows the potential improvement in
ease of use that PbD can afford.

put iconName(icon of cd ben LookAhead) into BznlconName
if the number of items in BtnlconName > | then
put “True™ into Staging
TheStage = 0 then put BinlconName into PrevBtniconName
BenlconName contains “roadXing” then put LockAhead into XLloc
BenlconName contains “Rotatetrain” then put | into TheStage
end if
if the mouseClick then checkOnThings the clickLoc
put LastLoc & return before Previccs
put LookAhead into LastLoc

-
po— " 2urn Def -
.m . m!!"‘ put Dir & return before PrevDi

if the mouseClick then checkOnThings the clickLoc
add | to Counter

Figure 5. Instructions to move a train in (a) Stagecast and (b) HyperTalk.

Despite some successes, the problem of presenting abstractions to the user is still
challenging for PbD systems. For instance, how can a system like TELS
reasonably express to the user that it is locating a street address by searching for a
series of digits followed by a space followed by a series of letters and then a space
followed by the letters “Dr.,” or “Rd.,” or “Ave.,”?

Dealing with messy data

Once the user has demonstrated to TELS how to handle the first line in Figure 2, it
would be great if TELS would process the rest of the lines automatically. However,
data in the real world never meets our idealized expectations. For instance, line 7 is
the first time an apartment number appears, and line 5 is the first example that uses
an area code. A very successful approach to handling the inevitable exceptions that
arise in practice is for the end-user’s program to pause whenever it encounters a
new situation and to let the human handle the special case. Termed mixed-initiative

interaction, this approach is a luxury that professional programs cannot afford,
since they are expected to be robust and capable of handling whatever situations
may arise. But in the domain of end user programming, where most activities are
ad-hoc and the end user just wants assistance with what would otherwise be an
unbearably tedious process, sharing a task between the human and the computer is
appropriate and practical.

A newer technique that advances the practical use of PbD systems is called
simultaneous editing. The Potluck system [ref xx] uses this technique to
intelligently cluster messy data so that the end user can demonstrate how to handle
each special case quickly and efficiently (see Figure 6).

cIITT o= n the same colun

(617)| 253-6437
(617) 253-1778
(617) 253-6016

(617) 253-1448
(617)| 253-8828
(617) 253-5876
(617) 253-5879
(617) 253 6713
{617) 253-8005

*Laga ygor

Figure 6. Simultaneous editing in Potluck.

The multi-platform barrier

The TELS system was not a plug-in that could be added to MacWrite or
WordPerfect or any other text editor that was popular at the time. To test their
ideas about PbD, Witten and Mo had to write their own custom text editor. All of
the early work on PbD was done at a time when desktop applications were
distributed as source code that could not be modified, and user actions in the
applications could not be recorded or even scripted. Regardless of the usefulness of
a PbD system, no one would be able to use it in their daily work.

We are in a very different world today. The popularity of the web means that many
different kinds of applications, such as word processors, email and chat programs,
as well as online banking and retail shopping, are all implemented on a single
platform — the web browser. And thanks to the open source movement, the Firefox
browser is available, complete with a simple means for adding custom extensions.
For the first time, PbD systems can be added to a real platform that millions of
people use in their daily lives. You will see that ten of the sixteen End User
Programming systems described in this book are written as Firefox extensions. So

perhaps the greatest barrier of all to the widespread success of End User
Programming has fallen.

Another tremendous advantage of the web platform for end user programming is
that it is declarative. Web pages are written in HTML, which means that all items
on the page have a semantically meaningful tag, identifying them as buttons,
textboxes, and pull-down menus. This immediately solves the problem of
inferring semantics that was discussed earlier.

The (near) future of End User Programming

The simplicity of HTML is credited as one of the reasons for the web’s
overwhelming adoption and success. However, along with being simple, HTML is
also impoverished. This boon for End User Programming was at the same time a
great leap backwards in user interface design and functionality. We lost the ability
to drag and drop, to precisely arrange page layout, to draw anywhere on the page,
and to update a small part of a page. Nuanced interactions were replaced with
jumping from page to page.

It was not long before the simplicity of HTML was augmented with new
techniques that bring back the richness of interaction that is possible in desktop
applications. And these new techniques are posing a challenge for the future
success of End User Programming. Flash, for instance, allows for rich user
interactions. But no HTML appears on the part of a web page that uses Flash.
When users click and type in Flash, Programming by Demonstration systems get
no indication at all that anything has happened. Similarly, the use of javascript, the
AJAX programming style, and web toolkits like YUI and Dojo are replacing the
declarative format of HTML with procedures, or programs. The buttons and
textboxes in Dojo all use the semantically meaningless DIV tag, and the only way
to understand the semantics of a javascript procedure is to read the program.

Fortunately, the problem posed by toolkits may also afford its solution. Toolkits
enable website developers to use semantically rich user interface objects without
having to build them by hand. This means that if just one person goes to the trouble
of documenting the meaning of the items in a toolkit, then that information is
available for every website that uses the toolkit. It is also fortunate that the need for
website accessibility —for blind users in particular—is a strong motivation for
adding just this sort of semantic annotation to a toolkit. The ARIA specification
[ref xx] is a standard for adding semantic annotations to toolkits, Ajax, and
javascript. Further, there is a Social Accessibility [ref xx] project that can make
these semantic annotations available everywhere on the web.

Future domains

Command line interfaces gave way to desktop applications and then web pages.
Web pages are beginning to be replaced by web applications, and the next domain
for innovative applications will be mobile devices. Mobile devices need the power
of customization offered by End User Programming: they have small screens, so
it’s important that only relevant information be displayed; without a full keyboard,
user input is difficult and constrained, so it is important that users can express their
specific needs with just a click or two; and since they are used while people are on
the move and their attention is limited, there is an even greater need for simple
displays and interaction. If the opportunities of the web can break the barriers that
have been limiting End User Programming, a new generation of end user
programmers can flourish in the coming age of mobile devices.

