
Despite the dynamic nature of the Web, most people view a static snapshot. Search engines, browsers, and
higher level end-user programming environments only support observing and manipulating a single point in
time—the “now.” To better support interactions with historical data, we created the Zoetrope system [cite]
that provides a visual query language and environment for end-user manipulation of historical Web content.
By supporting such interactions from within the context of the Now Web (i.e., through the “present” copy of a
page), the Zoetrope user does not need to identify the location of historical content. For example, a user may
place a lens—a visual marker—on the “current” lowest used book price on an Amazon page, and have the
historical price automatically extracted and visualized over the history of the page (see Figure 1). While
focused on access to the ephemeral Web, the design of Zoetrope has a number of implications to the design of
any end-user programming environments in its ability to “debug” such programs on historical content and
generate additional training data. Integrating the temporal dimension provides both new challenges as well
as many new opportunities which we explore within the context of Zoetrope.

Zoetrope

Zoetrope functions as a complete
system from crawling pages, storing
content and indices, an internal
dataflow language for representing
queries on data, and a front end for
“programming” queries and visualizing
output. The main visual operator in
Zoetrope is a lens. Lenses are
rectangular objects drawn on any part
of a Web page (see Figure 1). Each lens
can be manipulated through a slider,
giving user interactive access to
historical content from “past” to
“present” and providing the illusion of
dynamic content from static
information1. Data selected within the
lens can then be visualized in a number
of different ways: time series for
numerical data, movies constructed
from many static images, time lines, and so on. Although there are a number of different types of lenses to
target different types of data, all are highly interactive and respond to the user’s manipulation of the slider
instantly. Interactivity is a key feature and distinction for Zoetrope driven by the fundamental observation
that most applications that rely on screen-scraping style extractions will fail at some point due a drastic
change in page structures. By allowing the Zoetrope user to see how their selection functions over time,
corrections can be made at points in history where the extraction has failed.

Additional lens features include filtering with keyword or other features and the binding of multiple lenses
(on the same and different pages) to explore correlated data (e.g., gas prices on one page versus oil prices on
another versus news stories mentioning the Middle East on yet a third).

As described in [cite], Zoetrope contributes:

1 The Zoetrope system derives its name from the old mechanical Zoetropes. where a cylinder containing

frames from an animated sequence were observed through vertical slits cut into the cylinder. When spun, the

Zoetrope provided the illusion of motion to the observer fixing their gaze on the cylinder.

Figure 1: Anatomy of a lens

• a novel visual programming toolkit and a set of interactions for rapidly building and testing temporal
Web queries,

• a semantics for temporal data streams,
• a set of recomposable operators to manipulate temporal data streams,
• indexing structures for fast processing and interaction with Web content over time,
• and a unique dataset collected by a new crawler design.

In this chapter we explore in detail the particular design choices for Zoetrope and how the notion of time can
be employed in end-user programming environments regardless of their emphasis on past or present. These
applications share a common goal with Zoetrope in their desire to function as well as possible into the future.

The Zoetrope Architecture

Zoetrope consists of a number of components that taken together provide a complete solution for collecting,
storing, and querying historical versions of the same page. This architecture is illustrated in Figure 2.

Crawler

The Zoetrope crawler is a modified Firefox with two (also modified) plugins. The first, WebPageDump [cite],
outputs the browser-internal Document Object Model (DOM) representation of the page. Capturing this
representation is important as it is a) a compliant XML file that can be indexed in an XML database, b) a
frozen version of the page that does not contain any Javascript and can thus be guaranteed to render the same
way each time the page is loaded. The modified WebPageDump waits some period the Javascript on the page
has either stopped executing or some waiting period has expired. Though sometimes imperfect, this allows
any Javascript code that modifies the DOM to complete the process. In addition to the serialized DOM, the
plugin stores a single CSS page specifying formatting and all objects (images, flash files, etc.) associated with
the page. A second plugin, Screengrab! (www.screengrab.org), also produces a capture of whatever is being
displayed in the browser. Based on these plugins, the crawler collects an accurate representation of the page
as it looked at the time of retrieval (through an image) and sufficient data so that the page can be correctly re-
rendered if necessary. Though strictly, only the un-rendered content is needed, by storing and caching the
rendered content we are able to
better support a number of the
interactive features.

At present, the crawling
infrastructure resides on a “headless”
Linux server (i.e., one without a
display system). Firefox instances,
running in the background, collect
nearly 1000 pages every hour. This is
not a limit of the machine but rather
the population of pages we have
chosen to crawl. Each page is
crawled once per hour at the fastest
rate with a backoff protocol that
slides this to once a day if the page
remains unchanged. Although
crawling speed can be greatly
increased (further increasing version
granularity), there are “politeness”
limits that need to be respected. A
machine would likely be able to crawl
many times this number of pages, and

Figure 2: The Zoetrope Architecture

one could envision a service that
collects page snapshots at different
intervals. Furthermore, using a
Firefox plugin has the further
advantage that people can add to
their own database as they browse
the Web. The combination of
personal visit archives and periodic
snapshots might be sufficient for a
number of applications.

Storage & Data

The DOM for each version of a page
are loaded into an in-memory XML
database. Saxon
(www.saxonica.com), provides XPath
query functionality and allows us to
rapidly find matching elements or
entire versions of pages. An in-memory index also tracks DOM elements by their rendered x and y
coordinates. This structure allows us to quickly find which elements are clicked or selected. An early analysis
of storage needs [cite], revealed that each incremental copy for a 5 week crawl (crawled once an hour) was
15% (2Kb average, 252 bytes median) the size of the original, compressed, copy of the page. This is
encouraging from the perspective of managing many copies of the same page.

The Zoetrope Engine

Internally, Zoetrope is built on a simple dataflow architecture where operators act on a content stream.
Conceptually, a content stream is a sequence of tuples (i.e. pairs), <Ti, Ci >, where Ci is a content item, such as a
webpage or some piece of a page, and Ti is the time when that content was sampled from the Web. When a
person creates a lens or some other visualization, Zoetrope generates a sequence of operators, which process
the content stream. There are presently three main types of abstract operators which act on content streams
in different ways:

• Transform operators modify the content payload of tuples. Each tuple is processed by this operator
and one or more new operators are generated, replacing the processed tuple. For example, if the
content item is an image, a transform operator may crop the image.

• Filter operators modify the content stream by removing or allowing a given tuple to pass through.
For example, filter operator may only allow tuples with a data greater than some number or only
tuples where the content contains a certain string.

• Finally, render operators interface between the engine and GUI by rendering some visualization of
the content stream that contains one or many tuples. A time series renderer, for example, will depict
the fluctuations of numerical values over time.

The Zoetrope Interface

The primary Zoetrope interface is a zoomable canvas based on Piccolo [cite] within which the Zoetrope user
can explore past versions of any number of Web pages. Though most Zoetrope features can be implemented
in modern Web browsers, interactivity is still technically challenging (though this will likely become less of a
problem as we new browser technologies are released). Zoetrope lenses are drawn directly into this
interface as well as any visualizations, providing a single workspace for exploration. Although Zoetrope
displays the rendered webpage as an image, the system maintains the interactivity of the live webpage.

Figure 3: A time series visualization displays the Harry Potter book

sales, or Muggle Counter, over time.

Clicking on a hyperlink opens a browser for the present version of the hyperlink target (or the historical
version corresponding to the slider selection, if it exists within Zoetrope).

 Figure 3 displays such a workspace where the user has loaded the Amazon homepage, selected a element on
the page (the number of pre-sales of Harry Potter) and a then visualized those presales in a time series.
Zoetrope supports binding between multiple lenses or between lenses and visualizations. By dragging a line
from one lens’ bind button to another’s a user explicitly connects the two so that motion between one

Lenses come in three distinct flavors: visual, structural, and textual. The different variations are intended to
track content on the page based on its stability. For example, content that is stable in rendered coordinates
can be tracked with a visual lens. On the other hand if the content being extracted by the lens is visually in a
different place, but is always retrievable by the same path through the DOM hierarchy.

Lenses are in part inspired by the Video Cube [cite] and Magic Lenses work [cite]. The former allows video
stream frames to be layered and “sliced” to find an abstraction of the video. In the latter, a magic lens is a
widget that can be placed directly on a document to illuminate the underlying representation while
maintaining the visual context of the document. Architecturally, a number of database visualization systems
are related to the stream and operator design in Zoetrope. Particularly, DEVise [cite] was originally
constructed to operate on streams of data that required visualization. Similarly, Polaris [cite] operates to
visualize relational data. In both, the operators provided by the system are primarily targeted at the
rendering step (deciding how graphs, charts, and other visualizations should be constructed).

Figure 4: A Visual lens in action. The user specifies a visual lens (a) on top of the page. This causes

Zoetrope to take all versions of the document in a content stream and push those to a transform

operator (b) that renders (or looks up) how the page looked at every time step. The tuples, which

now contain rendered pages images, is push to a second transform which crops the images to the

dimensions specified by the original placed lens. This steam is then pushed to a filter operator this is

parameterized to the slider state and which picks the single tuple closest to that time. Finally, a

render operator takes that single tuple and displays it inside the original lens.

Zoetrope Lenses

A lens allows a person to select some content and track it over time (i.e., the temporal extraction). Although
there are various flavors of lenses, their creation and use is nearly identical. A person creates a lens simply by
drawing a rectangular area on the webpage surface. In the underlying semantics of the Zoetrope system, the
creation of a lens produces a parametrized transform operator that acts on the original page content stream,
an optional filter (or set of filters) that processes the transformed stream, and a renderer that displays the
historical data in the context of the original page. The specific selections of transforms and filters depends on
the lens type.

Visual Lenses

The simplest Zoetrope lens is the visual lens. To create this type of lens, a person specifies a region on the
original page (e.g., a portion of the BBC homepage as in Figure 4). The specification produces a lens with a
slider. The slider is parameterized on the width of the lens and the range of data being displayed. As the slider
moves, the lens renders the corresponding data. Figure 4 illustrates how a visual lens is implemented using
the internal Zoetrope operators. When created, each version of the page becomes a tuple in the content
stream. Each of these tuples is then rendered (or looked up if cached), cropped, filtered, and then rendered
inside the lens.

Structural Lenses

Not all webpages possess sufficient stability for a visual lens. Slight shifts in rendering or more significant
movement of elements can cause distracting jumps when a person moves the lens slider. To counter this

Figure 5: A structural lens and time series visualization. The user specifies a structural lens (a),

selecting the used price of the DVD. Zoetrope takes all versions of the document in a content stream

and pushes them to a transform operator (b) that selects a portion of the document corresponding

to the selection (i.e., the XPath). A second transform operator (c) strips the text and extracts the

numerical value which is pushed to a renderer (d) and finally a visualization (f).

effect, and to allow for more precise selections, Zoetrope provides structural lenses. Structural lenses are
created in the same way as visual lenses, by drawing a rectangle around an area of interest, but they track
selected HTML content independent of visual position. Specifically, when created, a structural lens defines a
DOM forest within the structure of the page. This is specified through an XPath expression [cite] that can be
used to select a sub-tree of the structure. For example, in Figure 5, in order to track price over time in the
page, the user selects the price element using a structural lens. The structural lens then parameterizes a
transform operation which is able to pull out the element containing the price information over many past
versions of the page.

Textual Lenses

Visual and structural lenses are dependent on certain types of webpage stability. A visual lens relies on
stability of the rendering, whereas a structural lens takes advantage of structural stability. Both are
reasonable in many scenarios, but it is also worth considering selections based on unstable or semi-stable
content. For example, consider tracking a specific team in a list of sports teams that is ordered by some
changing value, such as rank (see Figure 6). As teams win and lose, the team of interest will move up and
down the list. Specifying a rectangle at (100,400), or the fourth row in the list, will not work when the team
moves from this position. To address this type of selection, we introduce the notion of a textual lens, which
tracks a textual selection regardless of where the text is located on the page. A textual lens can track exactly
the same string (e.g., a blog story) or approximately the same string (e.g., a sports team name with a score,
where the score changes from time to time).

In its most general form, a textual lens tracks arbitrary text regardless of where it appears on the page, which
DOM elements contain the text, and the size of those elements. This generalization is unfortunately too
computationally intensive, even in scenarios where the text is unchanging, and the problem becomes
intractable for an interactive system. To make our textual lenses interactive, we restrict the search space by
making use of the document structure. Textual lenses often track items that appear in tables, lists, or
structurally similar sub-trees (e.g., posts in a blog all have similar forms). We take advantage of this structural
similarity to only search among DOM elements that have similar tree structure to the original selection. From
this initial set of possibilities, Zoetrope will compare the text in the original selection to the possible matches,
picking the most likely one. The comparison is currently done through the Dice coefficient, which calculates
the overlap in text tokens between two pieces of text (i.e., SIM(A,B)=2*|A⋂B|/(|A|+|B|), where A and B are
sets of words).

Applying Filters to Lenses

Given the large volume of data encoded
in a content stream, it is natural to
want to focus on specific information
of interest. Zoetrope uses filters to
provide this capability. We have
already seen a few different kinds of
filter operations, but it is worth
considering additional types:

• Filtering on Time: One may
wish to see the state of one or more
streams at a specific time or frequency
(e.g., 6pm each day).

• Filtering on a Keyword: The
selection condition may also refer to Ci,
the content half of the tuple <Ti,Ci>. If Ci

Figure 6: A textual lens can track content regardless of where it appears

on the page, such as the Toronto Blue Jays, which over time shift in the

ordered list above.

contains text, then keyword queries may apply. For example, one might only be interested in headlines that
contain the word “Ukraine.”

• Filtering on Amounts: One may also select content using an inequality and threshold (e.g., >k). If the
content is numeric and the inequality is satisfied, then the tuple is kept; otherwise it is filtered. Similarly, one
can select the maximum or minimum tuple in a numeric stream.

• Duplicate Elimination: It may also be useful to select only those tuples whose content is distinct from
content seen earlier in the stream.

• Compound Filters: Logical operations (conjunction, disjunction, negation, etc.) may be used to
compose more complex selection criteria.

• Trigger Filters: An especially powerful filter results when one stream is filtered according to the
results of another stream’s filter. For example, Ed can filter the traffic page using a conjunction of the 6pm
time constraint and a trigger on the ESPN page for the keyword “home game.” We will return to this when
considering lens binding.

Because filtering is useful for many tasks, it is provided as an option whenever a visual, structural, or textual
lens is applied. When selecting a region with filtering enabled, a lens is created based on the underlying
selection and a popup window asks for a constraint to use in the filter, such as a word or phrase. Other
appropriate constraints include maximum, minimum, and comparison operators.

Filtering is visually depicted with a scented widget [cite] which is displayed as a small embedded bar graph
(Figure 1). The bar graph is displayed above the slider, indicating the location in time of the matching tuples.
As a person moves the slider, the slider snaps to the bars, which act like slider ticks. Note that the bars need
not be all of the same height and may reflect different information. A tall bar can indicate the appearance of
new content that matches a filter, and a short bar can indicate content that appears previously but still
matches the filter.

Binding Lenses

People are often interested in multiple parts of a page or parts of multiple pages, as they may be comparing
and contrasting different information (e.g., what does traffic look like on game days?). Zoetrope flexibly
allows for the simultaneous use of multiple lenses. Lenses can act independently or be bound together
interactively into a synchronized bind group. Sliders within a group are linked together, causing them all to
move and simultaneously update their corresponding lens.

People may bind lenses for different reasons. For example, to check traffic at 6pm on home game days, Ed can
bind a lens for traffic maps at 6pm with a lens for home games from his favorite baseball site. Each lens in a
bind group constrains its matching tuples to only include versions allowed by all other lenses in the group.
Recall that this is achieved through a trigger filter. Each lens can add a new trigger filter parameterized to the
time intervals that are valid according to other members of the bind group. Only tuples that satisfy all trigger
filters are allowed. Thus, the resulting stream shows traffic data at 6pm only on days for which there are
home baseball games.

Lenses can also be bound disjunctively. For example, one may want to find when book A’s price is less than
$25 or when book B’s price is less than $30 (i.e., one of the two books has dropped in price). Zoetrope
supports this type of bind, which is currently obtained by holding the shift key while performing the bind
operation. However, this operation creates an interesting twist as it causes data to be un-filtered. When
binding two lenses in this way, filter operators can be thought of as operating in parallel rather than serially.
A tuple passes if it matches any filter.

Stacking Lenses

In addition to binding, Zoetrope also supports the stacking of lenses. For example, consider a person who
creates one lens on a weather page, filtering for “clear” weather, and would like to further apply a filter that
restricts the selection to between 6 and 7pm daily. Explicitly drawing one lens over the other and then
binding them is visually unappealing and does not take advantage of the underlying semantics of the
language. Instead, we introduce the notion of lens stacking. The toolbar in the Zoetrope window, which allows
people to select the type of the lens, can also be used in a specialized binding operation which we call
stacking. By dragging a lens selection from this toolbar to the bind button of the lens, a person indicates that
they would like to further filter the existing lens. The original lens is replaced, and a new combined lens is
generated, which takes the transform and filter from the original selection and augments it with additional
transforms and filters. This new lens satisfies both the selection and constraints of the original lens as well as
the new one. Furthermore, because some filters and transforms are commutative, stacking provides the
opportunity to reorder the internal operations to optimize the processing of tuples.

Finally, we consider the partial stacking of lenses where a person wants to make a sub-selection from an
existing lens. For example, a person may apply a textual lens that tracks a specific team in the ranking. The
textual lens will track the team no matter where they are in the ranking, but the person would further like to
pull out the wins for that team at various time points. Thus, they may create a second structural lens that
consumes the selection of the textual lens and selects the wins. While most lenses can be easily stacked
without modification, lenses that stack on top of textual lenses require a slight modification to utilize relative
information (paths or locations). This subtle modification is necessary because the textual lens selects
information that is not in a fixed location in either the x,y space or the DOM tree. Because the textual selection
is variable, the structural lens must utilize a path relative to the selection rather than an absolute path.

Lenses Design Considerations

The data Zoetrope manipulates irregularly changes, shifts, and vanishes, and thus our design had to address
and accommodate this unpredictable behavior.

Windows in Time

It is worth briefly considering the design decision to display past content in the context of a webpage. In our
design, the historical information overwrites the part of the page where the lens is located. An alternative
would be to respond to slider motion by loading the entire page for a specific time and offsetting that page so
that the selected area is underneath the lens (similar to automatically panning the lens “camera” at each
step). Although we can enable this mode, we found two main reasons why this type of movement was
unappealing.

First, the motion and replacement of the entire page (rather than a small area) was highly distracting. Rather
than visually tracking changes in a small area of interest, a person must track changes across the entire
screen. Second, it is not clear what should happen when a person creates multiple lenses on the same page. As
described above, multiple lenses represent different selections within a page. These selections may not
always have the same visual relationship (for example, being 10 pixels apart in one time and 500 pixels apart
in another) and may be set to different times. Given these constraints, it may not be possible, without
distortion, to offset the underlying page to a position that works for all time periods or combinations of
lenses.

Lenses for Debugging

The robustness of end-user programs on the Web is a recognized problem (e.g., [cite]) as page templates will
likely change at some point [cite] causing the program to fail. Because users can interactively detect failures
in the extraction, they may refine their selection, adding or removing restrictions, improving filtering
conditions or creating another lens for the “failed” interval. The interesting side-effect of the Zoetrope
interaction techniques is that although the user may not know how the extraction will fail in the future, they
may nonetheless improve the robustness of their extractions by observing failures in the past.

Users, as constructors of these programs and extractions, have a unique ability to determine if a program has
succeeded. By simulating the program—whether an extraction, or something more sophisticated—on
historical data, the programmer can identify failure conditions that may recur in the future and increase the
robustness of his programs. User specified failures also give the system an opportunity to automatically
adjust its behavior. For example, by identifying a failure on past data, the user is providing examples to the
system, which can be used to train a failure detection mechanism. Supplying a “fix” to this failure can help
train exception handling mechanisms that will allow a program to continue working or adapting despite
future changes to page structure.

Zoetrope Visualizations

Lenses enable viewing of Web content from different moments in time, but this exploration is likely just the
first part of satisfying an information need. For example, a book’s cost at specific points in time is interesting,
but a person may also want to graph the price over time, calculate averages, or test variability. To facilitate
this type of analysis, we have created a number of renderers that visualize or otherwise represent selected
data. Visualizations, like lenses, create a sequence of transforms, filters, and renderers to display results.
Although visualizations can exist independently of a lens, a lens typically defines the data displayed in the
visualization. Lenses can thus also be used as a prototyping tool for testing selections and aggregations.

The transforms, filters, and processed streams generated by the lens can be directed to visualization
rendering components that implement the visualization itself. For example, in a typical workflow one might
place a (potentially filtered) lens on a book price, move the slider to test the selection, and click on the
visualization button to graph the price over time. Internally, the visualization step reuses the transform
module of the lens and connects it to a time series renderer. Clearly, many temporal-visualizations are
possible [cite] and could be implemented in Zoetrope or externally. As we describe below, a number of
default renderers provide visualization alternatives in the current implementation.

Timelines and Movies

The simplest Zoetrope visualization type is the timeline (see Figure 7), which displays extracted images and
data linearly on a temporal axis. This visualization allows, for example, viewing weather patterns over the
course of a year, headline images in stories that mention Iraq, or unique articles about a favorite sports team

Figure 7: This timeline visualization shows the duration and frequency of news articles on the cbc.ca website.

(all ordered by time). As before, the rendered images visualized in the timeline are live and a person can click
on any of the links. Double clicking on any image in the visualization synchronizes the page (or pages) to the
same time, allowing a person to see other information that appeared on the page at a particular time. This
visualization can also eliminate duplicates and display a line next to each image depicting its duration. This
type of display shows when new content appears and how long it stays on a page (e.g., a story in the news, a
price at a store) To prevent the timeline from running indefinitely to the right, the visualization can fold the
line into a grid with each row denoting activity over a day (or other interval).

The timeline visualization gives an instant sense of everything that has happened over some period. However,
other examples are best served by cycling through the cropped images to produce an animated movie.
Although this is equivalent to simply pulling the slider through time, a movie visualization automates and
regulates transitions and looping while the visualization cycles through the images. For example, a static
USGS earthquake map can be transformed into an animation of earthquakes over time, helping to pinpoint
significant events.

Clustering

Our timeline visualization is a simple example of a grouping visualization, where extractions are grouped by
some variable (time in this case). However, other more complex groupings are also possible. Clustering
visualizations group the extracted clips using an external variable derived from another stream. For example,
a clustering visualization can merge data from two different lenses, using one lens to specify the grouping
criteria while the other lens provides the data. For example, in a cluster visualization of traffic and weather
data we create a row for every weather condition (e.g., sunny, clear, rain), and every instance from the traffic
selection is placed in the appropriate row depending on the weather condition at the time of the clipping. If it
was rainy at 8:15pm, for example, the traffic map from 8:15pm is assigned to the rainy group.

Time Series

A variety of interesting temporal data is numerical in nature, such as prices, temperatures, sports statistics,
and polling numbers. Much of this data is tracked over time; however, in many situations it is difficult or
impossible to find one table or chart that includes all values of interest. Zoetrope automatically extracts
numerical values from selections of numerical data and visualizes them as a time series. Figure 10 shows a
visualization of the number of Harry Potter book sales over time. The slider on the x-axis of the time series
visualization is synchronized with the slider in the original lens selection. When the person moves the lens
slider, a line moves on the time series visualization (and vice versa).

Exporting Temporal Data

Zoetrope offers many useful visualizations, but was also designed for extensibility. Data extracted using
Zoetrope lenses is therefore also usable outside of Zoetrope. Systems such as Swivel (www.swivel.com) or
Many Eyes [cite] excel in analysis and social interactions around data, but are not focused on helping people
find the data in the first place. Zoetrope is able to generate a temporal, data-centric view of different websites
to meet this need. To export data outside of Zoetrope, we created a Google Spreadsheet “visualization” that
sends the lens-selected values to the external Google Spreadsheet system. When a person selects this option,
appropriate date and time columns are generated along with the content present at that time interval (either
strings or numerical data). This scheme greatly expands the capabilities of Zoetrope by allowing people to
leverage external visualizations, integrate with Web mashups, or perform more complex analyses.

Conclusions

The World Wide Web is generally treated by users and system designers as a single snapshot in time. This
limited view ignores the importance of temporal data and the potential benefits of maintaining a Web history.
By considering the past, end-user programming environments can be enhanced for the future. Zoetrope
represents one possible solution in the space, concentrating specifically on how a user might analyze and
visualize data from the temporal Web from the familiar context of the Now. By maintaining historical copies
of the Web, Zoetrope provides users with the ability to simulate programs on historical data. This has
implications for other end-user programming tools for the Web which similarly depend on structural stability
and benefit from allowing a user to test and validate their selections.

[citations – I am travelling and have no access to my EndNote, citations will be added shortly]

