Enabling End Users to Independently Build
Accessibility into the Web

Jeffrey P. Bigham
Computer Science and Engineering
DUB Group
University of Washington
jbigham@cs.washington.edu
http://www.cs.washington.edu/homes/jbigham/

ABSTRACT

Providing an accessible, usable experience to all web
users has been a challenge since the inception of the
web. Developers of web content target their designs to
visual display, and expect input to come from both a
mouse and a keyboard. Providing an accessible
experience is much more than an all-or-nothing
problem, it requires considering a spectrum of
problems. This chapter considers the following three
levels in the hierarchy of accessibility problems and
how end users can contribute to improving them: (i)
making access to content possible, (ii) making access
to content usable, and (iii) making access available
wherever users want it or need it. End wuser
programming is an attractive solution to improving
accessibility because it directly connects users with
the incentive to improve content with the ability to
improve it.

Availability
Usability

Accessibility

Figure 1: Achieving web accessibility requires more than
simply making it possible for users with diverse abilities to
access content. Accessibility is the foundation on which the

usability and availability of access rests.

INTRODUCTION

End users need to be able to independently program
accessibility into the web. Web accessibility concerns
have existed for nearly as long as the web has existed.
This chapter looks at the impact users can have on
their own web experiences by contributing to their
accessibility, either through direct improvement or by
helping to inform developers of problems. This
chapter primarily targets improved accessibility for
blind web users, but the examples can be extended to
improving access for people with different disabilities.

Early access technology dealt with the text-only
content of the early web reasonably well, but started
having difficulties as early as the introduction of the
image (IMQG) tag, which brought multimedia content
to the web. Ever since the first drafts of the HTML
standard, the alt attribute was provided as a way to
provide a description of images, but, nevertheless, as
of 2006, less than half of the informative images on
popular web sites were assigned alternative text [5].
Requiring web developers to build accessibility into
their content has not proven to be a reliable solution to
achieving accessibility.

Instead of full reliance on web developers, we
envision a web that all users can actively shape to
work better for them. For disabled computer users, the
web offers the promise of endless content easily
converted to an accessible format, but barriers to
achieving this full potential remain for anyone
accessing the web using a non-standard display,
keyboard and mouse. Some web content is encoded
visually assuming a certain display size, content can
be difficult or inefficient to access with assistive
technology, and access almost always depends on the

ability to install special access software, which users
often lack the permission to do.

The web is not designed with blind web users in mind,
but is instead designed targeting mouse-driven visual
displays. Blind web users access their computers and
web content using non-visual access software called
screen readers, which (i) convert information typically
displayed visually to a linear stream of output in either
synthesized voice or refreshable Braille, and (ii)
provide a large number of shortcut keys designed to
help make searching that linear space more efficient.

Access for blind web users remains inefficient, slow,
and often frustrating. Accessibility efforts have
focused on making access possible, but the resulting
interfaces remain unintuitive to use. Tools lack an
understanding of the semantics of content, and,
therefore, have trouble conveying it in a meaningful
way. This chapter overviews our work in collaborative
accessibility, which we are exploring to enable blind
web users to independently improve the web to better
suit their needs and directly address the accessibility
problems they experience.

Web developers, who can choose to create more
accessible content, are commonly blamed for these
problems. As an example, target.com recently lost a
multi-million dollar lawsuit against the WNational
Federation of the Blind because of its inaccessible
online storefront. Although making access possible is
relatively straightforward (and Target could have
made simple improvements to make its site
accessible), web developers have, in general, proven
unable to reliably create accessible content.

Part of the problem is that it is difficult to understand
what might hinder access someone different than you
might access content and predict what problems they
might have. The result is that even when developers
try to follow accessibility standards in order to make it
possible for people with disabilities (or someone using
a small-screen device) to use their sites, access is still
a frustrating and unintuitive experience. Most
developers of content are not disabled themselves, and
so many do not know what a disabled user might need
or want out of an interface. Accessibility issues
involve not only technical considerations, but issues
of cost to implement or rework existing content. Just
as the best visual designs require keen subjective
construction, so do the best accessible designs require
substantial design skill.

End users understand when content is difficult for
them to access, but they often lack the tools and
technical knowledge to improve content to work better
for them. To address this shortcoming in existing
tools, we have developed socially-driven tools to
enable end users to independently build accessibility
into the web and to share the improvements that they
make with others. Our work has focused on non-
visual access both because of the incredible potential
for social impact in this space and because we believe
this to be an extreme case that can inform
improvements for users with different requirements.
The challenges addressed are applicable to a wide
variety of end user programming tools for improving
web content according to an individual’s abilities and
preferences.

We have divided accessibility problems into the
following three categories and associated research
questions:

(1) Accessibility —
How can users
regardless of ability?

access rich content

Multimedia content lacking alternatives is not
accessible programmatically or easily
conveyed non-visually without explicit
annotation. Content is often not accessible
using only the keyboard, which makes it
difficult for keyboard users.

(i1)) Usability —

How can users help one another more
effectively complete tasks on the web?

Complex content can make accomplishing
tasks inefficient for blind users and confusing
for cognitively-disabled users. Content in a
second language can be difficult to
understand.

(i) Availability —
How can the access technology and social
improvements provided by users be

provided to everyone that needs them
where and when they need them?

Access technology is not available on most
computers, including lock-down public
terminals. Installing new software is often not
allowed or is infeasible.

Mainstream tools for improving accessibility have
primarily looked at the first category — making access
to content possible. The remainder of this chapter
describes tools designed for end users to enhance
collaboration and enable users who would benefit
most from accessibility improvements independently
address these challenges. The tools described here
primarily focus on improving accessibility for blind
web users, but the ideas explored can be adapted to
providing accessibility improvement for people with a
variety of access needs.

ACCESSIBILITY: SOCIAL ANNOTATION
Well-designed web content uses semantic annotations
to assist users in browsing with a screen reader, but,
for a wvariety of reasons, annotations are not
pervasively applied. As an example, images lacking
descriptions are inaccessible to screen reader users,
and alternative text describing them is provided to
only half [2,5] Without the quick scanning and
summary afforded by a visual display, locating
interesting content can be difficult. Annotations added
to content can help users skip through content in a
meaningful way. Heading tags (<hl> - <h6>) are a
simple mechanism for conveying semantic structure
and are frequently used by blind web users to navigate
within a web page. Even simple annotations such as
alternative text and heading tags are often not
provided or used properly, and users are currently
reliant on the creators of content to provide them.

The Accessmonkey framework helps to end that
reliance by enabling end users to provide annotations
in a shareable form. The annotations provided using
Accessmonkey can benefit other users and also web
developers wanting to integrate them into their own
web sites [1]. IBM recently released Social
Accessibility, a set of browser plugins that enable
users to apply fixes to pages, and coordinate
volunteers to help provide the appropriate annotations.
[8] Providing these annotations can help make
accessing a web site possible, but, just as in visual
design, making a task possible on the web does not
mean it will be an easy or intuitive experience.

Sharing annotations requires a way to address content
to which each annotation applies and providing a
common repository where the annotations can be
accessed. Common addressing methods are XPath,
pseudo-natural language descriptions, and content-
specific methods, such as the MD5 hash of an image.

The addressing mechanisms that are easiest for
computers to understand tend to be most difficult for

TrailBlazer Example

gl

Step 1 of 15: go to "wyw.amazon.com”
14 » >l

1 of 15: go to www.amazon.com

l m.ul Departments -] E
100% More pee ™=

i
2 of 15: select “Books” from the
“Search” listbox

amazonsde

~ 8of15: clip the TABLE
containing “List Price”

Figure 2: TrailBlazer guiding a user step-by-step through
purchasing a book on Amazon. 1) The first step is to goto
the Amazon.com homepage. 2) TrailBlazer directs the user
to select the “Books” option from the highlighted listbox. ...
8) On the product detail page, TrailBlazer directs users past
the standard template material directly to the relevant
product information.

people. Keyword commands uses pseudo-natural
language commands to address page content and are
popular in this space because they enable users to
more easily understand how an annotation is changing
the content they are viewing [9]. CoScripter borrows
this idea of a pseudo-natural language addressing
mechanism to create a wiki of how-to instructions
[10]. With a number of different addressing
mechanisms available, each with their own tradeoffs,
it is important that these can be shared and reused in a
repository that accepts them all.

The Accessibility Commons serves a unified location
for annotations that allows multiple addressing types
and is designed to be flexible to new types. [7] A
common repository of annotations along with end user
tools to help create them can help users
collaboratively create web content better suited to
their needs. The most straight-forward example is the
user of alternative text for images that can be read by
a screen reader in place of images on web pages.

The general role of annotations is to provide
additional descriptions and semantics that allow end
user tools to make better sense of web content.

Many different types of tools can benefit from content
with more annotation. Any tool that needs to address
specific content within a web page, for instance, can
benefit.

USABILITY: BLAZING TRAILS THROUGH THE WEB
Applying annotations to content (such as those
described in the previous section) can make access to
content possible but are not usually enough to make
web content usable. To be usable, users need to be
able to connect individual interactions with interface
components together into complete tasks. When using
a non-visual interface, completing tasks on the web
can be inefficient and frustrating, with each step
requiring a linear search of web content to find the
correct button, link, or information.

The play back components of Programming-by-
Demonstration (PBD) and interactive help systems
guide users through tasks step-by-step, which obviates
the need for this linear search on predefined tasks.
Despite the incredible potential of these tools to assist
blind users, most existing systems are not usable with
standard screen readers. Feedback is either indicated
only visually, the mouse is required to interact with
the systems, or numerous context switches between
the PBD interface and the web page that is being
interacted with are required.

TrailBlazer targets non-visual recording, playback and
sharing of scripts (trails) to guide users through
completing web-based tasks. It includes speech
feedback for all interface components, provides
keyboard shortcuts for all functionality, and integrates
its interface directly into the web pages that are being
accessed.

TrailBlazer also reuses the existing repository of
CoScripts to guide users through existing how-to
knowledge (Figure 1). [4] This enables blind users to
immediately leverage a large existing repository of
how-to knowledge. Blind users can also independently
demonstrate tasks, record themselves, and then save
and share the descriptions as CoScripts using
TrailBlazer. These pseudo-natural language scripts
bring the advantages of macro recording to a group
that stands to greatly benefit.

Generalizing Trails

Blind participants in a formative study found
TrailBlazer to be a great improvement over using a
screen reader directly, but felt that it was too restricted
because they could only use it when a script already
existed for completing a task. To address this concern,

WUNITED

bty profile | Wiorldwide sites

Planning & booking ~ ftineraries & check-in +

Mileage Plus® ~

Services & information -

| Shepforflights | Special deals

a
Book travel Check-in Flight status = Mieage P
L Mileage Plus
Check status of a flight el
Bl €7 2 Pazsword
Date: 10032008 - 8 *
Denver — Albuguergue B3

[Remem:

Flight number: 105 San Francisco —Los Angeles § 63

e Details k
andior 4 4
Lot
From: -

Toa:

Start in
My mileage <

|
m Start eaming

Choose from one of the

Time: Al d - - -
" = following suggestions:

Check 22

A
Enter into the "From:" texthox A i
Enter into the "To:" textbox Bk
Select from the "Date:" listhox
> b Jelect from the "Time:" listhox
* Choose extra legroom anytime
> Drive away with more miles this fall
> Meed Miles? Buy them now

= Search ather airlines

SUNITED

Easyupdate

FLIGHT NOTIFICATION

united.com
At united cor
lmwneest Unite:
hever & bhook
flight purcheas

* Take our survey & you could win miles
» Yiew travel requiremerts and regulstions

Updates via phone, email or pacer

Figure 3: Suggestions are presented to users within the page
context, inserted into the DOM of the web page following the
element with which they last interacted. In this case, the user
has just entered “105” into the “Flight Number” textbox and
TrailBlazer recommends clicking on the “Check” button as
its first suggestion.

we developed a novel method for suggestion-based
help in order to guide blind web users through tasks,
dynamically creating a new script (Figure 3).
TrailBlazer creates these suggestions by combining a
short, user-provided task description and an existing
repository of how-to knowledge. In an evaluation of
15 user-created tasks, the correct prediction was
contained within the top 5 suggestions 75.9% of the
time.

Following these predictions lets users avoid lengthy
linear searches in most cases. When the suggestions
offered by TrailBlazer are incorrect, users only have
to explore a small list of suggestions (currently 5)
before completing the task as they normally would.
Future research will explore how to best translate the
predictions offered by TrailBlazer into improved
usability — helping users more quickly complete tasks
without taking away their control or causing them to
be less efficient when TrailBlazer is wrong.

By guiding blind web users through web tasks the first
time, TrailBlazer encourages users to create scripts
that improve the efficiency of all users in the future.
An on-going problem with programming-by-
demonstration systems for the web is that even the

small amount of work required to define a script for a
tasks makes it not worth doing for most people. The
trade-off may be different for blind users for whom
accessing the web is currently so inefficient. We are
investigating this trade-off to see if this might make
them more likely to define scripts that could then
benefit everyone.

TrailBlazer currently incorporates only the knowledge
from the scripts that users have explicitly recorded
and shared, but exploring always-on recording to help
find popular trails through web sites is an important
opportunity for future work.

TrailBlazer helps wusers connect the individual
interactions into trails that can be efficiently
completed using a screen reader. This overlay on top
of existing content can help make that content more
efficient to access without taking away the user’s
control.

AVAILABILITY: BUILDING TOOLS INTO THE WEB

End user tools can dramatically improve accessibility,
but people often use computers other than their own to
access web content. Anyone who either requires or
prefers a different interface is restricted to using only
computers on which that software is already installed.
In the case of the screen readers used by blind
individuals, the software is incredibly expensive and
not likely to be installed on most computers.
Specifically, the accessibility enhancements made
possible using the tools presented in the previous two
sections are unlikely be available.

To address this problem, we introduced
WebAnywhere, a web-based screen reader that
enables blind web users to access the web from almost
any computer that can produce sound without
installing new software [3]. WebAnywhere works
even on locked-down public terminals. To facilitate
this, speech is delivered from a remote server. Pre-
fetching based on a dynamic model of user behavior
helps to ensure that the sounds users request to be
played are likely to already be in the browser cache
and perceived latency is low (Figure 4 and 5).

In addition to serving as a screen reader for the web
on computers in which one is not already installed,
WebAnywhere is also able to incorporate the
improvements offered by Accessmonkey and the
Accessibility Commons, which means the web pages
it makes available are more accessible. In the future,
we plan to incorporate the TrailBlazer interface into

WebAnywhere Locstinn: | Mitp-www2 008, argl
Browser Frame AR

Replicates browser
functionality and provides
a screen reading interface
to both web content and
browser functions.

WebAnywhere
Content Frame

Loads web content via
proxy server. Browser
frame speaks the web w i
content loaded here.

Fell I
.

Figure 4: WebAnywhere is a web browser that runs as a web
application inside the existing web browser. It requires no
special software to be installed or permissions to run, so it can
provide custom interfaces wherever users happen to be.

WebAnywhere as well, and build an accessible,
socially-generated version of the web into every web
browser. Our public release of the system is currently
being visited by approximately 700 unique users each
week, providing a wealth of data that can help us both
understand and improve WebAnywhere and also
inform our future research directions.

Getting Tools to Users

Getting access technology and improvements that
have been made by end users to the people that need
them most can be difficult. Access technology is
specialized software, and not installed on most
computers. Locked-down public terminals prevent
new software from being installed, and, for many
users, the time required to install new software causes
it to be more cost than it is worth. It can be difficult to
overcome the cost of installing new software, which
means that users may go to the trouble to benefit from
the software that would be ideal for them. Access
technology has a high abandonment rate, at least
partially due to its complexity [6].

Users accustomed to using or reliant on a specific type
of accommodation may not be able to leverage it
everywhere they happen to be. WebAnywhere helps
improve this cost-benefit trade-off by making loading
access technology and end user improvements as easy
as loading a web page.

Inaccessible content is often created because
developers are not aware of the issues involved. Prior

Web Browser

WebAnywhere
System

Server-Side WebAnywhere

Text to
Speech

Web
Proxy

Client-Side WebAnywhere

{ e L ew Figory fockmerls [ode tep
| . E
. Location: [nitp/iwww2008.0rg Go

Find Next | _Find Previous -
dhest | _Find Pr - o

Sound Players

= P WebAnywhere
Script

> Google t
Microsoft

Embedded
Player

Transformed Flash Player

— I Web Page

/
P /
&
]
=7
!/
I
i
| 4
> }LVJ

Figure 5: WebAnywhere is a web proxy is designed to provide personalized interfaces to the web to users from any computer. The

interface shown adds spoken feedback and keyboard shortcuts to any web page, making any computer accessible to blind computer

users. WebAnywhere is also able to deliver the accessibility improvements provided by other tools, such as Accessmonkey or Social
Accessibility to any computer, making it important for helping users realize the benefit of these tools anywhere.

work has shown that web developers can be more
successful at discovering accessibility issues when
they view their web pages with a screen reader [11].
WebAnywhere serves as a quick way for developers
to experience new interfaces.

WebAnywhere also enables users to demonstrate the
problems they are having using an interface similar to
TrailBlazer, capture a recording of their interaction,
and then send the script off for easy review by
developers. This type of end user programming can
help clearly demonstrate the problems that exist in
current web page, and represents a low-cost way for
remote blind users to demonstrate the problems they
experience using the interfaces that they use.

OPPORTUNITIES FOR FUTURE WORK

The web presents the incredible opportunity to
provide everyone with efficient access to the
information they need, when they need it. History has
shown that it is wunrealistic to expect all web
developers to create content that is accessible and
usable by all people. The web users who would
benefit from accessibility improvements have the
motivation and incentive to make their content more
accessible — it is our challenge to create the tools that
will allow them to do so.

Through end user tools that help users independently
improve web content, we hope to enable users bypass
artificial restrictions to their access in the web today
and directly build in the accessibility that would be
most beneficial to them. This work is part of a larger
trend toward more personalized access to content that
will become necessary. The web allows us to share
information to an extent that we have never before
experienced, but has thus far been closely tied to its

visual representation. This is not working for a
variety of people, using a variety of devices.

The tools described in this paper have focused on
improving access to for blind web users, but can
inform the design of tools for other use cases. As
examples, the technology described here could
directly apply to web access on both mobile phones
lacking screens and small-screen devices. How we can
enable authors to conveniently produce content that
can be enjoyed by people with difference abilities, in
difference contexts? Part of the answer is likely to
create tools that enable end users to independently
reshape web content to their preference.

Acknowledgements

We thank the members of the WebInSight Project at
the University of Washington and CoScripter team at
IBM Almaden Research Center for their input and
support. We also thank the numerous participants in
our user studies for their insightful comments.

REFERENCES

1. J. P. Bigham and R. E. Ladner. Accessmonkey: A
Collaborative Scripting Framework for Web Users and
Developers. In Proceedings of the International Cross-
Disciplinary Conference on Web Accessibility (W4A
2007), pages 25-34. Banff, Alberta, Canada, 2007.

2. J. P. Bigham, A. C. Cavender, J. T. Brudvik, J. O.
Wobbrock, and R. E. Ladner. WebinSitu: A
Comparative Analysis of Blind and Sighted Browsing
Behavior. In Proceedings of the 9" International ACM
Conference on Computers & Accessibility (ASSETS
2007), pages 51-58. Tempe, Arizona, USA, 2007.

3. J. P. Bigham, C. M. Prince and R. E. Ladner.
WebAnywhere: A Screen Reader On-the-Go. In
Proceedings of the International Cross-Disciplinary
Conference on Web Accessibility (W44 2008), pages 73-
82. Beijing, China, 2008.

4. J. P. Bigham, T. Lau and J. Nichols. TrailBlazer:

Enabling Blind Users to Blaze Trails Through the Web.
In Proceedings of the 1 2™ International Conference on
Intelligent User Interfaces (IUI 2008). Sanibel Island,
Florida, USA, 2009.

. J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M.
Danielsson and G. L. Hempton. WebInSight: Making
Web Images Accessible. In Proceedings of the 8"
International ACM Conference on Computers and
Accessibility (ASSETS 2006), pages 181-188. Portland,
Oregon, USA, 2006.

. M. Dawe. Desperately Seeking Simplicity: How Young
Adults with Cognitive Disabilities and Their Families
Adopt Assistive Technologies. In Proceedings of the
SIGCHI conference on Human Factors in computing
systems (CHI 2006), pages 1143-1152. Montreal,
Canada, 2006.

. T. Hironobu, S. Kawanaka, M. Kobayashi, T. Itoh and
C. Asakawa. Social accessibility: achieving accessibility
through collaborative metadata authoring. In
Proceedings of the 10™ International ACM Conference
on Computers and Accessibility (ASSETS 2008), pages
193-200. Halifax, Nova Scotia, Canada, 2008.

8. S. Kawanaka, Y. Borodin, J. P. Bigham, D. Lunn, H.

Takagi and C. Asakawa. Accessibility Commons: a
Metadata Infrastructure for Web Accessibility. In
Proceedings of the 10" International ACM Conference
on Computers and Accessibility (ASSETS 2008), pages
153-160. Halifax, Nova Scotia, Canada, 2008.

. G. Little and R. Miller. Translating keyword commands

into executable code. In Proceedings of the 19" Annual
Symposium on User Interface Sofiware and Technology
(UIST 2006), pages 135-144. Montreux, Switzerland,
2006.

10. G. Little, T. Lau, A. Cypher, J. Lin, E. M. Haber, E.

Kandogan. Koala: capture, share, automate, personalize
business processes on the web. In Proceedings of the
SIGCHI conference on Human factors in computing
systems(CHI 2007), pages 943-946. San Jose,
California, 2007.

11.J. Mankoff, H. Fait, and T. Tran. Is your web page

accessible? A comparative study of methods for
assessing web page accessibility for the blind. In
Proceedings of the SIGCHI conference on Human
factors in computing systems (CHI 2005), pages 41-50.
Portland, Oregon, USA, 2005.

