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ABSTRACT 
Many users are familiar with the interesting but limited 
functionality of Data Detector interfaces like Microsoft’s 
Smart Tags and Google's AutoLink.  In this paper we 
significantly expand the breadth and functionality of this 
type of user interface through the use of large-scale 
knowledge bases of semantic information.  The result is a 
Web browser that is able to generate personalized semantic 
hypertext, providing a goal-oriented browsing experience. 

We present (1) Creo, a Programming by Example system 
for the Web that allows users to create a general-purpose 
procedure with a single example, and (2) Miro, a Data 
Detector that matches the content of a page to high-level 
user goals. 

An evaluation with 34 subjects found that they were more 
efficient using our system, and that the subjects would use 
features like these if they were integrated into their Web 
browser. 
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INTRODUCTION 
In this paper we describe a Programming by Example 
system for the Web named Creo, and a Data Detector 
named Miro.  Working together, Creo and Miro provide the 
user with a goal-oriented Web browsing experience.  We 
describe an evaluation of our software based on data from 

34 users, and evaluations of our software’s user interface 
during an iterative design process. 

Finally, we conclude with a discussion of how large-scale 
knowledge bases of semantic information can be leveraged 
to improve Human Computer Interaction. 

CONTRIBUTIONS 
This paper presents five contributions.  First, the paper 
demonstrates how a Programming by Example system can 
be used to automate repetitive tasks on the Internet, saving 
users time. 

The central problem of Programming by Example systems 
is generalization.  The second contribution is to show how 
two large knowledge bases of semantic information, MIT’s 
ConceptNet and Stanford’s TAP, can be leveraged to 
improve generalization. 

The paper’s third contribution is to show how a 
Programming by Example system can work together with a 
Data Detector, solving both recording and invocation in an 
integrated way. 

Commercially available Data Detectors like Microsoft 
Smart Tags and Google’s AutoLink limit users in both the 
types of data that can be detected, and the services that can 
be performed on those types of data.  This paper’s fourth 
contribution is to show how combining a Programming by 
Example system with a Data Detector enables users to be in 
control of the services associated with their data. 

Finally, this paper demonstrates how a Web browser can 
proactively detect a user’s potential goals while they 
browse the Web.  While current Web browsers sit between 
the user and the Web, the very thin amount of interface they 
do provide (Back, Next, Stop, Refresh, Home) has little to 
do with the user’s higher level goals.  The overall 
contribution of this paper is to demonstrate how the 
integration of large knowledge bases of semantic 
information, a Programming by Example system, and a 
Data Detector can result in a Goal-Oriented Web Browser. 

TEACHING COMPUTERS THE STUFF WE ALL KNOW 
Computers lack common sense.  Current software 
applications know literally nothing about human existence.  
Because of this, the extent to which an application 
understands its user is restricted to simplistic preferences 
and settings that must be directly manipulated.  Once 
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software applications are given access to Commonsense 
Knowledge, hundreds of thousands of facts about the world 
we live in, they can begin to employ this knowledge to 
understand their users’ intentions and goals. 

Open Mind 
Since the fall of 2000, the MIT Media Lab has been 
collecting commonsense facts from the general public 
through a Web site called Open Mind [1-3].  Currently, the 
Open Mind Common Sense Project has collected over 
806,000 facts from over 19,000 participants.  These facts 
are submitted by users as natural language statements of the 
form “tennis is a sport” and “playing tennis requires a 
tennis racket.”  While Open Mind does not contain a 
complete set of all the commonsense knowledge found in 
the world, its knowledge base is sufficient to be useful in 
real world applications. 

ConceptNet 
Using natural language processing, the Open Mind 
knowledge base was mined to create ConceptNet [4], a 
large-scale semantic network currently containing over 
250,000 commonsense facts.  ConceptNet consists of 
machine-readable logical predicates of the form: (IsA 
“tennis” “sport”) and (EventForGoalEvent 
“play tennis” “have racket”).  ConceptNet is 
similar to WordNet [5] in that it is a large semantic network 
of concepts, however ConceptNet contains everyday 
knowledge about the world, while WordNet follows a more 
formal and taxonomic structure.  For instance, WordNet 
would identify a “dog” as a type of “canine,” which is a 
type of “carnivore,” which is a kind of “placental 
mammal.”  ConceptNet identifies a “dog” as a type of “pet” 
[4]. 

Stanford TAP 
The Stanford TAP (The Alpiri Project) knowledge base was 
created to help bootstrap the Semantic Web [6-10].  Unlike 
the Open Mind knowledge base, which was generated 
through the contributions of knowledge from volunteers on 
the Web, TAP was generated by creating 207 HTML 
scrapers for 38 Web sites rich with instance data.  TAP has 
extracted knowledge from over 150,000 Web pages, 
discovering over 1.6 million entities and asserting over 6 
million triples about these entities [10].  This knowledge 
covers a wide variety of topics, including: music, movies, 
actors, television shows, authors, classic books, athletes, 
sports, sports teams, auto models, companies, home 
appliances, toys, baby products, countries, states, cities, 
tourist attractions, consumer electronics, video games, 
diseases, and common drugs.  The instance data found in 
TAP is a good complement to commonsense knowledge 
bases like ConceptNet or CYC [11].  For instance, “CYC 
knows a lot about what it means to be a musician. If it is 
told that Yo-Yo Ma is a cellist, it can infer that he probably 
owns one or more cellos, plays the cello often, etc. But it 
might not know that there is a famous cellist called Yo-Yo 

Ma” [8].  For this project, the TAP knowledge base has 
been modified to match the formatting of ConceptNet. 

A GOAL-ORIENTED WEB BROWSER 
Using the knowledge in ConceptNet and TAP, we have 
created a toolbar for Microsoft Internet Explorer that 
matches the semantic context of a Web page to potential 
user goals.  For instance, imagine a user is viewing a Web 
page that contains a recipe for Blueberry Pudding Cake.  
The user’s browser will notice a pattern of foods on the 
page, and present the user with two suggestions: order the 
foods, or view their nutritional information.  When the user 
selects one of these buttons, all of the foods on the page 
turn into hyperlinks for the selected action.  For instance, by 
pressing the “Order Food” button, each food in the recipe 
will be converted into a hyperlink for that food at the user’s 
favorite online grocery store.  Alternatively, the user can 
view the nutritional information for each of the foods at 
their favorite Web site for nutritional information: 

 
Figure 1:  Automatically associating a user's high-level goals 

with the content of a Web page 

After being presented with this example, a critical reader 
likely has two significant questions: (1) How does the 
browser know how to interact with the user’s favorite 
grocery store? And (2) How does the browser know which 
of the terms in the recipe are foods?  The answer to the first 
question is by enabling users to train a Web browser to 
interact with their favorite sites using a Programming by 
Example system named Creo (Latin, “to create, make”).  
The answer to the second question is by leveraging the 
knowledge bases of ConceptNet and TAP to create a next 
generation Data Detector named Miro (Latin, “to wonder”).  
The following two sections discuss both of these topics in 
detail. 

It is important to note that while this “recipe to grocery 
store” example is used throughout the paper for the 
purposes of clarity, Creo can automate interactions with 
other kinds of sites on the Web (not just grocery stores), 
and Miro can detect any type of data described in 
ConceptNet and TAP (not just foods). 



PROGRAMMING BY EXAMPLE 
Traditional interfaces leave the user with the cognitive 
burden of having to figure out what sequence of actions 
available to them will accomplish their goals.   Even when 
they succeed in doing this for one example, the next time 
the same or a similar goal arises, they are obliged to 
manually repeat the sequence of interface operations.  Since 
over time, goals tend to re-occur, the user is faced with 
having to tediously repeat procedures over and over.  A 
potential solution to this dilemma is Programming by 
Example [12].  A learning system records a sequence of 
operations in the user interface, which can be associated 
with a user's high-level goal.  It can then be replayed in a 
new situation when the goal arises again.  However, no two 
situations are exactly alike.  Unlike simple macro 
recordings, Programming by Example systems generalize 
the procedure. They replace constants in the recording with 
variables that usually accept a particular kind of data. 

Previous Research 
The TrIAs (Trainable Information Assistants) by Mathias 
Bauer [12, 13] is a Programming by Example system that 
automates information gathering tasks on the Web.  For 
instance, TrIAs can aggregate information from airline, 
hotel, weather, and map sites to help a user with the task of 
scheduling a trip. 

Turquoise, by Rob Miller and Brad Myers [14], is a 
Programming by Example system that allows non-technical 
users to create dynamic Web pages by demonstration.  For 
instance, users can use Turquoise to create a custom 
newspaper by copying and pasting information, or automate 
the process of aggregating multiple lunch orders into the 
same order. 

Similar to Turquoise, the Internet Scrapbook, by Atsushi 
Sugiura and Yoshiyuki Koseki [12, 15], is a Programming 
by Example system that allows users with little 
programming skills to automate their daily browsing tasks.  
With the Internet Scrapbook, users can copy information 
from multiple pages onto a single personal page.  Once this 
page is created, the system will automatically update it as 
the source pages change. 

Web Macros, created by Alex Safonov, Joseph Konstan and 
John Carlis [16], allows users to interactively record and 
play scripts that produce pages that cannot be directly 
bookmarked. 

A New Approach to Generalization 
Knowing how to correctly generalize is crucial to the 
success of Programming by Example.  Past systems have 
either depended on the user to correctly supply the 
generalization; or they have attempted to guess the proper 
generalization using a handcrafted ontology, representing 
knowledge of a particular, usually narrow, domain.  Our 
contribution is to solve both the problems of generalizing 
procedures and proactively seeking invocation 

opportunities by using large knowledge bases of semantic 
information. 

Creo 
Creo allows users to train their Web browser to interact 
with a page by demonstrating how to complete the task.  If 
a user decides that they are spending too much time 
copying and pasting the ingredients of recipes, they can 
easily train Creo to automate this action.  To do so, the user 
hits the Start Recording button. 

 
Figure 2:  Creo learns how to interact with a Web site by 

watching the user’s demonstration 

Creo turns red to indicate that it is in recording mode, and it 
captures the user’s action of navigating to FreshDirect.com. 

Next, the user searches FreshDirect.com for an example 
food, “diet coke.”  Creo detects that this was an example, 
and automatically generalizes the concept to “food brand.” 

 
Figure 3:  Creo automatically generalizes the user's input 

Since these are the only two steps needed for locating a 
particular food at the grocery store, the user can now finish 
the recording, and give it a name: “Order Food.”  By 
providing a single example, “diet coke,” the user has 
created a general-purpose recording. 

In the opening example, terms like “egg,” “whole milk” and 
“blueberries” were being linked to the grocery store, even 
though these are not “food brands.”  The reason for this is 



 

that Creo actually associates a range of generalizations with 
the user’s input, but only displays the most general of the 
generalizations for clarity.  In this particular case, “food” 
was the second most general generalization of “diet coke,” 
as shown in the following figure. 

 
Figure 4:  Foods in the recipe are matched to the user's 

recording 

While this step is not required to create functional 
recordings, users can directly control the selected 
generalizations for a piece of input by clicking on the Ask-
>Food brand link in Figure 3 and clicking on the Scan tab: 

 
Figure 5:  The user can control which generalizations are 

active with check boxes 

The contextual help for this tab reads, “The Miro Toolbar 
will look for words that can be used in this recording when 
you click the Scan button.”  By checking and un-checking 
items, users can directly control Creo’s generalizations.  For 
the user’s example of “diet coke,” Creo automatically 
selected the generalizations of “food brand, food, drink, soft 
drink, soda,” and “popular soda.” 

Because Creo has access to ConceptNet and TAP, users can 
create general-purpose recordings with a single example, 

allowing their Web browser to automate interactions with 
their favorite sites. 

The topic of generalization also comes into play in invoking 
recordings: if the user creates a recording that works on 
certain kinds of data, seeing that data in a new situation 
presents an opportunity for the Web browser to invoke the 
recording. 

DATA DETECTORS 
The purpose of Data Detectors is to recognize meaningful 
words and phrases in text, and to enable useful operations 
on them [17].  Data Detectors effectively turn plain text into 
a form of hypertext. 

Previous Research 
The majority of Data Detector research occurred in the late 
1990s. 

In 1997, Milind Pandit and Sameer Kalbag released the 
Intel Selection Recognition Agent [17].  The Intel Selection 
Recognition Agent was able to detect six types of data: 
geographic names, dates, email addresses, phone numbers, 
Usenet news groups, and URLs.  These pieces of data were 
then linked to actions created by a programmer, like 
opening a Web browser to a URL, or sending an email 
message to an email address. 

In 1998, Bonnie Nardi, James Miller and David Wright 
released Apple Data Detectors [18], which increased the 
types of data detected from six to thirteen.  Apple Data 
Detectors were able to recognize phone numbers, fax 
numbers, street addresses, email addresses, email 
signatures, abstracts, tables of contents, lists of references, 
tables, figures, captions, meeting announcements, and 
URLs.  Additionally, users could supply their own lists of 
terms they wanted Apple Data Detectors to recognize.  
Similar to the Intel Selection Recognition Agent, creating 
an action associated with data required programming. 

 
Figure 6:  Apple Data Detectors (1998) 

Also in 1998, Anind Dey, Gregory Abowd and Andrew 
Wood released CyberDesk [19].  CyberDesk detected eight 
kinds of data: dates, phone numbers, addresses, names, 
email addresses, GPS positions, and times.  While this was 
less than the types supported by Apple Data Detectors, 
CyberDesk provided a more advanced framework for 
actions, including the ability to chain actions together, and 
to combine different pieces of data into the same action.  
CyberDesk also allowed for data detection on mobile 
devices.  For instance, CyberDesk provided the ability to 
associate a GPS position with the action of loading a URL.  



Like the Intel Selection Recognition Agent and Apple Data 
Detectors, the only way to create new actions with 
CyberDesk was to program them. 

The functionality of these Data Detectors has been 
integrated into several consumer products.  onCue (released 
in 1999) by aQtive monitored information copied to the 
clipboard and suggested relevant Web services and desktop 
applications.  Like earlier Data Detectors, onCue did not 
perform any level of semantic analysis, and it simply 
associated words with various search engines, an 
encyclopedia, and a thesaurus.  However, onCue differed 
from previous Data Detectors in that it was also able to 
detect different structures of information, like lists and 
tables, and then suggest relevant ways to visualize that 
information, including dancing histograms, pieTrees, and 
the charts available in Microsoft Excel.  Both the service 
and recognizer components in the onCue framework (called 
Qbits) required a developer to program [20].  Microsoft 
Office XP (released in 2001), provided data detection with 
a feature called Smart Tags, and the Google Toolbar 3.0 
(released in 2005), added data detection to Web browsing, 
with a feature called AutoLink.  Microsoft’s Smart Tags 
currently recognizes eight types of data, although a 
developer can program additional data types and actions.  
Google’s AutoLink currently recognizes three types of data: 
addresses, ISBNs and Vehicle Identification Numbers. The 
actions associated with these types of data are controlled by 
Google. 

Back to the Future 
One similarity of all of the research on Data Detectors in 
the late 1990s is each paper’s future work section. 

Programming by Example and End-User Programming 
First, all of the research mentioned the importance of 
Programming by Example and end-user programming.  The 
creators of the Intel Selection Recognition Agent wrote 
“We would like to enhance the Selection Recognition 
Agent along the lines of Eager [a Programming by Example 
system], allowing it to detect the repetition of action 
sequences in any application and automate these 
sequences” [17].  The creators of Apple Data Detectors 
wrote that a “goal is to complete a prototype of an end-user 
programming facility to enable end users to program 
detectors and actions, opening up the full Apple Data 
Detectors capability to all users” [18].  Finally, the creators 
of CyberDesk wrote that they were “investigating learning-
by-example techniques to allow the CyberDesk system to 
dynamically create chained suggestions based on a user’s 
repeated actions” [19]. 

Grammex (Grammars by Example) [21], released in 1999 
and created by Henry Lieberman, Bonnie Nardi and David 
Wright, allowed users to create Data Detectors through 
Programming by Example.  Like Creo, Grammex allowed 
users to define the actions to associate with data by 
providing demonstrations.  However, Grammex was limited 

to the few Macintosh applications that were “recordable” 
(sending user action events to the agent) [21].  Similar to 
the Data Detectors preceding it, Grammex based its data 
detection on patterns of information.  For instance, 
Grammex could learn how to detect email addresses if the 
user showed it several examples with the format 
person@host.  Unfortunately, very few types of data 
outside of URLs, email addresses and phone numbers 
actually have a detectable structure, limiting the usefulness 
of such a system.  This leads to the second “future work” 
topic mentioned by Data Detector researchers of the late 
1990s: semantics. 

Semantics 
The creators of Apple Data Detectors noted that relying on 
pattern detection has many limitations: “It is easy to 
imagine a company might choose a syntax for its product 
order numbers—a three digit department code followed by 
a dash followed by a four-digit product code—that would 
overlap with U.S. telephone number syntax, thus leading 
Apple Data Detectors to offer both telephone number and 
part-ordering actions…We can do little about these 
overlapping syntaxes without performing a much deeper, 
semantic interpretation of the text in which the pattern 
appears” [18].  The creators of CyberDesk also discussed 
the topic of semantic interpretation, writing that they were 
interested in “incorporating rich forms of context into 
CyberDesk, other than time, position, and meta-types” [19]. 

Miro 
Miro expands the types of data that can be detected from 
the previous range of three types (Google’s AutoLink) and 
thirteen types (Apple Data Detectors), to the full breadth of 
knowledge found in ConceptNet and TAP. 

It is important to note that the pages Miro reads are just 
normal pages on the Web.  The pages do not contain any 
form of semantic markup.  All of the semantic information 
is coming from the ConceptNet and TAP knowledge bases. 

Leveraging Commonsense Knowledge to Understand 
the Context of Text 
Miro builds on three years of research on applying large-
scale knowledge bases to understanding the context of text, 
and using this commonsense knowledge to improve the 
usability of interactive applications [22]. 

Related Work 
ARIA (Annotation and Retrieval Integration Agent) is a 
software agent that leverages ConceptNet to suggest 
relevant photos based on the semantic context of an email 
message [23]. 

ConceptNet has also been shown to be useful for 
determining the affective quality of text, allowing users to 
navigate a document based on its emotional content [24].  
Also in the domain of text analysis, by using ConceptNet to 
understand the semantic context of a message the user is 



 

typing, predictive text entry can be improved on mobile 
devices [25]. 

In the domain of speech recognition, this same approach 
can also be used to streamline the error correction user 
interfaces of speech recognition systems [26].  
Additionally, ConceptNet can be used to detect the gist of 
conversations, even when spontaneous speech recognition 
rates fall below 35% [27]. 

Both ConceptNet and TAP have also been found to be 
incredibly useful in the domain of search, demonstrated by 
the prototypes GOOSE (Goal-Oriented Search Engine) [28] 
and ABS (Activity Based Search) [9], respectively. 

Dealing with the Ambiguity of Natural Language 
The most significant challenge that Miro faces in its task of 
data detection is dealing with the ambiguity of natural 
language.  For instance, because of the way Open Mind was 
created, the following two statements are in ConceptNet: 

(IsA “apple” “computer”) 

(IsA “apple” “fruit”) 

It is important to deal with ambiguity well, because 
incorrectly matching a user’s goals leads to a very poor user 
experience: 

Mr. Thurrott typed the word “nice.” Up popped a Smart 
Tag offering to book a flight to Nice, France using 
Microsoft’s Expedia website. When he typed the word 
“long,” up popped a Smart Tag from ESPN offering more 
information on Oakland Athletics centerfielder Terrence 
Long. As Thurrott put it, “Folks, this is lame” [29]. 

Google’s AutoLink team avoided this problem entirely by 
opting to only detect three kinds of data that are already 
designed to be unique (addresses, ISBNs and VINs). 

Miro begins to address this problem by leveraging the 
semantic context of surrounding terms.  For instance, the 
term “apple” by itself is ambiguous, but if it is surrounded 
by terms like Dell and Toshiba, the meaning becomes 
clearer.  However, algorithms to re-rank a term’s semantic 
value based on the surrounding context are far from perfect.  
In general, our current algorithm performs much better on 
semi-structured data (like a list of items) compared to 
parsing paragraphs of text.  For instance, if someone wrote 
a blog entry about how they “spilled apple juice all over a 
brand new apple MacBook Pro,” Miro will have difficulty 
understanding the apples.  While Miro does occasionally 
make mistakes, we believe the benefit it provides users is 
valuable nonetheless.  Using large knowledge bases of 
semantic information to determine the specific semantic 
value of a particular term remains an interesting challenge 
for future research. 

PUTTING END-USERS IN CONTROL OF THEIR DATA 
AND SERVICES 
Both Microsoft and Google have received a strong outcry 
of criticism for their Data Detectors, Smart Tags and 

AutoLink [29, 30].  The equality of the criticism is 
surprising given the considerable difference between 
Microsoft and Google’s current public image.  Microsoft 
actually pulled Smart Tags as being a feature of Internet 
Explorer 6 shortly before the release of Windows XP due to 
public outcry.  In an article in the Wall Street Journal, 
columnist Walter Mossberg wrote, “Using the browser to 
plant unwanted and unplanned content on these pages--
especially links to Microsoft's own sites--is the equivalent 
of a printing company adding its own editorial and 
advertising messages to the margins of a book it has been 
hired to print. It is like a television-set maker adding its 
own images and ads to any show the set is receiving” [30]. 

Together, Miro and Creo solve this problem by enabling 
end users to be in control of defining the services associated 
with particular types of data. 

IMPLEMENTATION 
This section briefly covers the implementation of Creo and 
Miro.  Further information can be found in Alexander 
Faaborg’s masters thesis, A Goal-Oriented User Interface 
for Personalized Semantic Search [31]. 

Implementation of Creo 

Recording Actions on the Web 
Unlike many of the previous Programming by Example 
systems for the Web, which are implemented using a proxy 
server, Creo is integrated directly into a Web browser. 
Creo’s integration with Internet Explorer provides two core 
functions: (1) Monitoring, the ability to directly capture the 
user’s actions, and what the user is currently looking at, and 
(2) Impersonation, the ability to recreate actions inside the 
Web browser, and make it appear as if an actual user was 
completing them. 

The basic set of actions that Creo must be able to monitor 
and impersonate consists of: capturing navigation events 
(monitoring), navigating (impersonation), scraping a form 
(monitoring), filling out a form (impersonation), being 
instructed to scrape text from a Web site (monitoring), and 
scraping text from a Web site (impersonation). 

From a Web site’s perspective, there is no difference 
between the user completing actions by controlling their 
Web browser, and Creo completing actions by controlling 
the Web browser. Aside from the fact that Creo is faster 
(which actually caused problems with some Web sites, so it 
was subsequently slowed down), Creo does a perfect job of 
impersonating the user’s actions.  This, of course, does not 
include captcha tests, or completing any other type of 
higher level perceptual or cognitive challenges. 

Generalizing Information 
What differentiates Programming by Example systems like 
Creo from basic macro recorders is their ability to 
generalize information.  First, Creo determines if the input 
should be generalized or remain static based on three 
heuristics:  (1) if the input consists of personal information, 



(2) if the name of the text field matches a predetermined list 
of fields that should remain static, and (3) the number of 
generalizations of the input.  If Creo determines that the 
input should be generalized, it looks up the relevant IsA 
relationships for the input in ConceptNet and TAP.  For 
instance, the input “diet coke” is found in ConceptNet and 
TAP in statements like: 

(IsA “diet coke” “food brand”) 

As shown in the earlier example, the full list of 
generalizations of “diet coke” consists of: “food brand, 
food, drink, soft drink, soda,” and “popular soda.”  These 
generalizations are written to the recording’s XML file, and 
leveraged by Miro when determining if the recording 
should be activated based on the semantic context of a Web 
page. 

Implementation of Miro 
Miro determines the user’s potential goals based on the 
Web page they are looking at by matching the 
generalizations of terms and phrases on the page to the set 
of generalizations associated with recordings created using 
Creo.  For instance, the recipe page shown earlier activated 
the “Order Food” and “Nutritional Information” recordings 
because many of the terms on the Web page generalized to 
“food,” and this generalization described a variable in both 
the “Order Food” and “Nutritional Information” recordings. 

When Miro converts a plain text term or phrase into a 
hyperlink for a particular recording, the hyperlink does not 
reference a resource found on the Internet.  Instead, the 
hyperlink references a URI that instructs the Web browser 
to invoke the recording, with the term or phrase used as a 
variable. 

Limitations of Creo and Miro 
Creo’s current implementation results in a number of 
limitations to its use.  First, Creo cannot record interactions 
with Flash, Java Applets, or other non-HTML elements of 
Web pages. This limitation is similar to the challenges 
facing the development of third-party Software Agents for 
client-side applications. To be able to automate a procedure, 
the agent must be able to capture the user’s actions. 

Secondly, Creo is currently not able to generalize 
navigation events.  However, many of the Programming by 
Example systems for the Web discussed earlier have 
implemented this ability. 

The third limitation of Creo is its ability to automate 
procedures that change based on the variables provided. 
Creo is able to automate multi-step, multi-variable 
procedures, like purchasing stock, ordering a pizza, or 
sending PayPal.  However, Creo cannot currently automate 
procedures that change based on dependencies of the 
variables provided, like making the travel arrangements for 
a trip. 

Due to the breadth of ConceptNet and TAP, Miro is able to 
avoid many terminological issues like the different spelling 

of words, synonyms, and in some cases, concepts described 
in phrases.  However, the knowledge in ConceptNet and 
TAP is by its very nature common and generic.  
Subsequently, Miro is unable to detect specialized domain 
information, like particular part numbers, job codes, or 
customer numbers, unless this information is provided in an 
additional knowledge base. 

While Creo is able to automate recordings that take 
multiple variables, the current implementation of Miro is 
not yet able to combine multiple pieces of information from 
a Web page into a single invocation. 

EVALUATION 
In this section we describe two sets of evaluations: (1) a 
series of evaluations done during the iterative design 
process of Creo conducted with a total of 10 subjects, and 
(2) a final evaluation conducted with 34 subjects to assess 
how Creo and Miro can improve a user’s efficiency when 
completing a task. 

Evaluating the User Interface Design 
While designing Creo and Miro, we realized that the critical 
factor to their success would not be technical limitations, 
since systems built on top of ConceptNet and TAP have 
worked fine in the past.  Instead, the critical factor to their 
success would be usability.  We followed an iterative 
design process during Creo's creation, formally evaluating 
each iteration, before designing the next.  The first version 
of Creo’s user interface was evaluated with three users 
during a paper prototyping session.  The second version of 
Creo’s user interface was evaluated with four user interface 
designers, using a computer prototype.  The third version of 
Creo’s user interface was evaluated in a usability test with 
three novice users, using a fully functional prototype 
running as part of Internet Explorer. 

Determining the Software’s Ability to Improve the User’s 
Efficiency 
The purpose of the fourth user evaluation was to (1) 
conclude if the overall system made users more efficient 
when completing a task, and (2) to conclude if users 
understood the utility of the software, and if they would use 
software applications like Creo and Miro if they were 
included in their Web browser. 

The evaluation was run with a total of 34 subjects, 17 male 
and 17 female.  In Part 1 of the evaluation, 17 people were 
in the experimental group and 17 people were in the control 
group.  The average age of the subjects was 29.3, with a 
range of 19 to 58.  26% of subjects had no programming 
experience, and all subjects were familiar with using the 
Web.  Subjects were compensated $10. 

Part 1: Evaluating Miro 
In the first part of the experiment, subjects were asked to 
order 11 ingredients in a recipe for Blueberry Pudding 
Cake.  The experimental group of subjects had access to the 
Miro toolbar, which could recognize common foods and 



 

automatically link them to the subject’s grocery store.  The 
control group of subjects completed the same task, but used 
Internet Explorer with Miro turned off.  Subjects in the 
control group were allowed to complete the task however 
they naturally would.  All of the subjects were instructed to 
complete the task at a natural pace, and not to treat the 
experiment like a race.  We hypothesized that the 
experimental group would be able to complete the task 
significantly faster than the control group. 

Part 2: Evaluating Creo 
In the second part of the experiment, all of the subjects 
were asked to create a recording with Creo that could order 
any type of food at a grocery store.  Subjects completed this 
task after being shown an example of how Creo works.  We 
showed the subjects a single demonstration of how to train 
Creo to look up a movie at IMDB.  We chose to do this 
because unlike the three preceding usability studies, for this 
evaluation we were interested in capturing the average time 
it took a slightly experienced subject to create a simple 
recording.  We hypothesized that subjects would be able to 
successfully complete this task in a trivial amount of time. 

Results 

 
Figure 7:  The time it took the control and experimental 

groups to complete the task 

The experimental group completed the task in Part 1 in an 
average time of 68 seconds, with a standard deviation of 20 
seconds.  The control group completed the task in an 
average time of 139 seconds with a standard deviation of 58 
seconds.  These results are statistically significant (p<.001).  
These results are also consistent with the study conducted 
by the Intel Selection Recognition Agent authors, finding 
that interface “saved both time and effort, in some cases 
over 50%” [17]. 

The range of results from the control group in Part 1 is due 
to the fact that subjects were asked to complete the task 
however they naturally would.  There was a large amount 
of variability in the way subjects transferred information 
between the recipe and the grocery store site.  Some 
subjects relied heavily on keyboard shortcuts, using alt-tab 
to switch windows and tab to switch which control on the 

grocery store page had the focus.  Some subjects double 
clicked to select a word, and triple clicked to select a full 
line.  Other subjects retyped every ingredient instead of 
copying and pasting.  Since they would often hold three to 
four ingredients in their own memory at a time, this usually 
turned out to be faster. 

In Part 2, subjects completed the task in 26 seconds, with a 
standard deviation of 5 seconds.  This means that even for 
interacting with a list of 11 items, it would be faster to train 
Creo first, and then use Miro to turn the information into 
hyperlinks.  In Figure 7, the time for Part 2 is represented as 
an overhead cost for the experimental group’s time for Part 
1. 

The debriefing questionnaire contained several Likert scale 
questions asking the subject’s impressions of the software’s 
usability (shown below), and if they would actually use the 
software. 

 
Figure 8:  Did the subjects find Miro easy to use 

 
Figure 9:  Did the subjects find Creo easy to use 

Asked if they would use the software, 85% of subjects 
responded they would use Creo, and 100% of subjects 
responded they would use Miro.  We have implemented a 
way for users to easily share the functionality of recordings 
they create with Creo without sharing any of their personal 
information (which Creo automatically detects and stores 



separately).  So it is technically possible for a subset of 
users to use Creo, and for everyone to use Miro. 

Limitations of the Evaluation 
While subjects responded favorably to debriefing questions 
asking if they would use Creo and Miro if they were 
integrated into their Web browsers, it remains an open 
question if users in real-world environments would devote 
the necessary time to apply these tools. 

The 34 users in our study were demographically diverse in 
terms of age and gender.  However, the fact that 74% of the 
subjects reported some level of programming experience 
may limit this study’s external validity.  Unexpectedly, we 
found that subjects with programming experience had more 
difficulty using Creo than subjects without any 
programming experience.  While at first this seems 
counterintuitive, we believe it has to do with the subject’s 
expectations.  Specifically, technical subjects had more 
difficulty believing that Creo could generalize their single 
example.  This is because they were familiar with how 
computers normally function. 

To analyze how Creo and Miro make users more efficient 
compared to using a conventional Web browser, this 
evaluation focused on a single example of using Creo and 
Miro.  We did not study the breadth of tasks that Creo and 
Miro can perform for two reasons: (1) the ConceptNet and 
TAP knowledge bases are rapidly growing, and (2) the 
respective teams at MIT and Stanford responsible for the 
creation of these knowledge bases have already performed 
evaluations of their breadth [1-4, 7-10].  We believe the 
task users were asked to perform, while only in a single 
domain, represents a common use of Creo and Miro.  
However, further studies should be conducted to assess 
Creo and Miro’s overall effectiveness in real world 
situations. 

FUTURE WORK 

When Things Go Wrong 
While the ConceptNet and TAP knowledge bases are very 
large, they are certainly not complete.  To assist the user 
with situations where Miro fails to detect a specific piece of 
information, we have developed a Training Wizard.  This 
wizard consists of a three-step process: (1) ask the user 
what information should have been detected, (2) ask the 
user what the information is (by having them fill out a 
sentence), and (3) ask the user which recording from Creo 
should have been activated.  In most cases, Miro can 
provide intelligent defaults for at least two of these three 
steps, creating a collaborative learning interface between 
Miro and the user.  In the first step, Miro performs 
predictive text entry on what the user types, based on the 
terms on the current Web page.  In the second step, Miro 
attempts to describe the concept itself.  In some cases Miro 
will know what the concept is, but not how it relates to the 
current set of recordings created by Creo.  In the third step, 
Miro attempts to check which recordings should have been 

activated based on the information in the previous step.  
This is useful when providing new pieces of information.  
For instance, once the user tells Miro that “Eastern Standard 
Tribe” is a book, Miro knows what to do with books. 

For the situations where a recording breaks due to a change 
with a Web site, we have a developed a debugging mode. 

Learning from the Web 
We are exploring using natural language processing to 
enable Miro to learn new pieces of information by reading 
Web pages.  Miro takes the text of the page the user is on 
and (1) performs sentence boundary detection, (2) isolates 
the nouns and words used for pattern matching, (3) 
lemmatizes the text and, (4) matches the text against 11 
different patterns.  For instance, the sentence “The Killers is 
a really great band” can be easily parsed to (IsA “the 
killers” “band”).  When Miro finds a new piece of 
information that matches the current set of recordings, it 
displays the activated recording (as if the knowledge came 
out of ConceptNet or TAP), and then watches to see if the 
user clicks on it.  We believe an approach like this could be 
used to quickly grow broad knowledge bases, if a system 
like Miro were to be used by a large number of users. 

CONCLUSION 
In their 1998 article, the creators of Apple Data Detectors 
described the goal-oriented nature of their system: “When 
users invoke it on a region of text in a document, they are 
saying, in effect, ‘Find the important stuff in here and help 
me do reasonable things to it’… Direct manipulation is a 
wasteful, frustrating way for users to interact with machines 
capable of showing more intelligence” [18].  Creo and Miro 
further enhance this type of goal-oriented user interface, by 
(1) enabling users to define their own services by example, 
and by (2) increasing the types of data that can be detected 
to any information stored in the semantic knowledge bases 
ConceptNet and TAP. 

Creo and Miro, like many other interactive applications 
[22-28], would not be able to generalize information and 
anticipate their users’ goals without access to the 
knowledge stored in ConceptNet and TAP.  This paper has 
demonstrated the effect these knowledge bases can have on 
the research areas of Programming by Example and Data 
Detection.  However, we believe many other types of 
interactive applications can benefit from access to this 
knowledge as well.  Usability is improved by making it 
easier for humans to understand computers.  However the 
reverse is true as well.  ConceptNet and TAP improve 
usability by making it easier for computers to understand 
humans. 
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