
 

Knowing What You're Talking About: 
Natural Language Programming of a 
Multi-Player Online Game

 

 

Abstract 
Enabling end users to express programs in natural 
language would result in a dramatic increase in 
accessibility. Previous efforts in natural language 
programming have been hampered by the apparent 
ambiguity of natural language. We believe a large part 
of the solution to this problem is knowing what you're 
talking about – introducing enough semantics about the 
subject matter of the programs to provide sufficient 
context for understanding.  

We present MOOIDE (pronounced "moody"), a natural 
language programming system for a MOO (an 
extensible multi-player text-based virtual reality 
storytelling game). MOODIE incorporates both a state-
of-the-art English parser, and a large Commonsense 
knowledge base to provide background knowledge 
about everyday objects, people, and activities. End-
user programmers can introduce new virtual objects 
and characters into the simulated world, which can 
then interact conversationally with (other) end users. 

In addition to using semantic context in traditional 
parsing applications such as anaphora resolution, 
Commonsense knowledge is used to assure that the 
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virtual objects and characters act in accordance with 
Commonsense notions of cause and effect, inheritance 
of properties, and affordances of verbs.  This leads to a 
more natural dialog.  

Programming in a MOO 
Figure 1 illustrates MOOIDE's interface. A MOO [1] is a 
conversational game modeling a simulated world 
containing virtual rooms or environments, virtual 
objects such as tables or flower pots, and virtual 
characters (played in real-time by humans or controlled 
by a program). Players of the game may take simulated 
physical actions, expressed in natural language, or say 
things to the virtual characters or other human players. 
Programming consists of introducing new virtual 
environments, objects, or characters. They then 
become part of the persistent, shared environment, and 
can subsequently interact with players. Since the 
players use natural language to interact with the game, 
programming new game components themselves in 
natural language is, well, natural.  

Our previous work on the Metafor system ([2], [3]) 
showed how we could transform natural language 
descriptions of the properties and behavior of the 
virtual objects into the syntax of a conventional 
programming language, Python. We showed how we 
could recognize linguistic patterns corresponding to 
typical programming language concepts such as 
variables, conditionals, and iterations. However, that 
system did not contain a full MOO runtime environment 
in which we could dynamically query the states of 
objects. MOODIE also adds the ability to introduce new 
Commonsense statements as necessary to model the 
(necessarily incomplete) simulated environment.  

 

Figure 1. MOOIDE's interface. The user is programming the 

behavior of a microwave oven in the simulated world.  

A dialogue with MOOIDE 
Let's look at an example of interaction with MOOIDE. 
These examples are situated in a common household 
kitchen where a user is trying to build new virtual 
kitchen objects and giving them behaviors.  

There is a chicken in the kitchen. 
There is an oven. 
You can only cook food in an oven. 
When you cook food in the oven, if the food 
is hot, say "The food is already hot." 
Otherwise make it hot. 

The user builds two objects, a chicken and an oven and 
teaches the oven to respond to the verb "cook". 
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MOO syntax then allows any player to use the verb by 
entering the following text into the MOO: 

cook chicken in oven 

In the verb description, the user also describes a 
decision construct (the If-Else construct) as well as a 
command to change a property of an object—“make it 
hot". To disallow cooking of non-food items, he puts a 
rule saying that only objects of the 'food' class are 
allowed to be cooked in the oven (“You can only cook 
food in an oven”). Note this statement is captured as a 
commonsense fact because it describes generic objects. 

When the user presses the "Test" button on the 
MOOIDE interface, MOOIDE generates Python code and 
pushes it into the MOO where the user can test and 
simulate the world he made. To test the generated 
world, he enters cook chicken in oven into the MOO 

simulation interface. However, because the MOO 
doesn't know that chicken is a food, the MOO generates 
an error— You can only cook food in an oven. This 

is not what the user expected!  

To resolve this error, he then has to add the statement 
Chicken is a kind of food. Then he tests the system 

again using the same verb command. Now, the 
command succeeds and the MOO prints out The 
chicken is now hot. To test the decision construct, 
the user types cook chicken in oven into the MOO 
simulator. This time the MOO prints out The food is 
already hot. 

  

 

Figure 2: Commonsense facts used in the microwave oven 
example.  

 
Implementation 
MOODIE performs natural language processing with a 
modified version of the Stanford link parser [6] and the 
Python NLTK natural language toolkit. As in Metafor, 
the ConceptNet Commonsense semantic network 
provides semantics for the simulated objects, including 
object class hierarchies, and matching the arguments 
of verbs to the types of objects they can act upon, in a 
manner similar to Berkeley's FRAMENET. We are 
incorporating the AnalogySpace inference described in 
[7] to perform Commonsense reasoning. In aligning the 
programmed objects and actions with our 
Commonsense knowledge base, we ignore for the 
moment, the possibility that the author might want to 
create "magic ovens" or other kinds of objects that 
would intentionally violate real-world expectations for 
literary effect.  

Parsing 
The  system uses two different types of parsing- 
syntactic parsing and frame based parsing.  Syntactic 
parsing works on a tagger that identifies syntactic 
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categories in sentences and that generates parse trees 
by utilizing a grammar (often a probabilistic context 
free  grammar). For example a sentence can be tagged 
as:   

You/PRP can/MD put/VB water/NN in/IN a/DT 
bucket/NN ./.  

From the tag, a hierarchical parse tree that chunks 
syntactic categories together to form other categories 
(like noun/verb phrases) can also be generated:    

(ROOT  (S (NP (PRP You)) (VP (MD can)   
                (VP (VB put)  (NP (NN water))  
                (PP (IN in)   (NP (DT a) (NN bucket)))))  
                (. .)))     

Frame based parsing identifies chunks in sentences and 
makes them arguments of frame  variables. For 
example one might define a frame parse of the above 
sentence as:   You can put [ARG] in [OBJ]     

The Stanford parser [6] provides good syntactic 
parsing. We wrote a simple frame based parser for our 
use. Syntactic parsing allows identification of syntactic 
artifacts like noun phrases and verb phrases and 
dependency relationships between them. Frame based 
parsing allows us to do two things - first it allows us to 
do chunk extractions that are required for extracting 
things  like object names, messages and verb 
arguments. Second, frame parsing allows us to identify 
and  classify the input. For example a user input that is 
of the form "If....otherwise..." would be  identified as 
an "IF_ELSE" construct very typical in programming.   
The logic of the parsing system is controlled by the 

dialog manager that facilitates and interprets user 
interaction. The dialog manager waits for user input.  

When the user enters something into the system, it 
first categorizes the input. It uses three kinds of 
information to do the categorization: the current 
context, a frame based classification of current input 
and the object  reference history. The current context 
broadly keeps track of what is being talked about - the 
user might be conversing about creating a new verb or 
adding decision criteria inside an IF construct.  The 
dialog manager also keeps track of object reference 
history to allow users to use anaphora so that they do 
not need to fully specify the object in question every 
time. Using the previous  information, the frame based 
classifier does a broad syntactic classification of the 
input.    

After the input has been classified according to the 
previous parameters, the dialog  manager parses the 
input and makes changes to the internal representation 
of the objects, object  states, verbs and programs. Post 
parsing, the dialog manager can generate three types 
of dialogs  - a confirmation dialog, a clarification dialog 
or an elaboration dialog. A confirmation dialog simply 
tells the user what was understood in the input and if 
everything in the input was parsed  correctly. A 
clarification dialog is when the dialog manager needs to 
ask the user for clarification on the input. This could be 
simple 'yes/no' questions, reference resolution conflicts 
or input reformulation in case the parser cannot fully 
parse the input. If the parser fails to parse the input  
correctly, the dialog manager does a rough 
categorization of the input to identify possible features  
like noun phrases, verb phrases or programming 
artifacts. This allows it to generate help messages 
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suggesting to the user to reformulate the input so that 
its parser can parse the input correctly. For the 
elaboration dialog, the system lets the user know what 
it did with the previous input and suggests other kinds 
of inputs to the user. These could be letting the user 
know what   commonsense properties were 
automatically added, suggesting new verbs or 
requesting the user to define an unknown verb. 

Commonsense reasoning 
An important lesson learned by the natural language 
community over the years is that language cannot be 
fully understood unless you have some semantic 
information – you've got to know what you're talking 
about.  

In our case, Commonsense semantics is provided by 
Open Mind Common Sense [2], a knowledge base 
containing more than 800,000 sentences contributed by 
the general public to an open-source Web site. OCMS 
provides "ground truth" to disambiguate ambiguous 
parsings, and constrain underconstrained 
interpretations. OMCS statements come in as natural 
language, are processed with tagging and template 
matching similar to the processes used for interpreting 
natural language input explained above. The result is 
ConceptNet, a semantic network organized around 
about 20 distinguished relations, including IS-A, KIND-
OF, USED-FOR, etc. The site is available at 
openmind.media.mit.edu.  

 

 

 

 

Figure 3. What Open Mind knows about microwave ovens. 

 
Commonsense reasoning is used in the following ways. 
First, it provides an ontology of objects, arranged in 
object hierarchies. These help anaphora resolution, and 
understanding intentional descriptions. It helps 
understand which objects can be the arguments to 
which verbs. It provides some basic cause-and-effect 
rules, such as "When an object is eaten, it disappears".  

 
Understanding language for MOO 
programming 
Key in going from parsing to programming is 
understanding the programming intent of particular 
natural language statements. Our recognizer classifies 
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user utterances according to the following speech act 
categories: 

• Object creation, properties, states and relationships. 
"There is a microwave oven on the table. It is empty." 

A simple declarative statement about a previously 
unknown object is taken as introducing that object into 
the MOO world. Descriptive statements introduce 
properties of the object. Background semantics about 
microwave ovens say that “empty” means “does not 
contain food” (it might not be literally empty – there 
may be a turntable inside it).  

• Verb definitions. 
"You can put food in the basket". 

Statements about the possibility of taking an action, 
where that action has not be previously mentioned, are 
taken as introducing the action, as a possible action a 
MOO user can take. Here, what it means to “put food”. 
A “basket” is the argument to (object of) that action. 
Alternative definition styles: “To …, you…”, “Baskets are 
for putting food in”, etc.  

• Verb argument rules.  
"You can only put bread in the toaster." 

This introduces restrictions on what objects can be used 
as argument to what verbs. These semantic restrictions 
are in addition to syntactic restrictions on verb 
arguments found in many parsers.  

• Verb program generation. 
"When you press the button, the microwave turns on." 

Prose that describes sequences of events is taken as 
describing a procedure for accomplishing the given 
verb.  

• Imperative commands. 
"Press the button." 

• Decisions. 
"If there is no food in the oven, say 'You are not 
cooking anything.'" 

Conditionals can be expressed in a variety of forms: IF 
statements, WHEN statements, etc. 

• Iterations, variables, and loops.  
"Make all the objects in the oven hot." 

In [5], user investigations show that explicit 
descriptions of iterations are rare in natural language 
program descriptions; people usually express iterations 
in terms of sets, filters, etc. In [3] we build up a 
sophisticated model of how people describe loops in 
nautral language, based on reading a corpus of natural 
language descriptions of programs expressed in 
program comments.  

Evaluation 
We designed MOOIDE so that it is intuitive for users 
who have little or no experience in programming to 
describe objects and behaviors of common objects that 
they come across in their daily life. To evaluate this, we 
tested if subjects were able to program a simple 
scenario using MOOIDE. Our goal is to evaluate 
whether they can use our interface without getting 
frustrated, possibly enjoying the interaction while 
successfully completing a test programming scenario.  
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Our hypothesis is that subjects will be able to complete 
a simple natural language programming scenario within 
20 min. If most of the users are able to complete the 
scenario in that amount of time, we would consider it a 
success. The users should not require more than 
minimal syntactic nudging from the experimenter. 

We first ran users through a familiarization scenario so 
that they get a sense of how objects and verbs are 
described in the MOO. Then they were asked to do a 
couple of test cases in which we helped the subjects 
through the cases. The experimental scenario consisted 
of getting subjects to build an interesting candy 
machine that gives candy only when it is kicked. The 
experimenter gave the subject a verbal description of 
of the scenario (the experimenter did not 'read out' the 
description) 

You should build a candy machine that works only 

when you kick it. You have to make this 

interesting candy machine which has one candy 

inside it. It also has a lever on it. It runs on magic 

coins. The candy machine doesn't work when you 

turn the lever. It says interesting messages when 

the lever is pulled. So if you're pulling the lever, 

the machine might say “oooh I malfunctioned” It 

also says interesting things when magic coins are 

put in it like “thank you for your money”. And 

finally when you kick the machine, it gives the 

candy. 

The test scenario was hands-off for the experimenter 
who sat back and observed the user/MOOIDE 
interaction. The experimenter only helped if MOOIDE 
ran into implementation bugs, if people ignored minor 
syntactic nuances (e.g. comma after a when-clause) 

and if MOOIDE generated error messages. This was 
limited to once or twice in the test scenario. Figure 4 
summarizes the post-test questionnaire.  

 

Figure 4. Results of evaluation questionnaire.  

Overall, we felt that subjects were able to get the two 
main ideas about programming in the MOOs—
describing objects and giving them verb behavior. 
Some subjects who had never programmed before 
were visibly excited at seeing the system respond with 
an output message that they had programmed using 
MOOIDE while glazing over the demonstration part 
where we showed them an example of LambdaMOO 
syntax. One such subject was an undergraduate 
woman who had tried to learn conventional 
programming but given up after spending significant 
amount of effort learning syntactic nuances. It seems 
that people would want to learn creative tasks like 
programming, but do not want to learn a programming 
language. Effectively, people are looking to do 
something that is interesting to them and that they are 
able to do that quickly enough with little learning 
overhead.  
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In the post evaluation responses, all the subjects 
strongly felt that programming in MOOIDE was easier 
than learning a programming language, even though 
40% of the subjects mentioned they would like 
MOOIDE to support a larger variety of syntactic inputs. 
We feel some requirement of syntax is good, it helps 
people to learn how to structure procedural 
information, however they should not be required to 
put comma delimiters or quotes, that we required in 
MOOIDE syntax. The system should automatically do 
that and show it to users. This problem is quite solvable 
by building a better chunker. One can also use an 
online parser that parses the input as a person types it 
into MOOIDE to suggest what kinds of things one might 
consider typing in after that input.  

During the evaluation MOOIDE, as with any complex 
integrated system, had minor implementation bugs—
like output strings would not accept special characters 
that people might type in. The MOOP simulation 
environment did not accept articles like “the” and “an” 
for objects which frustrated a couple of subjects. This is 
something that is easily rectifiable and we consider the 
test results to be still valid even though we helped the 
subjects through these cases (Note: MOOIDE's natural 
language interface is quite good at handling different 
types of noun phrases. This issue came up only in the 
interface to MOOP, the 3rd party MOO environment.) In 
some cases, certain syntax of verb commands and 
object creation was not parsed either because of a bug 
in the grammar specification or it was not handled at 
all. In such cases, when given an example of a syntax 
that was parsed, subjects were able to reformulate the 
particular verb command. It seems that unlike in 
programming with a computer language in which 
excessive wording could be considered an overhead, 

the most common things that people want—words like 
“the” and “an” and fillers like the word “like” should 
definitely be parsed in the input. People get frustrated 
if the system cannot handle these most basic things.  

There were some other things that came up in the test 
scenario that we did not handle and we had to tell 
people that the system would not handle them. All such 
cases below came across once each in the evaluation: – 
People do not necessarily start verb behaviors with 
event declarations, they would often put the event 
declaration at the end. So one might say “the food 
becomes hot, when you put it in the oven” instead of 
“when you put the food in the oven, it becomes hot”. 
This is a syntactic fix that requires addition of a few 
more patterns. – The system does not understand 
commands like “nothing will come out” or “does not 
give the person a candy” which describe negating an 
action. Negation is usually not required to be specified. 
These statements often correspond to the “pass” 
statement in Python. In other cases, it could be 
canceling a default behavior. – One subject 
overspecified – “if you put a coin in the candy machine, 
there will be a coin in the candy machine”. This was an 
example where a person would specify very basic 
commonsense which we consider to be at the sub-
articulatable level, so we do not expect most people to 
enter these kind of facts. This relates to a larger issue—
the kind of expectation the system puts upon its users 
about the level of detail in the commonsense that they 
have to provide.  

The system did not handle object removals at this time, 
this is something that is also easily rectifiable. It does 
not handle chained event descriptions like “when you 
kick the candy machine, a candy bar comes out” and 
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then “when the candy bar comes out of the candy 
machine, the person has the candy bar”. Instead one 
needs to say directly, “when you kick the candy 
machine, the person has the candy bar”. In preliminary 
evaluations we were able to identify many syntactic 
varieties of inputs that people were using and they 
were incorporated in the design prior to user 
evaluation. These were things like verb declarations 
chained with conjunctions e.g. “when you put food in 
the oven and press the start button, the food becomes 
hot” or using either “if” or “when” for verb declarations 
e.g. “if you press the start button, the oven cooks the 
food”.  

Related Work 
Aside from our previous work on Metafor, the closest 
related work is Inform 7, a programming language for a 
MOO game which does incorporate a parser for a wide 
variety of English constructs [4]. Inform 7 is still in the 
tradition of "English-like" formal programming 
languages, a tradition dating back to Cobol. Users of 
Inform reported being bothered by the need to 
laboriously specify "obvious" commonsense properties 
of objects. Our approach is to allow pretty much 
unrestricted natural language input, but be satisfied 
with only partial parsing if the semantic intent of the 
interaction can still be accomplished. We were originally 
inspired by the Natural Programming project of Pane 
and Myers [5], which considered unconstrained natural 
language descriptions of programming tasks, but 
eventually wound up with a graphical programming 
language of conventional syntactic structure.  

Conclusion 
While general natural language programming remains 
difficult, some semantic representation of the subject 
matter on which programs are intended to operate 
makes it a lot easier to understand the intent of the 
programmer. Perhaps programming is really not so 
hard, as long as you know what you're talking about. 
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