The Mashup as a Lens on End-User Programming for the
Web

Jeffrey Wong, Jason 1. Hong
Human-Computer Interaction
Carnegie Mellon University
Pittsburgh, PA 15217
jeffwong@cmu.edu, jasonh@cs.cmu.edu

ABSTRACT

Our past work in Web End-User Programming (WebEUP)
has focused mainly on users trying to build or replicate
functionality found in mashups. In this paper however, we
discuss how this is perspective is simply one of several
perspectives on WebEUP. We review different
characteristics of WebEUP tools, and how these may be
combined with characteristics of actual mashups, mashup-
like artifacts, and tasks to form a model that may give
insight into how to organize the work on WebEUP

Author Keywords
End-user programming, mashups, web macros, automation,
data integration

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION

Mashups and mashup construction tools have recently
proliferated as users and developers have recognized that
data and functionality found on websites can be used as
computational resources. Although our work has focused on
mashups [*b] and enabling end-users to replicate mashup
functionality using higher-level tools [*a], we have noticed
that there are patterns to common approaches, common
problems, and interesting future challenges to end-user
programming for the Web (WebEUP).

MOVING FROM ON FROM TRADITIONAL EUP

There has been much research end-user programming
systems [*c] and tools that are widespread in daily use [*d].
Spreadsheets can be thought of as numerical models or
interconnected formulae. Programming by demonstration
[*f] can be used help in text manipulation[*e], construction
of user interfaces [*g], and many other domains. Is end-user
programming for the web simply another domain? The web
is a programmable domain in large part due to a few
fortunate factors:

1) data seen in the interface of a website is extractable from
the textual representation of data,

2) data on many web pages tend to follow structural and
semantic patterns [*k],

3) and data on web sites mostly all accessible from the
same network.

But is WebEUP a single domain? Our work has focused on
a subset of WebEUP commonly referred to as “mashups”.
The definition of what a mashup is very fuzzy, when based
on the intentions of mashup creators, providers of mashup
resources, and users. In surveying mashups on popular
mashup directories [*b], we found that there were certain
patterns, for example aggregation of data sets (when a
website can be considered an interface) or providing
focused views on a data set. Mashups that aggregate data
might be distinguished by whether they resolve multiple
schemas or whether they cross-reference attributes between
data sets [*i, *j]. In our survey of mashup patterns [*b], we
found that the only necessary and sufficient condition that
allows something to be called a mashup is that it re-uses a
web resource in a novel way; combination of multiple web
resources is not necessary.

Being a website might be a necessary property of being a
mashup, but many WebEUP tools enable users to “create
mashups” (a synonym for the mashing up activity), without
necessarily having an website as an end result. For
example, “within-page” programming languages and
component sets such Greasemonkey, Chickenfoot [*1], and
Intel’s Mashmaker [*m] allow users to modify or augment
data on pages while they are viewing them. As far as some
users are concerned, this can be equivalent to what a
comparable (but hypothetical) mashup might achieve, but
without the overhead of searching for a site that fits a
particular requirements in a particular moment, which may
also evolve over the course of a task. Categories are blurred
further when we consider simple automation scripts on one
or more websites from tools such as CoScripter [*h] and
emergent properties that arise from component sharing.

The web as an EUP problem might be considered a single
domain or a collection of multiple domains, or it can be
both at the same time. We propose that there are 3 main
perspectives that will help describe WebEUP:

1. perspectives taken by existing tools to create mashups
and mashup-like artifacts such as the within-page
programming and automation languages

2. perspectives embodied by existing mashups

3. and example use cases from empirical data recorded
potential users of WebEUP tools.


mailto:jeffwong@cmu.edu
mailto:jeffwong@cmu.edu
mailto:jasonh@cs.cmu.edu
mailto:jasonh@cs.cmu.edu

A helpful framework for characterizing WebEUP that
unifies this perspectives is to see how different tools,
existing mashups, scripts, and tasks overlap in Figure 1.

Existing
Mashups

Tools
and
Scripts

Region A: Mashups that users can complete their
tasks with. They just need to be found.

Region B: Mashups that can be built with mashup
tools but have no clear task fit (perhaps experimental).

Region C: Tasks that can be solved with mashup tool
but are not full-featured websites. “One-time
mashups” that are thrown away.

Region D: Mashups that can be built with mashup
tools that resemble existing mashup websites. Reused
by many and adaptable to support many tasks.

Figure 1. Proposed Model of WebEUP space.

In Figure 1, there are tools that can create mashups which
are of use to no one (Region B) while there are also
mashups that have been constructed for fun or
experimentation that do not fulfill a specific task (or none
that has emerged yet). Region C represents tools that can
help fulfill some WebEUP tasks but cannot create fully
reusable mashups, as either public websites or sharable
objects that can be quickly understood and adapted to
another person’s task. Region D represents represents tools
that are adaptable to many tasks and can also be generalized
or abstracted from an initial concrete or prototyped object
to something reusable, available, and reliable.

MASHUP TOOLS

This section gives a brief summary of popular mashup
construction tools, grouped roughly by their framing of
what WebEUP programming should be.

Microsoft Popfly, Marmite, Yahoo Pipes

These tools conceive of mashups as data-flows between
operations. Operations are input-output blocks that the user
must select from a palette. Operations in Popfly and
Marmite[*a] are constructed using at the Javascript
programming level with some textual programming
interface. They become available to the higher-level flow

design. Yahoo Pipes operations are standard low-level
operations such as counting, building up strings, and
filtering for strings. The primary unit of data is the tuple.
Marmite shows the state of the data at each step, while
Pipes must be explicitly put in debug mode to see the data
as it flows through the program. Each of these tools
construes WebEUP as the construction of a program. Yahoo
Pipes emphasizes saving and sharing so that others can
learn from examples.

Operations in Marmite and Popfly are intended to be easy-
to-use wrappers around web services

d.mix

d.mix[*o] is a system that attempts to bridge the gap
between elements as seen by the user on a page, and web
services calls that produce similar results. It is functionally
a system that appends user contributed annotations that
show how certain elements on web pages can be replicated
with web services calls. Like Mashmaker, these annotations
are canonicalized into a shared repository where users can
discover API calls by using the normal website and later,
write small scripts to assemble their own web pages using
component web services that they have discovered while
browsing.

MASHUP-LIKE ARTIFACTS

CoScripter

CoScripter (aka Koala) [*n] is a demonstrative recording
system where users record a sequence of steps that they
want to repeat in the future or describe processes they want
to share with others [*h]. Script actions are recorded in
English-like statements so they can be previewed by other
users who may consider using the script. Koala supports
some parameterization of scripts with “personal variables”
and mixed-initiative interaction, where the human can
intervene for in steps where the script no longer works
perfectly, a human needs to verify an action, or to make
judgements which may not be computable (e.g. “select the
nicest dress in the list”).

Karma, Dontcheva’s Relational Cards

Karma [*i] and Dontcheva et al’s relational cards [*j]
address the problem of cross-referencing entities and
retrieving attributes of entities from multiple databases.
Disambiguation of entities and matching in foreign datasets
is a challenge but demonstrational transformations have
been presented as solutions. WebEUP as conceived by these
systems is a very data-centric activity that focuses on how
the user can transform the data by enriching them and
consolidating them into useful condensed interfaces that
remove content from a page (although the original page
context is still accessible).

Miro, Sifter

Miro and Sifter[*k] are semantically-oriented data detectors
that try to detect object of interest on a page (with some
demonstration), and present the user with semantically
relevant operations or attribute filters. Sifter in particular is
one of the few tools that attempts to use page structure and
semantics to deal with the fact that many listings found on
the web are paginated across multiple pages. Useful



elements are extracted into a persistent personal store which
can be reused when the user visits other pages.

Intel Mashmaker, Chickenfoot, Greasemonkey
Greasemonkey allows user-created Javascript scripts to
modify pages and can be triggered to automatically activate
when particular types of pages are visited. Chickenfoot [*1]
is a higher-level dialect of Greasemonkey that allows the
use of plain English terms to refer to page elements. These
tools are backed by community-generated repositories of
scripts. Data is represented as text nodes on a page but can
be converted into variables internal to the Javascript
environment surrounding those tools.

Similarly, Intel’s Mashmaker [*m] consists of components
that are user-generated but divides the problem of “mashing
up” into the separate problems of extraction of information
and modification or presentation of information. Any web
page can be associated with a canonical detector/extractor
that type of web page. Incentives for fixing a canonical
extractor are similar to those for fixing articles on
Wikipedia. Extractor authors fix things because they are
broken but also help the community at the same time Also,
since extractors auto-detect what pages they are applicable
to, users don’t have to search a repository for appropriate
extractors. Re-presentation and transformation of data
found on a page is done using widgets that a created by
more advanced users who can program in a Javascript. Data
are represented as RDF tuples that can be adapted to
semantically relevant output widgets.

All of these tools can communicate with web services on
behalf of the user.

MASHUPS IN THE WORLD

There are now thousands of publicly mashups with are
websites and many more that are hidden within the
ecosystems of their own tools. Although looking at
mashups that have conceivable uses can yield patterns,
whether these patterns are representative of the kinds of
WebEUP that users need is questionable[*b]. There is little
value to creating tools that will land users in Region B (see
Figure 1). On the other hand, more detailed or automated
examination of objects such as GreaseMonkey scripts or
Firefox plugins (such as in [*q]) may reveal mashup needs
that exist but did not warrant constructing an entire site for.
Also, there is probably a bevy of unfulfilled WebEUP needs
that cannot be fulfilled because learning curve of existing
tools is simply too high.

WEB EUP TASKS FOUND IN THE REAL WORLD

There has been work in taking an ethnographic methods to
task discovered such as contextual inquiry and observation
as well as recording the tasks that researchers noticed in
their own daily lives from the perspective of web macros
[*r]. We have also kept a list of our own tasks but from a
mashup perspective. However, there may a greater diversity
of tasks that have not been discovered because any users in
the moment must be simultancously aware of the work
context they are in, the capabilities of available tools, and
the depth and quality of data sources to be combined. A
diary study with a pre-briefing of how tools might work and
layman’s guides to both popular and unusual API’s might

uncover such tasks. This study or even an aggregation and
classification of the tasks we already have may help us
understand Region C of Figure 1 in better detail. It may be
the case that elements of computational thinking [*s] is a
prerequisite to developing the necessary awareness of what
problems can be solved with WebEUP.

COMMON THREADS IN EXISTING TOOLS
The brief survey of tools in the earlier section shows that
there are several common characteristics of tools:

« Social sharing: occurs in the form of sharing examples of
previous work, experts creating widgets or high-level
components for novices, and searching archives for an
existing solution supported by a particular tool.

« Program construction vs. data manipulation focus: Some
tools orient the user around the construction of a program
artifact (Pipes, Popfly, Marmite, CoScripter) while others
focus primarily on the data and supports manual culling
of a personal store (Dontcheva et al.’s Relational Cards
and Sifter). There is no explicit program because
interaction establishes the relationships and places the
data in the foreground.

Creating a social ecosystem is a helpful way provide a
starting ground for novices with examples [*d]. However,
the design and maintenance of such an ecosystem is as
important if not equally important as the contributions of
the tools themselves.

Although one can find a script or program written by
someone else, making use of it still incurs search costs that
may be different from that of typical information scent
theory. Is evaluating a mashup, script, or other shared
software solution in light of one’s task requirements
possible without training? Perhaps more metadata is needed
to make reusable code objects sharable. Or can search be
eliminated when the opportunities for mashing up appear
while the user browses the web? Furthermore, if WebEUP
is intended to address the far end of the long tail, if a user
finds themselves on a website where no others have gone
(or cared to automate), can WebEUP systems rely on
community?

Furthermore, the proliferation of WebEUP tools means that
users who think of WebEUP as a solution to their problems,
also face an attention investment [*t] dilemma because they
must assess which tool will solve their problems. Different
tools will solve certain aspects of their problems. However,
given that most WebEUP tools only attempt to address a
subset of the problem space, any task which crosses the
boundaries of tool capabilities may be hard to complete.
Perhaps a mashup protocol for WebEUP tools is necessary.

FUTURE CHALLENGES FOR WEB EUP

The Web is evolving quickly and designers of WebEUP
tools are designing for a moving target. Will dynamic
AJAX or Flash oriented websites spell the end of methods
that rely on screen-scraping? Are web services APIs more
stable than user interface elements or is the reverse true?

In our future work, we will be moving towards the data-
centric design approach instead of focusing on program



construction as our previous system had [*a]. And we will
attempt to create a tool where novices does rely the
existence of an expert community to program widgets for a
higher-level layer.

CONCLUSION

In this workshop, we hope to contribute discussion on
WebEUP along the lines of what has been discussed in this
paper. We would further like to be exposed to alternative
ways of framing the WebEUP space, categorizing the tool
design space, and categorizing the task space. Since no
single tool is unlikely to be best at all aspects of WebEUP,
we would like to discuss how interoperability may be
possible. Finally, we hope that, on top of being a
compendium of current research, the resulting book that can
also be abridged into an edition for the lay person trying to
select tools to program the Web.

REFERENCES
[*t] Blackwell, A. F. (2002). First steps in programming: A
rationale for attention investment models. HCC, 2-10.

[*1] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller,
R. C. 2005. Automation and customization of rendered web
pages. In Proc of UIST '05.

[*f] Cypher, A. (1993). Watch what I do: Programming by
demonstration. Cambridge, Mass: MIT Press

[*j] Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen,
M. F. (2007). Relations, cards, and search templates: user-
guided web data integration and layout. In Proceedings of
UIST '07, 61-70.

[*m] Ennals, R. J. and Garofalakis, M. N. (2007).
MashMaker: mashups for the masses. In Proc of SIGMOD
'07.

[*p] Faaborg, A. and Lieberman, H. (2006). A goal-oriented
web browser. In Proc of CHI '06.

[*o] Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R.
(2007) Programming by a sample: rapidly creating web
applications with d.mix. In Proc of UIST '07.

[*k] Huynh, D. F., Miller, R. C., and Karger, D. R. (2006)

Enabling web browsers to augment web sites' filtering and
sorting functionalities. In Proc of UIST '06.

[*c] Kelleher, C., & Pausch, R. (2005). Lowering the
barriers to programming: A taxonomy of programming

environments and languages for novice programmers. ACM
Comput. Surv., 37(2), 83-137.

[*e] Lau, T., Wolfman, S., Domingos, P., & Weld, D. S.
(2000). Learning repetitive text-editing procedures with
smartedit. In H. Lieberman (Ed.), Your Wish is My
Command. Morgan Kaufmann.

[*h] Leshed, G., Haber, E. M., Matthews, T., and Lau, T.
(2008) CoScripter: automating & sharing how-to
knowledge in the enterprise. In Proc of CHI '08. New York,
NY, 1719-1728.

[*n] Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M.,
& Kandogan, E. (2007). Koala: Capture, share, automate,
personalize business processes on the web. Proc of CHI
2007.

[*g] Myers, B., & McDaniel, R. (2000). Demonstrational
interfaces: Sometimes you need a little intelligence;
sometimesyou need a lot. In H. Lieberman (Ed.), Your Wish
is My Command. Morgan Kaufmann.

[*d] Nardi, B. A. (1993). A small matter of programming.
Cambridge: MIT Press.

[*q] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and
B. Myers. (2008) Using Scenario-Based Requirements to
Direct Research on Web Macro Tools. Journal of Visual
Languages and Computing, Vol. 19, No. 4, Aug 2008,
485-498.

[*r] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and
B. Myers. Scenario-Based Requirements for Web Macro
Tools. Proc of VL/HCC 2007,

[*i] Tuchinda, R., Szekely, P., & Knoblock, C. A. (2008).
Building mashups by example. Proceedings of 1UI 2008.

[*s] Wing, J. M. 2006. Computational thinking. Commun.
ACM 49, 3 (Mar. 2006), 33-35.

[*a] Wong, J., & Hong, J.I. (2007). Marmite: Towards end-
user programming for the web. Proc of CHI '07.

[*b] Wong, J., & Hong, J.I. (2008). What Do We “Mashup”
When We Make Mashups?. Workshop on End-User
Software Engineering IV (WEUSE 1V) in Proc. of ICSE
2008.



