Knowing What You're Talking About:
Natural Language Programming of a
Multi-Player Online Game

Henry Lieberman

and Moin Ahmad

Media Laboratory
Massachusetts Institute of
Technology

Cambridge, MA 02139 USA
lieber@media.mit.edu

Copyright is held by the author/owner(s).
CHI 2009, April 4 - 9, 2009, Boston, MA, USA
ACM 978-1-60558-246-7/09/04.

Abstract

Enabling end users to express programs in natural
language would result in a dramatic increase in
accessibility. Previous efforts in natural language
programming have been hampered by the apparent
ambiguity of natural language. We believe a large part
of the solution to this problem is knowing what you're
talking about - introducing enough semantics about the
subject matter of the programs to provide sufficient
context for understanding.

We present MOOIDE (pronounced "moody"), a natural
language programming system for a MOO (an
extensible multi-player text-based virtual reality
storytelling game). MOODIE incorporates both a state-
of-the-art English parser, and a large Commonsense
knowledge base to provide background knowledge
about everyday objects, people, and activities. End-
user programmers can introduce new virtual objects
and characters into the simulated world, which can
then interact conversationally with (other) end users.

In addition to using semantic context in traditional
parsing applications such as anaphora resolution,
Commonsense knowledge is used to assure that the

virtual objects and characters act in accordance with
Commonsense notions of cause and effect, inheritance
of properties, and affordances of verbs. This leads to a
more natural dialog.

Programming in a MOO

Figure 1 illustrates MOOIDE's interface. A MOO [1] is a
conversational game modeling a simulated world
containing virtual rooms or environments, virtual
objects such as tables or flower pots, and virtual
characters (played in real-time by humans or controlled
by a program). Players of the game may take simulated
physical actions, expressed in natural language, or say
things to the virtual characters or other human players.
Programming consists of introducing new virtual
environments, objects, or characters. They then
become part of the persistent, shared environment, and
can subsequently interact with players. Since the
players use natural language to interact with the game,
programming new game components themselves in
natural language is, well, natural.

Our previous work on the Metafor system ([2], [3])
showed how we could transform natural language
descriptions of the properties and behavior of the
virtual objects into the syntax of a conventional
programming language, Python. We showed how we
could recognize linguistic patterns corresponding to
typical programming language concepts such as
variables, conditionals, and iterations. However, that
system did not contain a full MOO runtime environment
in which we could dynamically query the states of
objects. MOODIE also adds the ability to introduce new
Commonsense statements as necessary to model the
(necessarily incomplete) simulated environment.

100 Simudation
Startjreset oo | [Test

4 [Your system has been initialized.

button' .

the oven.)
the start button to cook the food
button

hot.)
ow has the chicken.)

press start button

Program | Fects in Use | Load Facts | Quick Tips

When you press the start butten
If there is chicken in the oven

Ok. I understand that.
T understand the verb ‘press' on 'start button'.

"you need to have chicken in me £irst”

When you empty the oven,

Figure 1. MOOIDE's interface. The user is programming the
behavior of a microwave oven in the simulated world.

A dialogue with MOOIDE

Let's look at an example of interaction with MOOIDE.
These examples are situated in a common household
kitchen where a user is trying to build new virtual
kitchen objects and giving them behaviors.

There is a chicken in the kitchen.

There is an oven.

You can only cook food in an oven.

When you cook food in the oven, if the food
is hot, say "The food is already hot."

Otherwise make it hot.

The user builds two objects, a chicken and an oven and
teaches the oven to respond to the verb "cook".

MOO syntax then allows any player to use the verb by
entering the following text into the MOO:

cook chicken in oven

In the verb description, the user also describes a
decision construct (the If-Else construct) as well as a
command to change a property of an object—"make it
hot". To disallow cooking of non-food items, he puts a
rule saying that only objects of the 'food' class are
allowed to be cooked in the oven (“You can only cook
food in an oven”). Note this statement is captured as a
commonsense fact because it describes generic objects.

When the user presses the "Test" button on the
MOOIDE interface, MOOIDE generates Python code and
pushes it into the MOO where the user can test and
simulate the world he made. To test the generated
world, he enters cook chicken in oven into the MOO
simulation interface. However, because the MOO
doesn't know that chicken is a food, the MOO generates
an error— You can only cook food in an oven. This
is not what the user expected!

To resolve this error, he then has to add the statement
Chicken is a kind of food. Then he tests the system
again using the same verb command. Now, the
command succeeds and the MOO prints out The
chicken is now hot. To test the decision construct,
the user types cook chicken in oven into the MOO
simulator. This time the MOO prints out The food is
already hot.

Program | FactsinUse | Load Facts

¥ containers can be Full or empy A
¥ conkainers are normally empty

v garbage boxes are containers

v | cats are animals

v wou cannot throw animals in 3 garbage box

¥ you can only put things in a container, if it is empky

v | conkainers are normally full

¥ | conkainers can be empty or full

¥ ovens are normally blue

¥ | You can only put things in a container, if it is emplky b

Save Facts

Figure 2: Commonsense facts used in the microwave oven
example.

Implementation

MOODIE performs natural language processing with a
modified version of the Stanford link parser [6] and the
Python NLTK natural language toolkit. As in Metafor,
the ConceptNet Commonsense semantic network
provides semantics for the simulated objects, including
object class hierarchies, and matching the arguments
of verbs to the types of objects they can act upon, in a
manner similar to Berkeley's FRAMENET. We are
incorporating the AnalogySpace inference described in
[7] to perform Commonsense reasoning. In aligning the
programmed objects and actions with our
Commonsense knowledge base, we ignore for the
moment, the possibility that the author might want to
create "magic ovens" or other kinds of objects that
would intentionally violate real-world expectations for
literary effect.

Parsing

The system uses two different types of parsing-
syntactic parsing and frame based parsing. Syntactic
parsing works on a tagger that identifies syntactic

categories in sentences and that generates parse trees
by utilizing a grammar (often a probabilistic context
free grammar). For example a sentence can be tagged
as:

You/PRP can/MD put/VB water/NN in/IN a/DT
bucket/NN ./.

From the tag, a hierarchical parse tree that chunks
syntactic categories together to form other categories
(like noun/verb phrases) can also be generated:

(ROOT (S (NP (PRP You)) (VP (MD can)
(VP (VB put) (NP (NN water))
(PP (IN in) (NP (DT a) (NN bucket)))))

()

Frame based parsing identifies chunks in sentences and
makes them arguments of frame variables. For
example one might define a frame parse of the above
sentence as: You can put [ARG] in [OBJ]

The Stanford parser [6] provides good syntactic
parsing. We wrote a simple frame based parser for our
use. Syntactic parsing allows identification of syntactic
artifacts like noun phrases and verb phrases and
dependency relationships between them. Frame based
parsing allows us to do two things - first it allows us to
do chunk extractions that are required for extracting
things like object names, messages and verb
arguments. Second, frame parsing allows us to identify
and classify the input. For example a user input that is
of the form "If....otherwise..." would be identified as
an "IF_ELSE" construct very typical in programming.
The logic of the parsing system is controlled by the

dialog manager that facilitates and interprets user
interaction. The dialog manager waits for user input.

When the user enters something into the system, it
first categorizes the input. It uses three kinds of
information to do the categorization: the current
context, a frame based classification of current input
and the object reference history. The current context
broadly keeps track of what is being talked about - the
user might be conversing about creating a new verb or
adding decision criteria inside an IF construct. The
dialog manager also keeps track of object reference
history to allow users to use anaphora so that they do
not need to fully specify the object in question every
time. Using the previous information, the frame based
classifier does a broad syntactic classification of the
input.

After the input has been classified according to the
previous parameters, the dialog manager parses the
input and makes changes to the internal representation
of the objects, object states, verbs and programs. Post
parsing, the dialog manager can generate three types
of dialogs - a confirmation dialog, a clarification dialog
or an elaboration dialog. A confirmation dialog simply
tells the user what was understood in the input and if
everything in the input was parsed correctly. A
clarification dialog is when the dialog manager needs to
ask the user for clarification on the input. This could be
simple 'yes/no' questions, reference resolution conflicts
or input reformulation in case the parser cannot fully
parse the input. If the parser fails to parse the input
correctly, the dialog manager does a rough
categorization of the input to identify possible features
like noun phrases, verb phrases or programming
artifacts. This allows it to generate help messages

suggesting to the user to reformulate the input so that
its parser can parse the input correctly. For the
elaboration dialog, the system lets the user know what
it did with the previous input and suggests other kinds
of inputs to the user. These could be letting the user
know what commonsense properties were
automatically added, suggesting new verbs or
requesting the user to define an unknown verb.

Commonsense reasoning

An important lesson learned by the natural language
community over the years is that language cannot be
fully understood unless you have some semantic
information - you've got to know what you're talking
about.

In our case, Commonsense semantics is provided by
Open Mind Common Sense [2], a knowledge base

containing more than 800,000 sentences contributed by

the general public to an open-source Web site. OCMS
provides "ground truth" to disambiguate ambiguous
parsings, and constrain underconstrained
interpretations. OMCS statements come in as natural
language, are processed with tagging and template
matching similar to the processes used for interpreting
natural language input explained above. The result is
ConceptNet, a semantic network organized around
about 20 distinguished relations, including IS-A, KIND-
OF, USED-FOR, etc. The site is available at
openmind.media.mit.edu.

Open Mind Common Sense
Explain your world.

e, refrigerator freezer, microwave oven, Corner cupboards, Door hinges

~

~
» @ microwave oven can heat food by % graylady Score:

N

+ Something you find in the kitchen is a microwave oven. by C; olakristoffer Score:

N

~
+ Something you find at at your house is a microwave oven by 7 Visionsofkaos Score:

+ A wave oven can cook food very quickly Score:

» A microwave oven is used to heat foods and liquids. Score

» A mic ‘e oven can heat leftover pizza Score:

+ a microwave oven can be used to cook a sauce. by & cindyh Score: 1 i

» microwave oven is used to heat food. by %yovan4 Score:

Page 1 of 1 (8 total)

You are likely to find microwave oven in homes (-
You are likely to find microwave oven in a building (X -
You are likely to find microwave oven in astore (+ X -

Figure 3. What Open Mind knows about microwave ovens.

Commonsense reasoning is used in the following ways.
First, it provides an ontology of objects, arranged in
object hierarchies. These help anaphora resolution, and
understanding intentional descriptions. It helps
understand which objects can be the arguments to
which verbs. It provides some basic cause-and-effect

rules, such as "When an object is eaten, it disappears".

Understanding language for MOO
programming

Key in going from parsing to programming is
understanding the programming intent of particular
natural language statements. Our recognizer classifies

user utterances according to the following speech act
categories:

¢ Object creation, properties, states and relationships.
"There is a microwave oven on the table. It is empty."

A simple declarative statement about a previously
unknown object is taken as introducing that object into
the MOO world. Descriptive statements introduce
properties of the object. Background semantics about
microwave ovens say that "empty” means “does not
contain food” (it might not be literally empty - there
may be a turntable inside it).

e Verb definitions.
"You can put food in the basket".

Statements about the possibility of taking an action,
where that action has not be previously mentioned, are
taken as introducing the action, as a possible action a
MOO user can take. Here, what it means to “put food”.
A “basket” is the argument to (object of) that action.
Alternative definition styles: “To ..., you...”, “"Baskets are
for putting food in”, etc.

e Verb argument rules.
"You can only put bread in the toaster."

This introduces restrictions on what objects can be used
as argument to what verbs. These semantic restrictions
are in addition to syntactic restrictions on verb
arguments found in many parsers.

e VVerb program generation.
"When you press the button, the microwave turns on."

Prose that describes sequences of events is taken as
describing a procedure for accomplishing the given
verb.

e Imperative commands.
"Press the button."

¢ Decisions.
"If there is no food in the oven, say 'You are not
cooking anything.""

Conditionals can be expressed in a variety of forms: IF
statements, WHEN statements, etc.

¢ Iterations, variables, and loops.
"Make all the objects in the oven hot."

In [5], user investigations show that explicit
descriptions of iterations are rare in natural language
program descriptions; people usually express iterations
in terms of sets, filters, etc. In [3] we build up a
sophisticated model of how people describe loops in
nautral language, based on reading a corpus of natural
language descriptions of programs expressed in
program comments.

Evaluation

We designed MOOIDE so that it is intuitive for users
who have little or no experience in programming to
describe objects and behaviors of common objects that
they come across in their daily life. To evaluate this, we
tested if subjects were able to program a simple
scenario using MOOIDE. Our goal is to evaluate
whether they can use our interface without getting
frustrated, possibly enjoying the interaction while
successfully completing a test programming scenario.

Our hypothesis is that subjects will be able to complete
a simple natural language programming scenario within
20 min. If most of the users are able to complete the
scenario in that amount of time, we would consider it a
success. The users should not require more than
minimal syntactic nudging from the experimenter.

We first ran users through a familiarization scenario so
that they get a sense of how objects and verbs are
described in the MOO. Then they were asked to do a
couple of test cases in which we helped the subjects
through the cases. The experimental scenario consisted
of getting subjects to build an interesting candy
machine that gives candy only when it is kicked. The
experimenter gave the subject a verbal description of
of the scenario (the experimenter did not 'read out' the
description)

You should build a candy machine that works only
when you kick it. You have to make this
interesting candy machine which has one candy
inside it. It also has a lever on it. It runs on magic
coins. The candy machine doesn't work when you
turn the lever. It says interesting messages when
the lever is pulled. So if you're pulling the lever,
the machine might say “oooh I malfunctioned” It
also says interesting things when magic coins are
put in it like “thank you for your money”. And
finally when you kick the machine, it gives the
candy.

The test scenario was hands-off for the experimenter
who sat back and observed the user/MOOIDE
interaction. The experimenter only helped if MOOIDE
ran into implementation bugs, if people ignored minor
syntactic nuances (e.g. comma after a when-clause)

and if MOOIDE generated error messages. This was
limited to once or twice in the test scenario. Figure 4
summarizes the post-test questionnaire.

cxnsonecs [0,

Good way to aod ob]
Strcegy Agree

M Aores

B Neither Agree Nor Dizagree
¢ |Soizsgree

[l Streegyy Disagrae

New objects soclaly

Easler than prog. lang.

Show It 1o friends

No. of subjects

Figure 4. Results of evaluation questionnaire.

Overall, we felt that subjects were able to get the two
main ideas about programming in the MOOs—
describing objects and giving them verb behavior.
Some subjects who had never programmed before
were visibly excited at seeing the system respond with
an output message that they had programmed using
MOOIDE while glazing over the demonstration part
where we showed them an example of LambdaMOO
syntax. One such subject was an undergraduate
woman who had tried to learn conventional
programming but given up after spending significant
amount of effort learning syntactic nuances. It seems
that people would want to learn creative tasks like
programming, but do not want to learn a programming
language. Effectively, people are looking to do
something that is interesting to them and that they are
able to do that quickly enough with little learning
overhead.

In the post evaluation responses, all the subjects
strongly felt that programming in MOOIDE was easier
than learning a programming language, even though
40% of the subjects mentioned they would like
MOOIDE to support a larger variety of syntactic inputs.
We feel some requirement of syntax is good, it helps
people to learn how to structure procedural
information, however they should not be required to
put comma delimiters or quotes, that we required in
MOOIDE syntax. The system should automatically do
that and show it to users. This problem is quite solvable
by building a better chunker. One can also use an
online parser that parses the input as a person types it
into MOOIDE to suggest what kinds of things one might
consider typing in after that input.

During the evaluation MOOIDE, as with any complex
integrated system, had minor implementation bugs—
like output strings would not accept special characters
that people might type in. The MOOP simulation
environment did not accept articles like “the” and “an”
for objects which frustrated a couple of subjects. This is
something that is easily rectifiable and we consider the
test results to be still valid even though we helped the
subjects through these cases (Note: MOOIDE's natural
language interface is quite good at handling different
types of noun phrases. This issue came up only in the
interface to MOOP, the 3rd party MOO environment.) In
some cases, certain syntax of verb commands and
object creation was not parsed either because of a bug
in the grammar specification or it was not handled at
all. In such cases, when given an example of a syntax
that was parsed, subjects were able to reformulate the
particular verb command. It seems that unlike in
programming with a computer language in which
excessive wording could be considered an overhead,

the most common things that people want—words like
“the” and “an” and fillers like the word “like” should
definitely be parsed in the input. People get frustrated
if the system cannot handle these most basic things.

There were some other things that came up in the test
scenario that we did not handle and we had to tell
people that the system would not handle them. All such
cases below came across once each in the evaluation: -
People do not necessarily start verb behaviors with
event declarations, they would often put the event
declaration at the end. So one might say “the food
becomes hot, when you put it in the oven” instead of
“when you put the food in the oven, it becomes hot”".
This is a syntactic fix that requires addition of a few
more patterns. - The system does not understand
commands like “nothing will come out” or “does not
give the person a candy” which describe negating an
action. Negation is usually not required to be specified.
These statements often correspond to the “pass”
statement in Python. In other cases, it could be
canceling a default behavior. - One subject
overspecified - “if you put a coin in the candy machine,
there will be a coin in the candy machine”. This was an
example where a person would specify very basic
commonsense which we consider to be at the sub-
articulatable level, so we do not expect most people to
enter these kind of facts. This relates to a larger issue—
the kind of expectation the system puts upon its users
about the level of detail in the commonsense that they
have to provide.

The system did not handle object removals at this time,
this is something that is also easily rectifiable. It does
not handle chained event descriptions like “when you
kick the candy machine, a candy bar comes out” and

then “when the candy bar comes out of the candy
machine, the person has the candy bar”. Instead one
needs to say directly, “when you kick the candy
machine, the person has the candy bar”. In preliminary
evaluations we were able to identify many syntactic
varieties of inputs that people were using and they
were incorporated in the design prior to user
evaluation. These were things like verb declarations
chained with conjunctions e.g. “when you put food in
the oven and press the start button, the food becomes
hot” or using either “if” or “when” for verb declarations
e.g. “if you press the start button, the oven cooks the
food”.

Related Work

Aside from our previous work on Metafor, the closest
related work is Inform 7, a programming language for a
MOO game which does incorporate a parser for a wide
variety of English constructs [4]. Inform 7 is still in the
tradition of "English-like" formal programming
languages, a tradition dating back to Cobol. Users of
Inform reported being bothered by the need to
laboriously specify "obvious" commonsense properties
of objects. Our approach is to allow pretty much
unrestricted natural language input, but be satisfied
with only partial parsing if the semantic intent of the
interaction can still be accomplished. We were originally
inspired by the Natural Programming project of Pane
and Myers [5], which considered unconstrained natural
language descriptions of programming tasks, but
eventually wound up with a graphical programming
language of conventional syntactic structure.

Conclusion

While general natural language programming remains
difficult, some semantic representation of the subject
matter on which programs are intended to operate
makes it a lot easier to understand the intent of the
programmer. Perhaps programming is really not so
hard, as long as you know what you're talking about.

Acknowledgements

Citations

[11 Bruckman, A., Resnick, M. (1995) The MediaMOO
Project: Constructionism and Professional Community,
Convergence, 1995 1: 94-109

[2] Liu, H., & Lieberman, H. (2005). Metafor:
Visualizing stories as code. Proceedings of the 10th
International Conference on Intelligent User Interfaces,
San Diego, California, USA. 305-307.

[3] Mihalcea, R., Liu, H., & Lieberman, H. (2006). NLP
(natural language processing) for NLP (natural
language programming). CICLing, 319-330.

[4] Nelson,G. (2006). Natural language, semantics and
interactive fiction. http://www.inform-
fiction.org/I17Downloads/Documents/WhitePaper.pdf

[5] Pane, J. F., Myers, B. A., & Ratanamahatana, C. A.
(2001). Studying the language and structure in non-
programmers' solutions to programming problems.
54(2), 237-264.

[6] Sleator, C. D., & Temperley, D. (1993). Parsing
english with a link grammar. In Third International
Workshop on Parsing Technologies.

[71 Speer, Rob, Catherine Havasi and Henry
Lieberman, AnalogySpace: Reducing the Dimensionality
of Commonsense Knowledge, Conference of the
Association for the Advancement of Artificial
Intelligence (AAAI-08), Chicago, July 2008.

10

