
1

The Mashup as a Lens on End-User Programming for the 
Web

Jeffrey Wong, Jason I. Hong
Human-Computer Interaction
Carnegie Mellon University

Pittsburgh, PA 15217
jeffwong@cmu.edu, jasonh@cs.cmu.edu

ABSTRACT
Our past work in Web End-User Programming (WebEUP) 
has focused mainly on users trying to build or replicate 
functionality found in mashups. In this paper however, we 
discuss how this is perspective is simply one of several 
perspectives on WebEUP. We review different 
characteristics of WebEUP tools, and how these may be 
combined with characteristics of actual mashups, mashup-
like artifacts, and tasks to form a model that may give 
insight into how to organize the work on WebEUP
Author Keywords
End-user programming,  mashups, web macros, automation, 
data integration
ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g.,  HCI): 
Miscellaneous. 
INTRODUCTION
Mashups and mashup construction tools have recently 
proliferated as users and developers have recognized that 
data and functionality found on websites can be used as 
computational resources.  Although our work has focused on 
mashups [*b] and enabling end-users to replicate mashup 
functionality using higher-level tools [*a], we have noticed 
that there are patterns to common approaches, common 
problems, and interesting future challenges to end-user 
programming for the Web (WebEUP).
MOVING FROM ON FROM TRADITIONAL EUP
There has been much research end-user programming 
systems [*c] and tools that are widespread in daily use [*d]. 
Spreadsheets can be thought of as numerical models or 
interconnected formulae. Programming by demonstration 
[*f] can be used help in text manipulation[*e], construction 
of user interfaces [*g], and many other domains. Is end-user 
programming for the web simply another domain? The web 
is a programmable domain in large part due to a few 
fortunate factors: 

1) data seen in the interface of a website is extractable from 
the textual representation of data, 

2) data on many web pages tend to follow structural and 
semantic patterns [*k],

3)  and data on web sites mostly all accessible from the 
same network.

But is WebEUP a single domain? Our work has focused on 
a subset of WebEUP commonly referred to as “mashups”. 
The definition of what a mashup is very fuzzy, when based 
on the intentions of mashup creators, providers of mashup 
resources, and users. In surveying mashups on popular 
mashup directories [*b], we found that there were certain 
patterns, for example aggregation of data sets (when a 
website can be considered an interface) or providing 
focused views on a data set. Mashups that aggregate data 
might be distinguished by whether they resolve multiple 
schemas or whether they cross-reference attributes between 
data sets [*i,  *j]. In our survey of mashup patterns [*b], we 
found that the only necessary and sufficient condition that 
allows something to be called a mashup is that it re-uses a 
web resource in a novel way; combination of multiple web 
resources is not necessary. 

Being a website might be a necessary property of being a 
mashup, but many WebEUP tools enable users to “create 
mashups” (a synonym for the mashing up activity), without 
necessarily having an website as an end result. For 
example, “within-page” programming languages and 
component sets such Greasemonkey, Chickenfoot [*l], and 
Intel’s Mashmaker [*m] allow users to modify or augment 
data on pages while they are viewing them. As far as some 
users are concerned, this can be equivalent to what a 
comparable (but hypothetical) mashup might achieve, but 
without the overhead of searching for a site that fits a 
particular requirements in a particular moment, which may 
also evolve over the course of a task. Categories are blurred 
further when we consider simple automation scripts on one 
or more websites from tools such as CoScripter [*h] and 
emergent properties that arise from component sharing.

The web as an EUP problem might be considered a single 
domain or a collection of multiple domains, or it can be 
both at the same time. We propose that there are 3 main 
perspectives that will help describe WebEUP: 

1. perspectives taken by existing tools to create mashups 
and mashup-like artifacts such as the within-page 
programming and automation languages

2. perspectives embodied by existing mashups

3. and example use cases from empirical data recorded  
potential users of WebEUP tools.

mailto:jeffwong@cmu.edu
mailto:jeffwong@cmu.edu
mailto:jasonh@cs.cmu.edu
mailto:jasonh@cs.cmu.edu


A helpful framework for characterizing WebEUP that 
unifies this perspectives is to see how different tools, 
existing mashups, scripts, and tasks overlap in Figure 1.

In Figure 1,  there are tools that can create mashups which 
are of use to no one (Region B) while there are also 
mashups that have been constructed for fun or 
experimentation that do not fulfill a specific task (or none 
that has emerged yet). Region C represents tools that can 
help fulfill some WebEUP tasks but cannot create fully 
reusable mashups, as either public websites or sharable 
objects that can be quickly understood and adapted to 
another person’s task. Region D represents represents tools 
that are adaptable to many tasks and can also be generalized 
or abstracted from an initial concrete or prototyped object 
to something reusable, available, and reliable.
MASHUP TOOLS
This section gives a brief summary of popular mashup 
construction tools, grouped roughly by their framing of 
what WebEUP programming should be. 
Microsoft Popfly, Marmite, Yahoo Pipes
These tools conceive of mashups as data-flows between 
operations. Operations are input-output blocks that the user 
must select from a palette. Operations in Popfly and 
Marmite[*a]  are constructed using at the Javascript 
programming level with some textual programming 
interface. They become available to the higher-level flow 

design.  Yahoo Pipes operations are standard low-level 
operations such as counting, building up strings, and 
filtering for strings. The primary unit of data is the tuple. 
Marmite shows the state of the data at each step, while 
Pipes must be explicitly put in debug mode to see the data 
as it flows through the program. Each of these tools 
construes WebEUP as the construction of a program. Yahoo 
Pipes emphasizes saving and sharing so that others can 
learn from examples.

Operations in Marmite and Popfly are intended to be easy-
to-use wrappers around web services 
d.mix
d.mix[*o] is a system that attempts to bridge the gap 
between elements as seen by the user on a page, and web 
services calls that produce similar results. It is functionally 
a system that appends user contributed annotations that 
show how certain elements on web pages can be replicated 
with web services calls. Like Mashmaker, these annotations 
are canonicalized into a shared repository where users can 
discover API calls by using the normal website and later,  
write small scripts to assemble their own web pages using 
component web services that they have discovered while 
browsing.
MASHUP-LIKE ARTIFACTS

CoScripter
CoScripter (aka Koala) [*n] is a demonstrative recording 
system where users record a sequence of steps that they 
want to repeat in the future or describe processes they want 
to share with others [*h]. Script actions are recorded in 
English-like statements so they can be previewed by other 
users who may consider using the script. Koala supports 
some parameterization of scripts with “personal variables” 
and mixed-initiative interaction, where the human can 
intervene for in steps where the script no longer works 
perfectly, a human needs to verify an action, or to make 
judgements which may not be computable (e.g. “select the 
nicest dress in the list”).
Karma, Dontcheva’s Relational Cards
Karma [*i] and Dontcheva et al.’s relational cards [*j] 
address the problem of cross-referencing entities and 
retrieving attributes of entities from multiple databases.  
Disambiguation of entities and matching in foreign datasets 
is a challenge but demonstrational transformations have 
been presented as solutions.  WebEUP as conceived by these 
systems is a very data-centric activity that focuses on how 
the user can transform the data by enriching them and 
consolidating them into useful condensed interfaces that 
remove content from a page (although the original page 
context is still accessible).
Miro, Sifter
Miro and Sifter[*k] are semantically-oriented data detectors 
that try to detect object of interest on a page (with some 
demonstration),  and present the user with semantically 
relevant operations or attribute filters. Sifter in particular is 
one of the few tools that attempts to use page structure and 
semantics to deal with the fact that many listings found on 
the web are paginated across multiple pages. Useful 

Users’s 
Tasks

Existing 
Mashups

Tools 
and 

Scripts

AB

C

D

Figure 1.  Proposed Model of WebEUP space.

Region A: Mashups that users can complete their 
tasks with. They just need to be found.

Region B: Mashups that can be built with mashup 
tools but have no clear task fit (perhaps experimental).

Region C: Tasks that can be solved with mashup tool 
but are not full-featured websites. “One-time 
mashups” that are thrown away.

Region D: Mashups that can be built with mashup 
tools that resemble existing mashup websites. Reused 
by many and adaptable to support many tasks.



3

elements are extracted into a persistent personal store which 
can be reused when the user visits other pages.
Intel Mashmaker, Chickenfoot, Greasemonkey
Greasemonkey allows user-created Javascript scripts to 
modify pages and can be triggered to automatically activate 
when particular types of pages are visited. Chickenfoot [*l] 
is a higher-level dialect of Greasemonkey that allows the 
use of plain English terms to refer to page elements. These 
tools are backed by community-generated repositories of 
scripts. Data is represented as text nodes on a page but can 
be converted into variables internal to the Javascript 
environment surrounding those tools.

Similarly,  Intel’s Mashmaker [*m] consists of components 
that are user-generated but divides the problem of “mashing 
up” into the separate problems of extraction of information 
and modification or presentation of information. Any web 
page can be associated with a canonical detector/extractor 
that type of web page. Incentives for fixing a canonical 
extractor are similar to those for fixing articles on 
Wikipedia. Extractor authors fix things because they are 
broken but also help the community at the same time Also, 
since extractors auto-detect what pages they are applicable 
to, users don’t have to search a repository for appropriate 
extractors. Re-presentation and transformation of data 
found on a page is done using widgets that a created by 
more advanced users who can program in a Javascript. Data 
are represented as RDF tuples that can be adapted to 
semantically relevant output widgets. 

All of these tools can communicate with web services on 
behalf of the user.
MASHUPS IN THE WORLD
There are now thousands of publicly mashups with are 
websites and many more that are hidden within the 
ecosystems of their own tools. Although looking at 
mashups that have conceivable uses can yield patterns, 
whether these patterns are representative of the kinds of 
WebEUP that users need is questionable[*b]. There is little 
value to creating tools that will land users in Region B (see 
Figure 1). On the other hand, more detailed or automated 
examination of objects such as GreaseMonkey scripts or 
Firefox plugins (such as in [*q]) may reveal mashup needs 
that exist but did not warrant constructing an entire site for. 
Also, there is probably a bevy of unfulfilled WebEUP needs 
that cannot be fulfilled because learning curve of existing 
tools is simply too high.
WEB EUP TASKS FOUND IN THE REAL WORLD
There has been work in taking an ethnographic methods to 
task discovered such as contextual inquiry and observation 
as well as recording the tasks that researchers noticed in 
their own daily lives from the perspective of web macros 
[*r]. We have also kept a list of our own tasks but from a 
mashup perspective. However, there may a greater diversity 
of tasks that have not been discovered because any users in 
the moment must be simultaneously aware of the work 
context they are in, the capabilities of available tools,  and 
the depth and quality of data sources to be combined. A 
diary study with a pre-briefing of how tools might work and 
layman’s guides to both popular and unusual API’s might 

uncover such tasks. This study or even an aggregation and 
classification of the tasks we already have may help us 
understand Region C of Figure 1 in better detail.  It may be 
the case that elements of computational thinking [*s] is a 
prerequisite to developing the necessary awareness of what 
problems can be solved with WebEUP.
COMMON THREADS IN EXISTING TOOLS
The brief survey of tools in the earlier section shows that 
there are several common characteristics of tools:

• Social sharing: occurs in the form of sharing examples of 
previous work, experts creating widgets or high-level 
components for novices, and searching archives for an 
existing solution supported by a particular tool. 

• Program construction vs.  data manipulation focus: Some 
tools orient the user around the construction of a program 
artifact (Pipes, Popfly, Marmite,  CoScripter) while others 
focus primarily on the data and supports manual culling 
of a personal store (Dontcheva et al.’s Relational Cards 
and Sifter). There is no explicit program because 
interaction establishes the relationships and places the 
data in the foreground.

Creating a social ecosystem is a helpful way provide a 
starting ground for novices with examples [*d]. However, 
the design and maintenance of such an ecosystem is as 
important if not equally important as the contributions of 
the tools themselves. 

Although one can find a script or program written by 
someone else, making use of it still incurs search costs that 
may be different from that of typical information scent 
theory. Is evaluating a mashup, script, or other shared 
software solution in light of one’s task requirements 
possible without training? Perhaps more metadata is needed 
to make reusable code objects sharable. Or can search be 
eliminated when the opportunities for mashing up appear 
while the user browses the web? Furthermore, if WebEUP 
is intended to address the far end of the long tail, if a user 
finds themselves on a website where no others have gone 
(or cared to automate), can WebEUP systems rely on 
community?

Furthermore, the proliferation of WebEUP tools means that 
users who think of WebEUP as a solution to their problems, 
also face an attention investment [*t] dilemma because they 
must assess which tool will solve their problems. Different 
tools will solve certain aspects of their problems. However, 
given that most WebEUP tools only attempt to address a 
subset of the problem space,  any task which crosses the 
boundaries of tool capabilities may be hard to complete. 
Perhaps a mashup protocol for WebEUP tools is necessary. 
FUTURE CHALLENGES FOR WEB EUP
The Web is evolving quickly and designers of WebEUP 
tools are designing for a moving target. Will dynamic 
AJAX or Flash oriented websites spell the end of methods 
that rely on screen-scraping? Are web services APIs more 
stable than user interface elements or is the reverse true?

In our future work,  we will be moving towards the data-
centric design approach instead of focusing on program 



construction as our previous system had [*a]. And we will 
attempt to create a tool where novices does rely the 
existence of an expert community to program widgets for a 
higher-level layer.
CONCLUSION
In this workshop, we hope to contribute discussion on 
WebEUP along the lines of what has been discussed in this 
paper. We would further like to be exposed to alternative 
ways of framing the WebEUP space, categorizing the tool 
design space, and categorizing the task space. Since no 
single tool is unlikely to be best at all aspects of WebEUP, 
we would like to discuss how interoperability may be 
possible. Finally, we hope that, on top of being a 
compendium of current research, the resulting book that can 
also be abridged into an edition for the lay person trying to 
select tools to program the Web.
REFERENCES
[*t] Blackwell, A. F. (2002). First steps in programming: A 
rationale for attention investment models. HCC, 2-10.
[*l] Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, 
R. C. 2005. Automation and customization of rendered web 
pages. In Proc of UIST '05. 
[*f] Cypher, A. (1993). Watch what I do: Programming by 
demonstration. Cambridge, Mass: MIT Press
[*j] Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen, 
M. F. (2007). Relations, cards, and search templates: user-
guided web data integration and layout. In Proceedings of 
UIST '07, 61-70.
[*m] Ennals, R. J. and Garofalakis, M. N. (2007). 
MashMaker: mashups for the masses. In Proc of SIGMOD 
'07.
[*p] Faaborg, A. and Lieberman, H. (2006). A goal-oriented 
web browser. In Proc of CHI '06.
[*o] Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R. 
(2007) Programming by a sample: rapidly creating web 
applications with d.mix. In Proc of UIST '07.
[*k] Huynh, D. F., Miller, R. C., and Karger, D. R. (2006) 
Enabling web browsers to augment web sites' filtering and 
sorting functionalities. In Proc of UIST '06. 
[*c] Kelleher, C., & Pausch, R. (2005). Lowering the 
barriers to programming: A taxonomy of programming 

environments and languages for novice programmers. ACM 
Comput. Surv., 37(2), 83-137.
[*e] Lau, T., Wolfman, S., Domingos, P., & Weld, D. S. 
(2000). Learning repetitive text-editing procedures with 
smartedit. In H. Lieberman (Ed.), Your Wish is My 
Command. Morgan Kaufmann.
[*h] Leshed, G., Haber, E. M., Matthews, T., and Lau, T. 
(2008) CoScripter: automating & sharing how-to 
knowledge in the enterprise. In Proc of CHI '08. New York, 
NY, 1719-1728.
[*n] Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M., 
& Kandogan, E. (2007). Koala: Capture, share, automate, 
personalize business processes on the web. Proc of CHI 
2007.
[*g] Myers, B., & McDaniel, R. (2000). Demonstrational 
interfaces: Sometimes you need a little intelligence; 
sometimesyou need a lot. In H. Lieberman (Ed.), Your Wish 
is My Command. Morgan Kaufmann.
[*d] Nardi, B. A. (1993). A small matter of programming. 
Cambridge: MIT Press.
[*q] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and 
B. Myers. (2008) Using Scenario-Based Requirements to 
Direct Research on Web Macro Tools. Journal of Visual 
Languages and Computing, Vol. 19, No. 4, Aug 2008, 
485-498.
[*r] C. Scaffidi, A. Cypher, S. Elbaum, A. Koesnandar, and 
B. Myers. Scenario-Based Requirements for Web Macro 
Tools. Proc of VL/HCC 2007,
[*i] Tuchinda, R., Szekely, P., & Knoblock, C. A. (2008). 
Building mashups by example. Proceedings of IUI 2008.
[*s] Wing, J. M. 2006. Computational thinking. Commun. 
ACM 49, 3 (Mar. 2006), 33-35.
[*a] Wong, J., & Hong, J.I. (2007). Marmite: Towards end-
user programming for the web. Proc of CHI '07.
[*b] Wong, J., & Hong, J.I. (2008). What Do We “Mashup” 
When We Make Mashups?. Workshop on End-User 
Software Engineering IV (WEUSE IV) in Proc. of ICSE 
2008.
 
 


