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ABSTRACT 

As Web services become more diverse and powerful, end 

user programming (EUP) systems for the Web become 

increasingly compelling. However, many user workflows 

do not exist exclusively online. To support these workflows 

completely, EUP systems must allow the user to program 

across multiple domains. To this end, we introduce the 

notion of pluggable domain models—independently 

generated action models for different application domains 

that can combine to support the learning of cross-domain 

procedures—and we present guidelines for the development 

of such domain models. In the context of our work on an 

Integrated Task Learning (ITL) system, we discuss how to 

use pluggable domain models to facilitate cross-domain 

instrumentation and automation. We also explore what 

impact such a model has on the systems that reason over, 

learn, and visualize procedures. Along the way, we provide 

prescriptive suggestions for engineering real-world cross-

domain EUP systems as well as suggestions for what sorts 

of user activities such as system should support. Finally, we 

briefly discuss some open questions that cross-domain EUP 

systems will need to address in the future. 

A WORLD WIDER THAN THE WEB 

Today’s rapid proliferation of Web services, particularly 

with the emergence of Web 2.0, has prompted an 

increasingly varied use of the Web to support users’ 

everyday tasks [8]. In the office, Web services now support 

many business processes: travel authorization and 

reimbursement, equipment purchase and requisition, and 

conference facilities management are just some processes 

that often rely on dedicated Web-based applications. At 

home, we visit a variety of websites to purchase books, 

make travel arrangements, and manage our finances. 

However, many user workflows, particularly in business 

environments, still involve non-Web applications [10]. 

Even as some applications begin to transition to the Web—

for example, email and calendar tools—the workflows will 

continue to involve multiple, disparate application domains. 

Thus, any end-user programming (EUP) tool, particularly 

those designed for the business environment, must 

accommodate procedures learned over a variety of 

applications, on the Web and beyond.  

Consider the job of Alice, who is responsible for 

maintaining a website listing all the publications by the 

members of a university laboratory.
1
  Whenever someone in 

the lab produces a report, they notify Alice by email. The 

email message contains the citation for the paper as well as 

an attached electronic version of the work. The attachment 

may be in a single-file format, such as a PDF or Microsoft 

Word document, or in a multi-file format such as LaTeX. In 

the case of multiple files, it may come as several files or as 

a single, compressed folder. Alice saves the file(s), and if 

the paper is not already a PDF, she must convert it before 

renaming the file to conform to a standard YYYY-

FirstAuthorLastName-Venue.pdf format. She then uploads 

the PDF file using the site administrator’s Web interface. 

This includes filling out a form with the citation 

information for the paper, uploading the paper, verifying 

that the uploaded paper is downloadable. Finally, Alice 

replies to the email message, copying the direct URL link to 

the paper into the message for the author’s benefit. 

This is a task Alice repeats several dozen times a year, and 

she would clearly benefit by automating it. However, since 

it touches several different applications, including an email 

client, the file system, word-processing software, PDF 

converters, and a Web browser, any EUP tool designed for 

a single application can only automate part of Alice’s 

workflow. For example, Alice could use a Web EUP 

system to automate the segment involving uploading the 

paper and citation information to the website. However, she 

must still manually process the email, perform the file 

operations, provide values for the Web form, and reply to 

the email. Additional single-application EUP systems could 

potentially automate more segments, but they would require 

Alice not only to learn several different interfaces but also 

to manually link the data from one system to another. In 

contrast, an EUP tool that can be used across domains could 

potentially automate the entire workflow, providing a 

significantly greater benefit for Alice. 

                                                           

1
 This use case was adapted from a contextual inquiry user 

study [2] we conducted in 2007 to observe office workers 

performing potentially automatable tasks on their 

computers. 



 

While cross-domain EUP would clearly be valuable, it also 

presents many design and implementation challenges. 

There is a clear reason why most EUP systems tackle a 

single application domain: it is much easier to engineer 

instrumentation and automation for a single platform, the 

relations between different domain actions are obvious, and 

the procedures that can be learned are bounded. 

Nevertheless, we argue that the benefits provided by cross-

domain EUP make it well worth attempting to meet its 

unique challenges. 

Here, we present our approach for achieving cross-domain 

EUP. We introduce the notion of pluggable domain 

models—independently generated action models for 

different application domains that can combine to support 

the learning of cross-domain procedures—and we present 

guidelines for the development of such domain models. We 

then discuss the often-underappreciated task of 

instrumentation and automation, noting the additional 

challenges that occur when learning procedures across 

domains. Given these pluggable domain models, we 

describe the various issues and opportunities raised for 

reasoning, learning, and visualization, grounding the 

discussion within our work on an Integrated Task Learning 

(ITL) system [25]. Finally, we present avenues for future 

work and conclusions. 

CREATING PLUGGABLE DOMAIN MODELS  

To get the most mileage out of EUP systems, domain 

knowledge must be encoded in such a way as to support 

reasoning across different applications. One possible 

approach, realized in the CALO cognitive desktop assistant, 

is to develop a master shared ontology for representing not 

just all the objects in the world and relations between them, 

but also the actions or tasks involving them [7]. The 

different applications are required to publish 

instrumentation events that adhere to this ontology, and the 

various modules can use the centralized knowledge base. 

Such an approach is very powerful, supporting deep 

reasoning over actions and objects spanning different 

applications [15]. However, this power comes at a very 

high engineering and maintenance cost. The knowledge 

engineers must develop an all-encompassing ontology and 

component developers must commit to the shared 

representation to model their domains. Any changes to the 

ontology must thus be carefully vetted to avoid unintended 

consequences and to avoid significant re-engineering. In a 

large, distributed EUP system comprising applications that 

are only loosely, if at all, connected, these concerns likely 

present an unacceptable cost. Instead, we recommend an 

extensible architecture that models each domain as a 

separate, pluggable module. In this section, we lay out the 

issues that arise when specifying such domain models and 

we present prescriptive guidelines for the development of 

these models. 

Action-Oriented Domain Model 

EUP is concerned primarily with automation, so the domain 

actions must be the primary focus of modeling. We 

prescribe a dataflow model of actions, where the effects of 

executing an action are characterized by the action’s inputs 

and outputs. Specifically, each action is a named operation 

with a set of typed input and output parameters such that, in 

a procedure, outputs of actions serve as inputs to 

succeeding actions. 

The dataflow model is particularly well suited to modeling 

Web services and service-oriented architectures in general, 

since services can be modeled straightforwardly as 

operations taking particular inputs and producing certain 

outputs. Moreover, many actions in the desktop world 

operate on artifacts such as email, files, and calendar entries 

and can thus also be easily cast into this modeling 

framework. For the remainder of this chapter, we will 

represent actions in the form name [parameters] where 

parameters are of the form +|–paramName:paramType 

with + indicating an input and – indicating an output. 

Figure 1 shows some representative actions for a Web 

browser and an email client.  

Browser: 

openURL +url:string 

submitForm +formInputs:List<string>  

-url:webAddress 

Email: 

openComposeEmailWindow  

+sender:List<emailAddress> 

+subject:string +body:string  

–frameID:frameID 

sendEmail +email:email 

Figure 1: Some Possible Actions. 

 

In Web service domains, it is often easier and more 

intuitive to implement instrumentation to generate events in 

terms of these actions rather than in terms of the changes 

they have on the world state. For example, uploading a 

paper to a Web server through a Web interface might be 

captured as an action that takes as input the publication 

information and generates as output the URL for the 

uploaded paper. Alternatively, it could be modeled in terms 

of the state of the browser window (and maybe the paper 

database) before the Submit button is pressed, and the state 

of the window (and maybe the paper database) after. If one 

were using citation information copied from an email 

message, then state-based instrumentation must also capture 

the state of the email client window. In general, state-based 

instrumentation must capture not just the conditions that 

may be affected by the current action, but also the 

conditions affected by previous and succeeding actions. 

Action-oriented instrumentation can be more narrowly 

focused and, at the same time, also more readily extensible. 
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However, it imposes the constraint that instrumentation and 

automation be modeled as direct inverses of each other—

i.e., any observed action must also be directly executable.  

Given a dataflow model of actions, a procedure learner can 

reason about the support relationships between the 

prerequisites and results of discrete end-user actions. This 

reasoning lets it perform procedure validation, provide 

editing support, and perform parameter and structure 

generalization [25]. Later, we discuss how we can extend 

our reasoning capabilities by attaching additional metadata 

to actions. 

Modeling Human-Level Actions 

When constructing a dataflow model, one of the keys to 

successful procedure representation and learning is to 

capture actions at the right level of granularity. Ideally, 

actions should be modeled at the level at which humans 

would typically describe their own actions and should 

expose the objects that humans would find relevant to the 

actions as arguments. For example, in an email application, 

it is preferable to model the actions 

openComposeWindow, sendEmailAttachment, and 

sendEmail, rather than low-level actions like 

moveMouse or leftClickOnMouse, or high-level 

actions like sendReceiptsToAdmin, or 

sendQuarterlyReport. 

Capturing actions at low levels will generally result in 

much more compact action models, simplifying 

instrumentation and automation. However, it is likely to 

yield incomprehensible learned procedures—for example a 

procedure composed entirely of mouse drags and clicks. 

Meanwhile, capturing actions at too high a level will 

generally impose an impractical reasoning burden on the 

instrumentation to map what can actually be observed to the 

user’s intent—imagine having to determine the purpose of 

sending an email message. Further, such high-level actions 

compose poorly because the user cannot break them down 

into smaller units should they want to realign them. 

When modeling actions that match how users think of 

themselves interacting with applications, one is more likely 

to strike the right balance between the cost of 

instrumentation and user comprehension of the learned 

procedures. Such comprehension is essential if we ever 

expect to create systems that allow users to later modify and 

debug their procedures [25]. A user with a learned 

procedure that operates as a black box may not be any 

better off than a user who does not have the technical skills 

to read a scripting language. Modeling domain actions at 

human level is a service both to the learning algorithms and 

end users. 

Beyond Actions: Modeling Objects and Relations 

As discussed above, an action-oriented domain model 

presents a number of advantages for a cross-domain EUP 

system. However, judicious modeling of the objects in a 

domain and the relations between them can often simplify 

action modeling while also improving our ability to learn 

and reason over procedures. For example, suppose that the 

correct recipient of an email containing a travel expense 

report is the administrative assistant attached to the project 

that funded the trip. Without a representation for these 

relations it would not be possible to notice this requirement 

in an action trace, or represent it in a procedure. We can 

also use relations and properties as tests in conditional 

branches in procedures. 

In ITL, we store relation models for each application along 

with the action models, preserving modularity. Technically, 

a relation such as “the project funding the trip” can be 

represented either as a relation or an operation, in this case: 

“look up the project funding the trip”. However, there may 

not always be an observable user action to query for the 

relation. The choice of whether to use a relation or 

information-producing action in each particular case should 

be largely governed by what is more natural for users of the 

application who generate and edit procedures. 

Referring explicitly to properties and relations of objects 

does require additional mechanisms to be defined to support 

querying for object properties or relations when a procedure 

is executed. Compared with an alternative approach that 

represents each object as a tuple of its properties, however, 

this approach provides two distinct advantages. First, the 

properties themselves may be more natural for users to 

view and edit in their native interface. Second, the object 

properties may be mutable—that is, they may change 

concurrently within the domain application. In determining 

whether it is the same object referred to in different actions, 

care must thus be taken to distinguish mutable from 

immutable properties and to compare only the immutable 

properties. Third, forcing relations between objects into 

properties of the object tuples is often awkward and 

unwieldy. In situations where these factors are significant, 

the advantages of representing objects as references may be 

well worth the additional overhead. 

Extensible Type System 

Recall that we define an action as taking a set of typed 

inputs and outputs. These types are used to allow the 

learners to make reasonable comparisons and substitutions 

between actions operating on compatible types of data. 

Figure 1 shows a variety of types, ranging from simple 

primitives such as string to more complex types such as 

email.   

Much like actions, it is preferable to allow application 

domain models to specify arbitrary types rather than 

restricting model authors to a finite set of possible types.  

Since the type system is very important in procedures that 

tie together steps from several different applications, it is 

important that compatible information provided by one 

application and used in another can be identified as such. 

For example, both an email client and a Web browser can 

understand email addresses, and it is important that they 

both settle on a common representation. We can achieve 



 

this agreement either by having the two domains use the 

same name for these object types, or by providing a central 

module that asserts the equivalence of the types and that 

perhaps contains a set of operations providing object 

conversion as needed. Providing shared type names or 

conversions does not in itself solve the problem of bridging 

information across multiple domains by matching types. 

This problem is similar to the ontology alignment or 

database integration problems, where a lot of work has been 

done [12,23]. Our general approach here has been to keep a 

lightweight central type system that is relatively easy to 

align to. ITL includes a module to automatically align types 

into a central system based on observed values [17]. 

In addition we suggest a more powerful hierarchical 

approach that allows application domain models to build up 

complex data types from primitive data types and collection 

data types. To illustrate this approach, consider the 

hierarchical type system supported by the ITL system. ITL 

allows domain models to build from complex types from 

string, integer, float, and Boolean primitives and list, object, 

and named types. More complex types are built by creating 

lists, which consist of typed parameters; objects, which 

consist of typed fields; or named types, which are types that 

structurally represented by another primitive or complex 

type but are not considered equivalent to that type. Figure 2 

shows how to build an email type in such a scheme: 

Named emailAddress string 

Object email: 

  List<emailAddress> recipients 

  emailAddress sender 

  string subject 

  string body 

Figure 2: Building the emailAddress and email types 

As we can see, one can build arbitrarily complex data types 

out of the components, while still allowing the learning 

systems to reason about the internals of complex types. 

Another useful addition to such a type system are relations 

between types such as “is a” and “has a.”  Such additional 

metadata is not strictly necessary, but may extend the 

reasoning ability of the learners [7]. 

The key to the above approach is that it parallels the 

specification of application domain models in that it allows 

domain modelers to create expressive models without 

forcing all model engineering to happen upfront. One can 

declare types for an application alongside the actions and 

register to allow learning in a just-in-time fashion. Thus, we 

can define any given application domain model as simply 

the set of actions, types, and relations that describe all user-

level operations over which our learners can reason and 

build procedures. The full domain model is then just the 

conjunction of all actions, types, and relations from all the 

application domain models that we wish to consider. Hence, 

we can build a large full domain model without the upfront 

design and continuing maintenance costs required by a 

monolithic master ontology. 

ENGINEERING INSTRUMENTATION AND AUTOMATION 

Despite a great deal of clever reasoning, in the end, an EUP 

system is only as good as the instrumentation that it can 

reason over. Likewise, EUP execution engines are 

worthless without robust automation hooks. Unfortunately, 

to work in non-trivial, non-custom environments, 

instrumentation and automation must touch a number of 

applications and websites, the vast majority of which were 

not originally designed to support such intrusions. Given 

such a high cost of entry and high benefit for cross-domain 

EUP, we suggest budgeting a large percentage of time to 

handle such concerns.  

The following sections provide an overview of the common 

engineering challenges faced by application developers who 

wish to attach their applications to a cross-domain EUP 

system. Then, using ITL as a motivating example, we 

provide some prescriptive guidance that may reduce the 

programming burden associated with 

instrumentation/automation. 

Plugging in to an End User Programming System 

Let us first consider instrumentation. In a dataflow action, 

collecting instrumentation consists of recording the values 

of the input parameters in the target application, waiting for 

the action to be performed, then recording the values of the 

output parameters and sending the whole package to the 

learners. One possibility is to provide the target application 

with a way to notify the learners when an action has been 

executed. In this case, we can simplify the process 

somewhat by using the domain model to create a registry of 

action notifications with accompanying containers for 

storing inputs and outputs. Here, we can leverage the 

organization of a good domain model to take much of the 

burden off the application programmer. However, be aware 

that the mapping from application functions and state to 

domain actions is almost never one-to-one. As such, it is 

key to provide the programmer with flexibility, as it can be 

particularly onerous to restructure application logic to fit in 

with a given action model. 

Automation is somewhat easier for the application 

programmer, but it can be difficult for an EUP system 

engineer to provide a general-purpose framework for cross-

domain automation that can collect the necessary 

application context to execute an arbitrary domain action. 

For example, when executing an openURL action, we have 

access to the URL to open as an action input, but in most 

browsers we also require other information such as a 

reference to the active tab. Not all context is appropriate to 

expose to the learners via the domain model, so we must 

have another way to access the context on demand. One 

solution to the problem is to create a callback framework 

that attaches the ability to execute arbitrary application code 

to each action in the domain model. As with 
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instrumentation, this approach must be flexible enough both 

to execute application operations and to gather all the 

program context necessary to allow such objects to operate 

correctly.  

In summary, while instrumentation/automation engineering 

may not present grand AI challenges, it is a critical, under-

appreciated issue for EUP, especially across domains. In the 

next section, we will provide some more detail as to how 

we have engineered the ITL application programmer’s API 

to facilitate instrumentation and automation for third-party 

applications. 

Crafting the Programming Model 

In our deployment of ITL, we learned that 

instrumentation/automation is a consistent bottleneck in 

crafting a useful EUP system. Over several iterations, we 

have developed a few approaches that improve the 

programming model for associating application code with 

the actions to which it relates. While these approaches may 

not be necessary for all cross-domain applications, we 

stress that flexibility is the key programming concern in 

instrumenting/automating EUP client applications. 

For instrumentation, we sought to address three key 

engineering concerns, interoperability, immutable state and 

crosscutting. Interoperability concerns the fact that 

equivalent types may be represented in heterogeneous ways 

across different applications. We earlier discussed the 

importance of lightweight type systems, and it turns out that 

we can leverage this concept for inter-application 

communication. In ITL, we settled on a canonical wire 

format for all data, recursively built out of primitives, lists, 

and maps based on the data type descriptions contained in 

the domain model. In this way, application programmers 

must only provide data conversion functions for their 

primitive application types and the framework can handle 

the rest of the conversion automatically. 

Immutable State 

The immutable state issue crops up because action inputs 

and outputs must be immutable values that reflect the state 

of the application before and after the user-level operation. 

If the operation or some application side effect mutates the 

item, the invariants of the action are violated, negatively 

impacting the learners. It is up to application developers to 

make sure that such erroneous mutation does not occur. In 

practice, defensive copying of the parameters solves this 

issue [3]. In ITL, we provide API support to deep-copy the 

parameters at the points which the application programmer 

takes the before and after operation snapshots of the 

application’s state. 

Crosscutting 

Crosscutting refers to the tendency of some self-contained 

aspects (concerns) of a program to cut across a number of 

modules. Such code is hard to read and maintain [16]. 

Consider instrumentation, which requires the application 

developer to place a call to the EUP system wherever she 

wants to log program state. If something about these calls 

were to change, the developer would have to hunt down 

every occurrence that is entangled in code that is otherwise 

unrelated to the EUP system. With standard object-oriented 

approaches, it is impossible to fully encapsulate a 

crosscutting concern like instrumentation. 

In ITL we decided to follow an aspect-oriented approach to 

solve this problem [16]. Aspect-oriented programming uses 

code execution intercept to factor out cross-cutting 

concerns; while it is not possible in all programming 

languages, it provides a clean solution to this problem for 

the increasing number of languages that support it. In our 

scheme, for each action, the application programmer need 

only specify methods to gather input and output states. 

Then, she simply provides locations at which the 

instrumentation will be triggered. The result keeps all 

instrumentation in one module and makes it easy to ship 

instrumented and uninstrumented versions of the client 

application. Even without aspect orientation, we suggest 

keeping the gathering methods in a single module and 

limiting the penetration of calls to this module from other 

modules to a minimum. 

Context Gathering 

As described earlier, the major problem of automation is 

context gathering—i.e., ensuring that the necessary 

program context is available for executing the action. We 

suggest abstract factory pattern as an elegant solution to 

this issue [13]. In ITL, each action uses an abstract factory 

to create a context object that knows how to gather context 

and execute the necessary code to make execution 

successful. In this way, one only needs to provide the 

template for gathering context rather than attempt to pass 

the context to each callback explicitly.  

The ITL approach certainly is not the only method to 

instrument and automate a number of heterogeneous 

applications, but we feel that it demonstrates a number of 

engineering best practices for instrumentation/automation. 

We hope that by sharing some patterns for making this 

difficult process easier, we can allow EUP systems to 

gather more data and focus on better serving the user. Now 

that we have facilitated appropriate instrumentation and 

automation, we can focus on some interesting learning 

issues. 

LEARNING CROSS-DOMAIN PROCEDURES 

The action-oriented dataflow paradigm both presents new 

opportunities for learning and affords useful information 

that can help in the learning process. In this section, we 

describe various issues that arise in learning dataflow 

procedures across domains and present the solutions we 

have explored thus far within ITL. 

Integrating Web Services and Other Data Sources 

By representing actions in terms of their inputs and outputs, 

we can naturally represent procedures learned over them as 

higher-level actions with inputs and outputs. A beneficial 



 

consequence of this is that we can integrate Web services 

and other action-oriented data sources in whole or in part 

into ITL. For example, if instrumentation and automation 

are provided at the level of the browser operations within a 

Web service for providing driving directions, ITL could be 

used to learn a procedure to drive the browser interaction. 

Alternatively, instead instrumentation and automation could 

be at the level of the Web service itself, modeling the 

procedure as a single action taking in the origin and 

destination addresses and providing the driving directions 

URL as output. This could use the Web service API directly 

or some intermediary such as the execution component of 

some other learning system tailored specifically to that Web 

service. This flexibility allows ITL to learn at the primitive 

action level but also at the level of procedures learned by 

other components. As long as the other learner creates an 

action with inputs and outputs, ITL can incorporate it into 

larger dataflow procedures. 

To support such composability, it is critical that the inputs 

and outputs of the different services or learned procedures 

be semantically aligned. One approach is to omit semantic 

typing and annotate parameters with only their basic data—

for example, type the parameter to a browser navigation 

command as a string rather than as a URL. While this 

approach will work, it leads to an explosion in the search 

space for matching parameters and to inefficient learning. 

Thus, as discussed earlier, instead we advocate the use of a 

lightweight type system into which the inputs and outputs 

of the different actions can then be mapped. In the past, we 

have used the semantic mapping component of PrimTL [17] 

to integrate new data sources. However, conceptually, other 

techniques for ontology alignment can be used to relate 

inputs and outputs of different services. 

Programming by Demonstration 

Programming by demonstration (PBD) or programming by 

example has been a popular EUP paradigm since its 

introduction a few decades ago [9,19]. PBD is a particularly 

attractive methodology for nontechnical end users because 

it relies on a very natural form of interaction—

demonstration—that requires minimal input from the user. 

Recent years have seen resurgence in enhanced PBD 

approaches as adaptive AI systems have begun to tackle the 

acquisition of complex workflows (e.g., [1,6]). 

Within the dataflow paradigm, we can characterize the 

basic learning task as one of generalizing a demonstration 

comprising a sequence of executed actions into a procedure 

that can be used to achieve the same task in future similar 

situations. There are two basic aspects to generalization: 1) 

parameter generalization to essentially convert observed 

constants into variables and 2) structure generalization to 

induce procedural structure over the observed straightline 

sequence. 

A dataflow-oriented action model introduces a number of 

more specific issues for learning procedures from 

demonstration. First is dataflow validation—ensuring that 

every input is supported by a previous output. Second is the 

related issue of parameter generalization through expression 

formulation—essentially, determining how to replace 

constants not simply with variables but with functional 

expressions over previous variables. The third issue is the 

induction of loops over collections of objects, in contrast to 

counting loops or while loops.  

In ITL, the PBD capability is provided by the LAPDOG 

procedure learning component [14,15]. LAPDOG was 

designed specifically to learn dataflow procedures, 

addressing each of the issues above while taking advantage 

of the inherent structure provided by the action-oriented 

data model discussed previously. We now present each of 

the issues in dataflow procedure learning in turn, discussing 

our approach to handling them in LAPDOG and remaining 

open problems.  

Dataflow Validation 

To be executable, the inputs of every action in a dataflow 

procedure must be supported by previous outputs. In the 

simplest case, an input is directly supported by an output—

i.e., they are the same value. A slightly more complex case 

involves inputs that can be supported by expressions over 

previous outputs; this is discussed further in the next 

section. 

The most interesting case arises when no such directly or 

easily derivable supports can be found based on the 

observed demonstration. Discounting the situation where 

this occurs due to insufficient instrumentation, missing 

supports may occur due to unobservable mental actions that 

the user performs in the process of accomplishing a task. 

For example, a user might search for all Italian restaurants 

in a city and then proceed to email the names and links for 

only the five-star-rated ones. However, all that a PBD 

system will observe is that the user sent out some 

information from some subset of the list of restaurants. The 

fact that it was the five-star-rated subset is something that 

needs to be inferred. 

In LAPDOG, we address this problem through two main 

techniques for dataflow completion. The first involves a 

heuristic search in the space of possible relations within a 

knowledge base [15]. The second might be characterized as 

planning in the space of information-producing actions, 

such as string manipulation operations, named entity 

extractors, and classification operations [14]. While the first 

involves search over a relatively static knowledge base, the 

second involves search over dynamically generated data. 

Both techniques leverage aspects of the domain model 

prescribed earlier: the first involving relations between 

objects accessible through some query mechanism and the 

second involving non-observable but executable 

information-producing actions. 

Extended Parameter Generalization 

In a specialized case of inferred relations between known 

outputs and required inputs, we can consider accessor and 
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construction operations over lists and tuples. LAPDOG 

utilizes unlimited tuple field access and limited list element 

access. Specifically, individual values may be supported by 

any field value of a tuple but only by the first or last 

element of a list. The rationale is that while the individual 

fields of a tuple as well as the first and last elements of a list 

are meaningful, the other elements of a list are rarely so. 

LAPDOG also utilizes list and tuple construction, allowing 

list and tuple values to be supported by constructor 

operations over values matching their constituent parts. 

Loop Induction 

Within the dataflow paradigm, one of the most common 

loops involves a loop over the elements of a collection (i.e. 

a set or a list). In the case where the loop is over a 

collection that is explicitly observed in the demonstration 

(e.g., the output of a previous action), we can leverage this 

information to detect loops. Intuitively, if we can find a 

similar sequence of actions operating over each element of 

the collection, we can induce a loop. In LAPDOG, we 

leverage this information to find loops over collections, 

where the loop body is identical over all iterations [11]. 

A more interesting situation arises when loops occur over 

collections that are not explicitly observed but can be 

inferred from previous outputs. A simple case of this 

involves a sorting operation on a list to generate another, 

potentially differently ordered, list. For example, a set of 

person names may be sorted alphabetically while a list of 

employee IDs may be sorted in increasing numeric order. A 

straightforward extension involves the application of 

predefined actions that generate lists. For example, a travel 

system might have an operation that takes a set of travel 

authorization requests and outputs the list awaiting approval 

or another that takes an employee ID and a date range and 

outputs the list of all travel within that specified dates. 

Inserting these kinds of actions into the learned procedure is 

a natural extension of LAPDOG’s dataflow completion 

capabilities [14,15].  

Another interesting situation involves a loop that uses the 

accumulated outputs of a previous loop. For example, 

imagine an administrative assistant making online hotel 

reservations registrations for a number of people and then 

emailing each person with their reservation confirmation 

ID. This presents an interesting learning challenge because 

it requires the preceding loop to be learned in order to 

determine that it will generate the list that the succeeding 

loop needs [11]. 

Combining the notion of having to infer a collection of 

objects and accumulating a new list within a loop, we get 

the situation where we have a loop over a collection for 

which the learning system must propose a loop that will 

generate the required list from a previously known list.  For 

example, imagine needing a list of employee IDs. Given a 

list of employee records, we could generate this list by 

looping over the employee records and collecting the 

employee ID from each.  

VISUALIZING CROSS-DOMAIN PROCEDURES 

End-user programming is fundamentally a programming 

task and, as such, it inevitably involves abstraction. For 

non-programmers, dealing with abstract procedures is 

difficult because such users tend to think of programs as the 

set of concrete actions that end users experience at runtime, 

rather than as more general abstract control structures [22]. 

Rode and Rosson demonstrated this difficulty in the Web 

domain and, from our deployment of ITL, we also conclude 

that in complex, cross-domain environments, the user’s 

need to understand abstract procedures is both vital and 

difficult to support [24]. Fortunately, by augmenting 

pluggable domain-models, we can support the user without 

having to know about every domain in advance. 

To leverage the end user’s tendency to conceive of 

procedures in terms of runtime actions, we can combine an 

appropriately abstract domain model with human-readable 

annotations to make action specifications more concrete. 

First, remember that we recommend defining the domain 

model in terms of atomic user interactions. This level of 

abstraction affords a straightforward mapping from action 

to a human-readable displayed step that reflects an atomic 

GUI interaction with the end user. In ITL, we implemented 

this mapping using a template approach that adds metadata 

to domain model actions to specify a human-readable 

display as well as to specify pointers domain application 

properties that must be queried for missing display 

information. Figure 3 illustrates this approach. 

Raw Source:  
openComposeEmailWindow  

+sender:[“haines@ai.sri.com”]  

+subject:”Explaining Templates”  

+body:”An explanation” –frameID:ID12345 

Action Template:  
openComposeEmailWindow := Opened window: 

$frameID 

Apply Action Template:  
Open window: ID12345 

Data Type Template:  
frameID := Compose $frameID.subject 

Apply Data Type Template:  

 

Figure 3. Action Metadata Application—Before and After 



 

The action template indicates that the 

openComposeEmailWindow action should display as 

“Open window:” concatenated to the display value of the 

the frameID parameter, which in this case refers to an 

application property, the identifier of the window in which 

the email will be composed. Next, we include a template for 

the frameID data type, which queries the application to 

find an application-specific representation—in this case, the 

subject displayed in the frame. If the frameID instead 

happened to be a variable, we would instead display just the 

variable’s name. 

Also important to note is that this template does not present 

all arguments of an action to the user—in particular, the 

input arguments of the openComposeEmailWindow 

action are never shown. Our research indicates that some 

parameters simply complicate a user’s understanding of the 

overall procedure flow [25]. For example, though the 

procedure executor might need to know screen pixel 

positions, such information is irrelevant to most end users. 

As such, adding the ability to suppress parameters and even 

entire actions to a “details” view is another simple way to 

improve user comprehension of complex procedures. 

Further, users may not perform a certain demonstration 

perfectly, making and correcting mistakes along the way. 

Indicative of this are certain combinations of actions that 

negate each other, such as a file being open then 

immediately closed, or an email compose window being 

created and edited but not saved or sent. These could also 

be hidden to simplify the event trace. 

MODIFYING CROSS-DOMAIN PROCEDURES 

A complete framework for end-user programming should 

support editing of procedures as well as their learning by 

demonstration. Given an understandable representation of 

their procedures, users want to make changes that cover a 

range of complexity, from changing constant parameters in 

steps to adding conditions and iterative loops. Simple edits 

may often be required when the task to be performed by an 

existing procedure changes slightly or to correct an initial 

hypothesis from another learning component. Support for 

multiple domains increases the chance that users will also 

need to add new steps to procedures, modify step ordering, 

or change the structure of the procedure. This is because 

domains may be more or less reliant on a graphical 

interface, where demonstration-based techniques are 

natural, leading the user to supplement demonstration by 

choosing available actions from a menu or describing them, 

and composing within an editor.  

In the dataflow-oriented model, full user support for editing 

poses many of the same challenges faced by demonstration-

based learning. For example, users may insert an action but 

omit auxiliary steps or queries that provide inputs for that 

action. In a dataflow model, those missing steps must 

themselves make use of inputs that are established earlier in 

the procedure. The use of typing in our domain 

specification allows us to cast the problem of inferring 

missing steps as compositional search over a graph of data 

types in which queries or steps are composed to form a path 

from existing inputs to those that are needed. 

An editing tool for a typed dataflow model should provide 

at least two kinds of support. First, it should provide editing 

support for users, not only to add primitive steps, but also to 

add conditions or loops by suggesting candidates based on 

queries and lists that are available. Second, it should warn 

the user if the edited procedure misses critical inputs or 

otherwise has potential flaws and should use dataflow 

information to suggest potential fixes. A third, desirable 

characteristic is to allow users to copy steps between 

procedures to facilitate best practices, while using the 

dataflow model to ensure the resulting procedure is 

executable. 

In ITL, Tailor is used to provide a procedure editing 

capability [4,25]. Tailor exhibits all these desired 

characteristics, as we describe below. Tailor allows users to 

add or delete steps, add conditions and iterative loops, and 

to copy steps between procedures. It searches over possible 

queries and actions arranged in the same space to find 

plausible missing steps, composing steps and queries if 

needed.  

Support for Adding Conditions and Loops 

Tailor uses compositional search over a graph of data types 

to infer missing steps or queries when users add steps. In 

general, however, users find the process of adding a brand 

new step difficult and do not perform it often, preferring to 

copy or move steps. The same search technique, however, 

can support a wide range of activities, including copying 

steps, generating potential fixes for flaws, and, as we 

describe here, adding conditions or loops. 

When the user invokes Tailor in ITL, she may choose to 

add a condition or loop around a set of steps without 

providing any information about the condition or loop. This 

lack of specificity simplifies the interface and reduces the 

cognitive burden on the user, who may find it difficult to 

specify a conditional or loop without assistance. Tailor uses 

compositional search along with heuristics to generate a set 

of reasonable candidate specifications. Once Tailor arrives 

at a set of candidates for a new action, condition, loop or a 

change to a parameter value, the user interface can present 

them as options. Here it is critical that the user can 

understand both the current procedure and the available 

alternatives in order to make a reasoned choice. The 

alternatives are displayed within the procedure visualization 

described above and should use similar templates to provide 

a uniform view. By presenting the user with appropriate 

bounds, we make it easier to create complex control 

structures and limit the user’s capacity to make errors. 

Support for Editing Errors or Flaws 

Nevertheless, users still often make errors when editing 

procedures. After the user makes a modification, Tailor 

checks a procedure for simple errors, for example if a step 
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has been deleted although it produced a value that was used 

later in the procedure [4]. To do this check, Tailor performs 

a symbolic analysis of the procedure, aiming to find 

important errors before the procedure is executed. This 

means that it does not know, for example, which of several 

conditional branches may be taken during execution or how 

long a loop will be followed. ITL’s execution engine is also 

capable of interleaving many concurrent actions, and this 

means that one cannot prove that global variables will be 

unavailable when a step is to be run [20]. Because of this, 

Tailor only provides a warning for an unbound global 

variable at the time that a modification removes or reorders 

a step or query that provides a value. 

For each warning, Tailor uses templates to provide a set of 

potential fixes that may include reordering steps, removing 

them, or undoing user’s last edit. In some cases, 

modifications requiring several coordinated edits can be 

made by picking one edit and choosing the appropriate 

recovery steps. Further, Tailor can use compositional search 

to suggest steps that may be added to provide missing 

inputs. 

Support for Copying Steps Between Procedures 

Our user interviews revealed that users frequently desire the 

ability to copy steps from a previously learned procedure to 

a new one [25]. This request makes sense; by copying all or 

part of a procedure, users can reuse long demonstrations or 

complex constructs, such as conditions and loops. The 

procedures learned in ITL use no global variables, so the 

variables in the steps that are copied must be replaced by 

terms in the target procedure, either by (1) changing them 

to an existing variable, (2) changing them to a constant, or 

(3) adding auxiliary steps to establish a new variable. Tailor 

finds potential replacements of all kinds using the same 

compositional search technique [5]. This method naturally 

prefers to use an existing variable or constant for each 

copied variable, as this leads to a shorter solution. We 

extended this capability to enable copying sequences of 

steps, by composing the variable mappings of the 

component steps. We also added domain-specific heuristics 

that replace variables with constants when the intended 

value is known. 

DISCUSSION AND FUTURE WORK 

Clearly, there are both large benefits and considerable costs 

associated with an extensible cross-domain EUP system 

such as ITL. We have explored in detail some of the 

concerns associated with creating such a system, but there 

are a number of other challenges and potential benefits that 

we have not explored in detail to date. Here we briefly 

discuss a few of the issues that we hope to explore. 

Consistency in a Heterogeneous Environment 

A widely recognized design principle, consistency [21] is 

difficult enough to achieve in an unregulated environment 

like the Web. When attempting to integrate Web 

applications with desktop applications, the concept of 

consistency becomes even more vague. One option is to 

return to the native application to edit procedure 

parameters. While this leverages users’ familiarity with that 

application and makes sense for certain dialogs (such as 

save as options) it is problematic for other operations like 

defining loops. A second option, managing editing 

operations entirely within the EUP tool raises new 

questions. Should the EUP system follow platform 

conventions, Web standards, or some other standard 

entirely?  An extensible visualization system like the one in 

ITL should allow us to test various approaches with end 

users, but there are currently no clear answers. 

Supporting Procedure Reuse 

In addition to reusing one’s own procedures, an EUP 

system should support users sharing procedures. Given that 

making procedures understandable to the author is difficult, 

making them understandable to others is even harder. This 

problem is compounded when there is a wide range in the 

computational literacy of the user population. Advanced 

users may be comfortable with complex structures, such as 

conditionals and iteration, which may confuse novice users 

who attempt to take advantage of shared procedures. A 

simple improvement that we have explored is to create a 

means for users to explicitly define arbitrary steps within a 

procedure and to enter descriptions summarizing the 

procedure and individual steps. Similar to comments in 

code, this metadata can help users understand and evaluate 

shared procedures; however, they will only be useful if 

users are motivated to add them to their procedures. 

Another issue that arises with shared procedures is that a 

given procedure may contain certain types of personal data, 

such as names, emails, and mailing addresses. These types 

of information will need to be identified and personalized in 

order for a user to take advantage of a shared procedure. 

Creating a personal data store for these data types, as 

CoScripter (formally Koala) does [18], may help to avoid 

confusion.  

SUMMARY AND CONCLUSIONS 

In this chapter, we discussed the benefits of implementing a 

cross-domain EUP system as well as the unique challenges 

associated with such an endeavor. Using our experience 

building the cross-domain ITL system, we recommend 

building an action-oriented set of pluggable domain models. 

Leveraging such a model, we see that we can reduce the 

burden of instrumentation and automation as well as 

support the learning of, reasoning over, and visualization of 

cross-domain procedures. By modeling the world around us 

in a modular, extensible way, we can better allow end users 

to automate their workflows on the desktop, the Web, and 

perhaps beyond. 
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