A Goal-Oriented Web Browser

Alexander Faaborg, Henry Lieberman
MIT Media Laboratory
20 Ames Street, Building E15, Cambridge, MA 02139, USA
faaborg@media.mit.edu, lieber@media.mit.edu

ABSTRACT

Many users are familiar with the interesting but limited
functionality of Data Detector interfaces like Microsoft’s
Smart Tags and Google's AutoLink. In this paper we
significantly expand the breadth and functionality of this
type of user interface through the use of large-scale
knowledge bases of semantic information. The result is a
Web browser that is able to generate personalized semantic
hypertext, providing a goal-oriented browsing experience.

We present (1) Creo, a Programming by Example system
for the Web that allows users to create a general-purpose
procedure with a single example, and (2) Miro, a Data
Detector that matches the content of a page to high-level
user goals.

An evaluation with 34 subjects found that they were more
efficient using our system, and that the subjects would use
features like these if they were integrated into their Web
browser.

Author Keywords

Goal-oriented design, Programming by Example, Data
Detectors, context aware computing, software agents, Open
Mind, ConceptNet, TAP, commonsense reasoning

ACM Classification Keywords

H.5.2 User Interfaces: User-Centered Design
H.5.4 Hypertext/Hypermedia: User Issues

1.2.7 Natural Language Processing: Text Analysis
1.2.6 Learning: Concept Learning

INTRODUCTION

In this paper we describe a Programming by Example
system for the Web named Creo, and a Data Detector
named Miro. Working together, Creo and Miro provide the
user with a goal-oriented Web browsing experience. We
describe an evaluation of our software based on data from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

CHI 2006, April 22-27, 2006, Montréal, Québec, Canada.
Copyright 2006 ACM 1-59593-178-3/06/0004...$5.00.

34 users, and evaluations of our software’s user interface
during an iterative design process.

Finally, we conclude with a discussion of how large-scale
knowledge bases of semantic information can be leveraged
to improve Human Computer Interaction.

CONTRIBUTIONS

This paper presents five contributions. First, the paper
demonstrates how a Programming by Example system can
be used to automate repetitive tasks on the Internet, saving
users time.

The central problem of Programming by Example systems
is generalization. The second contribution is to show how
two large knowledge bases of semantic information, MIT’s
ConceptNet and Stanford’s TAP, can be leveraged to
improve generalization.

The paper’s third contribution is to show how a
Programming by Example system can work together with a
Data Detector, solving both recording and invocation in an
integrated way.

Commercially available Data Detectors like Microsoft
Smart Tags and Google’s AutoLink limit users in both the
types of data that can be detected, and the services that can
be performed on those types of data. This paper’s fourth
contribution is to show how combining a Programming by
Example system with a Data Detector enables users to be in
control of the services associated with their data.

Finally, this paper demonstrates how a Web browser can
proactively detect a user’s potential goals while they
browse the Web. While current Web browsers sit between
the user and the Web, the very thin amount of interface they
do provide (Back, Next, Stop, Refresh, Home) has little to
do with the user’s higher level goals. The overall
contribution of this paper is to demonstrate how the
integration of large knowledge bases of semantic
information, a Programming by Example system, and a
Data Detector can result in a Goal-Oriented Web Browser.

TEACHING COMPUTERS THE STUFF WE ALL KNOW

Computers lack common sense. Current software
applications know literally nothing about human existence.
Because of this, the extent to which an application
understands its user is restricted to simplistic preferences
and settings that must be directly manipulated. Once

software applications are given access to Commonsense
Knowledge, hundreds of thousands of facts about the world
we live in, they can begin to employ this knowledge to
understand their users’ intentions and goals.

Open Mind

Since the fall of 2000, the MIT Media Lab has been
collecting commonsense facts from the general public
through a Web site called Open Mind [1-3]. Currently, the
Open Mind Common Sense Project has collected over
806,000 facts from over 19,000 participants. These facts
are submitted by users as natural language statements of the
form “tennis is a sport” and “playing tennis requires a
tennis racket” While Open Mind does not contain a
complete set of all the commonsense knowledge found in
the world, its knowledge base is sufficient to be useful in
real world applications.

ConceptNet

Using natural language processing, the Open Mind
knowledge base was mined to create ConceptNet [4], a
large-scale semantic network currently containing over
250,000 commonsense facts. ConceptNet consists of
machine-readable logical predicates of the form: (IsA
“tennis” “sport”) and (EventForGoalEvent
“play tennis” “have racket”). ConceptNet is
similar to WordNet [5] in that it is a large semantic network
of concepts, however ConceptNet contains everyday
knowledge about the world, while WordNet follows a more
formal and taxonomic structure. For instance, WordNet
would identify a “dog” as a type of “canine,” which is a
type of “carmivore,” which is a kind of “placental
mammal.” ConceptNet identifies a “dog” as a type of “pet”

[4].

Stanford TAP

The Stanford TAP (The Alpiri Project) knowledge base was
created to help bootstrap the Semantic Web [6-10]. Unlike
the Open Mind knowledge base, which was generated
through the contributions of knowledge from volunteers on
the Web, TAP was generated by creating 207 HTML
scrapers for 38 Web sites rich with instance data. TAP has
extracted knowledge from over 150,000 Web pages,
discovering over 1.6 million entities and asserting over 6
million triples about these entities [10]. This knowledge
covers a wide variety of topics, including: music, movies,
actors, television shows, authors, classic books, athletes,
sports, sports teams, auto models, companies, home
appliances, toys, baby products, countries, states, cities,
tourist attractions, consumer electronics, video games,
diseases, and common drugs. The instance data found in
TAP is a good complement to commonsense knowledge
bases like ConceptNet or CYC [11]. For instance, “CYC
knows a lot about what it means to be a musician. If it is
told that Yo-Yo Ma is a cellist, it can infer that he probably
owns one or more cellos, plays the cello often, etc. But it
might not know that there is a famous cellist called Yo-Yo

Ma” [8]. For this project, the TAP knowledge base has
been modified to match the formatting of ConceptNet.

A GOAL-ORIENTED WEB BROWSER

Using the knowledge in ConceptNet and TAP, we have
created a toolbar for Microsoft Internet Explorer that
matches the semantic context of a Web page to potential
user goals. For instance, imagine a user is viewing a Web
page that contains a recipe for Blueberry Pudding Cake.
The user’s browser will notice a pattern of foods on the
page, and present the user with two suggestions: order the
foods, or view their nutritional information. When the user
selects one of these buttons, all of the foods on the page
turn into hyperlinks for the selected action. For instance, by
pressing the “Order Food” button, each food in the recipe
will be converted into a hyperlink for that food at the user’s
favorite online grocery store. Alternatively, the user can
view the nutritional information for each of the foods at
their favorite Web site for nutritional information:

4 Order Food (14) 4 Nutritional info (14)

large eag
whole milk
unsalted butter

&0 3 Loca ranet

Figure 1: Automatically associating a user's high-level goals
with the content of a Web page

After being presented with this example, a critical reader
likely has two significant questions: (1) How does the
browser know how to interact with the user’s favorite
grocery store? And (2) How does the browser know which
of the terms in the recipe are foods? The answer to the first
question is by enabling users to train a Web browser to
interact with their favorite sites using a Programming by
Example system named Creo (Latin, “to create, make”).
The answer to the second question is by leveraging the
knowledge bases of ConceptNet and TAP to create a next
generation Data Detector named Miro (Latin, “to wonder”).
The following two sections discuss both of these topics in
detail.

It is important to note that while this “recipe to grocery
store” example is used throughout the paper for the
purposes of clarity, Creo can automate interactions with
other kinds of sites on the Web (not just grocery stores),
and Miro can detect any type of data described in
ConceptNet and TAP (not just foods).

PROGRAMMING BY EXAMPLE

Traditional interfaces leave the user with the cognitive
burden of having to figure out what sequence of actions
available to them will accomplish their goals. Even when
they succeed in doing this for one example, the next time
the same or a similar goal arises, they are obliged to
manually repeat the sequence of interface operations. Since
over time, goals tend to re-occur, the user is faced with
having to tediously repeat procedures over and over. A
potential solution to this dilemma is Programming by
Example [12]. A learning system records a sequence of
operations in the user interface, which can be associated
with a user's high-level goal. It can then be replayed in a
new situation when the goal arises again. However, no two
situations are exactly alike. Unlike simple macro
recordings, Programming by Example systems generalize
the procedure. They replace constants in the recording with
variables that usually accept a particular kind of data.

Previous Research

The TrlAs (Trainable Information Assistants) by Mathias
Bauer [12, 13] is a Programming by Example system that
automates information gathering tasks on the Web. For
instance, TrlAs can aggregate information from airline,
hotel, weather, and map sites to help a user with the task of
scheduling a trip.

Turquoise, by Rob Miller and Brad Myers [14], is a
Programming by Example system that allows non-technical
users to create dynamic Web pages by demonstration. For
instance, users can use Turquoise to create a custom
newspaper by copying and pasting information, or automate
the process of aggregating multiple lunch orders into the
same order.

Similar to Turquoise, the Internet Scrapbook, by Atsushi
Sugiura and Yoshiyuki Koseki [12, 15], is a Programming
by Example system that allows wusers with little
programming skills to automate their daily browsing tasks.
With the Internet Scrapbook, users can copy information
from multiple pages onto a single personal page. Once this
page is created, the system will automatically update it as
the source pages change.

Web Macros, created by Alex Safonov, Joseph Konstan and
John Carlis [16], allows users to interactively record and
play scripts that produce pages that cannot be directly
bookmarked.

A New Approach to Generalization

Knowing how to correctly generalize is crucial to the
success of Programming by Example. Past systems have
either depended on the user to correctly supply the
generalization; or they have attempted to guess the proper
generalization using a handcrafted ontology, representing
knowledge of a particular, usually narrow, domain. Our
contribution is to solve both the problems of generalizing
procedures and proactively seeking invocation

opportunities by using large knowledge bases of semantic
information.

Creo

Creo allows users to train their Web browser to interact
with a page by demonstrating how to complete the task. If
a user decides that they are spending too much time
copying and pasting the ingredients of recipes, they can
easily train Creo to automate this action. To do so, the user
hits the Start Recording button.

freshdirect. O o: 0.5.10

FRUIT « VEGETABLES + MEAT + SEAFOOD + DELI + CHEESE « PASTA + COFFEE « TEA
DAIRY - GROCERY + FROZEN - HEALTH & BEAUTY - WINE

BAKERY « CATERING « MEALS

CET 10% OFF ko O IO
YOUR
F
L
& Player ® Recorder bl chesse
s
&« S

R Cancel Recording

) Browse to: Welcome to FreshDirect

551 Record form and submit

. ee

Figure 2: Creo learns how to interact with a Web site by
watching the user’s demonstration

Creo turns red to indicate that it is in recording mode, and it
captures the user’s action of navigating to FreshDirect.com.

Next, the user searches FreshDirect.com for an example
food, “diet coke.” Creo detects that this was an example,
and automatically generalizes the concept to “food brand.”

Creo v1.42 X

& Player @ Recorder

¥) Undo

. Cancel Recording

_) Browse to: Welcome to FreshDirect
[abl Submit: Ask->food brand

Figure 3: Creo automatically generalizes the user's input

Since these are the only two steps needed for locating a
particular food at the grocery store, the user can now finish
the recording, and give it a name: “Order Food.” By
providing a single example, “diet coke,” the user has
created a general-purpose recording.

29

In the opening example, terms like “egg,” “whole milk” and
“blueberries” were being linked to the grocery store, even
though these are not “food brands.” The reason for this is

that Creo actually associates a range of generalizations with
the user’s input, but only displays the most general of the
generalizations for clarity. In this particular case, “food”
was the second most general generalization of “diet coke,”
as shown in the following figure.

Creo's Generalizations Miro’s Generalization

Matches

User’s Example

L iR

Figure 4: Foods in the recipe are matched to the user's
recording

While this step is not required to create functional
recordings, users can directly control the selected
generalizations for a piece of input by clicking on the Ask-
>Food brand link in Figure 3 and clicking on the Scan tab:

Form Element When scanning Web pages for similar input

JabI Ask->food brand

Q The Miro toolbar will look for words that can
[ScanPoge | b usedin this recording when you clck the
Play Scan button.
skittles
< Examples Close
M This field takes any kind of:
Scan vl food brand (slice, cake, egg. matrix, asahi, Slives, eden, skyy
v/ drink (soda, beer, water, wine, coffee, diet coke, chocol
, Wi softdrink (pepsi. mountain dew, root beer, coca colon, diet
[vl soda (diet coke, coke. mountain dew., sierra mist, diet p
| popular soda (diet pepsi. diet coke, mountain dew.)
v/ food (bird, plant, fruit, vegetable, fish, candy, beverage
Share
¥ Check All Uncheck All Add

OK Cancel

Figure S: The user can control which generalizations are
active with check boxes

The contextual help for this tab reads, “The Miro Toolbar
will look for words that can be used in this recording when
you click the Scan button.” By checking and un-checking
items, users can directly control Creo’s generalizations. For
the user’s example of “diet coke,” Creo automatically
selected the generalizations of “food brand, food, drink, soft
drink, soda,” and “popular soda.”

Because Creo has access to ConceptNet and TAP, users can
create general-purpose recordings with a single example,

allowing their Web browser to automate interactions with
their favorite sites.

The topic of generalization also comes into play in invoking
recordings: if the user creates a recording that works on
certain kinds of data, seeing that data in a new situation
presents an opportunity for the Web browser to invoke the
recording.

DATA DETECTORS

The purpose of Data Detectors is to recognize meaningful
words and phrases in text, and to enable useful operations
on them [17]. Data Detectors effectively turn plain text into
a form of hypertext.

Previous Research
The majority of Data Detector research occurred in the late
1990s.

In 1997, Milind Pandit and Sameer Kalbag released the
Intel Selection Recognition Agent [17]. The Intel Selection
Recognition Agent was able to detect six types of data:
geographic names, dates, email addresses, phone numbers,
Usenet news groups, and URLs. These pieces of data were
then linked to actions created by a programmer, like
opening a Web browser to a URL, or sending an email
message to an email address.

In 1998, Bonnie Nardi, James Miller and David Wright
released Apple Data Detectors [18], which increased the
types of data detected from six to thirteen. Apple Data
Detectors were able to recognize phone numbers, fax
numbers, street addresses, email addresses, email
signatures, abstracts, tables of contents, lists of references,
tables, figures, captions, meeting announcements, and
URLs. Additionally, users could supply their own lists of
terms they wanted Apple Data Detectors to recognize.
Similar to the Intel Selection Recognition Agent, creating
an action associated with data required programming.

Send mail in Eudora

Phone

Phone at home

Save address in warehouse
Write a letter

gme T gour passpnr n
to be on the road thls afternoon, but you can leave a|
my secretary at cindyk@apple.com.

Also -- check out the lagoon views at
http://www.tahiti-nui.com/islands/moorea/main.html -- really
orgeous looking scenery. Can't wait to get there!

Figure 6: Apple Data Detectors (1998)

Also in 1998, Anind Dey, Gregory Abowd and Andrew
Wood released CyberDesk [19]. CyberDesk detected eight
kinds of data: dates, phone numbers, addresses, names,
email addresses, GPS positions, and times. While this was
less than the types supported by Apple Data Detectors,
CyberDesk provided a more advanced framework for
actions, including the ability to chain actions together, and
to combine different pieces of data into the same action.
CyberDesk also allowed for data detection on mobile
devices. For instance, CyberDesk provided the ability to
associate a GPS position with the action of loading a URL.

Like the Intel Selection Recognition Agent and Apple Data
Detectors, the only way to create new actions with
CyberDesk was to program them.

The functionality of these Data Detectors has been
integrated into several consumer products. onCue (released
in 1999) by aQtive monitored information copied to the
clipboard and suggested relevant Web services and desktop
applications. Like earlier Data Detectors, onCue did not
perform any level of semantic analysis, and it simply
associated words with various search engines, an
encyclopedia, and a thesaurus. However, onCue differed
from previous Data Detectors in that it was also able to
detect different structures of information, like lists and
tables, and then suggest relevant ways to visualize that
information, including dancing histograms, pieTrees, and
the charts available in Microsoft Excel. Both the service
and recognizer components in the onCue framework (called
Qbits) required a developer to program [20]. Microsoft
Office XP (released in 2001), provided data detection with
a feature called Smart Tags, and the Google Toolbar 3.0
(released in 2005), added data detection to Web browsing,
with a feature called AutoLink. Microsoft’s Smart Tags
currently recognizes eight types of data, although a
developer can program additional data types and actions.
Google’s AutoLink currently recognizes three types of data:
addresses, ISBNs and Vehicle Identification Numbers. The
actions associated with these types of data are controlled by
Google.

Back to the Future
One similarity of all of the research on Data Detectors in
the late 1990s is each paper’s future work section.

Programming by Example and End-User Programming
First, all of the research mentioned the importance of
Programming by Example and end-user programming. The
creators of the Intel Selection Recognition Agent wrote
“We would like to enhance the Selection Recognition
Agent along the lines of Eager [a Programming by Example
system], allowing it to detect the repetition of action
sequences in any application and automate these
sequences” [17]. The creators of Apple Data Detectors
wrote that a “goal is to complete a prototype of an end-user
programming facility to enable end users to program
detectors and actions, opening up the full Apple Data
Detectors capability to all users” [18]. Finally, the creators
of CyberDesk wrote that they were “investigating learning-
by-example techniques to allow the CyberDesk system to
dynamically create chained suggestions based on a user’s
repeated actions” [19].

Grammex (Grammars by Example) [21], released in 1999
and created by Henry Lieberman, Bonnie Nardi and David
Wright, allowed users to create Data Detectors through
Programming by Example. Like Creo, Grammex allowed
users to define the actions to associate with data by
providing demonstrations. However, Grammex was limited

to the few Macintosh applications that were “recordable”
(sending user action events to the agent) [21]. Similar to
the Data Detectors preceding it, Grammex based its data
detection on patterns of information. For instance,
Grammex could learn how to detect email addresses if the
user showed it several examples with the format
person@host. Unfortunately, very few types of data
outside of URLs, email addresses and phone numbers
actually have a detectable structure, limiting the usefulness
of such a system. This leads to the second “future work”
topic mentioned by Data Detector researchers of the late
1990s: semantics.

Semantics

The creators of Apple Data Detectors noted that relying on
pattern detection has many limitations: “It is easy to
imagine a company might choose a syntax for its product
order numbers—a three digit department code followed by
a dash followed by a four-digit product code—that would
overlap with U.S. telephone number syntax, thus leading
Apple Data Detectors to offer both telephone number and
part-ordering actions...We can do little about these
overlapping syntaxes without performing a much deeper,
semantic interpretation of the text in which the pattern
appears” [18]. The creators of CyberDesk also discussed
the topic of semantic interpretation, writing that they were
interested in “incorporating rich forms of context into
CyberDesk, other than time, position, and meta-types” [19].

Miro

Miro expands the types of data that can be detected from
the previous range of three types (Google’s AutoLink) and
thirteen types (Apple Data Detectors), to the full breadth of
knowledge found in ConceptNet and TAP.

It is important to note that the pages Miro reads are just
normal pages on the Web. The pages do not contain any
form of semantic markup. All of the semantic information
is coming from the ConceptNet and TAP knowledge bases.

Leveraging Commonsense Knowledge to Understand
the Context of Text

Miro builds on three years of research on applying large-
scale knowledge bases to understanding the context of text,
and using this commonsense knowledge to improve the
usability of interactive applications [22].

Related Work
ARIA (Annotation and Retrieval Integration Agent) is a
software agent that leverages ConceptNet to suggest
relevant photos based on the semantic context of an email
message [23].

ConceptNet has also been shown to be useful for
determining the affective quality of text, allowing users to
navigate a document based on its emotional content [24].
Also in the domain of text analysis, by using ConceptNet to
understand the semantic context of a message the user is

typing, predictive text entry can be improved on mobile
devices [25].

In the domain of speech recognition, this same approach
can also be used to streamline the error correction user
interfaces of speech recognition systems [26].
Additionally, ConceptNet can be used to detect the gist of
conversations, even when spontaneous speech recognition
rates fall below 35% [27].

Both ConceptNet and TAP have also been found to be
incredibly useful in the domain of search, demonstrated by
the prototypes GOOSE (Goal-Oriented Search Engine) [28]
and ABS (Activity Based Search) [9], respectively.

Dealing with the Ambiguity of Natural Language

The most significant challenge that Miro faces in its task of
data detection is dealing with the ambiguity of natural
language. For instance, because of the way Open Mind was
created, the following two statements are in ConceptNet:

"W

(IsA “apple computer”)

(IsA “apple” “fruit”)

It is important to deal with ambiguity well, because
incorrectly matching a user’s goals leads to a very poor user
experience:

Mpr. Thurrott typed the word “nice.” Up popped a Smart
Tag offering to book a flight to Nice, France using
Microsoft’s Expedia website. When he typed the word
“long,” up popped a Smart Tag from ESPN offering more
information on Oakland Athletics centerfielder Terrence
Long. As Thurrott put it, “Folks, this is lame” [29].

Google’s AutoLink team avoided this problem entirely by
opting to only detect three kinds of data that are already
designed to be unique (addresses, ISBNs and VINs).

Miro begins to address this problem by leveraging the
semantic context of surrounding terms. For instance, the
term “apple” by itself is ambiguous, but if it is surrounded
by terms like Dell and Toshiba, the meaning becomes
clearer. However, algorithms to re-rank a term’s semantic
value based on the surrounding context are far from perfect.
In general, our current algorithm performs much better on
semi-structured data (like a list of items) compared to
parsing paragraphs of text. For instance, if someone wrote
a blog entry about how they “spilled apple juice all over a
brand new apple MacBook Pro,” Miro will have difficulty
understanding the apples. While Miro does occasionally
make mistakes, we believe the benefit it provides users is
valuable nonetheless. Using large knowledge bases of
semantic information to determine the specific semantic
value of a particular term remains an interesting challenge
for future research.

PUTTING END-USERS IN CONTROL OF THEIR DATA
AND SERVICES

Both Microsoft and Google have received a strong outcry
of criticism for their Data Detectors, Smart Tags and

AutoLink [29, 30]. The equality of the criticism is
surprising given the considerable difference between
Microsoft and Google’s current public image. Microsoft
actually pulled Smart Tags as being a feature of Internet
Explorer 6 shortly before the release of Windows XP due to
public outcry. In an article in the Wall Street Journal,
columnist Walter Mossberg wrote, “Using the browser to
plant unwanted and unplanned content on these pages--
especially links to Microsoft's own sites--is the equivalent
of a printing company adding its own editorial and
advertising messages to the margins of a book it has been
hired to print. It is like a television-set maker adding its
own images and ads to any show the set is receiving” [30].

Together, Miro and Creo solve this problem by enabling
end users to be in control of defining the services associated
with particular types of data.

IMPLEMENTATION

This section briefly covers the implementation of Creo and
Miro. Further information can be found in Alexander
Faaborg’s masters thesis, 4 Goal-Oriented User Interface
for Personalized Semantic Search [31].

Implementation of Creo

Recording Actions on the Web

Unlike many of the previous Programming by Example
systems for the Web, which are implemented using a proxy
server, Creo is integrated directly into a Web browser.
Creo’s integration with Internet Explorer provides two core
functions: (1) Monitoring, the ability to directly capture the
user’s actions, and what the user is currently looking at, and
(2) Impersonation, the ability to recreate actions inside the
Web browser, and make it appear as if an actual user was
completing them.

The basic set of actions that Creo must be able to monitor
and impersonate consists of: capturing navigation events
(monitoring), navigating (impersonation), scraping a form
(monitoring), filling out a form (impersonation), being
instructed to scrape text from a Web site (monitoring), and
scraping text from a Web site (impersonation).

From a Web site’s perspective, there is no difference
between the user completing actions by controlling their
Web browser, and Creo completing actions by controlling
the Web browser. Aside from the fact that Creo is faster
(which actually caused problems with some Web sites, so it
was subsequently slowed down), Creo does a perfect job of
impersonating the user’s actions. This, of course, does not
include captcha tests, or completing any other type of
higher level perceptual or cognitive challenges.

Generalizing Information

What differentiates Programming by Example systems like
Creo from basic macro recorders is their ability to
generalize information. First, Creo determines if the input
should be generalized or remain static based on three
heuristics: (1) if the input consists of personal information,

(2) if the name of the text field matches a predetermined list
of fields that should remain static, and (3) the number of
generalizations of the input. If Creo determines that the
input should be generalized, it looks up the relevant IsA
relationships for the input in ConceptNet and TAP. For
instance, the input “diet coke” is found in ConceptNet and
TAP in statements like:

(IsA “diet coke” “food brand”)

As shown in the earlier example, the full list of
generalizations of “diet coke” consists of: “food brand,
food, drink, soft drink, soda,” and “popular soda.” These
generalizations are written to the recording’s XML file, and
leveraged by Miro when determining if the recording
should be activated based on the semantic context of a Web

page.

Implementation of Miro

Miro determines the user’s potential goals based on the
Web page they are looking at by matching the
generalizations of terms and phrases on the page to the set
of generalizations associated with recordings created using
Creo. For instance, the recipe page shown earlier activated
the “Order Food” and “Nutritional Information” recordings
because many of the terms on the Web page generalized to
“food,” and this generalization described a variable in both
the “Order Food” and “Nutritional Information” recordings.

When Miro converts a plain text term or phrase into a
hyperlink for a particular recording, the hyperlink does not
reference a resource found on the Internet. Instead, the
hyperlink references a URI that instructs the Web browser
to invoke the recording, with the term or phrase used as a
variable.

Limitations of Creo and Miro

Creo’s current implementation results in a number of
limitations to its use. First, Creo cannot record interactions
with Flash, Java Applets, or other non-HTML elements of
Web pages. This limitation is similar to the challenges
facing the development of third-party Software Agents for
client-side applications. To be able to automate a procedure,
the agent must be able to capture the user’s actions.

Secondly, Creo is currently not able to generalize
navigation events. However, many of the Programming by
Example systems for the Web discussed earlier have
implemented this ability.

The third limitation of Creo is its ability to automate
procedures that change based on the variables provided.
Creo is able to automate multi-step, multi-variable
procedures, like purchasing stock, ordering a pizza, or
sending PayPal. However, Creo cannot currently automate
procedures that change based on dependencies of the
variables provided, like making the travel arrangements for
a trip.

Due to the breadth of ConceptNet and TAP, Miro is able to
avoid many terminological issues like the different spelling

of words, synonyms, and in some cases, concepts described
in phrases. However, the knowledge in ConceptNet and
TAP is by its very nature common and generic.
Subsequently, Miro is unable to detect specialized domain
information, like particular part numbers, job codes, or
customer numbers, unless this information is provided in an
additional knowledge base.

While Creo is able to automate recordings that take
multiple variables, the current implementation of Miro is
not yet able to combine multiple pieces of information from
a Web page into a single invocation.

EVALUATION

In this section we describe two sets of evaluations: (1) a
series of evaluations done during the iterative design
process of Creo conducted with a total of 10 subjects, and
(2) a final evaluation conducted with 34 subjects to assess
how Creo and Miro can improve a user’s efficiency when
completing a task.

Evaluating the User Interface Design

While designing Creo and Miro, we realized that the critical
factor to their success would not be technical limitations,
since systems built on top of ConceptNet and TAP have
worked fine in the past. Instead, the critical factor to their
success would be usability. We followed an iterative
design process during Creo's creation, formally evaluating
each iteration, before designing the next. The first version
of Creo’s user interface was evaluated with three users
during a paper prototyping session. The second version of
Creo’s user interface was evaluated with four user interface
designers, using a computer prototype. The third version of
Creo’s user interface was evaluated in a usability test with
three novice users, using a fully functional prototype
running as part of Internet Explorer.

Determining the Software’s Ability to Improve the User’s
Efficiency

The purpose of the fourth user evaluation was to (1)
conclude if the overall system made users more efficient
when completing a task, and (2) to conclude if users
understood the utility of the software, and if they would use
software applications like Creo and Miro if they were
included in their Web browser.

The evaluation was run with a total of 34 subjects, 17 male
and 17 female. In Part 1 of the evaluation, 17 people were
in the experimental group and 17 people were in the control
group. The average age of the subjects was 29.3, with a
range of 19 to 58. 26% of subjects had no programming
experience, and all subjects were familiar with using the
Web. Subjects were compensated $10.

Part 1: Evaluating Miro

In the first part of the experiment, subjects were asked to
order 11 ingredients in a recipe for Blueberry Pudding
Cake. The experimental group of subjects had access to the
Miro toolbar, which could recognize common foods and

automatically link them to the subject’s grocery store. The
control group of subjects completed the same task, but used
Internet Explorer with Miro turned off. Subjects in the
control group were allowed to complete the task however
they naturally would. All of the subjects were instructed to
complete the task at a natural pace, and not to treat the
experiment like a race. ~ We hypothesized that the
experimental group would be able to complete the task
significantly faster than the control group.

Part 2: Evaluating Creo

In the second part of the experiment, all of the subjects
were asked to create a recording with Creo that could order
any type of food at a grocery store. Subjects completed this
task after being shown an example of how Creo works. We
showed the subjects a single demonstration of how to train
Creo to look up a movie at IMDB. We chose to do this
because unlike the three preceding usability studies, for this
evaluation we were interested in capturing the average time
it took a slightly experienced subject to create a simple
recording. We hypothesized that subjects would be able to
successfully complete this task in a trivial amount of time.

Results
250

200

150

50

o

Mean Time

Experimental, 68 sec + 26 sec (Creo) | Control, 139 sec ‘

Figure 7: The time it took the control and experimental
groups to complete the task

The experimental group completed the task in Part 1 in an
average time of 68 seconds, with a standard deviation of 20
seconds. The control group completed the task in an
average time of 139 seconds with a standard deviation of 58
seconds. These results are statistically significant (p<.001).
These results are also consistent with the study conducted
by the Intel Selection Recognition Agent authors, finding
that interface “saved both time and effort, in some cases
over 50%” [17].

The range of results from the control group in Part 1 is due
to the fact that subjects were asked to complete the task
however they naturally would. There was a large amount
of variability in the way subjects transferred information
between the recipe and the grocery store site. Some
subjects relied heavily on keyboard shortcuts, using alt-tab
to switch windows and tab to switch which control on the

grocery store page had the focus. Some subjects double
clicked to select a word, and triple clicked to select a full
line. Other subjects retyped every ingredient instead of
copying and pasting. Since they would often hold three to
four ingredients in their own memory at a time, this usually
turned out to be faster.

In Part 2, subjects completed the task in 26 seconds, with a
standard deviation of 5 seconds. This means that even for
interacting with a list of 11 items, it would be faster to train
Creo first, and then use Miro to turn the information into
hyperlinks. In Figure 7, the time for Part 2 is represented as
an overhead cost for the experimental group’s time for Part
1.

The debriefing questionnaire contained several Likert scale
questions asking the subject’s impressions of the software’s
usability (shown below), and if they would actually use the
software.

45
40-
35-
30-
25-
20-
15

10

3 o= -

o L
Strongly

T [
. Strongly
Agree Agree ‘ Agree ‘ Neutral ‘ Disagree | Disagree

Disagree

Percent

Figure 8: Did the subjects find Miro easy to use

50
45
40-
35-
30-
25-
20-
15

10

= -

0 T
Strongly N
Agree Agree ‘ Agree ‘ Neutral ‘ Disagree | Disagree

Strongly
Disagree

Percent

Figure 9: Did the subjects find Creo easy to use

Asked if they would use the software, 85% of subjects
responded they would use Creo, and 100% of subjects
responded they would use Miro. We have implemented a
way for users to easily share the functionality of recordings
they create with Creo without sharing any of their personal
information (which Creo automatically detects and stores

separately). So it is technically possible for a subset of
users to use Creo, and for everyone to use Miro.

Limitations of the Evaluation

While subjects responded favorably to debriefing questions
asking if they would use Creo and Miro if they were
integrated into their Web browsers, it remains an open
question if users in real-world environments would devote
the necessary time to apply these tools.

The 34 users in our study were demographically diverse in
terms of age and gender. However, the fact that 74% of the
subjects reported some level of programming experience
may limit this study’s external validity. Unexpectedly, we
found that subjects with programming experience had more
difficulty wusing Creo than subjects without any
programming experience. ~ While at first this seems
counterintuitive, we believe it has to do with the subject’s
expectations. Specifically, technical subjects had more
difficulty believing that Creo could generalize their single
example. This is because they were familiar with how
computers normally function.

To analyze how Creo and Miro make users more efficient
compared to using a conventional Web browser, this
evaluation focused on a single example of using Creo and
Miro. We did not study the breadth of tasks that Creo and
Miro can perform for two reasons: (1) the ConceptNet and
TAP knowledge bases are rapidly growing, and (2) the
respective teams at MIT and Stanford responsible for the
creation of these knowledge bases have already performed
evaluations of their breadth [1-4, 7-10]. We believe the
task users were asked to perform, while only in a single
domain, represents a common use of Creo and Miro.
However, further studies should be conducted to assess
Creo and Miro’s overall effectiveness in real world
situations.

FUTURE WORK

When Things Go Wrong

While the ConceptNet and TAP knowledge bases are very
large, they are certainly not complete. To assist the user
with situations where Miro fails to detect a specific piece of
information, we have developed a Training Wizard. This
wizard consists of a three-step process: (1) ask the user
what information should have been detected, (2) ask the
user what the information is (by having them fill out a
sentence), and (3) ask the user which recording from Creo
should have been activated. In most cases, Miro can
provide intelligent defaults for at least two of these three
steps, creating a collaborative learning interface between
Miro and the user. In the first step, Miro performs
predictive text entry on what the user types, based on the
terms on the current Web page. In the second step, Miro
attempts to describe the concept itself. In some cases Miro
will know what the concept is, but not how it relates to the
current set of recordings created by Creo. In the third step,
Miro attempts to check which recordings should have been

activated based on the information in the previous step.
This is useful when providing new pieces of information.
For instance, once the user tells Miro that “Eastern Standard
Tribe” is a book, Miro knows what to do with books.

For the situations where a recording breaks due to a change
with a Web site, we have a developed a debugging mode.

Learning from the Web

We are exploring using natural language processing to
enable Miro to learn new pieces of information by reading
Web pages. Miro takes the text of the page the user is on
and (1) performs sentence boundary detection, (2) isolates
the nouns and words used for pattern matching, (3)
lemmatizes the text and, (4) matches the text against 11
different patterns. For instance, the sentence “The Killers is
a really great band” can be easily parsed to (IsA “the
killers” “band”). When Miro finds a new piece of
information that matches the current set of recordings, it
displays the activated recording (as if the knowledge came
out of ConceptNet or TAP), and then watches to see if the
user clicks on it. We believe an approach like this could be
used to quickly grow broad knowledge bases, if a system
like Miro were to be used by a large number of users.

CONCLUSION

In their 1998 article, the creators of Apple Data Detectors
described the goal-oriented nature of their system: “When
users invoke it on a region of text in a document, they are
saying, in effect, ‘Find the important stuff in here and help
me do reasonable things to it’... Direct manipulation is a
wasteful, frustrating way for users to interact with machines
capable of showing more intelligence” [18]. Creo and Miro
further enhance this type of goal-oriented user interface, by
(1) enabling users to define their own services by example,
and by (2) increasing the types of data that can be detected
to any information stored in the semantic knowledge bases
ConceptNet and TAP.

Creo and Miro, like many other interactive applications
[22-28], would not be able to generalize information and
anticipate their users’ goals without access to the
knowledge stored in ConceptNet and TAP. This paper has
demonstrated the effect these knowledge bases can have on
the research areas of Programming by Example and Data
Detection. However, we believe many other types of
interactive applications can benefit from access to this
knowledge as well. Usability is improved by making it
easier for humans to understand computers. However the
reverse is true as well. ConceptNet and TAP improve
usability by making it easier for computers to understand
humans.

ACKNOWLEDGEMENTS

Thanks to James Hendler, Pattie Maes, and Rob Miller for
their advice. Thanks to Push Singh, and Hugo Liu for
ConceptNet, and Rob McCool and R.V. Guha for TAP.
The authors would also like to thank Alan Dix.

REFERENCES

1. Singh, P. The Public Acquisition of Commonsense
Knowledge. Proceedings of AAAI Spring Symposium
on Acquiring (and Using) Linguistic (and World)
Knowledge for Information Access. (2002).

2. Singh, P., Barry, B., Liu, H. Teaching Machines about
Everyday Life. BT Technology Journal. (2004).

3. Singh, P., Lin, T., Mueller, E., Lim, G., Perkins, T., Zhu,
W.L. Open Mind Common Sense: Knowledge
Acquisition from the General Public. Proceedings of the
First International Conference on Ontologies, Databases,
and Applications of Semantics for Large Scale
Information Systems. (2002).

4. Liu, H., Singh, P. ConceptNet: a Practical
Commonsense Reasoning Toolkit. BT Technology
Journal. (2004).

5. Fellbaum, C. WordNet: An Electronic Lexical Database.
MIT Press. Cambridge, Massachusetts. (1998).

6. TAP: Building the Semantic Web.
http://tap.stanford.edu/.

7. Guha, R., McCool, R. TAP: a Semantic Web Platform.
Computer Networks: The International Journal of
Computer and Telecommunications Networking.
Volume 42, Issue 5. (2003).

8. Guha, R., McCool, R. 4 System for Integrating Web
Services into a Global Knowledge Base.
http://tap.stanford.edu/sw002.html.

9. Guha, R., McCool, R., Miller, E. Semantic Search.
Proceedings of the 12th International Conference on
World Wide Web (WWW 03). (2003).

10.McCool, R., Guha, R., Fikes, R. Contexts for the
Semantic Web. http://tap.stanford.edu/contexts.pdf.

11.Lenat, D. CYC: a Large-Scale Investment in Knowledge
Infrastructure. Communications of the ACM. Volume
38, Issue 11.(1995).

12.Lieberman, H. Your Wish is My Command:
Programming by Example. Morgan Kaufmann. San
Francisco, California. (2001).

13.Bauer, M., Dengler, D., Paul, G. Instructible
Information Agents for Web Mining. Proceedings of the
International Conference on Intelligent User Interfaces
(IUI 00). (2000).

14 Miller, R., Myers, B. Creating Dynamic World Wide
Web Pages by Demonstration. Technical Report CMU-
CS-97-131 (and CMU-HCII-97-101), CMU School of
Computer Science. (1997).

15.Sugiura, A., Koseki, Y. Internet Scrapbook: Automating
Web Browsing Tasks by Demonstration. Proceedings of
the 11th Annual ACM Symposium on User Interface
Software and Technology (UIST 98). (1998).

16.Safonov, A. Web Macros by Example: Users Managing
the WWW of Applications. Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 99). (1999).

17.Pandit, M., Kalbag, S. The Selection Recognition Agent:
Instant Access to Relevant Information and Operations.

Proceedings of the International Conference on
Intelligent User Interfaces (IUI 97). (1997).

18.Nardi, B., Miller, J., Wright, D. Collaborative,
Programmable Intelligent Agents. Communications of
the ACM, Volume 41, Issue 3. (1998).

19.Dey, A., Abowd, G., Wood, A. CyberDesk: A
Framework for Providing Self-Integrating Context-
Aware Services. Proceedings of the International
Conference on Intelligent User Interfaces (IUI 98).
(1998).

20.Dix, A., Beale, R., Wood, A. Architectures to make
Simple Visualisations using Simple Systems.
Proceedings of Advanced Visual Interfaces (AVI 00).
(2000).

21.Lieberman, H., Nardi, B., Wright, D. Grammex:
Defining Grammars by Example. Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 98). (1998).

22.Lieberman, H., Liu, H., Singh, P., Barry, B. Beating
Some Common Sense into Interactive Applications. Al
Magazine, Winter 2004. (2004).

23.Lieberman, H., Liu, H. Adaptive Linking between Text
and Photos Using Common Sense Reasoning.
Proceedings of the Adaptive Hypermedia and Adaptive
Web-Based Systems, Second International Conference,
(AH 02). (2002).

24 Liu, H., Selker, T., Lieberman, H. Visualizing the
Affective Structure of a Text Document. Proceedings of
the Conference on Human Factors in Computing
Systems (CHI 03). (2003).

25.Stocky, T., Faaborg, A., Lieberman, H. 4 Commonsense
Approach to Predictive Text Entry. Proceedings of the
Conference on Human Factors in Computing Systems
(CHI 04). (2004).

26.Lieberman, H., Faaborg, A., Daher, W., Espinosa, J.
How to Wreck a Nice Beach You Sing Calm Incense.
Proceedings of the International Conference on
Intelligent User Interfaces (IUI 05). (2005).

27.Eagle, N., Singh, P. Context Sensing Using Speech and
Common Sense. Proceedings of the NAACL/HLT 2004
Workshop on Higher-Level Linguistic and Other
Knowledge for Automatic Speech Processing. (2004).

28.Liu, H., Lieberman, H., Selker, T. GOOSE: A Goal-
Oriented Search Engine With Commonsense.
Proceedings of the Adaptive Hypermedia and Adaptive
Web-Based Systems, Second International Conference,
(AH 02). (2002).

29.Kaminski, C. Much Ado About Smart Tags.
http://www.alistapart.com/articles/smarttags/.

30.Mossberg, W. Microsoft Will Abandon Controversial
Smart Tags. http://ptech.wsj.com/archive/ptech-
20010628 .html.

31.Faaborg, A. 4 Goal-Oriented User Interface for
Personalized Semantic Search. Masters Thesis.
Massachusetts Institute of Technology. (2005).
http://agents.media.mit.edu/projects/semanticsearch/.

