Intel® Mash Maker

Rob Ennals
Intel Research
2150 Shattuck Ave
Penthouse Suite
Berkeley, CA 94704, USA
robert.ennals @intel.com

ABSTRACT

Intel® Mash Maker is a mashup creation tool that was ini-
tially developed at Intel® Research and is now being devel-
oped by Intel’s Software Solutions Group.

Mash Maker allows a user to customise and improve web
pages by applying mashups that add additional content. Such
“overlay mashups” add content that is visually distinguished
from the host web page, but is integrated into the normal
page layout.

Mash Maker encourages users to take a “suck it and see”
approach to find mashups that they like. As a user browses
the web, Mash Maker suggests mashups that it believes the
user will find useful. The user can then turn a mashup on,
see if the content it added looks useful, and turn it off again
if they do not like it.

Mash Maker uses a three level structure to create mashups.
Information is extracted from web sites using wrappers that
are written collaboratively by users in a wiki-like model.
Widgets written in javascript query this information and add
new information and visualisations to the page. A user can
then arrange several widgets on a page to create a mashup
which they publish and share with other users.

INTRODUCTION

Intel® Mash Maker [14, 15] is a browser extension for Fire-
fox or Internet Explorer. Mash Maker allows users to create,
share, and find mashups that improve existing web sites by
adding additional content to existing page layouts. In this
chapter, we discuss several of the key concepts behind Mash
Maker:

Overlay Mashups: Mash Maker allows users to apply mashups
that add content to existing web sites.

Mashup Suggestions: Mash Maker tries to guess what mashups
a user will find useful, based on their past behaviour.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CHI 2009, April 3 - 9, 2009, Boston, MA, USA.

Copyright 2009 ACM 978-1-60558-246-7/07/0004...$5.00.

Collaborative Creation of Web Wrappers: Mash Maker uses
a Wiki-model to allow users to teach it how to extract
meaning from web sites.

The Shared Data Tree: Mash Maker mashups are composed
from widgets which communicate by modifying a shared
data tree.

Untrusted Widgets: Mash Maker avoids the need for users
to trust mashups by isolating untrusted widgets from un-
trusted code

Copy and Paste: Mash Maker allows a user to combine web
sites using a simple “copy and paste” metaphor.

Inte]® Mash Maker was ori ginally created at Intel® Research
and is now being developed and maintained by the Intel Soft-
ware Solutions Group. You can download Intel® Mash Maker
from the following URL:

http://mashmaker.intel.com

OVERLAY MASHUPS

Mash Maker allows a user to customise the web sites that
they browse by applying mashups that modify the pages to
make them more useful. For example one might add a map
to a news site to show where the stories are taking place
(Figure 1), add price comparison information information to
a shopping site to see what the prices were like on other sites,
add legroom information to flights on a travel site (Figure 2),
or add a button to every phone number that calls the number
if you click it.

There has been a lot of prior work on writing modules that
modify existing web sites. OreO [7] and WBI [3, 33] use a
proxy to modify web pages without requiring support from
the web browser. Other tools such as Greasemonkey 1 Chick-
enfoot [5] and Koala/CoScripter [32] run as extensions to
the web browser that modify web pages on the client. Mash
Maker was initially implemented as a web proxy [15] and
was then reimplemented as a browser extension [14].

Unlike previous work, Mash Maker restricts mashups by re-
quiring that they only be able to add new content to an ex-
isting page, and cannot modify a page in any other way. We
refer to this restricted class of mashups as overlay mashups.

"http://greasespot.net

http://mashmaker.intel.com

Mashup Button
Click on any mashup to
toggle it

[oo JORE

1 Map Widget

Inserted into the normal
page layout.

Shows the locations of the
news stories on the page

Legroom Annotation
Added to each flight on
the page

Figure 2. Adding legroom to Expedia

By adding this restriction Mash Maker excludes some mashups
that can be created in tools such as Chickenfoot, for exam-
ple, a Chickenfoot mashup can change the text on a web site,
make text boxes resizable, add keyboard shortcuts to a web
site, or provide automatic login for web sites.

There are three reasons why Mash Maker restricts mashups
to be overlay mashups:

To make it clear what a mashup does: Unlike previous work,

Mash Maker assumes that a user will apply a mashup to
a web site without knowing in advance what it is that the
mashup does, or whether they should trust the mashup.
Mash Maker distinguishes content added by a mashup by
surrounding it with a blue border. A user can thus quickly
see which content on the page is from the original web
page, and which content has been added by a mashup. By
making it visually clear what content has been added by
the mashup, Mash Maker makes it clear to the user what
it is that the mashup has done to the web site, making it
easier for them to evaluate whether the mashup is useful.

To prevent mashups misbehaving: Since Mash Maker as-
sumes that a user will be applying an untrusted mashup
to a web site without knowing what it does, it is impor-
tant that Mash Maker restrict the extent to which mashups
can do things that are unexpected or harmful. Restricting
ourselves to overlay mashups makes this easier.

To reduce legal concerns: If a mashup can modify a page

Expert Panel Tell a Friend Copy Pin

Click this button Recommend Take data Enable this

to open the Mash Maker to from this page mashup by

expert panel a friend and apply it to default for
another page pages like

this

\ /

WO v & By & & legoom [
|\

Disable

Share Mashup Suggestions

Click this button If you have Click on one to
if you want to combined widgets apply it to the
temporarily into a useful current page.
disable Mash mashup then click

this button to save
it and share it

Maker for any
reason

Figure 3. The Mash Maker Toolbar

in an arbitrary way, what happens if a mashup modifies
a page in a way that the content owner does not approve
of? One of the reasons why Mash Maker restricts itself to
overlay mashups is to reduce the likelihood that a content
owner sees a mashup as an unlawful derived work. Since
the all additional content is visually distinguished from
the page, and does not directly affect the page content, one
can argue that Mash Maker is just a browser that shows
additional content above a page, rather than a tool that
modifies someone else’s content.

More generally, if mashups are to become widespread then
it is important that they be structured in a way that is ben-
eficial or at least acceptable to content owners. Legal
concerns are also the primary reason why Mash Maker
cannot, at present, remove content from a web page. If
content could be removed then uses could upset content
owners by removing adverts.

MASHUP SUGGESTIONS

As the user browses the web, Mash Maker suggests mashups
that it believes the user might like. Suggested mashups ap-
pear as toggle-buttons on Mash Maker’s toolbar (Figures 1
and 3). A user can turn a particular mashup on and off by
clicking on the button for that mashup. Mash Maker assumes
that a user does not typically know what existing mashups
will be useful for them, but that they they will recognise use-
ful mashups when they see them applied to a page.

Mash Maker builds on a lot of prior work that recommends
content based on user browsing behaviour [44, 42, 40, 25,
18]. The key factor that distinguishes Mash Maker from
prior systems is that it recommends mashups rather than web
pages. Mash Maker bases its suggestions on the website
currently being viewed, the user’s recent browsing history,
the mashups the user seemed to like previously, and the be-
haviour of other users.

When Mash Maker suggests a mashup to the user, the only
information the user has is the name of the mashup and pos-
sibly an icon. While a user can get a more detailed descrip-

Figure 4. The gallery provides another way to find available mashups

tion of a mashup by hovering over the mashup button or
browsing the mashup gallery (Figure 4), in most cases the
user will just click on the button and see what happens. If
the mashup looks useful then the user can keep it enabled. If
it doesn’t look useful then they can turn it off again. Since
a user is not expected to know in advance what the mashups
they enable do, Mash Maker ensures that any content added
by a mashup is visually distinguished from the page so that
the user can easily see what the mashup has added.

If a user decides that they really like a mashup then they can
pin it by clicking on the pin button on the toolbar (Figure 3).
Once a mashup is pinned, it will be enabled by default when-
ever the user visits that web site.

It is possible for a user to apply multiple mashups to the
same page simultaneously. When a user has several mashups
turned on, all mashups will add their content to the page. In
some cases, one mashup can use information added by an-
other mashup. For example if a user turns on a mashup that
annotates apartment listings with nearby restaurants, and then
turns on a mashup that displays all addresses on a map, then
the restaurants will also be shown on the map. If the new
combination of mashups is itself an interesting mashup, then
the user can save the new mashup by clicking on the share
button on the toolbar (Figure 3).

Mash Maker’s suggestion system is largely orthogonal to the
rest of the system. One could conceivably use Mash Maker’s
suggestion toolbar to automatically suggest mashups created
with a tool such as Chickenfoot [5]. The advantage of com-
bining Mash Maker’s suggestion system with Mash Maker’s
restricted overlay mashups is that a user can easily see what
a mashup has done, it is easy to remove a mashup without
reloading the page if the user decides they do not like it, and
it is harder for a mashup to do something undesirable.

If the suggestion toolbar does not suggest an interesting mashup,

a user can also use Mash Maker’s more conventional web-
based mashup gallery (Figure 4) to find mashups. The gallery
allows one to search for mashups by keyword and can show
either mashups for a particular page type, or mashups for
an arbitrary page types. Clicking on a mashup in the web
gallery takes the user to an example web page with that
mashup enabled. If the user likes the mashup, then they can

pin it and navigate to the page they were actually interested
in.

There is a trade-off between privacy and suggestion accu-
racy. In order to provide useful suggestions Mash Maker
needs to download information related to the web pages that
you browse. To reduce privacy issues, the Mash Maker client
always requests information about an entire domain (e.g.
google.com) rather than an individual URL. All requests are
sent anonymously, and headers are set to allow requests to
be cached by intermediate proxies.

COLLABORATIVE CREATION OF WEB WRAPPERS

To apply a mashup to a web page, Mash Maker needs to ex-
tract machine-readable data that it can use as inputs to the
mashup. For example, if a mashup wants to add a map to
an apartment listing site showing the location of each apart-
ment, then Mash Maker needs to extract the apartment ad-
dresses from the web site. While standards such as micro-
formats 2 and RDFa [38] exist to allow a web site to expose
machine readable data directly in its HTML, at the time of
writing most web sites do not do this. Mash Maker thus ex-
tracts machine-readable information from raw HTML using
user-created wrappers.

A wrapper [30] is a set of rules that can be used to extract
machine-readable data from a web site. While some authors
have had some success extracting data from a website with-
out any human assistance [11, 10, 43, 8, 1], most systems,
including Mash Maker, require some form of user guidance
to teach the wrapper-generator what a web page means [29,
2,35, 48, 24, 4].

Mash Maker’s web wrapper system has two unusual fea-
tures. Firstly, Mash Maker organises its wrappers in a wiki-
style model in which there is a single canonical web wrap-
per for any given kind of web page, and any user can edit
any wrapper. Secondly, wrappers created by Mash Maker
include drop zones that indicate where additional content
should be inserted into the page layout.

Mash Maker’s wiki-style model differs from the more con-
ventional model in which multiple users create their own
competing wrappers for different web sites and writers of
mashups pick the wrappers that work well for them. One
advantage of the wiki model is that it removes the need for
a user to look through a list of potentially broken wrappers
in order to find the one that works best with their web page.
For example, if a user wants to create a new mashup that vi-
sualises the data on a particular web page using a calendar,
then they simply need to drag a calendar widget onto the
page, and do not need to first find the best wrapper. Choos-
ing a wrapper can be a confusing process: “I just want to
apply the calendar to this page. Why do I have to choose
something from this list?”

Another advantage of the wiki model is that it makes it eas-
ier to recover when a change to the structure of a web page
breaks a wrapper. In a study conducted by Dontcheva et al,

Zhttp://microformats.org

Click "“Pick from Page”

R R b

0.9 Mile: |+ | A}

(Pickfrom age | [Ec
st e V1 o e v o
(510]

ram Berki
B offood courts in southeast asia, busy, noicy and sm
is the php. The soup s one of the best | have had an

)

1.6 Miles | & | A}
K's Chaat Comer 2

What information do you want?

What is this a property of? *
New Property
Property of the whole page
@ | Property of an item on the page
Item kind: | place

Add Car\:

unknown item whole page or
known item

S e

Bigger Smaller "
== é g
\ Ok Cancel } Py -
] [el popety B
How big is the item? Pl By B psin Elece
= B
What is this?

Figure 5. Teaching Mash Maker what something means

74% of tested web sites underwent a significant structural
change of the kind that would be likely to break a wrap-
per within the 5 month test period. If a broken wrapper
was owned by a particular person then it would be neces-
sary for users to either wait for the wrapper owner to fix
their wrapper, or to move all affected mashups to a new
wrapper, adding the old wrapper to the list of dead wrap-
pers that mashup authors need to avoid. With the wiki ap-
proach, the first user to notice that the wrapper has broken
can open Mash Maker’s wrapper editor and fix the problem.
While techniques exist to repair a broken wrapper automati-
cally [37, 34, 9] these techniques are not yet bulletproof.

The big disadvantage of the wiki model is that it opens Mash
Maker up to potential vandalism [12]. If anyone can edit
a wrapper, then anyone can break a wrapper. A common
problem during the early days of Mash Maker deployment
was that a novice user would decide to experiment with the
wrapper editing tools and break something high profile such
as google search without realising that their changes were af-
fecting all users. Mash Maker’s solutions to this problem are
the same as those taken by text wikis such as Wikipedia [39]
- a history is recorded so that bad edits can be rolled back,
and sensitive wrappers can be locked. In the future, one
could potentially also use wrapper verification [28] to pre-
vent users saving wrappers that had obviously been broken.

Mash Maker’s wiki-model for web wrappers is largely or-
thogonal to it’s other features. Mash Maker could have used
the more conventional “roll your own” model, in which case
a user would be required to chose a suitable wrapper when
creating a mashup. Similarly, Mash Maker’s wrapper database
can be useful for other other tools; indeed Yahoo Search

Wldgds]Maxhuplean Extractor | @

| Pickfrom Page | | Edit Arg Handler

i !ele:t an item to edit it
P'_Ck fr(_)m Page & Yelp Listings (search results): .
Click this button Splace: ..
to ShOW MaSh) Thai Buddhist Temple - Wat Mong]

Maker how to find
something on the

\ Help
Open this web

page.

title: Vik's Chaat Comner (httpi//un
distance: 1.6 Miles

Edit Arg Handler
Tell Mash Maker
how to understand
the URL of this

page. address: 726 Allston Way, Berkel... |
phone: (510) 644-4412
rating: 4.5 star rating
urk: http://www.yelp.com/biz/vi...
e

Data Tree

m..
Shows the data — title: Cafe Colucci (http://wwwy.. page.
extracted from the distance: 14 Miles
i B address: 6427 Telegraph Avenue,...

page'_ Click an item phone: (510) 601-7999
to edit the rules fating: 4 star rating L Buttons
used to find it. Browse into a sub-property to editit. Publish your

i Sub-ltem extractor, browse

) o i

Item Details Rem Type: [piace EE it’s revision

Tell Mash Maker et contras
about the selected &

— ‘ history, or refresh
o (pelete] /the tree

[RefteshTree] [Browse..] [pubiisn_]

Figure 6. The Wrapper Editor

Monkey? uses Mash Maker’s wrapper database to help it ex-
tract data from web pages [20]. Mash Maker’s wiki-model is
also largely independent of Mash Maker’s particular choice
of wrapper editor. One could potentially adapt other wrapper
editors to support Mash Maker’s wiki model by adding sup-
port for revision tracking and other collaborative features.

A user can edit a wrapper by opening Mash Maker’s wrapper
editor. This is part of Mash Maker’s expert panel, which
can be opened by clicking on the expert button on the Mash
Maker toolbar (Figure 3). The wrapper editor is distributed
as part of the main Mash Maker plugin and is available to all
users.

Mash Maker’s wrapper editor works in a similar way to other
user-guided wrapper editors such as Pictor [48], Lixto [4],
WIEN [29], STALKER [35], Dapper 4. and Irmak/Suel [24].
A user gives examples of things on the page that they think
are interesting and Mash Maker attempts to infer a wrapper
from these examples. For example, if a user wants to teach
Mash Maker how to extract a product price, they click on the
price, and then tell Mash Maker that this is a price (Figure 5).
Given enough examples, Mash Maker will try to infer rules
that it can use to recognise other prices. A web page will
often contain several objects each of which have their own
properties. E.g. a page may contain a list of products, each
of which has a price. In this case, a user can tell Mash Maker
that the price they clicked on is part of a product, and then
use a set of “bigger/smaller/up/down” buttons to show Mash
Maker the physical boundaries of the product that the price
is part of (Figure 5).

Mash Maker uses a similar example-driven approach to de-
cide which wrapper to apply to a page. When a user navi-
gates to a page, they can explicitly select the existing wrap-
per that should apply to this page. Mash Maker uses these
examples to infer a URL regular expression for each wrap-
per that covers these pages. While more sophisticated tech-
niques exist for inferring what wrapper should be applied to

3http://developer.yahoo.com/searchmonkey/
“http://dapper.net

a web page [49] and a URL regexp is not always a good
way of identifying web pages, URL regexps have the ad-
vantage of being easy to understand and debug when things
go wrong. Mash Maker saves the list of example URLs as
part of each wrapper and encourages the to check that their
wrapper works on the example URLSs before saving it.

It addition to specifying where information can be found on
a page, Mash Maker wrappers also specify the drop zones
on a web page where extra content should be added. A drop
zone is a place on a web page where it is good to insert addi-
tional content without disturbing the layout of the web page.
Since the best drop zones on a web page are largely indepen-
dent of the particular content being inserted, it makes sense
that drop zones be factored into the wrapper, rather than re-
quiring each mashup to specify its own layout from scratch.
A mashup is free to ignore the drop zones in the wrapper
and place content in other locations if the author thinks that
is appropriate.

Mash Maker uses wrappers to extract data from a web page
even if a web site provides programmatic APIs that can be
used to query its data. This is for several reasons. Firstly,
if an API was used, then it would still be necessary to use
a wrapper to determine where the data was on the page (as
done by d.Mix [21]). Secondly, since the web page is already
loaded, it is more efficient to get the information from the
HTML rather than accessing an external API. A mashup may
however use APIs to bring in additional information from
other sources that should be added to the current page.

It is useful if the wrappers for different pages agree on a

common vocabulary to describe their data. For example, if

one wrapper says “price” while another says “cost” then it

becomes harder to write widgets that can work across mul-

tiple web sites. Mash Maker addresses this problem by en-

couraging wrapper authors to choose type and property names
that conform to a common ontology. This ontology is ed-

itable by all users using a collaborative ontology editor. Mash
Maker’s collaborative ontology editor is significantly more

primitive than systems like Protege [46] or Freebase [6].

It allows users to specify type names, associated property

names, and simple subtype relationships, but lacks higher

level features. Unlike the ontology editor of FreeBase [6]

Mash Maker anyone to edit the properties that can be asso-

ciated with a type, not just its owner. The motivation here is

to encourage people to reuse existing types rather than cre-

ating new ones.

Mash Maker does not currently use any kind of Data Detec-
tor (e.g. Miro [17]) to detect objects on a page. Mash Maker
does however take advantage of microformats when they are
available.

THE SHARED DATA TREE

Mash Maker uses a three-level architecture for creating mashups

(Figure 7). Wrappers extract data from web pages, wid-
gets visualise and manipulate the data extracted from the
web page, and mashups connect multiple widgets together
and arrange their content into drop zones in the page lay-

Mashups
Enhance a particular kind of page by inserting
one or more widgets.

Widgets
Visualize and manipulate data extracted from
a page. Import data from other sources.

B

Extractors
Extract data from web sites for use by widgets.

Figure 7. Wrappers, Widgets, and Mashups

| widgets | Mashups | Dats | Bractor| &
Browse the data on the page
count: @nothing
= apartrment: ...
= New, Charming, Spacious, LG ComerL.. |2

name: New, Charming, Spacious, L.
urk hitp://sfbay.craigelist.org/nby/ 8.
prices $2600 (httpe// by, craigalist.o...

Page Data
Extracted from the
™= original page

bedroams: 3 (hip/sfbay craigslist....

subregion: novate -
| asoe 300 Text Addition

sddress: 2 Pico Vista st Rapuu-._____. Text property
= Yelp Listings: .. added by a widget.
= place ...

p
China Village (https//www.ye.. In this case, an
address.

% Erik's Delicafe (httpe/fwwwy...
3 Apple Market (hitp/fwowye.. Sub-Tree Addition
Cafe Banglok (hup:/fwawy... Sub-tree of data

Tagliaferri's Deficatessen & C... b 3dded by a widget.

3 Savamaor Discount Liquors (h
4 Detanos IGA (htpy//werveped... In this case, a list of

= 1608 Cross Wi San Jose - (htte://sfbay.. ™ places nearby.
Refresh

Figure 8. A data tree showing additions from widgets

out. These three layers are largely independent: A wrapper
may be used by many widgets, a widget may accept data
from many wrappers, a mashup may use many widgets, and
a widget may be used by many mashups.

Several other mashup tools allow one to create a mashup by
composing one or more components. Good examples in-
clude Yahoo! Pipes 3, Microsoft Popfly ¢, and Marmite [47]
all. Pipes and Popfly adopt a visual dataflow programming
model [23, 27, 36] in which wires are drawn between wid-
gets to allow data to flow between them, and Marmite be-
haves like Apple’s Automator by allowing one to create a
mashup as a sequence of stages, each of which acts on the
output of the previous stage. Mash Maker instead uses a
Tuple Space [19] inspired publish/subscribe model [16] in
which widgets communicate by reading and writing a shared
data tree.

Mash Maker maintains a data tree for every web page cur-
rently open in the browser, showing a structured view of the
data on the web page. Initially the data tree contains the
information extracted from the page by the wrapper. Any
widgets on the page can query the data on the page, add ad-
ditional information to the data tree, and modify or remove
information. An expert user can view the data tree for the
current page using its tab in the expert side panel (Figure 8).

The data tree is the only means by which widgets can com-
municate with each other. The Mash Maker API allows
a widget to ask to be notified when the result of a query

Shttp://pipes.yahoo.com
®http://popfly.com

Click the expert button to
show the widget browser

Add a “linked data” widget
and fetch “home town”

& Linked Data

B[O & B R @ focemap (G tocemopembs
Intel Mash Maker (%)
Widgets | Mashups | Data | Bxtractor| &

Double click 3 widget to add it

@ Linked Dat
[C] Google Maps
& Table
& Colendor
||l Bar Chatt - Google Charts
& SimpleImage

Note

P | [Cioe ey B —

Click the share button
to share with others

Add a “"Google Maps” widget

See the map of friends
embedded in the page

and show “home town”
X000
|C| Google Maps xXoe
Where to show Top of the page [~

What to show Everything
Address home town [=]
lcon Defaulticon ’T‘

Show Toolbar Yes @ nNo

Apply

Drag the map into a drop-
zone in the page layout

Figure 9. Steps to creating a mashup that shows facebook friends

changes due to actions by another widget. For example, the
map widget asks to be notified when the set of objects with
addresses changes. This allows the map widget to dynami-
cally update its map when other widgets add or remove ob-
jects with addresses.

The mental model is that adding a widget to a page creates
an improved page, which can itself be enhanced further by
adding more widgets. A widget is not expected to distingish
between information that was originally on the page and in-
formation that has been added to the page by other widgets.
For example a price comparison widget does not care if the
dollar-price of an item was calculated by a separate currency
conversion widget.

Mash Maker could have used the same visual dataflow ap-
proach that is used by Yahoo! Pipes and Microsoft Popfly.
Under this model, the wrapper would be treated as being just
another box in the network whose extracted data could be fed
to other boxes. Work started on Mash Maker before Pipes or
Popfly were publically known, so no deliberate decision was
taken to use a different model. There are however advan-
tages of the “shared tree” model for the domain in which
Mash Maker works:

One motivation for the “shared tree” model is that it allows
a user to create a mashup by adding the features that they
think that they want, without having to think about how they
should fit into a logical structure. The widgets find each
other by looking for information that they want that other
widgets are providing. This works well for simple cases
(e.g. find home country and visualise on a map), but for
more complex mashups one may have to use a widget’s set-
tings panel to tell it which other widget it should be talking
to.

Another motivation for the “shared tree” model is that it
makes it easier for the physical location of a widget on the
page to correspond to where it’s primary visualisation will
be inserted. If a visual dataflow model is used then some
layouts of boxes will make the wires hard to read. Since
Mash Maker’s boxes are not connected by wires, this prob-
lem does not arise.

In addition to manipulating the data tree, a widget can also
publish content that can be inserted into the layout of the
page. Content can currently be either text, a clickable action
icon, or an iframe that can contain arbitrary web content.
Figure 1 shows a map visualisation running in an iframe that
has been published by the Map widget. Figure 2 shows text
annotations that have been associated with objects on a page.

Every piece of content published by a widget is associated
with a particular node on the data tree. When the content
is inserted into the page layout, it will be placed relative to
the node that it is associated with. For example, the map
in Figure 1 is associated with the whole page (the root of
the tree) while each text annotation in Figure 2 is associated
with a particular flight, and inserted into the layout for that
flight.

A widget has no control of how its content will be integrated
into the layout of the page, since the only view it has of
the page is the data tree. It is entirely up to the user creat-
ing the mashup to insert content into the page layout appro-
priately. They can do this by either dropping content into
drop-zones described by the wrapper, or placing content at
a physical location relative to the node that it is associated
with. This separation allows widgets to focus on the high
level data processing task they are concerned with, without
having to worry about how they might integrate into any par-

ticular layout.

Each widget can have a settings panel that a user can use
to configure their behaviour. For some settings the default
choice will usually be correct (e.g. a map widget should
map everything on the page with an address), but for other
settings a user is likely to want to set things manually in
order to get good results (e.g. which property of an object
should be used to decide its icon on the map).

Once a user has created a mashup that they think is use-
ful, they can publish it by clicking on the “share” button.
A user will then be prompted to enter a short description of
their mashup, and will be shown the preview screenshot that
Mash Maker will save with the mashup (Figure 9). Once a
mashup has been published, Mash Maker can suggest it to
other users.

Figure 9 shows the process of creating a mashup that adds a
map to the Facebook friends list. The map shows the loca-
tion of each of the user’s friends based on the “home town”
information they provided in their profile. In this example
the user opens the expert sidebar, double clicks on two wid-
gets to add them to the page, adjusts their settings appropri-
ately, and then drops the map into an appropriate drop zone
on the page. Once the user has created a mashup that they
like, they can click the “share” button to make it available to
other users looking at similar pages.

UNTRUSTED WIDGETS

Mash Maker has to be particularly careful about security
since Mashups have access to private data and users are en-
couraged to run untrusted mashups without investigating them
beforehand.

Since Mash Maker runs inside the browser, it has access
to all the information that the browser shows to the user.
This includes web pages that require logins, web pages on
intranets, and content that is generated dynamically inside
the browser. The advantage of this approach is that it allows
Mash Maker to mashup useful content that would not be eas-
ily accessible to a mashup that ran on a separate server (e.g.
Pipes or Popfly). The disadvantage is that some of this infor-
mation may be private information that should not be leaked
to third parties.

If one is not careful then one can easily open doors for hack-
ers to steal confidential data. For example a mashup could
scan email messages for passwords and use an external API
to send them to a site run by an attacker. In the absence of
security controls, any data that is visible on a web site could
be scraped by a wrapper and sent to a malicious web site by
a widget.

Other browser-extension mashup tools like Greasemonkey
and Chickenfoot [5] suffer from this problem to a lesser ex-
tent. Unlike Mash Maker, Greasemonkey and chickenfoot
do not suggest mashups to users automatically. Instead, their
model is more similar to installing desktop software; a user
browses a list of recommended mashups hosted on a trusted

web site, picks one that seems useful and trustworthy, and in-
stalls it. By contrast, Mash Maker encourages users to turn
on unvetted mashups written by unknown third parties with
little information available about them other than their name.

Mash Maker addresses this problem by distinguishing be-
tween trusted and untrusted widgets. A trusted widget is
once that has been checked by the Mash Maker administra-
tors to make sure it cannot leak data to an untrusted server.
The choice of which widgets are trusted is subjective. The
Google Maps widget is considered to be trusted, even though
it sends addresses to Google. If the addresses were highly
confidential and Google was considered to be untrusted then
one might not want this widget to be applied to a page.

If a widget is not trusted then it is not permitted to see any
data that is fetched with cookies or HTTP authentication en-
abled. This restriction also prevents an untrusted widget be-
ing applied to information that another widget fetched with
cookies. For example, if a calendar widget inserted infor-
mation from your personal calendar then this could not be
viewed by an untrusted widget. The intention is to restrict an
untrusted widget to only be able to see content that it could
see if it was running on another machine and prevent it from
seeing content that was personalised for the current user. No
mashups can be applied to a URL served as HTTPS.

One loophole in the “no cookies” security model is that an
untrusted widget will still be able to see content that is pri-
vate to a local intranet. The correct solution would be to
consider any page fetched from a corporate intranet to be
a “secure” page that cannot be seen by untrusted widgets,
however it is difficult to determine what pages are on the
intranet rather than being on the outside web. In particu-
lar, simply checking whether a page can be fetched from a
remote server is not sufficient as some intranets provide pri-
vate information on pages that have the same URL as a non-
private page that is externally accessible. Mash Maker does
not currently have a solution for this problem and so Mash
Maker is not recommended for use on corporate intranet web

pages.

A Mash Maker widget is implemented rather like a Google
Gadget’. A widget is a piece of javascript code that runs in-
side its own iframe, embedded on the page. The browser’s
same-origin policy prevents a widget being able to directly
manipulate the page that is being mashed up. This is in con-
trast to Greasemonkey which injects mashup scripts directly
onto the page.

A Mash Maker widget needs to be able to access data that
has been scraped from a web page and needs to be able to
share data with other widgets via the shared data tree. This
would normally be disallowed by the same-origin policy, so
the Mash Maker browser extension extends the browser se-
curity model by providing additional API functions that a
Mash Maker widget can call to query the data tree or publish
additional visualisations. This approach is similar to Mashu-
pOS [22] and SMash [26].

"http://code.google.com/apis/gadgets

COPY AND PASTE

As a special case, Mash Maker allows users to create mashups
by using a copy-and-paste metaphor to combine web sites.

To create a mashup that inserts content from site A into site

B, the user browses to site A, clicks the “copy” button on

the toolbar (Figure 3), and then browses to site B and clicks

“paste”. For example, to add legroom information to a flight

listing, one can browse to a web site that gives legroom in-

formation for different airlines, click copy, and then browse

to a list of flights and click paste.

Mash Maker will try to guess how to combine the two sites
together and create an appropriate mashup. In the current
version of Mash Maker, the support for Copy and Paste is
fairly simple. Mash Maker will look at the data structures
for the two web sites and try to find a matching property
that can be used for a simple join. The resulting mashup is
implemented by adding an instance of the “paste” widget to
the page. If the copy and paste result was not as desired then
the user can tweak in using it’s settings panel. Subsequent to
the release of Mash Maker, this concept has been improved
on by Karma [45] which more intelligent techniques to guess
how web sites should be combined.

The core idea of using copy and paste to create web sites
was inspired by previous work on web clipping tools [31,
41]. While Mash Maker uses web wrappers to extract data
from a copied web site, D.Mix [21] takes a more elegant
approach by determining an API that could be used to obtain
information from the source site. While Mash Maker’s copy
and paste system combines a pair of pages, Dontcheva et
al [13] take a more general approach in which the pages that
should be joined together are found using a web search.

REFERENCES
1. A. Arasu and H. Garcia-Molina. Extracting structured
data from web pages. In SIGMOD, pages 337-348,
2003.

2. N. Ashish and C. A. Knoblock. Wrapper generation for
semi-structured internet sources. SIGMOD Record,
pages 8—15, 1997.

3. R. Barrett, P. P. Maglio, and D. C. Kellem. How to
personalize the web. CHI, pages 75-82, 1997.

4. R. Baumgartner, S. Flesca, and G. Gottlob. Supervised
wrapper generation with lixto. VLDB, 2001.

5. M. Bolin, M. Webber, P. Rha, T. Wilson, and R. C.
Miller. Automation and customization of rendered web
pages. In ACM Conference on User Interface Software
and Technology (UIST), 2005.

6. K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and
J. Taylor. Freebase: a collaboratively created graph
database for structuring human knowledge. In
SIGMOD ’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data, pages
1247-1250, New York, NY, USA, 2008. ACM.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. C. Brooks, M. S. Mazer, S. Meeks, and J. Miller.

Application-specific proxy servers as http stream
transducers. In WWW, 1995.

. C.-h. Chang and S.-c. Lui. Iepad: Information

extraction based on pattern discovery. WWW, pages
681-688, 2001.

. B. Chidlovskii. Automatic repairing of web wrappers.

In WIDM, 2001.

V. Crescenzi and G. Mecca. Automatic information
extraction from large websites. Journal of the ACM,
51:731-779, 2004.

V. Crescenzi, G. Mecca, and P. Merialdo. Roadrunner:
Towards automatic data extraction from large web sites.
In VLDB, 2001.

P. Denning, J. Horning, D. Parnas, and L. Weinstein.
Wikipedia risks. Communications of the ACM, 2005.

M. Dontcheva, S. M. Drucker, D. Salesin, and M. F.
Cohen. Relations, cards, and search templates:
User-guided web data integration and layout. In UIST,
2007.

R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, and
P. Gandhi. Intel Mash Maker: Join the Web. SIGMOD
Record, 36(4):27 — 33, 2007.

R. Ennals and D. Gay. User-friendly functional
programming for web mashups. In ICFP ’07:
Proceedings of the 2007 ACM SIGPLAN international
conference on Functional programming, pages
223-234, New York, NY, USA, 2007. ACM Press.

P. T. H. Eugster, P. A. Felber, R. Guerraoui, and A.-m.
Kermarrec. The many faces of publish/subscribe. ACM
Computing Surveys, 35:114—-131, 2003.

A. Faaborg and H. Lieberman. A goal-oriented web
browser. In CHI ’06: Proceedings of the SIGCHI
conference on Human Factors in computing systems,
pages 751-760, New York, NY, USA, 2006. ACM
Press.

F. Gasparetti and A. Micarelli. Exploiting web
browsing histories to identify user needs. U1, pages
325-328, 2007.

D. Gelernter. Linda in context. Communications of the
ACM, 32, 1989.

E. Goer. Swinging through the jungle with Mash Maker
and SearchMonkey. Yahoo! Developer Network Blog,
Oct. 2008.

B. Hartmann, L. Wu, K. Collins, and S. R. Klemmer.
Programming by a sample: Rapidly creating web
applications with d.mix. UIST, 2007.

J. Howell, C. Jackson, H. J. Wang, and X. Fan.
MashupOS: Operating system abstractions for client
mashups. In Proceedings of the 11th USENIX
workshop on Hot Topics in Operating Systems, 2007.

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

. D. Ingaiis. Fabrik a visual programming environment.
In OOPSLA, 1988.

U. Irmak and T. Suel. Interactive wrapper generation
with minimal user effort. In WWW, pages 553-563.

D. Kelly and J. Teevan. Implicit feedback for inferring
user preference: A bibliography. SIGIR Forum, 2003.

F. D. Keukelaere, S. Bhola, M. Steiner, S. Chari, and
S. Yoshihama. Smash: Secure component model for
cross-domain mashups on unmodi ed browsers. In
WWW, pages 535-544, 2008.

D. Koelma, R. Van Balen, and A. Smeulders. Scil-vp:
A multi-purpose visual programming environment. In
Applied Computing, pages 1188—-1198, 1992.

N. Kushmerick. Wrapper verification. Word Wide Web
Journal, 2000.

N. Kushmerick, D. S. Weld, and R. Doorenbos.
Wrapper induction for information extraction. IJCAI,
1997.

A. H. F. Laender, B. Ribeiro-neto, A. S. Da Silva, and
J. S. Teixeira. A brief survey of web data extraction
tools. Sigmod Record, 31:84-93, 2002.

S. Lingam and S. Elbaum. Supporting end-users in the
creation of dependable web clips. In WWW, pages
953-962, 2007.

G. Little, T. Lau, A. Cypher, J. Lin, E. M. Haber, and
E. Kandogan. Koala: Capture, share, automate,
personalize business processes on the web. In CHI,
pages 943-946, 2007.

P. Maglio and R. Barrett. Intermediaries personalize
information streams. Communications of the ACM, 43,
2000.

X. Meng, D. Hu, and C. Li. Schema-guided wrapper
maintenance for web-data extraction. In WIDM, pages
1-8,2001.

I. Muslea, S. Minton, and C. Knoblock. A hierarchical
approach to wrapper induction. In Autonomous Agents,
pages 190-197, 1999.

G. Raeder. A survey of current graphical programming
techniques. IEEE Xplore, 1985.

wrapper maintenance for semi-structured web sources
using results from previous queries 1. In SAC, pages
654-659, 2005.

RDFa. http:
//www.w3.0rg/TR/xhtml-rdfa-primer/.

D. Riehle. How and why wikipedia works: An

interview with angela beesley, elisabeth bauer, and kizu

naoko. Computers and Society, pages 3-8, 2006.

J. Raposo, A. Pan, M. Alvarez, and A. Vina. Automatic

40

41.

42.

43.

44.

45.

46.

47.

48.

49.

J. Rucker and M. Polanco. Siteseer: Personalized
navigation for the web. Communications of the ACM,
40:73-75, 1997.

M. C. Schraefel, Y. Zhu, D. Modjeska, D. Wigdor, and
S. Zhao. Hunter gatherer: Interaction support for the
creation and management of within-web-page
collections. In WWW, pages 172-181, New York, NY,
USA, 2002.

Y.-W. Seo and B.-T. Zhang. A reinforcement learning
agent for personalized information filtering. In IUI,
pages 248-251, 2000.

K. Simon and G. Lausen. Viper: Augmenting
automatic information extraction with visual
perceptions. CIKM, pages 381-388, 2005.

J. Teevan, S. T. Dumais, and E. Horvitz. Personalizing
search via automated analysis of interests and activities.
In SIGIR, pages 449456, 2005.

R. Tuchinda, P. Szekely, and C. A. Knoblock. Building
mashups by example. IUI, pages 139-148, 2008.

T. Tudorache, N. F. Noy, S. Tu, and M. A. Musen.
Supporting collaborative ontology development in
protege. In ISWC, pages 17-32, 2008.

J. Wong and J. Hong. Marmite: end-user programming
for the web. In CHI °06: CHI 06 extended abstracts on
Human factors in computing systems, pages
1541-1546, New York, NY, USA, 2006. ACM Press.

S. Zheng, M. R. Scott, R. Song, and J.-R. WEN. Pictor:
An interactive system for importing data from a
website. KDD, pages 1097-1100, 2008.

S. Zheng, D. Wu, R. Song, and J.-R. WEN. Joint
optimization of wrapper generation and template
detection. KDD, pages 894-902, 2007.

http://www.w3.org/TR/xhtml-rdfa-primer/
http://www.w3.org/TR/xhtml-rdfa-primer/

	Introduction
	Overlay Mashups
	Mashup Suggestions
	Collaborative Creation of Web Wrappers
	The Shared Data Tree
	Untrusted Widgets
	Copy and Paste
	REFERENCES

