
Enabling End Users to Independently Build
Accessibility into the Web

Jeffrey P. Bigham

Computer Science and Engineering

DUB Group

University of Washington

jbigham@cs.washington.edu

http://www.cs.washington.edu/homes/jbigham/

ABSTRACT

Providing an accessible, usable experience to all web

users has been a challenge since the inception of the

web. Developers of web content target their designs to

visual display, and expect input to come from both a

mouse and a keyboard. Providing an accessible

experience is much more than an all-or-nothing

problem, it requires considering a spectrum of

problems. This chapter considers the following three

levels in the hierarchy of accessibility problems and

how end users can contribute to improving them: (i)

making access to content possible, (ii) making access

to content usable, and (iii) making access available

wherever users want it or need it. End user

programming is an attractive solution to improving

accessibility because it directly connects users with

the incentive to improve content with the ability to

improve it.

INTRODUCTION

End users need to be able to independently program

accessibility into the web. Web accessibility concerns

have existed for nearly as long as the web has existed.

This chapter looks at the impact users can have on

their own web experiences by contributing to their

accessibility, either through direct improvement or by

helping to inform developers of problems. This

chapter primarily targets improved accessibility for

blind web users, but the examples can be extended to

improving access for people with different disabilities.

Early access technology dealt with the text-only

content of the early web reasonably well, but started

having difficulties as early as the introduction of the

image (IMG) tag, which brought multimedia content

to the web. Ever since the first drafts of the HTML

standard, the alt attribute was provided as a way to

provide a description of images, but, nevertheless, as

of 2006, less than half of the informative images on

popular web sites were assigned alternative text [5].

Requiring web developers to build accessibility into

their content has not proven to be a reliable solution to

achieving accessibility.

Instead of full reliance on web developers, we

envision a web that all users can actively shape to

work better for them. For disabled computer users, the

web offers the promise of endless content easily

converted to an accessible format, but barriers to

achieving this full potential remain for anyone

accessing the web using a non-standard display,

keyboard and mouse. Some web content is encoded

visually assuming a certain display size, content can

be difficult or inefficient to access with assistive

technology, and access almost always depends on the

Availability

Usability

Accessibility

Figure 1: Achieving web accessibility requires more than

simply making it possible for users with diverse abilities to

access content. Accessibility is the foundation on which the

usability and availability of access rests.

ability to install special access software, which users

often lack the permission to do.

The web is not designed with blind web users in mind,

but is instead designed targeting mouse-driven visual

displays. Blind web users access their computers and

web content using non-visual access software called

screen readers, which (i) convert information typically

displayed visually to a linear stream of output in either

synthesized voice or refreshable Braille, and (ii)

provide a large number of shortcut keys designed to

help make searching that linear space more efficient.

Access for blind web users remains inefficient, slow,

and often frustrating. Accessibility efforts have

focused on making access possible, but the resulting

interfaces remain unintuitive to use. Tools lack an

understanding of the semantics of content, and,

therefore, have trouble conveying it in a meaningful

way. This chapter overviews our work in collaborative

accessibility, which we are exploring to enable blind

web users to independently improve the web to better

suit their needs and directly address the accessibility

problems they experience.

Web developers, who can choose to create more

accessible content, are commonly blamed for these

problems. As an example, target.com recently lost a

multi-million dollar lawsuit against the National

Federation of the Blind because of its inaccessible

online storefront. Although making access possible is

relatively straightforward (and Target could have

made simple improvements to make its site

accessible), web developers have, in general, proven

unable to reliably create accessible content.

Part of the problem is that it is difficult to understand

what might hinder access someone different than you

might access content and predict what problems they

might have. The result is that even when developers

try to follow accessibility standards in order to make it

possible for people with disabilities (or someone using

a small-screen device) to use their sites, access is still

a frustrating and unintuitive experience. Most

developers of content are not disabled themselves, and

so many do not know what a disabled user might need

or want out of an interface. Accessibility issues

involve not only technical considerations, but issues

of cost to implement or rework existing content. Just

as the best visual designs require keen subjective

construction, so do the best accessible designs require

substantial design skill.

End users understand when content is difficult for

them to access, but they often lack the tools and

technical knowledge to improve content to work better

for them. To address this shortcoming in existing

tools, we have developed socially-driven tools to

enable end users to independently build accessibility

into the web and to share the improvements that they

make with others. Our work has focused on non-

visual access both because of the incredible potential

for social impact in this space and because we believe

this to be an extreme case that can inform

improvements for users with different requirements.

The challenges addressed are applicable to a wide

variety of end user programming tools for improving

web content according to an individual’s abilities and

preferences.

We have divided accessibility problems into the

following three categories and associated research

questions:

(i) Accessibility –
How can users access rich content

regardless of ability?

Multimedia content lacking alternatives is not

accessible programmatically or easily

conveyed non-visually without explicit

annotation. Content is often not accessible

using only the keyboard, which makes it

difficult for keyboard users.

(ii) Usability –

How can users help one another more

effectively complete tasks on the web?

Complex content can make accomplishing

tasks inefficient for blind users and confusing

for cognitively-disabled users. Content in a

second language can be difficult to

understand.

(iii) Availability –

How can the access technology and social

improvements provided by users be

provided to everyone that needs them

where and when they need them?

Access technology is not available on most

computers, including lock-down public

terminals. Installing new software is often not

allowed or is infeasible.

Mainstream tools for improving accessibility have

primarily looked at the first category – making access

to content possible. The remainder of this chapter

describes tools designed for end users to enhance

collaboration and enable users who would benefit

most from accessibility improvements independently

address these challenges. The tools described here

primarily focus on improving accessibility for blind

web users, but the ideas explored can be adapted to

providing accessibility improvement for people with a

variety of access needs.

ACCESSIBILITY: SOCIAL ANNOTATION

Well-designed web content uses semantic annotations

to assist users in browsing with a screen reader, but,

for a variety of reasons, annotations are not

pervasively applied. As an example, images lacking

descriptions are inaccessible to screen reader users,

and alternative text describing them is provided to

only half [2,5] Without the quick scanning and

summary afforded by a visual display, locating

interesting content can be difficult. Annotations added

to content can help users skip through content in a

meaningful way. Heading tags (<h1> - <h6>) are a

simple mechanism for conveying semantic structure

and are frequently used by blind web users to navigate

within a web page. Even simple annotations such as

alternative text and heading tags are often not

provided or used properly, and users are currently

reliant on the creators of content to provide them.

The Accessmonkey framework helps to end that

reliance by enabling end users to provide annotations

in a shareable form. The annotations provided using

Accessmonkey can benefit other users and also web

developers wanting to integrate them into their own

web sites [1]. IBM recently released Social

Accessibility, a set of browser plugins that enable

users to apply fixes to pages, and coordinate

volunteers to help provide the appropriate annotations.

[8] Providing these annotations can help make

accessing a web site possible, but, just as in visual

design, making a task possible on the web does not

mean it will be an easy or intuitive experience.

Sharing annotations requires a way to address content

to which each annotation applies and providing a

common repository where the annotations can be

accessed. Common addressing methods are XPath,

pseudo-natural language descriptions, and content-

specific methods, such as the MD5 hash of an image.

The addressing mechanisms that are easiest for

computers to understand tend to be most difficult for

people. Keyword commands uses pseudo-natural

language commands to address page content and are

popular in this space because they enable users to

more easily understand how an annotation is changing

the content they are viewing [9]. CoScripter borrows

this idea of a pseudo-natural language addressing

mechanism to create a wiki of how-to instructions

[10]. With a number of different addressing

mechanisms available, each with their own tradeoffs,

it is important that these can be shared and reused in a

repository that accepts them all.

The Accessibility Commons serves a unified location

for annotations that allows multiple addressing types

and is designed to be flexible to new types. [7] A

common repository of annotations along with end user

tools to help create them can help users

collaboratively create web content better suited to

their needs. The most straight-forward example is the

user of alternative text for images that can be read by

a screen reader in place of images on web pages.

The general role of annotations is to provide

additional descriptions and semantics that allow end

user tools to make better sense of web content.

TrailBlazer Example

..
.

1 of 15: go to www.amazon.com

2 of 15: select “Books” from the

“Search” listbox

..
.

8 of 15: clip the TABLE

containing “List Price”

1)

2)

8)

Figure 2: TrailBlazer guiding a user step-by-step through

purchasing a book on Amazon. 1) The first step is to goto

the Amazon.com homepage. 2) TrailBlazer directs the user

to select the “Books” option from the highlighted listbox. …

8) On the product detail page, TrailBlazer directs users past

the standard template material directly to the relevant

product information.

Many different types of tools can benefit from content

with more annotation. Any tool that needs to address

specific content within a web page, for instance, can

benefit.

USABILITY: BLAZING TRAILS THROUGH THE WEB

Applying annotations to content (such as those

described in the previous section) can make access to

content possible but are not usually enough to make

web content usable. To be usable, users need to be

able to connect individual interactions with interface

components together into complete tasks. When using

a non-visual interface, completing tasks on the web

can be inefficient and frustrating, with each step

requiring a linear search of web content to find the

correct button, link, or information.

The play back components of Programming-by-

Demonstration (PBD) and interactive help systems

guide users through tasks step-by-step, which obviates

the need for this linear search on predefined tasks.

Despite the incredible potential of these tools to assist

blind users, most existing systems are not usable with

standard screen readers. Feedback is either indicated

only visually, the mouse is required to interact with

the systems, or numerous context switches between

the PBD interface and the web page that is being

interacted with are required.

TrailBlazer targets non-visual recording, playback and

sharing of scripts (trails) to guide users through

completing web-based tasks. It includes speech

feedback for all interface components, provides

keyboard shortcuts for all functionality, and integrates

its interface directly into the web pages that are being

accessed.

TrailBlazer also reuses the existing repository of

CoScripts to guide users through existing how-to

knowledge (Figure 1). [4] This enables blind users to

immediately leverage a large existing repository of

how-to knowledge. Blind users can also independently

demonstrate tasks, record themselves, and then save

and share the descriptions as CoScripts using

TrailBlazer. These pseudo-natural language scripts

bring the advantages of macro recording to a group

that stands to greatly benefit.

Generalizing Trails

Blind participants in a formative study found

TrailBlazer to be a great improvement over using a

screen reader directly, but felt that it was too restricted

because they could only use it when a script already

existed for completing a task. To address this concern,

we developed a novel method for suggestion-based

help in order to guide blind web users through tasks,

dynamically creating a new script (Figure 3).

TrailBlazer creates these suggestions by combining a

short, user-provided task description and an existing

repository of how-to knowledge. In an evaluation of

15 user-created tasks, the correct prediction was

contained within the top 5 suggestions 75.9% of the

time.

Following these predictions lets users avoid lengthy

linear searches in most cases. When the suggestions

offered by TrailBlazer are incorrect, users only have

to explore a small list of suggestions (currently 5)

before completing the task as they normally would.

Future research will explore how to best translate the

predictions offered by TrailBlazer into improved

usability – helping users more quickly complete tasks

without taking away their control or causing them to

be less efficient when TrailBlazer is wrong.

By guiding blind web users through web tasks the first

time, TrailBlazer encourages users to create scripts

that improve the efficiency of all users in the future.

An on-going problem with programming-by-

demonstration systems for the web is that even the

Figure 3: Suggestions are presented to users within the page

context, inserted into the DOM of the web page following the

element with which they last interacted. In this case, the user

has just entered “105” into the “Flight Number” textbox and

TrailBlazer recommends clicking on the “Check” button as

its first suggestion.

small amount of work required to define a script for a

tasks makes it not worth doing for most people. The

trade-off may be different for blind users for whom

accessing the web is currently so inefficient. We are

investigating this trade-off to see if this might make

them more likely to define scripts that could then

benefit everyone.

TrailBlazer currently incorporates only the knowledge

from the scripts that users have explicitly recorded

and shared, but exploring always-on recording to help

find popular trails through web sites is an important

opportunity for future work.

TrailBlazer helps users connect the individual

interactions into trails that can be efficiently

completed using a screen reader. This overlay on top

of existing content can help make that content more

efficient to access without taking away the user’s

control.

AVAILABILITY: BUILDING TOOLS INTO THE WEB

End user tools can dramatically improve accessibility,

but people often use computers other than their own to

access web content. Anyone who either requires or

prefers a different interface is restricted to using only

computers on which that software is already installed.

In the case of the screen readers used by blind

individuals, the software is incredibly expensive and

not likely to be installed on most computers.

Specifically, the accessibility enhancements made

possible using the tools presented in the previous two

sections are unlikely be available.

To address this problem, we introduced

WebAnywhere, a web-based screen reader that

enables blind web users to access the web from almost

any computer that can produce sound without

installing new software [3]. WebAnywhere works

even on locked-down public terminals. To facilitate

this, speech is delivered from a remote server. Pre-

fetching based on a dynamic model of user behavior

helps to ensure that the sounds users request to be

played are likely to already be in the browser cache

and perceived latency is low (Figure 4 and 5).

In addition to serving as a screen reader for the web

on computers in which one is not already installed,

WebAnywhere is also able to incorporate the

improvements offered by Accessmonkey and the

Accessibility Commons, which means the web pages

it makes available are more accessible. In the future,

we plan to incorporate the TrailBlazer interface into

WebAnywhere as well, and build an accessible,

socially-generated version of the web into every web

browser. Our public release of the system is currently

being visited by approximately 700 unique users each

week, providing a wealth of data that can help us both

understand and improve WebAnywhere and also

inform our future research directions.

Getting Tools to Users

Getting access technology and improvements that

have been made by end users to the people that need

them most can be difficult. Access technology is

specialized software, and not installed on most

computers. Locked-down public terminals prevent

new software from being installed, and, for many

users, the time required to install new software causes

it to be more cost than it is worth. It can be difficult to

overcome the cost of installing new software, which

means that users may go to the trouble to benefit from

the software that would be ideal for them. Access

technology has a high abandonment rate, at least

partially due to its complexity [6].

Users accustomed to using or reliant on a specific type

of accommodation may not be able to leverage it

everywhere they happen to be. WebAnywhere helps

improve this cost-benefit trade-off by making loading

access technology and end user improvements as easy

as loading a web page.

Inaccessible content is often created because

developers are not aware of the issues involved. Prior

Figure 4: WebAnywhere is a web browser that runs as a web

application inside the existing web browser. It requires no

special software to be installed or permissions to run, so it can

provide custom interfaces wherever users happen to be.

work has shown that web developers can be more

successful at discovering accessibility issues when

they view their web pages with a screen reader [11].

WebAnywhere serves as a quick way for developers

to experience new interfaces.

WebAnywhere also enables users to demonstrate the

problems they are having using an interface similar to

TrailBlazer, capture a recording of their interaction,

and then send the script off for easy review by

developers. This type of end user programming can

help clearly demonstrate the problems that exist in

current web page, and represents a low-cost way for

remote blind users to demonstrate the problems they

experience using the interfaces that they use.

OPPORTUNITIES FOR FUTURE WORK

The web presents the incredible opportunity to

provide everyone with efficient access to the

information they need, when they need it. History has

shown that it is unrealistic to expect all web

developers to create content that is accessible and

usable by all people. The web users who would

benefit from accessibility improvements have the

motivation and incentive to make their content more

accessible – it is our challenge to create the tools that

will allow them to do so.

Through end user tools that help users independently

improve web content, we hope to enable users bypass

artificial restrictions to their access in the web today

and directly build in the accessibility that would be

most beneficial to them. This work is part of a larger

trend toward more personalized access to content that

will become necessary. The web allows us to share

information to an extent that we have never before

experienced, but has thus far been closely tied to its

visual representation. This is not working for a

variety of people, using a variety of devices.

The tools described in this paper have focused on

improving access to for blind web users, but can

inform the design of tools for other use cases. As

examples, the technology described here could

directly apply to web access on both mobile phones

lacking screens and small-screen devices. How we can

enable authors to conveniently produce content that

can be enjoyed by people with difference abilities, in

difference contexts? Part of the answer is likely to

create tools that enable end users to independently

reshape web content to their preference.

Acknowledgements

We thank the members of the WebInSight Project at

the University of Washington and CoScripter team at

IBM Almaden Research Center for their input and

support. We also thank the numerous participants in

our user studies for their insightful comments.

REFERENCES

1. J. P. Bigham and R. E. Ladner. Accessmonkey: A

Collaborative Scripting Framework for Web Users and

Developers. In Proceedings of the International Cross-

Disciplinary Conference on Web Accessibility (W4A

2007), pages 25-34. Banff, Alberta, Canada, 2007.

2. J. P. Bigham, A. C. Cavender, J. T. Brudvik, J. O.

Wobbrock, and R. E. Ladner. WebinSitu: A

Comparative Analysis of Blind and Sighted Browsing

Behavior. In Proceedings of the 9
th

 International ACM

Conference on Computers & Accessibility (ASSETS

2007), pages 51-58. Tempe, Arizona, USA, 2007.

3. J. P. Bigham, C. M. Prince and R. E. Ladner.

WebAnywhere: A Screen Reader On-the-Go. In

Proceedings of the International Cross-Disciplinary

Conference on Web Accessibility (W4A 2008), pages 73-

82. Beijing, China, 2008.

WebAnywhere

Script
Embedded

Player

Web

Page

Web

Client Web Browser

Sound Players

Flash PlayerTransformed

Web Page

Client-Side WebAnywhere

Web

Proxy

Text to

Speech

Server-Side WebAnywhere

WebAnywhere
System http://www2008.org

- or -

Figure 5: WebAnywhere is a web proxy is designed to provide personalized interfaces to the web to users from any computer. The

interface shown adds spoken feedback and keyboard shortcuts to any web page, making any computer accessible to blind computer

users. WebAnywhere is also able to deliver the accessibility improvements provided by other tools, such as Accessmonkey or Social

Accessibility to any computer, making it important for helping users realize the benefit of these tools anywhere.

4. J. P. Bigham, T. Lau and J. Nichols. TrailBlazer:

Enabling Blind Users to Blaze Trails Through the Web.

In Proceedings of the 12
th

 International Conference on

Intelligent User Interfaces (IUI 2008). Sanibel Island,

Florida, USA, 2009.

5. J. P. Bigham, R. S. Kaminsky, R. E. Ladner, O. M.

Danielsson and G. L. Hempton. WebInSight: Making

Web Images Accessible. In Proceedings of the 8
th

International ACM Conference on Computers and

Accessibility (ASSETS 2006), pages 181-188. Portland,

Oregon, USA, 2006.

6. M. Dawe. Desperately Seeking Simplicity: How Young

Adults with Cognitive Disabilities and Their Families

Adopt Assistive Technologies. In Proceedings of the

SIGCHI conference on Human Factors in computing

systems (CHI 2006), pages 1143-1152. Montreal,

Canada, 2006.

7. T. Hironobu, S. Kawanaka, M. Kobayashi, T. Itoh and

C. Asakawa. Social accessibility: achieving accessibility

through collaborative metadata authoring. In

Proceedings of the 10
th

 International ACM Conference

on Computers and Accessibility (ASSETS 2008), pages

193-200. Halifax, Nova Scotia, Canada, 2008.

8. S. Kawanaka, Y. Borodin, J. P. Bigham, D. Lunn, H.

Takagi and C. Asakawa. Accessibility Commons: a

Metadata Infrastructure for Web Accessibility. In

Proceedings of the 10
th

 International ACM Conference

on Computers and Accessibility (ASSETS 2008), pages

153-160. Halifax, Nova Scotia, Canada, 2008.

9. G. Little and R. Miller. Translating keyword commands

into executable code. In Proceedings of the 19
th

 Annual

Symposium on User Interface Software and Technology

(UIST 2006), pages 135-144. Montreux, Switzerland,

2006.

10. G. Little, T. Lau, A. Cypher, J. Lin, E. M. Haber, E.

Kandogan. Koala: capture, share, automate, personalize

business processes on the web. In Proceedings of the

SIGCHI conference on Human factors in computing

systems(CHI 2007), pages 943-946. San Jose,

California, 2007.

11. J. Mankoff, H. Fait, and T. Tran. Is your web page

accessible? A comparative study of methods for

assessing web page accessibility for the blind. In

Proceedings of the SIGCHI conference on Human

factors in computing systems (CHI 2005), pages 41-50.

Portland, Oregon, USA, 2005.

