
 1

A World Wider than the Web:
End User Programming Across Multiple Domains

Will Haines

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025 USA

haines@ai.sri.com

Melinda Gervasio

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025 USA

melinda.gervasio@sri.com

Aaron Spaulding

SRI International

333 Ravenswood Ave.

Menlo Park, CA 94025 USA

spaulding@ai.sri.com

Jim Blythe

USC Information Sciences Institute

4676 Admiralty Way

Marina del Rey, CA 90292 USA

blythe@isi.edu

ABSTRACT

As Web services become more diverse and powerful, end

user programming (EUP) systems for the Web become

increasingly compelling. However, many user workflows

do not exist exclusively online. To support these workflows

completely, EUP systems must allow the user to program

across multiple domains. To this end, we introduce the

notion of pluggable domain models—independently

generated action models for different application domains

that can combine to support the learning of cross-domain

procedures—and we present guidelines for the development

of such domain models. In the context of our work on an

Integrated Task Learning (ITL) system, we discuss how to

use pluggable domain models to facilitate cross-domain

instrumentation and automation. We also explore what

impact such a model has on the systems that reason over,

learn, and visualize procedures. Along the way, we provide

prescriptive suggestions for engineering real-world cross-

domain EUP systems as well as suggestions for what sorts

of user activities such as system should support. Finally, we

briefly discuss some open questions that cross-domain EUP

systems will need to address in the future.

A WORLD WIDER THAN THE WEB

Today’s rapid proliferation of Web services, particularly

with the emergence of Web 2.0, has prompted an

increasingly varied use of the Web to support users’

everyday tasks [8]. In the office, Web services now support

many business processes: travel authorization and

reimbursement, equipment purchase and requisition, and

conference facilities management are just some processes

that often rely on dedicated Web-based applications. At

home, we visit a variety of websites to purchase books,

make travel arrangements, and manage our finances.

However, many user workflows, particularly in business

environments, still involve non-Web applications [10].

Even as some applications begin to transition to the Web—

for example, email and calendar tools—the workflows will

continue to involve multiple, disparate application domains.

Thus, any end-user programming (EUP) tool, particularly

those designed for the business environment, must

accommodate procedures learned over a variety of

applications, on the Web and beyond.

Consider the job of Alice, who is responsible for

maintaining a website listing all the publications by the

members of a university laboratory.
1
 Whenever someone in

the lab produces a report, they notify Alice by email. The

email message contains the citation for the paper as well as

an attached electronic version of the work. The attachment

may be in a single-file format, such as a PDF or Microsoft

Word document, or in a multi-file format such as LaTeX. In

the case of multiple files, it may come as several files or as

a single, compressed folder. Alice saves the file(s), and if

the paper is not already a PDF, she must convert it before

renaming the file to conform to a standard YYYY-

FirstAuthorLastName-Venue.pdf format. She then uploads

the PDF file using the site administrator’s Web interface.

This includes filling out a form with the citation

information for the paper, uploading the paper, verifying

that the uploaded paper is downloadable. Finally, Alice

replies to the email message, copying the direct URL link to

the paper into the message for the author’s benefit.

This is a task Alice repeats several dozen times a year, and

she would clearly benefit by automating it. However, since

it touches several different applications, including an email

client, the file system, word-processing software, PDF

converters, and a Web browser, any EUP tool designed for

a single application can only automate part of Alice’s

workflow. For example, Alice could use a Web EUP

system to automate the segment involving uploading the

paper and citation information to the website. However, she

must still manually process the email, perform the file

operations, provide values for the Web form, and reply to

the email. Additional single-application EUP systems could

potentially automate more segments, but they would require

Alice not only to learn several different interfaces but also

to manually link the data from one system to another. In

contrast, an EUP tool that can be used across domains could

potentially automate the entire workflow, providing a

significantly greater benefit for Alice.

1
 This use case was adapted from a contextual inquiry user

study [2] we conducted in 2007 to observe office workers

performing potentially automatable tasks on their

computers.

While cross-domain EUP would clearly be valuable, it also

presents many design and implementation challenges.

There is a clear reason why most EUP systems tackle a

single application domain: it is much easier to engineer

instrumentation and automation for a single platform, the

relations between different domain actions are obvious, and

the procedures that can be learned are bounded.

Nevertheless, we argue that the benefits provided by cross-

domain EUP make it well worth attempting to meet its

unique challenges.

Here, we present our approach for achieving cross-domain

EUP. We introduce the notion of pluggable domain

models—independently generated action models for

different application domains that can combine to support

the learning of cross-domain procedures—and we present

guidelines for the development of such domain models. We

then discuss the often-underappreciated task of

instrumentation and automation, noting the additional

challenges that occur when learning procedures across

domains. Given these pluggable domain models, we

describe the various issues and opportunities raised for

reasoning, learning, and visualization, grounding the

discussion within our work on an Integrated Task Learning

(ITL) system [25]. Finally, we present avenues for future

work and conclusions.

CREATING PLUGGABLE DOMAIN MODELS

To get the most mileage out of EUP systems, domain

knowledge must be encoded in such a way as to support

reasoning across different applications. One possible

approach, realized in the CALO cognitive desktop assistant,

is to develop a master shared ontology for representing not

just all the objects in the world and relations between them,

but also the actions or tasks involving them [7]. The

different applications are required to publish

instrumentation events that adhere to this ontology, and the

various modules can use the centralized knowledge base.

Such an approach is very powerful, supporting deep

reasoning over actions and objects spanning different

applications [15]. However, this power comes at a very

high engineering and maintenance cost. The knowledge

engineers must develop an all-encompassing ontology and

component developers must commit to the shared

representation to model their domains. Any changes to the

ontology must thus be carefully vetted to avoid unintended

consequences and to avoid significant re-engineering. In a

large, distributed EUP system comprising applications that

are only loosely, if at all, connected, these concerns likely

present an unacceptable cost. Instead, we recommend an

extensible architecture that models each domain as a

separate, pluggable module. In this section, we lay out the

issues that arise when specifying such domain models and

we present prescriptive guidelines for the development of

these models.

Action-Oriented Domain Model

EUP is concerned primarily with automation, so the domain

actions must be the primary focus of modeling. We

prescribe a dataflow model of actions, where the effects of

executing an action are characterized by the action’s inputs

and outputs. Specifically, each action is a named operation

with a set of typed input and output parameters such that, in

a procedure, outputs of actions serve as inputs to

succeeding actions.

The dataflow model is particularly well suited to modeling

Web services and service-oriented architectures in general,

since services can be modeled straightforwardly as

operations taking particular inputs and producing certain

outputs. Moreover, many actions in the desktop world

operate on artifacts such as email, files, and calendar entries

and can thus also be easily cast into this modeling

framework. For the remainder of this chapter, we will

represent actions in the form name [parameters] where

parameters are of the form +|–paramName:paramType

with + indicating an input and – indicating an output.

Figure 1 shows some representative actions for a Web

browser and an email client.

Browser:

openURL +url:string

submitForm +formInputs:List<string>

-url:webAddress

Email:

openComposeEmailWindow

+sender:List<emailAddress>

+subject:string +body:string

–frameID:frameID

sendEmail +email:email

Figure 1: Some Possible Actions.

In Web service domains, it is often easier and more

intuitive to implement instrumentation to generate events in

terms of these actions rather than in terms of the changes

they have on the world state. For example, uploading a

paper to a Web server through a Web interface might be

captured as an action that takes as input the publication

information and generates as output the URL for the

uploaded paper. Alternatively, it could be modeled in terms

of the state of the browser window (and maybe the paper

database) before the Submit button is pressed, and the state

of the window (and maybe the paper database) after. If one

were using citation information copied from an email

message, then state-based instrumentation must also capture

the state of the email client window. In general, state-based

instrumentation must capture not just the conditions that

may be affected by the current action, but also the

conditions affected by previous and succeeding actions.

Action-oriented instrumentation can be more narrowly

focused and, at the same time, also more readily extensible.

 3

However, it imposes the constraint that instrumentation and

automation be modeled as direct inverses of each other—

i.e., any observed action must also be directly executable.

Given a dataflow model of actions, a procedure learner can

reason about the support relationships between the

prerequisites and results of discrete end-user actions. This

reasoning lets it perform procedure validation, provide

editing support, and perform parameter and structure

generalization [25]. Later, we discuss how we can extend

our reasoning capabilities by attaching additional metadata

to actions.

Modeling Human-Level Actions

When constructing a dataflow model, one of the keys to

successful procedure representation and learning is to

capture actions at the right level of granularity. Ideally,

actions should be modeled at the level at which humans

would typically describe their own actions and should

expose the objects that humans would find relevant to the

actions as arguments. For example, in an email application,

it is preferable to model the actions

openComposeWindow, sendEmailAttachment, and

sendEmail, rather than low-level actions like

moveMouse or leftClickOnMouse, or high-level

actions like sendReceiptsToAdmin, or

sendQuarterlyReport.

Capturing actions at low levels will generally result in

much more compact action models, simplifying

instrumentation and automation. However, it is likely to

yield incomprehensible learned procedures—for example a

procedure composed entirely of mouse drags and clicks.

Meanwhile, capturing actions at too high a level will

generally impose an impractical reasoning burden on the

instrumentation to map what can actually be observed to the

user’s intent—imagine having to determine the purpose of

sending an email message. Further, such high-level actions

compose poorly because the user cannot break them down

into smaller units should they want to realign them.

When modeling actions that match how users think of

themselves interacting with applications, one is more likely

to strike the right balance between the cost of

instrumentation and user comprehension of the learned

procedures. Such comprehension is essential if we ever

expect to create systems that allow users to later modify and

debug their procedures [25]. A user with a learned

procedure that operates as a black box may not be any

better off than a user who does not have the technical skills

to read a scripting language. Modeling domain actions at

human level is a service both to the learning algorithms and

end users.

Beyond Actions: Modeling Objects and Relations

As discussed above, an action-oriented domain model

presents a number of advantages for a cross-domain EUP

system. However, judicious modeling of the objects in a

domain and the relations between them can often simplify

action modeling while also improving our ability to learn

and reason over procedures. For example, suppose that the

correct recipient of an email containing a travel expense

report is the administrative assistant attached to the project

that funded the trip. Without a representation for these

relations it would not be possible to notice this requirement

in an action trace, or represent it in a procedure. We can

also use relations and properties as tests in conditional

branches in procedures.

In ITL, we store relation models for each application along

with the action models, preserving modularity. Technically,

a relation such as “the project funding the trip” can be

represented either as a relation or an operation, in this case:

“look up the project funding the trip”. However, there may

not always be an observable user action to query for the

relation. The choice of whether to use a relation or

information-producing action in each particular case should

be largely governed by what is more natural for users of the

application who generate and edit procedures.

Referring explicitly to properties and relations of objects

does require additional mechanisms to be defined to support

querying for object properties or relations when a procedure

is executed. Compared with an alternative approach that

represents each object as a tuple of its properties, however,

this approach provides two distinct advantages. First, the

properties themselves may be more natural for users to

view and edit in their native interface. Second, the object

properties may be mutable—that is, they may change

concurrently within the domain application. In determining

whether it is the same object referred to in different actions,

care must thus be taken to distinguish mutable from

immutable properties and to compare only the immutable

properties. Third, forcing relations between objects into

properties of the object tuples is often awkward and

unwieldy. In situations where these factors are significant,

the advantages of representing objects as references may be

well worth the additional overhead.

Extensible Type System

Recall that we define an action as taking a set of typed

inputs and outputs. These types are used to allow the

learners to make reasonable comparisons and substitutions

between actions operating on compatible types of data.

Figure 1 shows a variety of types, ranging from simple

primitives such as string to more complex types such as

email.

Much like actions, it is preferable to allow application

domain models to specify arbitrary types rather than

restricting model authors to a finite set of possible types.

Since the type system is very important in procedures that

tie together steps from several different applications, it is

important that compatible information provided by one

application and used in another can be identified as such.

For example, both an email client and a Web browser can

understand email addresses, and it is important that they

both settle on a common representation. We can achieve

this agreement either by having the two domains use the

same name for these object types, or by providing a central

module that asserts the equivalence of the types and that

perhaps contains a set of operations providing object

conversion as needed. Providing shared type names or

conversions does not in itself solve the problem of bridging

information across multiple domains by matching types.

This problem is similar to the ontology alignment or

database integration problems, where a lot of work has been

done [12,23]. Our general approach here has been to keep a

lightweight central type system that is relatively easy to

align to. ITL includes a module to automatically align types

into a central system based on observed values [17].

In addition we suggest a more powerful hierarchical

approach that allows application domain models to build up

complex data types from primitive data types and collection

data types. To illustrate this approach, consider the

hierarchical type system supported by the ITL system. ITL

allows domain models to build from complex types from

string, integer, float, and Boolean primitives and list, object,

and named types. More complex types are built by creating

lists, which consist of typed parameters; objects, which

consist of typed fields; or named types, which are types that

structurally represented by another primitive or complex

type but are not considered equivalent to that type. Figure 2

shows how to build an email type in such a scheme:

Named emailAddress string

Object email:

 List<emailAddress> recipients

 emailAddress sender

 string subject

 string body

Figure 2: Building the emailAddress and email types

As we can see, one can build arbitrarily complex data types

out of the components, while still allowing the learning

systems to reason about the internals of complex types.

Another useful addition to such a type system are relations

between types such as “is a” and “has a.” Such additional

metadata is not strictly necessary, but may extend the

reasoning ability of the learners [7].

The key to the above approach is that it parallels the

specification of application domain models in that it allows

domain modelers to create expressive models without

forcing all model engineering to happen upfront. One can

declare types for an application alongside the actions and

register to allow learning in a just-in-time fashion. Thus, we

can define any given application domain model as simply

the set of actions, types, and relations that describe all user-

level operations over which our learners can reason and

build procedures. The full domain model is then just the

conjunction of all actions, types, and relations from all the

application domain models that we wish to consider. Hence,

we can build a large full domain model without the upfront

design and continuing maintenance costs required by a

monolithic master ontology.

ENGINEERING INSTRUMENTATION AND AUTOMATION

Despite a great deal of clever reasoning, in the end, an EUP

system is only as good as the instrumentation that it can

reason over. Likewise, EUP execution engines are

worthless without robust automation hooks. Unfortunately,

to work in non-trivial, non-custom environments,

instrumentation and automation must touch a number of

applications and websites, the vast majority of which were

not originally designed to support such intrusions. Given

such a high cost of entry and high benefit for cross-domain

EUP, we suggest budgeting a large percentage of time to

handle such concerns.

The following sections provide an overview of the common

engineering challenges faced by application developers who

wish to attach their applications to a cross-domain EUP

system. Then, using ITL as a motivating example, we

provide some prescriptive guidance that may reduce the

programming burden associated with

instrumentation/automation.

Plugging in to an End User Programming System

Let us first consider instrumentation. In a dataflow action,

collecting instrumentation consists of recording the values

of the input parameters in the target application, waiting for

the action to be performed, then recording the values of the

output parameters and sending the whole package to the

learners. One possibility is to provide the target application

with a way to notify the learners when an action has been

executed. In this case, we can simplify the process

somewhat by using the domain model to create a registry of

action notifications with accompanying containers for

storing inputs and outputs. Here, we can leverage the

organization of a good domain model to take much of the

burden off the application programmer. However, be aware

that the mapping from application functions and state to

domain actions is almost never one-to-one. As such, it is

key to provide the programmer with flexibility, as it can be

particularly onerous to restructure application logic to fit in

with a given action model.

Automation is somewhat easier for the application

programmer, but it can be difficult for an EUP system

engineer to provide a general-purpose framework for cross-

domain automation that can collect the necessary

application context to execute an arbitrary domain action.

For example, when executing an openURL action, we have

access to the URL to open as an action input, but in most

browsers we also require other information such as a

reference to the active tab. Not all context is appropriate to

expose to the learners via the domain model, so we must

have another way to access the context on demand. One

solution to the problem is to create a callback framework

that attaches the ability to execute arbitrary application code

to each action in the domain model. As with

 5

instrumentation, this approach must be flexible enough both

to execute application operations and to gather all the

program context necessary to allow such objects to operate

correctly.

In summary, while instrumentation/automation engineering

may not present grand AI challenges, it is a critical, under-

appreciated issue for EUP, especially across domains. In the

next section, we will provide some more detail as to how

we have engineered the ITL application programmer’s API

to facilitate instrumentation and automation for third-party

applications.

Crafting the Programming Model

In our deployment of ITL, we learned that

instrumentation/automation is a consistent bottleneck in

crafting a useful EUP system. Over several iterations, we

have developed a few approaches that improve the

programming model for associating application code with

the actions to which it relates. While these approaches may

not be necessary for all cross-domain applications, we

stress that flexibility is the key programming concern in

instrumenting/automating EUP client applications.

For instrumentation, we sought to address three key

engineering concerns, interoperability, immutable state and

crosscutting. Interoperability concerns the fact that

equivalent types may be represented in heterogeneous ways

across different applications. We earlier discussed the

importance of lightweight type systems, and it turns out that

we can leverage this concept for inter-application

communication. In ITL, we settled on a canonical wire

format for all data, recursively built out of primitives, lists,

and maps based on the data type descriptions contained in

the domain model. In this way, application programmers

must only provide data conversion functions for their

primitive application types and the framework can handle

the rest of the conversion automatically.

Immutable State

The immutable state issue crops up because action inputs

and outputs must be immutable values that reflect the state

of the application before and after the user-level operation.

If the operation or some application side effect mutates the

item, the invariants of the action are violated, negatively

impacting the learners. It is up to application developers to

make sure that such erroneous mutation does not occur. In

practice, defensive copying of the parameters solves this

issue [3]. In ITL, we provide API support to deep-copy the

parameters at the points which the application programmer

takes the before and after operation snapshots of the

application’s state.

Crosscutting

Crosscutting refers to the tendency of some self-contained

aspects (concerns) of a program to cut across a number of

modules. Such code is hard to read and maintain [16].

Consider instrumentation, which requires the application

developer to place a call to the EUP system wherever she

wants to log program state. If something about these calls

were to change, the developer would have to hunt down

every occurrence that is entangled in code that is otherwise

unrelated to the EUP system. With standard object-oriented

approaches, it is impossible to fully encapsulate a

crosscutting concern like instrumentation.

In ITL we decided to follow an aspect-oriented approach to

solve this problem [16]. Aspect-oriented programming uses

code execution intercept to factor out cross-cutting

concerns; while it is not possible in all programming

languages, it provides a clean solution to this problem for

the increasing number of languages that support it. In our

scheme, for each action, the application programmer need

only specify methods to gather input and output states.

Then, she simply provides locations at which the

instrumentation will be triggered. The result keeps all

instrumentation in one module and makes it easy to ship

instrumented and uninstrumented versions of the client

application. Even without aspect orientation, we suggest

keeping the gathering methods in a single module and

limiting the penetration of calls to this module from other

modules to a minimum.

Context Gathering

As described earlier, the major problem of automation is

context gathering—i.e., ensuring that the necessary

program context is available for executing the action. We

suggest abstract factory pattern as an elegant solution to

this issue [13]. In ITL, each action uses an abstract factory

to create a context object that knows how to gather context

and execute the necessary code to make execution

successful. In this way, one only needs to provide the

template for gathering context rather than attempt to pass

the context to each callback explicitly.

The ITL approach certainly is not the only method to

instrument and automate a number of heterogeneous

applications, but we feel that it demonstrates a number of

engineering best practices for instrumentation/automation.

We hope that by sharing some patterns for making this

difficult process easier, we can allow EUP systems to

gather more data and focus on better serving the user. Now

that we have facilitated appropriate instrumentation and

automation, we can focus on some interesting learning

issues.

LEARNING CROSS-DOMAIN PROCEDURES

The action-oriented dataflow paradigm both presents new

opportunities for learning and affords useful information

that can help in the learning process. In this section, we

describe various issues that arise in learning dataflow

procedures across domains and present the solutions we

have explored thus far within ITL.

Integrating Web Services and Other Data Sources

By representing actions in terms of their inputs and outputs,

we can naturally represent procedures learned over them as

higher-level actions with inputs and outputs. A beneficial

consequence of this is that we can integrate Web services

and other action-oriented data sources in whole or in part

into ITL. For example, if instrumentation and automation

are provided at the level of the browser operations within a

Web service for providing driving directions, ITL could be

used to learn a procedure to drive the browser interaction.

Alternatively, instead instrumentation and automation could

be at the level of the Web service itself, modeling the

procedure as a single action taking in the origin and

destination addresses and providing the driving directions

URL as output. This could use the Web service API directly

or some intermediary such as the execution component of

some other learning system tailored specifically to that Web

service. This flexibility allows ITL to learn at the primitive

action level but also at the level of procedures learned by

other components. As long as the other learner creates an

action with inputs and outputs, ITL can incorporate it into

larger dataflow procedures.

To support such composability, it is critical that the inputs

and outputs of the different services or learned procedures

be semantically aligned. One approach is to omit semantic

typing and annotate parameters with only their basic data—

for example, type the parameter to a browser navigation

command as a string rather than as a URL. While this

approach will work, it leads to an explosion in the search

space for matching parameters and to inefficient learning.

Thus, as discussed earlier, instead we advocate the use of a

lightweight type system into which the inputs and outputs

of the different actions can then be mapped. In the past, we

have used the semantic mapping component of PrimTL [17]

to integrate new data sources. However, conceptually, other

techniques for ontology alignment can be used to relate

inputs and outputs of different services.

Programming by Demonstration

Programming by demonstration (PBD) or programming by

example has been a popular EUP paradigm since its

introduction a few decades ago [9,19]. PBD is a particularly

attractive methodology for nontechnical end users because

it relies on a very natural form of interaction—

demonstration—that requires minimal input from the user.

Recent years have seen resurgence in enhanced PBD

approaches as adaptive AI systems have begun to tackle the

acquisition of complex workflows (e.g., [1,6]).

Within the dataflow paradigm, we can characterize the

basic learning task as one of generalizing a demonstration

comprising a sequence of executed actions into a procedure

that can be used to achieve the same task in future similar

situations. There are two basic aspects to generalization: 1)

parameter generalization to essentially convert observed

constants into variables and 2) structure generalization to

induce procedural structure over the observed straightline

sequence.

A dataflow-oriented action model introduces a number of

more specific issues for learning procedures from

demonstration. First is dataflow validation—ensuring that

every input is supported by a previous output. Second is the

related issue of parameter generalization through expression

formulation—essentially, determining how to replace

constants not simply with variables but with functional

expressions over previous variables. The third issue is the

induction of loops over collections of objects, in contrast to

counting loops or while loops.

In ITL, the PBD capability is provided by the LAPDOG

procedure learning component [14,15]. LAPDOG was

designed specifically to learn dataflow procedures,

addressing each of the issues above while taking advantage

of the inherent structure provided by the action-oriented

data model discussed previously. We now present each of

the issues in dataflow procedure learning in turn, discussing

our approach to handling them in LAPDOG and remaining

open problems.

Dataflow Validation

To be executable, the inputs of every action in a dataflow

procedure must be supported by previous outputs. In the

simplest case, an input is directly supported by an output—

i.e., they are the same value. A slightly more complex case

involves inputs that can be supported by expressions over

previous outputs; this is discussed further in the next

section.

The most interesting case arises when no such directly or

easily derivable supports can be found based on the

observed demonstration. Discounting the situation where

this occurs due to insufficient instrumentation, missing

supports may occur due to unobservable mental actions that

the user performs in the process of accomplishing a task.

For example, a user might search for all Italian restaurants

in a city and then proceed to email the names and links for

only the five-star-rated ones. However, all that a PBD

system will observe is that the user sent out some

information from some subset of the list of restaurants. The

fact that it was the five-star-rated subset is something that

needs to be inferred.

In LAPDOG, we address this problem through two main

techniques for dataflow completion. The first involves a

heuristic search in the space of possible relations within a

knowledge base [15]. The second might be characterized as

planning in the space of information-producing actions,

such as string manipulation operations, named entity

extractors, and classification operations [14]. While the first

involves search over a relatively static knowledge base, the

second involves search over dynamically generated data.

Both techniques leverage aspects of the domain model

prescribed earlier: the first involving relations between

objects accessible through some query mechanism and the

second involving non-observable but executable

information-producing actions.

Extended Parameter Generalization

In a specialized case of inferred relations between known

outputs and required inputs, we can consider accessor and

 7

construction operations over lists and tuples. LAPDOG

utilizes unlimited tuple field access and limited list element

access. Specifically, individual values may be supported by

any field value of a tuple but only by the first or last

element of a list. The rationale is that while the individual

fields of a tuple as well as the first and last elements of a list

are meaningful, the other elements of a list are rarely so.

LAPDOG also utilizes list and tuple construction, allowing

list and tuple values to be supported by constructor

operations over values matching their constituent parts.

Loop Induction

Within the dataflow paradigm, one of the most common

loops involves a loop over the elements of a collection (i.e.

a set or a list). In the case where the loop is over a

collection that is explicitly observed in the demonstration

(e.g., the output of a previous action), we can leverage this

information to detect loops. Intuitively, if we can find a

similar sequence of actions operating over each element of

the collection, we can induce a loop. In LAPDOG, we

leverage this information to find loops over collections,

where the loop body is identical over all iterations [11].

A more interesting situation arises when loops occur over

collections that are not explicitly observed but can be

inferred from previous outputs. A simple case of this

involves a sorting operation on a list to generate another,

potentially differently ordered, list. For example, a set of

person names may be sorted alphabetically while a list of

employee IDs may be sorted in increasing numeric order. A

straightforward extension involves the application of

predefined actions that generate lists. For example, a travel

system might have an operation that takes a set of travel

authorization requests and outputs the list awaiting approval

or another that takes an employee ID and a date range and

outputs the list of all travel within that specified dates.

Inserting these kinds of actions into the learned procedure is

a natural extension of LAPDOG’s dataflow completion

capabilities [14,15].

Another interesting situation involves a loop that uses the

accumulated outputs of a previous loop. For example,

imagine an administrative assistant making online hotel

reservations registrations for a number of people and then

emailing each person with their reservation confirmation

ID. This presents an interesting learning challenge because

it requires the preceding loop to be learned in order to

determine that it will generate the list that the succeeding

loop needs [11].

Combining the notion of having to infer a collection of

objects and accumulating a new list within a loop, we get

the situation where we have a loop over a collection for

which the learning system must propose a loop that will

generate the required list from a previously known list. For

example, imagine needing a list of employee IDs. Given a

list of employee records, we could generate this list by

looping over the employee records and collecting the

employee ID from each.

VISUALIZING CROSS-DOMAIN PROCEDURES

End-user programming is fundamentally a programming

task and, as such, it inevitably involves abstraction. For

non-programmers, dealing with abstract procedures is

difficult because such users tend to think of programs as the

set of concrete actions that end users experience at runtime,

rather than as more general abstract control structures [22].

Rode and Rosson demonstrated this difficulty in the Web

domain and, from our deployment of ITL, we also conclude

that in complex, cross-domain environments, the user’s

need to understand abstract procedures is both vital and

difficult to support [24]. Fortunately, by augmenting

pluggable domain-models, we can support the user without

having to know about every domain in advance.

To leverage the end user’s tendency to conceive of

procedures in terms of runtime actions, we can combine an

appropriately abstract domain model with human-readable

annotations to make action specifications more concrete.

First, remember that we recommend defining the domain

model in terms of atomic user interactions. This level of

abstraction affords a straightforward mapping from action

to a human-readable displayed step that reflects an atomic

GUI interaction with the end user. In ITL, we implemented

this mapping using a template approach that adds metadata

to domain model actions to specify a human-readable

display as well as to specify pointers domain application

properties that must be queried for missing display

information. Figure 3 illustrates this approach.

Raw Source:
openComposeEmailWindow

+sender:[“haines@ai.sri.com”]

+subject:”Explaining Templates”

+body:”An explanation” –frameID:ID12345

Action Template:
openComposeEmailWindow := Opened window:

$frameID

Apply Action Template:
Open window: ID12345

Data Type Template:
frameID := Compose $frameID.subject

Apply Data Type Template:

Figure 3. Action Metadata Application—Before and After

The action template indicates that the

openComposeEmailWindow action should display as

“Open window:” concatenated to the display value of the

the frameID parameter, which in this case refers to an

application property, the identifier of the window in which

the email will be composed. Next, we include a template for

the frameID data type, which queries the application to

find an application-specific representation—in this case, the

subject displayed in the frame. If the frameID instead

happened to be a variable, we would instead display just the

variable’s name.

Also important to note is that this template does not present

all arguments of an action to the user—in particular, the

input arguments of the openComposeEmailWindow

action are never shown. Our research indicates that some

parameters simply complicate a user’s understanding of the

overall procedure flow [25]. For example, though the

procedure executor might need to know screen pixel

positions, such information is irrelevant to most end users.

As such, adding the ability to suppress parameters and even

entire actions to a “details” view is another simple way to

improve user comprehension of complex procedures.

Further, users may not perform a certain demonstration

perfectly, making and correcting mistakes along the way.

Indicative of this are certain combinations of actions that

negate each other, such as a file being open then

immediately closed, or an email compose window being

created and edited but not saved or sent. These could also

be hidden to simplify the event trace.

MODIFYING CROSS-DOMAIN PROCEDURES

A complete framework for end-user programming should

support editing of procedures as well as their learning by

demonstration. Given an understandable representation of

their procedures, users want to make changes that cover a

range of complexity, from changing constant parameters in

steps to adding conditions and iterative loops. Simple edits

may often be required when the task to be performed by an

existing procedure changes slightly or to correct an initial

hypothesis from another learning component. Support for

multiple domains increases the chance that users will also

need to add new steps to procedures, modify step ordering,

or change the structure of the procedure. This is because

domains may be more or less reliant on a graphical

interface, where demonstration-based techniques are

natural, leading the user to supplement demonstration by

choosing available actions from a menu or describing them,

and composing within an editor.

In the dataflow-oriented model, full user support for editing

poses many of the same challenges faced by demonstration-

based learning. For example, users may insert an action but

omit auxiliary steps or queries that provide inputs for that

action. In a dataflow model, those missing steps must

themselves make use of inputs that are established earlier in

the procedure. The use of typing in our domain

specification allows us to cast the problem of inferring

missing steps as compositional search over a graph of data

types in which queries or steps are composed to form a path

from existing inputs to those that are needed.

An editing tool for a typed dataflow model should provide

at least two kinds of support. First, it should provide editing

support for users, not only to add primitive steps, but also to

add conditions or loops by suggesting candidates based on

queries and lists that are available. Second, it should warn

the user if the edited procedure misses critical inputs or

otherwise has potential flaws and should use dataflow

information to suggest potential fixes. A third, desirable

characteristic is to allow users to copy steps between

procedures to facilitate best practices, while using the

dataflow model to ensure the resulting procedure is

executable.

In ITL, Tailor is used to provide a procedure editing

capability [4,25]. Tailor exhibits all these desired

characteristics, as we describe below. Tailor allows users to

add or delete steps, add conditions and iterative loops, and

to copy steps between procedures. It searches over possible

queries and actions arranged in the same space to find

plausible missing steps, composing steps and queries if

needed.

Support for Adding Conditions and Loops

Tailor uses compositional search over a graph of data types

to infer missing steps or queries when users add steps. In

general, however, users find the process of adding a brand

new step difficult and do not perform it often, preferring to

copy or move steps. The same search technique, however,

can support a wide range of activities, including copying

steps, generating potential fixes for flaws, and, as we

describe here, adding conditions or loops.

When the user invokes Tailor in ITL, she may choose to

add a condition or loop around a set of steps without

providing any information about the condition or loop. This

lack of specificity simplifies the interface and reduces the

cognitive burden on the user, who may find it difficult to

specify a conditional or loop without assistance. Tailor uses

compositional search along with heuristics to generate a set

of reasonable candidate specifications. Once Tailor arrives

at a set of candidates for a new action, condition, loop or a

change to a parameter value, the user interface can present

them as options. Here it is critical that the user can

understand both the current procedure and the available

alternatives in order to make a reasoned choice. The

alternatives are displayed within the procedure visualization

described above and should use similar templates to provide

a uniform view. By presenting the user with appropriate

bounds, we make it easier to create complex control

structures and limit the user’s capacity to make errors.

Support for Editing Errors or Flaws

Nevertheless, users still often make errors when editing

procedures. After the user makes a modification, Tailor

checks a procedure for simple errors, for example if a step

 9

has been deleted although it produced a value that was used

later in the procedure [4]. To do this check, Tailor performs

a symbolic analysis of the procedure, aiming to find

important errors before the procedure is executed. This

means that it does not know, for example, which of several

conditional branches may be taken during execution or how

long a loop will be followed. ITL’s execution engine is also

capable of interleaving many concurrent actions, and this

means that one cannot prove that global variables will be

unavailable when a step is to be run [20]. Because of this,

Tailor only provides a warning for an unbound global

variable at the time that a modification removes or reorders

a step or query that provides a value.

For each warning, Tailor uses templates to provide a set of

potential fixes that may include reordering steps, removing

them, or undoing user’s last edit. In some cases,

modifications requiring several coordinated edits can be

made by picking one edit and choosing the appropriate

recovery steps. Further, Tailor can use compositional search

to suggest steps that may be added to provide missing

inputs.

Support for Copying Steps Between Procedures

Our user interviews revealed that users frequently desire the

ability to copy steps from a previously learned procedure to

a new one [25]. This request makes sense; by copying all or

part of a procedure, users can reuse long demonstrations or

complex constructs, such as conditions and loops. The

procedures learned in ITL use no global variables, so the

variables in the steps that are copied must be replaced by

terms in the target procedure, either by (1) changing them

to an existing variable, (2) changing them to a constant, or

(3) adding auxiliary steps to establish a new variable. Tailor

finds potential replacements of all kinds using the same

compositional search technique [5]. This method naturally

prefers to use an existing variable or constant for each

copied variable, as this leads to a shorter solution. We

extended this capability to enable copying sequences of

steps, by composing the variable mappings of the

component steps. We also added domain-specific heuristics

that replace variables with constants when the intended

value is known.

DISCUSSION AND FUTURE WORK

Clearly, there are both large benefits and considerable costs

associated with an extensible cross-domain EUP system

such as ITL. We have explored in detail some of the

concerns associated with creating such a system, but there

are a number of other challenges and potential benefits that

we have not explored in detail to date. Here we briefly

discuss a few of the issues that we hope to explore.

Consistency in a Heterogeneous Environment

A widely recognized design principle, consistency [21] is

difficult enough to achieve in an unregulated environment

like the Web. When attempting to integrate Web

applications with desktop applications, the concept of

consistency becomes even more vague. One option is to

return to the native application to edit procedure

parameters. While this leverages users’ familiarity with that

application and makes sense for certain dialogs (such as

save as options) it is problematic for other operations like

defining loops. A second option, managing editing

operations entirely within the EUP tool raises new

questions. Should the EUP system follow platform

conventions, Web standards, or some other standard

entirely? An extensible visualization system like the one in

ITL should allow us to test various approaches with end

users, but there are currently no clear answers.

Supporting Procedure Reuse

In addition to reusing one’s own procedures, an EUP

system should support users sharing procedures. Given that

making procedures understandable to the author is difficult,

making them understandable to others is even harder. This

problem is compounded when there is a wide range in the

computational literacy of the user population. Advanced

users may be comfortable with complex structures, such as

conditionals and iteration, which may confuse novice users

who attempt to take advantage of shared procedures. A

simple improvement that we have explored is to create a

means for users to explicitly define arbitrary steps within a

procedure and to enter descriptions summarizing the

procedure and individual steps. Similar to comments in

code, this metadata can help users understand and evaluate

shared procedures; however, they will only be useful if

users are motivated to add them to their procedures.

Another issue that arises with shared procedures is that a

given procedure may contain certain types of personal data,

such as names, emails, and mailing addresses. These types

of information will need to be identified and personalized in

order for a user to take advantage of a shared procedure.

Creating a personal data store for these data types, as

CoScripter (formally Koala) does [18], may help to avoid

confusion.

SUMMARY AND CONCLUSIONS

In this chapter, we discussed the benefits of implementing a

cross-domain EUP system as well as the unique challenges

associated with such an endeavor. Using our experience

building the cross-domain ITL system, we recommend

building an action-oriented set of pluggable domain models.

Leveraging such a model, we see that we can reduce the

burden of instrumentation and automation as well as

support the learning of, reasoning over, and visualization of

cross-domain procedures. By modeling the world around us

in a modular, extensible way, we can better allow end users

to automate their workflows on the desktop, the Web, and

perhaps beyond.

ACKNOWLEDGMENTS

This material is based upon work supported by the Defense

Advanced Research Projects Agency (DARPA) under

Contract No. FA8750-07-D-0185/0004. Any opinions,

findings and conclusions or recommendations expressed in

this material are those of the author(s) and do not

necessarily reflect the views of the Defense Advanced

Research Projects Agency (DARPA), or the Air Force

Research Laboratory (AFRL).

REFERENCES

1. Allen, J., Chambers, N., Ferguson, G., et al. Plow: A

collaborative task learning agent. Proceedings of the

National Conference on Artificial Intelligence, Menlo

Park, CA; Cambridge, MA; London; AAAI Press; MIT

Press; 1999 (2007), 1514.

2. Beyer, H. and Holtzblatt, K. Contextual design: defining

customer-centered systems. Morgan Kaufmann, 1998.

3. Bloch, J. Effective Java (2nd Edition) (The Java Series).

Prentice Hall PTR, 2008.

4. Blythe, J. Task learning by instruction in Tailor.

Proceedings of the 10th international conference on

Intelligent user interfaces, ACM New York, NY, USA

(2005), 191-198.

5. Blythe, J. and Russ, T. Case-based reasoning for

procedure learning by instruction. Proceedings of the

13th international conference on Intelligent user

interfaces, ACM New York, NY, USA (2008), 301-

304.

6. Burstein, M., Laddaga, R., McDonald, D., et al.

POIROT–Integrated Learning of Web Service

Procedures. Proc. AAAI, (2008).

7. Chaudhri, V.K., Cheyer, A., Guili, R., Jarrold, B.,

Myers, K.L., and Niekrasz, J. A Case Study in

Engineering a Knowledge Base for an Intelligent

Personal Assistant. the Proc. of the 2006 Semantic

Desktop Workshop, Athens, GA, (2006).

8. Cockburn, A. and McKenzie, B. What do web users do?

An empirical analysis of web use. International

Journal of Human-Computer Studies 54, 6 (2001),

903-922.

9. Cypher, A. and Halbert, D.C. Watch What I Do:

Programming by Demonstration. MIT press, 1993.

10. Dragunov, A.N., Dietterich, T.G., Johnsrude, K.,

Mclaughlin, M., Li, L., and Herlocker, J.L. Tasktracer:

a desktop environment to support multi-tasking

knowledge workers. Proc. IUI, (2005), 75-82.

11. Eker, S., Lee, T., and Gervasio, M. Iteration Learning by

Demonstration. Proc. AAAI 2009 Spring Symposium

on Agents that Learn from Human Teachers, (2009).

12. Euzenat, J. and Valtchev, P. Similarity-based ontology

alignment in OWL-lite. ECAI, (2004), 333.

13. Gamma, E., Helm, R., Johnson, R., and Vlissides, J.

Design patterns: elements of reusable object-oriented

software. Addison-Wesley Reading, MA, 1995.

14. Gervasio, M., Lee, T.J., and Eker, S. Learning email

procedures for the desktop. Proc. AAAI 2008

Workshop on Enhanced Messaging.

15. Gervasio, M. and Murdock, J. What Were You

Thinking? Filling in Missing Dataflow Through

Inference in Learning from Demonstration. Proc. IUI,

(2009).

16. Kiczales, G., Lamping, J., Mendhekar, A., et al. Aspect-

oriented programming. In ECOOP'97 — Object-

Oriented Programming. 1997, 220-242.

17. Lerman, K., Plangprasopchock, A., and Knoblock, C.A.

Semantic labeling of online information sources.

International Journal on Semantic Web & Information

Systems 3, 3 (2007), 36-56.

18. Leshed, G., Haber, E.M., Matthews, T., and Lau, T.

CoScripter: automating & sharing how-to knowledge

in the enterprise. (2008).

19. Lieberman, H. Your Wish is My Command:

Programming by Example. Morgan Kaufmann

Publishers San Francisco, 2001.

20. Morley, D. and Myers, K. The SPARK agent

framework. Proceedings of the Third International

Joint Conference on Autonomous Agents and

Multiagent Systems-Volume 2, IEEE Computer Society

Washington, DC, USA (2004), 714-721.

21. Nielsen, J. and Molich, R. Heuristic evaluation of user

interfaces. Proceedings of the SIGCHI conference on

Human factors in computing systems: Empowering

people, ACM New York, NY, USA (1990), 249-256.

22. Pane, J.F., Ratanamahatana, C., and Myers, B.A.

Studying the language and structure in non-

programmers’ solutions to programming problems. Int.

J. Human-Computer Studies 54, 237 (2001), 264.

23. Parent, C. and Spaccapietra, S. Issues and approaches of

database integration. Commun. ACM 41, 5es (1998),

166-178.

24. Rode, J. and Rosson, M.B. Programming at Runtime:

Requirements and Paradigms for Nonprogrammer Web

Application Development. IEEE Symposium on

Human-Centric Computing Languages and

Environments, (2003).

25. Spaulding, A., Blythe, J., Haines, W., and Gervasio, M.

From Geek to Sleek: Integrating Task Learning Tools

to Support End Users in Real-World Applications.

Proc. IUI, (2009).

