

Programming by a Sample:
Rapidly Creating Web Applications with d.mix

Björn Hartmann, Leslie Wu, Kevin Collins, Scott R. Klemmer
Stanford University HCI Group

Gates Computer Science
Stanford, CA 94305

[bjoern, lwu2, kevinc, srk]@cs.stanford.edu

ABSTRACT
Source-code examples of APIs enable developers to quickly
gain a gestalt understanding of a library’s functionality, and
they support organically creating applications by incre-
mentally modifying a functional starting point. As an
increasing number of web sites provide APIs, significant
latent value lies in connecting the complementary repre-
sentations between site and service — in essence, enabling
sites themselves to be the example corpus. We introduce
d.mix, a tool for creating web mashups that leverages this
site-to-service correspondence. With d.mix, users browse
annotated web sites and select elements to sample. d.mix’s
sampling mechanism generates the underlying service calls
that yield those elements. This code can be edited, executed,
and shared in d.mix’s wiki-based hosting environment. This
sampling approach leverages pre-existing web sites as
example sets and supports fluid composition and modifica-
tion of examples. An initial study with eight participants
found d.mix to enable rapid experimentation, and suggested
avenues for improving its annotation mechanism.
ACM Classification: D.2.2 [Software Engineering]: Design
Tools and Techniques — User interfaces. H5.2 [Information
interfaces and presentation]: User Interfaces — Graphical
user interfaces.
General terms: Design, Human Factors
Keywords: Programming by example modification,
web services, mashups, prototyping
INTRODUCTION
Web hosting and search have lowered the time and monetary
costs of disseminating, finding, and using APIs. The number
and diversity of application building blocks that are openly
available as web services is growing rapidly [7]. Program-
mableweb.com lists 2155 mashups leveraging 478 distinct
APIs as of July 2007 (the most popular being Google Maps,
Flickr, and Amazon). These APIs provide a rich selection of
interface elements and data sources. Many serve as the
programmatic interface to successful web sites, where the
site and its API offer complementary views of the same
underlying functionality. In essence, the web site is the

largest functional example of what can be accomplished
with an API. However, the value that could be achieved by
coordinating these representations has largely remained
latent.
While web services have seen particular growth in the
enterprise sector, rapid access to rich features and data also
make web APIs a promising tool for prototyping and the
creation of situated software: “software designed in and for
a particular social situation or context” [32]. The small
audience of situated software applications limits developer
resources. As such, enabling faster and lower-threshold [26]
authoring of these applications provides a catalyst for
broader creation.
An emerging approach that leverages web APIs for situated
software is mashups, software created by combining ele-
ments from multiple third-party web services. Mashups are
instances of the long tail [8] of software, the many small
applications that cumulatively have a big impact. A broad
shift of the mashup paradigm is that the designer’s effort and
creativity are reallocated: less time is spent building an
application up brick by brick, while more time and ingenuity
is spent finding and selecting components, and then creating
and shaping the “glueware” that interfaces them [16].
Integrating Site and Service
Two factors currently hamper broader use of web APIs: the
complexity of understanding and using web services, and
the complexity of installing web application environments.
To enable flexible and rapid authoring of API-based web
applications, this paper introduces d.mix (see Figure 1), a
web-based design tool with two notable attributes. The first

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’07, October 7–10, 2007, Newport, Rhode Island, USA.
Copyright 2007 ACM 978-1-59593-679-2/07/0010...$5.00.

Figure 1. With d.mix, users browse web sites through a
proxy that marks API-accessible content. Users select
marked elements they wish to copy. Through a site-to-
service map, d.mix composes web service calls that yield
results corresponding to the user’s selection. This code is
copied to the d.mix wiki for editing and hosting.

Figure 2. With d.mix, users switch between foraging for content and editing copies of that content in an active wiki environment.

is a programmable proxy system providing a site-to-service
map that establishes the correspondence between elements
shown on the site and the web service calls needed to
replicate these elements programmatically. This map
enables users to create code by browsing web sites and
visually specifying the elements they wish to use in their
own application. The second contribution is a server-side
active wiki that hosts scripts generated by the proxy. This
active wiki provides a configuration-free environment for
authoring and sharing of both source code and working
applications. Together, these two components offer a pers-
pective of how web developers could use the surface
structure and social structure of the web as a means to
democratize application development.
The d.mix approach targets the growing group of web
designers and developers that are familiar with HTML and
scripting languages (e.g., JavaScript and ActionScript),
lowering the experience threshold required to build and
share mashups. d.mix offers a graphical interaction path for
selecting samples, pasting them into a new page, and
changing their attributes using property sheets (see Figure
2). Additionally, by virtue of displaying the actual under-
lying code to users, d.mix allows developers with sufficient
technical expertise to drill down into source code as needed.
Foraging for Examples
As the number and size of programming libraries swells,
locating and understanding documentation and examples is
playing an increasingly prominent role in developers’
activities [34]. To aid users in foraging for example code,
d.mix co-locates two different kinds of information on one
page: examples of what functionality and what data a web
site offers, together with information how one would obtain
this information programmatically.
Because problems often cut across package and function
boundaries, example-based documentation provides value
by aiding knowledge crystallization and improving infor-
mation scent [30]. For this reason, examples and code
snippets, such as those in the Java Developers Almanac, are

a popular resource. This approach of documentation through
example complements more traditional, index-based docu-
mentation. d.mix enables developers to dynamically gener-
ate code snippets for a web service API as they browse the
canonical example of its functionality: the web site itself.
d.mix’s approach draws on prior work in programming by
example, also known as programming by demonstration [12,
21, 28]. In these systems, the user demonstrates a set of
actions on a concrete example — such as a sequence of image
manipulation operations — and the system infers application
logic through generalization from that example. The logic
can then be re-applied to other similar cases.
While d.mix shares much of its approach with program-
ming-by-example systems, it differs in the procedure for
generating examples. Instead of specifying logic by
demonstrating novel examples, with d.mix designers choose
and parameterize found examples. In this way, the task is
more one of programming by example modification, which
Nardi highlights as a successful strategy for end-user
development [28]. Modification of a working example also
speeds development because it provides stronger scaffolding
than writing code tabula rasa.
To create a system that is felicitous with the practices of web
developers, we employed a mixed-methods approach. First,
each week for eight weeks, we met with web developers,
using the d.mix prototype as a probe to elicit discussion on
mashup design tools. Second, to gauge the initial experience
of d.mix, we conducted a preliminary lab study with eight
web developers. Third, we created applications with d.mix
to explore a broader range of interaction designs.
The rest of this paper is structured as follows. We first
introduce the main interaction techniques of d.mix through a
scenario. Subsequently, we explain the d.mix implementa-
tion. We then describe the iterative feedback from web
professionals, an initial laboratory study, and applications
we created with d.mix. We conclude with a discussion of
related research and commercial systems, limitations of the

c
H
A
n
tr
to
th
th
s
w
n
J
f
p
b
v
s
T
in
(
in
a
c
S
m
th
c
a
S
“
th
T
im
in
C
c
n
S
im
to
f
u
to
p
J
la
f
B
e
N
t
d
c
s
ta
a

current implem
HOW TO PROG
A scenario wil
niques. Jane is
ravels to new
o create a page
he group. The
heir latest outin

so she doesn’t
with HTML and
not consider he
Jane starts by b
friends use. Da
pictures with th
but uses an im
videos on the
spans multiple
To start gatheri
n her browser
see Figure 2a)
n her browser

adding dashed
copy into her sa
She right-click
menu. This men
hat David has

copied item ap
atop the page.
She selects Se
“ClimbersPorta
his newly crea

The visual repr
mages; the tex
ng API call to t

Continuing her
climbing photo
now displays b
Sam. Jane woul
mages from ea
o invoke a pro

from a Flickr p
user ID associat
o show (see Fig

page and applie
Jane then open
atest video, d.m

file, or copy t
Because Jane w
ever Karen pos
Next Jane wou
ext. She clicks

document, in w
corresponds to
structuring <di
able structure a

also sometimes

mentation, and a
GRAM BY A S
ll help introdu
s an amateur
climbing spots

e that serves as
e page should
ngs. She wants
have to main

d has some Ja
erself an expert
rowsing the ph

avid uses the p
he tag “climbin

mage set instead
video site Yo
sites and multi
ing content, Jan
and navigates

). She then pre
bookmark bar
borders aroun

ampling bin.
s on the tag “c
nu offers the ch
tagged with “c

ppears in her s

end to Wiki an
al” (see Figure
ated page in th
esentation dyn

xtual representa
the Flickr web
r information g
o set on Flickr
both David’s ph
ld like the page
ach person. She
operty sheet sh

photo set. This
ted with the set
gure 2f). Chang
es the changes.
s Karen’s You
mix offers two
the most rece

wants the video
ts a new file, s

uld like to layo
s on “edit sour
which each of t

a few lines o
iv> tag (see Fi
around the ima
s tags his imag

an outlook to fu
SAMPLE
uce the main i
rock climber

s with friends.
a lightweight w
show photos a

s content to upd
ntain the page.
avaScript exper
t programmer.
hoto and video
photo site Flick
ng.” Another a
d. A third shar
ouTube. In sho
iple organizatio
ne opens David
to the page lis
sses the sam

r. This reloads
nd the elemen

climbing,” to i
hoice to copy t
climbing” (see
sampling bin,

nd enters a n
2c). Her brows
he d.mix prog

namically displa
ation contains
service (see Fi

gathering, Jane
(see Figure 2e)
hotos and seve
e to display onl
e right-clicks o
howing that th
sheet gives pa
t and for the nu
ging the param
.
uTube video pa
o choices: copy
ent video in K
o on her page t
she chooses the
out the images
rce,” which di
the three samp
of Ruby script
igure 2g). She
ages. Rememb
ges with “rock

future work.

interaction tech
who frequent
Jane would lik

web presence f
and videos fro
date dynamical

She is famili
rience, but do

sharing sites h
kr and marks h
also uses Flick
res her climbin
ort, this conte
onal approache
d’s Flickr profi
sting all his tag
mple this butto
the Flickr pag

nts that she ca

invoke a conte
the set of imag
Figure 2b). Th
a floating lay

new page nam
ser now display

grammable wik
ays the specifie
the correspon

igure 2d).
e samples Sam
). Her wiki pag

eral images fro
ly the latest thre
on Sam’s imag
he content cam
arameters for th
umber of imag

meters reloads th

age. For Karen
y this particula
Karen’s stream
to update when

e latter option.
s and add som
splays an HTM

ples she inserte
t, enclosed by
adds text and

ering that Dav
s,” she modifi

h-
tly
ke
for
m

lly
ar
es

her
his
kr,
ng
ent
es.
ile
gs
on
ge,
an

ext
es
he

yer

me,
ys
ki.
ed
d-

m’s
ge
m
ee
es

me
he
es
he

n’s
ar
m.
n-

me
ML
ed
a

d a
vid
es

the qu
When
wiki p
memb
IMPLE
In this
sampli
Sampl
d.mix
this an
added
to enab
Sampl
bookm
taining
— that
wiki. T
site’s o
site-to
It is im
provid
collect
geable
cally a
of URL
web si
For ea
betwee
invoca
gramm
pattern
metada
such a
For e
http://f
image
user’s
flickr.t
photos
trieved
When
HTTP
Script
First, d
web se
curren
the ele
indicat
In the
URL, e
the new
d.mix
We ch
for cod
availab
Hole [

ery string in th
she is satisfie

page, she email
ers to let them

EMENTATION
s section, we
ing, parametric
le This Button
provides two b

nd stop sampli
to a browser’s

ble or disable s
le this is imp
marklet — a b
g JavaScript in
t sends the curr
This invokes t
original web m
-service map (
mportant to no
de any support
tion of site-to-
e developers. T
accessible com
Ls (see Figure
ite into page ty
ch page type, th
en the markup
ations needed
matically. It do
ns — using XPat
ata that will be

as a user or pho
example, on
flickr.com/pho
tags for a part
tags can be

tags.getListUse
s correspondin
d by a call to fl
the user is in s
proxy rewrite
annotations. T

d.mix uses the
ervice compon

nt page. Second
ements that can
tion to the user
other direction
extracts the clie
w browser loca
is implemente

hose Ruby to le
de generation
ble programm
4].

he correspondin
d with the ren
s the URL of th
see the page (

describe d.m
c copying, edit
n Rewrites Pag
buttons, sample
ng, that can be
s bookmark ba
sampling mode
lemented as a

bookmark con
nstead of a URL
rent browser lo
the d.mix prox

markup with ann
see Figure 1).
ote that the or
for d.mix. The
service maps,

These maps de
mponents associ
e 3). Each map
ypes through p
he map then de

p found on a p
to retrieve the

oes so by searc
th and CSS sele
e passed to we
oto ID, a search

Flickr.com,
otos/<username
ticular user, dis
accessed by

er and passing
ng to tags for
lickr.photos.Sea
sampling mode
s the viewed
These annotati
site-to-service

nents which m
d, d.mix’s anno
n be sampled w
r.

n, the stop samp
ent-site URL, a
ation, ending a
ed in the Ruby
everage its met
and dynamic e

mable Ruby H

ng script accor
ndered view of
he wiki page to
see Figure 2h)

mix’s implemen
ing, and sharin
ges
e
e
r

e.
a
-
L

cation to the d.
xy, combining
notations found

riginal web site
e active wiki m
contributed by

escribe the pro
iated with a pa
p defines a par
pattern matche
efines the corre
page and the A
e equivalent co
ching for know
ectors — and rec
b services as p

h term, or a pag
pages of

e>/tags contain
splayed as a ta
calling the A

g in a user ID.
a given user
arch.
e, d.mix’s prog
web page, ad
ons serve two

e map to derive
may be sampled
otation visually

with a dashed bo

pling button tak
and sets the cli
access through
y programming
ta-programmin

evaluation, and
HTTP proxy, th

dingly.
f her active
o her group
.

ntation for
ng.

.mix active
g the target
d using the

e need not
maintains a
y knowled-
ogrammati-
articular set
rtition of a
s on URLs.

espondence
API method
ontent pro-
wn markup
cording the
parameters,
ge number.
the form
n a list of

ag cloud. A
API method

 Similarly,
can be re-

grammable
dding Java-

 functions.
e the set of
d from the
y augments
order as an

kes a proxy
ent URL as
the proxy.

g language.
ng libraries
d the freely
he mouse-

Figure 3. The site-to-service map defines a correspondence between HTML elements
and web service API calls. This graphic highlights this mapping for three items on Flickr.

Parametric Copy by Generating Web API Code
An annotation of an HTML element
(e.g., an image on a photo site)
comprises a set of action options.
For each option, a right-click
context menu entry is generated.
Associated with each menu entry is a block of source code,
which in d.mix is Ruby script. The code generation routines
draw both upon the structure of the page (to ascertain the
items’ class) as well as the content of the page (to ascertain
their ID).
As an example of how d.mix’s source-code generation
works, consider a tag cloud page found on Flickr. All tags
are found inside the following structure:
<p id=”TagCloud”>
 Tag1
 Tag2…
</p>

The site-to-service mapping script to find each element and
annotate it is:
@user_id=doc.at("input[@name='w']")["value"]

doc.search("//p[@id='TagCloud']/a").each do |link|
 tag = link.inner_html
 src = generate_source(:tags=>tag, :user_id=>@user_id)
 annotations += context_menu(link, ”tag description”, src)
end

In this example, the Ruby code makes use of the Hpricot
library [3] to extract the user’s ID from a hidden form
element. It then iterates over the set of links within the tag
cloud, extracts the tag name, generates source code by
parameterizing a source code stub for flickr.photos.search,
and generates the context menu for the element.
In essence, the d.mix mapping code scrapes web pages as
the developer visits them in order to extract the needed
information for code generation. Scraping can be brittle
because matching expressions can break when site operators
change class or ID attributes of their pages. Still, it is com-
mon practice in web development [16] as it is often the only
technique for extracting data without the site operator’s
cooperation. An important design
decision in d.mix is to scrape at
authoring-time, when the designer is
creating pages such as the
Flickr-and-YouTube mashup in the
scenario. By scraping parameters first,
d.mix’s user-created pages can then
make API calls at runtime, which tend
to be more stable than the HTML
format of the initial example pages.
We acknowledge that building rewrite
and code generation rules procedu-
rally is time-intensive and requires
expertise with DOM querying through
XPath or CSS. This barrier could be
lowered through a declarative, do-
main-specific language. In addition.
UI tools such as Solvent [19] that
support building DOM selectors
visually could allow markup selection
by demonstration. Providing a smooth

process for creating the site-to-service maps is important but
somewhat orthogonal to this paper’s contributions. As such,
we leave it to future work. For this paper, the salient attribute
is that the site-to-service map need be created only once per
web site. This can be performed by a somewhat expert
developer, and subsequent developers can leverage that
effort.
Server-side Active Wiki Hosts and Executes Scripts
In d.mix’s active wiki, developers can freely mix text,
HTML, and CSS to determine document structure, as well as
Ruby script to express program logic. When a developer
enters a new page name in the Send to Wiki dialog, a wiki
page of that name is created and the generated source code is
pasted into that page. If the target wiki page already exists,
the generated code is appended to it. The browser then
displays a rendered version of the wiki page by executing
the specified web API calls (see Figure 2d). In this rendered
version, HTML, CSS, and JavaScript tags take effect, and the
embedded Ruby code is evaluated by a templating engine,
which returns a single string for each snippet of Ruby code.
To switch from the rendered view to the source view con-
taining web markup and Ruby code, a user can click on the
edit button, as in a standard wiki. The markup and snippets
of script are then shown in a browser-based text editor,
which provides syntax highlighting and line numbering.
Clicking on the save button saves the document source as a
new revision, and redirects the user back to the rendered
version of the wiki page. The rapid switching between
rendered view, and markup and application logic minimizes
the cognitive friction involved in keeping track of the model
and the rendered view of data-driven pages.
When evaluating Ruby code, the active wiki does so in a
sandbox, to reduce the security risks involved. The sandbox
cannot access objects such as the File class, but can maintain
application state in a database and make web service calls
through SOAP, REST, or other web service protocols.

Pasted Material Can Be Parameterized and Edited
In comparison to a standard copy-and-paste of web content,
the notable advantage of d.mix’s parametric copy is that it
copies a richer representation of the selected data. This
allows an element’s parameters to be changed after pasting.
The d.mix wiki offers graphical editing of parameters
through property sheets. The structure of these property
sheets, implemented as floating layers in JavaScript, is
determined during the code generation step. In our current
implementation, properties correspond to the parameters
passed to web service APIs. It may be valuable to provide
additional parameters such as formatting commands.
Widget-based wiki platforms (e.g., QEDWiki [10]) also offer
parameter-based editing of their widgets — but they typically
do not offer access to the underlying widgets’ source-code
representation. In contrast, d.mix generates Ruby script,
which can be edited directly. d.mix does not currently
support WYSIWYG wiki editing, but such functionality could
be added in the future. Like other development environ-
ments, the active wiki offers code versioning.
As a test of the complexity of code that can be written in a
wiki environment, we implemented all site-to-service
mapping scripts as wiki nodes. This means that the scripts
used to drive the programmable proxy and thus create new
wiki pages are, themselves, wiki pages. To allow for mod-
ularization of code, a wiki page can import code or libraries
from other wiki pages, analogous to “#include” in C.
The generated code makes calls into d.mix modules which
broker communication between the active wiki script and
the web services. For example, users’ Ruby scripts often
need to reference working API keys to make web service
calls. d.mix modules provide a default set of API keys so that
users can retrieve publicly accessible data from web services
without having to obtain personal keys. While using a small
static number of web API keys would be a problem for large
scale deployment (many sites limit the number of requests
one can issue), we believe our solution works well for
prototyping and for deploying situational applications with a
limited number of users.
Built-in Sharing through Server-Side Hosting
An important attribute of the d.mix wiki is that public
sharing is the default and encouraged state. An end-user can
contribute a site-to-service mapping for a web site they may

or may not own, or simply submit small fixes to these
mappings as a web site evolves. When a d.mix user creates a
new page that remixes content from multiple data sources,
another end-user can just as easily remix the remix — copy-
ing, pasting, and reparameterizing the elements from one
active wiki page to another.
ADDITIONAL APPLICATIONS
In this section, we review additional applications of d.mix
beyond the use case demonstrated in the scenario.
Existing Web Pages Can Be Virtually Edited
The same wiki-scripted programmable HTTP proxy that
d.mix employs to annotate API-enabled web sites can also be
used to remix, rewrite, or edit existing web pages to improve
usability, aesthetics, or accessibility, enabling a sort of
recombinant web. As an example, we have created a re-
writing script on our wiki that provides a connection be-
tween the event listing site Upcoming.org and the
third-party calendaring site 30 Boxes. By parsing an event’s
microformat on the event site and injecting a graphical
button, users can copy events directly to their personal
calendar. Because this remix is hosted on our active wiki, it
is immediately available to any web browser.
Another example is reformatting of web content to fit the
smaller screen resolution and lower bandwidth of mobile
devices. Using d.mix, we wrote a script that extracts only
essential information — movie names and show times — from
a cluttered web page. This leaner page can be accessed
through its wiki URL from any cell phone browser (see
Figure 4). Note that the reformatting work is executed on the
server and only the small text page is transmitted to the
phone. d.mix’s server-side infrastructure made it possible
for one author and a colleague to develop, test, and deploy
this service in 30 minutes. In contrast, client-side architec-
tures such as Greasemonkey [2] do not work outside the
desktop environment, while server-side filters can only be
configured by administrators.
Beyond Web-Only Applications
The scenario presented in this paper focused on data-centric
APIs from successful websites with large user bases. While
such applications present the dominant use case of mashups
today, we also see opportunity for d.mix to enable devel-
opment of situated ubiquitous computing applications. A
wide variety of ubicomp sensors and actuators are equipped
with embedded web servers and publish their own web
services. This enables d.mix's fast iteration cycle and “re-
mix” functionality to extend into physical space. To explore
d.mix design opportunities in web-enabled ubicomp appli-
cations, we augmented two smart devices in our laboratory
to support API sampling: a camera that publishes a video
feed of lab activity, and a network-controlled power outlet.
Combining elements from both servers, we created a wiki
page that allows remote monitoring of lab occupancy to turn
off room lights if they were left on at night (see Figure 5).
More important than the utility of this particular example is
the architectural insight gained: since the web services of the
camera and power outlet were open to us, we were able to
embed API annotations directly into the served web pages.

Figure 4. The rewriting technology in d.mix can be used to
tailor content to mobile devices. Here, essential information
is extracted from a movie listings page.

This proof of concept demonstrated that web service pro-
viders can integrate support for API sampling directly into
their pages, obviating the need for a separate site-to-service
map on the d.mix server.
FEEDBACK FROM WEB PROFESSIONALS
As d.mix matured, we met weekly with web designers to
obtain feedback for a period of eight weeks. Some of these
meetings were with individuals, others were with groups;
the largest group had 12 members. Informants included
attendees of Ruby user group meetings, web developers at
startup companies in Silicon Valley, and researchers at
industrial research labs interested in web technologies.
Informants repeatedly raised scaling concerns for mashups.
An early informant was a web developer at a calendaring
startup. He was most interested in the technology to allow
rewriting of third party pages through scripts shared on a
wiki. He saw performance as well as legal hurdles to grow
our approach to many simultaneous users. Another infor-
mant noted scaling issues arising from the limits imposed by
web services as to how many API calls a user can make.
Scaling concerns are clearly central to the question of
whether a mashup approach can be used to create widely
distributed web applications; however, they are less critical
for tools such as d.mix that are primarily designed for
prototyping and situated software.
As the reach of mashups expands, informants were inter-
ested in how users and developers might locate relevant
services. Several informants noted that while services are
rapidly proliferating, there is a dearth of support for search
and sensemaking in this space. Mackay [23] and MacLean
[24] have explored the social side of end-user-created
software and recent work on Koala [22] has made strides in
enabling sharing of end-user browser automations. We see
further efforts in this direction as a promising avenue for
future work.
Informants saw the merits of the d.mix approach to extend
beyond the PC-based web browser. A researcher at an
industrial research lab expressed interest in creating an
“elastic office,” where web-based office software is adapted
for mobile devices. This focus on mobile interaction kindled

our interest in using a mashup approach to tailoring web
applications for mobile devices (see Figure 4).
Informants also raised the broader implications of a mashup
approach to design. A user experience designer and a
platform engineer at the offices of a browser vendor raised
end-user security as an important issue to consider. At a
fashion-centered web startup, a web developer brought our
attention to the legal issues involved in annotating sites in a
public and social way.
Our recruiting method yielded informants with more exper-
tise than d.mix’s target audience; consequently, they asked
questions about — and offered suggestions for raising — the
ceiling of the tool. In a group meeting with 12 web designers
and developers, informants expressed interest in creating
annotations for a new API, and asked how time-consuming
this process was. We explained that annotation in d.mix
require about 10 lines per element; this was met with a
positive response. For future work they suggested that d.mix
could fall back to HTML scraping when sites lack APIs.
EVALUATION
We conducted a first-use evaluation study with eight par-
ticipants: seven were male, one female; their ages ranged
from 25 to 46. We recruited participants with at least some
web development experience. All participants had some
college education; four had completed graduate school. Four
had a computer science education; one was an electrical
engineer; three came from the life sciences. Recruiting
developers with Ruby experience proved difficult—only
four participants had more than a passing knowledge of this
scripting language. Everyone was familiar with HTML; six
participants were familiar with JavaScript; and six with at
least one other scripting language. Four participants had
some familiarity with web APIs, but only two had previously
attempted to build a mashup.
Study Protocol
Study sessions took approximately 75 minutes. We made
three web sites with APIs available for sampling — Yahoo!
web search, the Flickr photo sharing site, and the YouTube
video sharing site. For each site, d.mix supported annota-
tions for a subset of the site’s web API. For example, with
Flickr, participants could perform full-text or tag searches
and copy images with their metadata, but they could not
extract user profile information. Participants were seated at a
single-screen workstation with a standard web browser. We
first demonstrated d.mix’s interface for sampling from web
pages, sending content to the wiki, and editing those pages.
Next, we gave participants three tasks to perform.
The first task tested the overall usability of our approach —

participants were asked to sample pictures and videos, send
that content to the wiki, and change simple parameters of
pasted elements, e.g., how many images to show from a
photo stream. The second design task was similar to our
scenario — it asked participants to create an information
dashboard for a magazine’s photography editor. This re-
quired combining data from multiple users on the Flickr site
and formatting the results. The third task asked participants
to create a meta-search engine — using a text input search Figure 5. An example of a d.mix ubicomp mashup: web

services provide video monitoring and lighting control.

form, participants should query at least two different web
services and combine search results from both on a single
page. This task required generalizing a particular example
taken from a website to a parametric form by editing the
source code d.mix generated. Figure 6 shows two pages that
one participant, who was web design-savvy but a Ruby
novice, produced. After completing the tasks, participants
filled out a qualitative questionnaire on their experience and
were debriefed verbally.
Successes
On a high level, all participants understood and successfully
used the workflow of browsing web sites for desired content
or functionality, sampling from the sites, sending sampled
items to the wiki, and editing items. Given that less than one
hour of time was allocated to three tasks, it is notable that all
participants successfully created dynamic pages for the first
two tasks. In task 3, five participants created working
meta-search engines (see Figure 6). However, for three of
the participants without Ruby experience, its syntax proved
a hurdle; they only partially completed the task.
Our participants were comfortable with editing the gener-
ated source code directly, without using the graphical
property editor. Making the source accessible to participants
allowed them to leverage their web design experience. For
example, multiple participants leveraged their knowledge of
CSS to change formatting and alignment of our generated
code to better suit their aesthetic sensibility. Copy and paste
within the wiki also allowed participants to reuse their work
from a previous task in a later one.
In their post-test responses, participants highlighted three
main advantages that d.mix offered compared to their
existing toolset: elimination of setup and configuration
barriers; enabling of rapid creation of functional web ap-
plication prototypes; and lowering of expertise threshold.
First, participants commented on the advantage of having a
browser-based editing environment. There was “minimum
setup hassle,” since “you don’t need to set up your own
server.” One participant’s comments sum up this point
succinctly: “I don’t know how to set up a Ruby/API envi-
ronment on my web space. This lets me cut to the chase.”
Second, participants also highlighted the gain in develop-
ment speed. Participants perceived code creation by se-
lecting examples and then modifying them to be faster than
writing new code or integrating third party code snippets.
Third, participants felt that d.mix lowered the expertise
threshold required to work with web APIs because they were
not required to search or understand an API first. A web
development consultant saw value in d.mix because he felt
it would enable his clients to update their sites themselves.
Shortcomings
We also discovered a range of challenges our participants
faced when working with d.mix. Universally, participants
wished for a larger set of supported sites. This request is not
trivial because creating new annotations requires manual
programming effort. However, we believe the amount of
effort is reasonable when amortized over a large number of
users. Other shortcomings fall into four categories. First,

coexistence of two different sampling strategies caused
confusion about how to sample from a data set. Second,
participants had difficulty switching between multiple
languages interspersed in a single wiki page. Third, docu-
mentation and error-handling in the wiki was insufficient
compared to other tools. Fourth, wiki-hosted applications
may not scale well beyond prototypes for a few users.
Inconsistent models for sampling
Participants were confused by limitations in what source
elements were “sampling-aware.” For example, to specify a
query for a set of Flickr images in d.mix, the user currently
must sample from the link to the image set, not the results.
This suggests that the d.mix architecture should always
enable sampling from both the source and from the target
page. Also, where there is a genuine difference in effect,
distinct highlighting treatments could be used to convey this.
Participants complained about a lack of visibility whether a
given page would support sampling or not. Since rewriting
pages through the d.mix proxy introduces a page-load delay,
participants browsed the web sites normally, and only turned
on the sampling proxy when they had found elements they
wished to sample. Only after this action were they able to
find out whether the page was enhanced by d.mix. One
means of addressing this shortcoming is to provide feedback
within the browser as to whether the page may be sampled;
another would be to minimize the latency overhead intro-
duced through the proxy so that users can always leave their
browser in sampling mode.
Multi-language scripting
Dynamic web pages routinely use at least three different
notation systems: HTML for page structuring, JavaScript for
client-side interaction logic, and a scripting language such as
Ruby for server-side logic. This mix of multiple program-
ming languages in a single document introduces both
flexibility and confusion for web developers.
d.mix’s property sheet implementation exacerbated this
complexity. It wrapped the generated Ruby code in a HTML
<div> element whose attributes were used to construct the
graphical editor, but were also read by the Ruby code inside
the tag to parameterize web API calls. Participants were

Figure 6. Two pages a participant created during our user
study. Left image: Information dashboard for a magazine
editor, showing recent relevant images of magazine photo-
graphers. Right image: Meta-search engine showing both
relevant web pages and image results for a search term.

confused by this wrapping and unsuccessfully tried to insert
Ruby variables into the <div> tag.
Lack of documentation & error handling
Many participants requested more complete documentation.
One participant asked for more comments in the generated
code explaining the format of API parameters. A related
request was to provide structured editors inside property
sheets that offered alternative values and data validation.
Participants also commented that debugging their wiki
pages was hard, since syntax and execution errors generated
“incomprehensible error messages.” d.mix currently catches
and displays Ruby exceptions along with source code that
generated the exception, but it does not interpret or explain
the exceptions.
How to go beyond the wiki environment?
Participants valued the active wiki for its support of rapid
prototyping. However, because of a perceived lack of
security, robustness and performance, participants did not
regard the wiki as a viable platform for larger deployment.
One participant remarked, “I’d be hesitant to use it for
anything other than prototyping” and two others expressed
similar reservations. Our motivation was to target situational
applications with a small number of users. A real-world
deployment would be needed to determine if the wiki is a
suitable platform for deploying situational web applications.
RELATED WORK
d.mix draws on existing work in three areas: tools for
end-user modification of the web, tools that lower the
threshold of synthesizing new web applications, and re-
search on locating, copying, and modifying program do-
cumentation and examples. We discuss each area in turn.
Tools for End-User Modification of Web Experiences
Greasemonkey [2], Chickenfoot [9] and Koala [22] are
client-side Firefox browser extensions that enable users to
rewrite web pages and automate browsing activities. Grea-
semonkey enables the use of scripts that alter web pages as
they are loaded; users create these scripts manually, gener-
ally using JavaScript to modify the page’s Document Object
Model. Chickenfoot builds on Greasemonkey, contributing
an informal syntax based on keyword pattern matching; the
primary goal of this more flexible syntax was to enable users
with less scripting knowledge to create scripts. Koala further
lowers the threshold, bringing to the web the approach of
creating scripts by generalizing the demonstrated actions of
users (e.g., [11, 27]). Of this prior work, Koala and d.mix are
the most similar. d.mix shares with Koala the use of pro-
gramming-by-demonstration techniques and the so-
cial-software mechanism of sharing scripts server-side on a
wiki page. d.mix distinguishes itself in three important
ways. First, Chickenfoot and Koala are end-user technolo-
gies that shield users from the underlying representation.
d.mix’s approach is more akin to visual web development
tools such as Adobe Dreamweaver [1], using visual repre-
sentations when they are expedient, yet also providing
access to source code. Supporting direct editing of the
source enables experts to perform more complex operations;
it also avoids some of the “round-trip” errors that can arise
when users iteratively edit an intermediate representation.

Second, Chickenfoot and Koala focus on automating web
browsing and rewriting web pages using the DOM in the
page source — they do not interact with web service APIs
directly. In contrast, d.mix leverages the web page as the site
for users to demonstrate content of interest; d.mix’s genera-
lization step maps this to a web service API, and stores API
calls as its underlying representation. Third, with d.mix, the
code is actually stored and executed server-side. In this way,
d.mix takes an infrastructure service approach to support
end-user remixing of web pages. This approach obviates the
need for users to install any software on their client ma-
chine—the increasing use of the web as a software platform
provides evidence as to the merit of this approach.
Tools for End-User Synthesis of Web Experiences
In the second category, there are several tools that lower the
expertise threshold required to create web applications that
synthesize data from multiple pre-existing sources. Most
notably, Yahoo! Pipes [6], Open Kapow [5], and Marmite
[37] employ a dataflow approach for working with web
services.
Yahoo! Pipes draws on the dataflow approach manifest in
Unix pipes, introducing a visual node-and-link editor for
manipulating web data sources. It focuses on visually
rewriting RSS feeds. Open Kapow offers a desktop-based
visual editing environment for creating new web services by
combining data from existing sites through API calls and
screen scraping. Services are deployed on a remote “mashup
server.” The main difference between these systems and
d.mix is that Kapow and Pipes are used to create web
services meant for programmatic consumption, not applica-
tions or pages intended directly for users.
The Marmite browser extension offers a graphical language
for sequentially composing web service data sources and
transformation operations; the interaction style is somewhat
modeled after Apple’s Automator system for scripting
desktop behaviors. Perhaps Marmite’s strongest contribu-
tion to end-user programming for the web lies in its linked
representation of program implementation and state: the
implementation is represented through visual dataflow and
the current state is visualized as a spreadsheet. The user
experience benefit of this linked view is an improved
understanding of application behavior. Unlike d.mix, Mar-
mite applications run client side, and thus cannot be shared.
An additional distinction is that the Marmite programming
model is one of tabula rasa composition, while d.mix’s is
based on example modification. Clearly, both approaches
have merit, and neither is globally optimal. A challenge of
composition, as the Marmite authors note, is that users have
difficulty “knowing what operation to select” — we suggest
that the direct manipulation embodied in d.mix’s program-
ming-by-demonstration approach ameliorates this
gulf-of-execution [18] challenge.
IBM’s QEDWiki uses a widget-based approach to construct
web applications in a hosted wiki environment. This ap-
proach suggests two distinct communities — those that create
the widget library elements, and those that use the library
elements — echoing prior work on a “tailoring culture”

within Xerox Lisp Buttons [24]. d.mix shares QEDWiki’s
interest in supporting different “tiers” of development, with
two important distinctions. First, d.mix does not interpose
the additional abstraction of creating graphical widgets; with
d.mix, users directly browse the source site as the mechan-
ism for specifying interactive elements. Second, d.mix better
preserves the underlying modifiability of remixed applica-
tions by exposing script code on demand.
Finding and Appropriating Documentation and Code
The literature shows that programmers often create new
functionality by finding an example online or in a source
repository [13, 16, 20] — less code is created tabula rasa
than might be imagined. Recent research has begun to more
fully embrace this style of development. The Mica system
[34] augments existing web search tools with navigational
structure specifically designed for finding API documenta-
tion and examples. While Mica and d.mix both address the
information foraging issues [30] involved in locating ex-
ample code, their approaches are largely complementary.
Several tools have offered structured mechanisms for
“deeply” copying content. Most related to d.mix, Citrine
[35] introduced techniques for structured copy and paste
between desktop applications, including web browsers.
Citrine parses copied text, creating a structured representa-
tion that can be pasted in rich format, e.g., as a contact
record into Microsoft Outlook. d.mix extends idea of
structured copy into the domain of source code. With d.mix
however, the structuring is performed by the extensible
site-to-service map as opposed to through a hard-coded set
of templates.
In other domains, Live Clipboard [29] and Hunter Gatherer
[31] aided in copying web content; Clip, connect, clone
enabled copying web forms [14]; and WinCuts [36] and
Façades [33] replicate regions of desktop applications at the
window management level. Broadly speaking, d.mix differs
from this prior work by generating code that retrieves
content from web services rather than copying the content
itself.
LIMITATIONS AND FUTURE WORK
This section discusses limitations of the current implemen-
tation of d.mix and implications for future work.
The primary concern of this paper is an exploration of
authoring by sampling. There are security and authentication
issues that a widely-released tool would need to address.
Most notably, the current d.mix HTTP proxy does not handle
cookies of remote sites as a client browser would. This
precludes sampling from the “logged-in web” — pages that
require authentication beyond basic API keys. Extending
d.mix to the logged-in web comprises two concerns: sam-
pling from pages that require authentication to view, and
then subsequently performing authenticated API calls to
retrieve the content for remixed pages. To sample from
logged in pages, both client-side solutions, e.g., a browser
extension that forwards a full DOM to d.mix to be rewritten,
and server-side solutions, e.g., through utilizing of a "head-
less" browser [25] are possible. To perform API calls au-
thenticated with private tokens, the private variable me-

chanism of Koala [22] could be adapted. Implementation of
private data would also require addition of access permis-
sions through user accounts to the d.mix wiki.
A second limitation is that using d.mix is currently limited to
sites that are amenable to web scraping — i.e., those that
generate static HTML, as opposed to sites that rely heavily on
AJAX or Flash for their interfaces.
Third, a comprehensive tool should offer support both for
working with content that is accessible through APIs and
content that is not [16]. d.mix could be combined with
existing techniques for scraping by demonstration.
Lastly, while d.mix is built on wikis, a social editing tech-
nology, we have not yet evaluated how use by multiple
developers would change the d.mix design experience. Prior
work on desktop software customization has shown that
people share their customization scripts [23]. It would be
valuable to study code sharing practices on the web.
CONCLUSIONS
We have introduced the technique of programming by a
sample through d.mix. d.mix addresses the challenge of
becoming familiar with a web service API and provides a
rapid prototyping solution structured around the acts of
sampling content from an API-providing web site and then
working with the sampled content in an active wiki. Our
system is enabled on a conceptual level by a mapping from
HTML pages to the API calls that would produce similar
output. On a technical level, our system is enabled by a
programmable proxy server and a sandbox execution model
for running scripts within a wiki. Together with our past
work [15, 17] we regard d.mix as a building block towards
new authoring environments that facilitate prototyping of
rich data and interaction models.
ACKNOWLEDGMENTS
We thank Leith Abdulla and Michael Krieger for pro-
gramming and video production help; whytheluckystiff for
Ruby support; and Wendy Ju for comments. This research
was supported through NSF grant IIS-0534662; a Microsoft
New Faculty Fellowship; a PC donation from Intel; and a
SAP Stanford Graduate Fellowship for Björn Hartmann.
REFERENCES
 1 Dreamweaver, 2007. Adobe Inc.

http://www.adobe.com/products/dreamweaver

 2 Greasemonkey, 2007. http://greasemonkey.mozdev.org

 3 Hpricot, a fast and delightful HTML parser, 2007.
http://code.whytheluckystiff.net/hpricot

 4 The MouseHole scriptable proxy.
http://code.whytheluckystiff.net/mouseHole

 5 Open Kapow, 2007. Kapow Technologies.
http://www.openkapow.com

 6 Pipes, 2007. Yahoo! http://pipes.yahoo.com

 7 Service-oriented computing. Communications of the
ACM, M. Papazoglou and D. Georgakopoulos. Vol. 46.

 8 Anderson, C., The Long Tail: Hyperion. 256 pp. 2006.

 9 Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C.
Miller, Automation and Customization of Rendered
Web Pages. In UIST 2005: ACM Symposium on User
Interface Software and Technology. 2005.

10 Curtis, B., W. Vicknair, and S. Nickolas, QEDWiki,
2007. IBM Alphaworks.
http://services.alphaworks.ibm.com/qedwiki

11 Cypher, A., EAGER: Programming Repetitive Tasks by
Example. In CHI: ACM Conference on Human Factors
in Computing Systems. 1991.

12 Cypher, A., ed. Watch What I Do - Programming by
Demonstration. MIT Press: Cambridge, MA. 652 pp.
1993.

13 Fairbanks, G., D. Garlan, and W. Scherlis, Design
Fragments Make Using Frameworks Easier. In
Proceedings of the 21st annual ACM SIGPLAN
conference on Object-oriented programming systems,
languages, and applications. 2006.

14 Fujima, J., A. Lunzer, K. Hornb, and Y. Tanaka, Clip,
Connect, Clone: Combining Application Elements to
Build Custom Interfaces for Information Access. In
UIST 2004: ACM Symposium on User Interface
Software and Technology. 2004.

15 Hartmann, B., L. Abdulla, M. Mittal, and S. R.
Klemmer, Authoring Sensor Based Interactions Through
Direct Manipulation and Pattern Matching. In CHI 2007:
ACM Conference on Human Factors in Computing
Systems. 2007.

16 Hartmann, B., S. Doorley, and S. R. Klemmer, Hacking,
Mashing, Gluing: A Study of Opportunistic Design and
Development. Technical Report, Stanford University
Computer Science Department, October 2006.

17 Hartmann, B., S. R. Klemmer, et al., Reflective Physical
Prototyping through Integrated Design, Test, and
Analysis. In UIST 2006: ACM Symposium on User
Interface Software and Technology. 2006.

18 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct
Manipulation Interfaces. Human-Computer Interaction
1(4). pp. 311-38, 1985.

19 Huynh, D. and S. Mazzocchi, Solvent Firefox Extension,
2007. http://simile.mit.edu/wiki/Solvent

20 Kim, M., L. Bergman, T. Lau, and D. Notkin, An
Ethnographic Study of Copy and Paste Programming
Practices in OOPL. In Proceedings of the 2004
International Symposium on Empirical Software
Engineering. 2004, IEEE Computer Society.

21 Lieberman, H., ed. Your Wish is my Command.
Morgan Kaufmann. 416 pp. 2001.

22 Little, G., T. A. Lau, J. Lin, E. Kandogan, E. M. Haber,
and A. Cypher, Koala: Capture, Share, Automate, Per-
sonalize Business Processes on the Web. In CHI 2007:
ACM Conference on Human Factors in Computing
Systems. 2007.

23 Mackay, W. E., Patterns of Sharing Customizable
Software. In CSCW 1990: ACM Conference on Com-
puter-supported cooperative work. 1990.

24 MacLean, A., K. Carter, L. Lövstrand, and T. Moran,
User-tailorable Systems: Pressing the Issues with
Buttons. In CHI 1990: ACM Conference on Human
Factors in Computing Systems. 1990.

25 Mazzocchi, S. and R. Lee, Crowbar, 2007.
http://simile.mit.edu/wiki/Crowbar

26 Myers, B., S. E. Hudson, and R. Pausch. Past, Present,
and Future of User Interface Software Tools. ACM
Transactions on Computer-Human Interaction 7(1).
pp. 3–28, 2000.

27 Myers, B. A., Peridot: Creating User Interfaces by
Demonstration. In Watch what I do: programming by
demonstration. MIT Press. pp. 125-53, 1993.

28 Nardi, B. A., A Small Matter of Programming:
Perspectives on End User Computing. Cambridge, MA:
MIT Press. 178 pp. 1993.

29 Ozzie, R., Live Clipboard, 2007.
http://www.liveclipboard.org

30 Pirolli, P. and S. Card. Information Foraging.
Psychological Review 106(4). pp. 643-75, 1999.

31 schraefel, m. c., Y. Zhu, D. Modjeska, D. Wigdor, and S.
Zhao. Hunter Gatherer: Interaction Support for the
Creation and Management of Within-web-page
Collections. In Proceedings of International World Wide
Web Conference. pp. 172-81, 2002.

32 Shirky, C., Situated Software, 2004.
http://www.shirky.com/writings/situated_software.html

33 Stuerzlinger, W., O. Chapuis, D. Phillips, and N.
Roussel, User Interface Façades: Towards Fully
Adaptable User Interfaces. In UIST 2006: ACM Sympo-
sium on User Interface Software and Technology. 2006.

34 Stylos, J. and B. Myers. A Web-Search Tool for Finding
API Components and Examples. In Proceedings of IEEE
Symposium on Visual Languages and Human-Centric
Computing. pp. 195-202, 2006.

35 Stylos, J., B. A. Myers, and A. Faulring, Citrine: Pro-
viding Intelligent Copy-and-Paste. In UIST 2004: ACM
Symposium on User Interface Software and Technology.
2004.

36 Tan, D., B. Meyers, and M. Czerwinski, WinCuts:
Manipulating arbitrary window regions for more effec-
tive use of screen space. In CHI 2004: ACM Conference
on Human Factors in Computing Systems. 2004.

37 Wong, J. and J. Hong, Making Mashups with Marmite:
Towards End-User Programming for the Web. In CHI
2007: ACM Conference on Human Factors in Compu-
ting Systems. 2007.

