Going beyond PBD:
A Play-by-Play and Mixed-initiative Approach

Hyuckchul Jung, James Allen, William de Beaumont, Nate Blaylock
TGeorge Ferguson, Lucian Galescu, *Mary Swift

Institute for Human and Machine Cognition
40 South Alcaniz Street, Pensacola, FL

{hjung, jallen, wbeaumont, blaylock, Igalescu}@ihmc.us

ABSTRACT

An innovative task learning system called PLOW
(Procedure Learning On the Web) lets end-users teach
procedural tasks to automate their various web activities.
Deep natural understanding and mixed-initiative interaction
in PLOW makes the teaching process very natural and
intuitive while producing efficient/workable procedures.

INTRODUCTION

The web has become the main medium for providing
services and information for our daily activities at home or
work. Many web activities involve the execution of a series
of procedural steps involving Web-browser actions.
Programmatically automating such tasks to increase
productivity is feasible but out of reach for many end users.

Programming-by-demonstration (PBD) is an innovative
paradigm that can enable novice users to build a program
by just showing a computer what a user intends to do [6].
However, in this approach, numerous examples are often
needed for the system to infer a workable task.

We aim to build a system with which a novice user can
teach tasks by using a single example without requiring too
much or too specialized work from the novice user. This
goal poses significant challenges because the observed
sequence of actions is only one instance of a task to teach
and the user’s decision-making process that drives his/her
actions is not revealed in the demonstration.

To achieve this challenging goal, we have developed a
novel approach in which a user not only demonstrates a task
but also explains the task with a play-by-play description.
In the PLOW system, demonstration is accompanied by
natural language (NL) explanation, which makes it possible
for PLOW to infer a task structure that is not easily
inferable from observations alone but represents what the
user intended. Furthermore, the semantic information
encoded in NL enables PLOW to reliably identify objects in
dynamic HTML files.

Another key aspect that makes PLOW more efficient is the
mixed-initiative interaction that dramatically reduces the
complexity of teaching a task by proactively initiating

TComputer Science Dept., Univ. of Rochester
PO Box 270226, Rochester, NY
{ferguson, swift} @cs.rochester.edu

execution for verification and asking timely questions to
solicit necessary information to build the task. This chapter
presents the challenges, innovations and lessons in
developing the PLOW system.

MOTIVATING EXAMPLE

Information extraction from the Web is a routine action for
many users, and travel arrangement (e.g., booking
hotels/flights/cars) is one of time-consuming activities that
require collecting information from multiple resources.
Figure 1 shows a sample dialogue in which a user teaches
PLOW how to find close hotels near an address for his/her
travel using a popular website such as mapquest.com.

In Figure 1, user actions (described in bold italic texts) are
accompanied by user’s natural language description. Note
that a user in a normal setting without PLOW would not
perform the actions that highlight a text or an area with
mouse click and drag (underlined texts). However, those
actions are easy-to-perform special actions that tell PLOW
which information a user is interested in.

While wuser actions on a browser provides useful
information, it is very difficult for a system to identify key
high-level task information from the demonstration alone:

= Identifying a task goal: What is the final goal of the
current task? What is the input and the output?

= Identifying correct parameterization: What values are
required to perform the task? Is a value a constant or a
variable? For variables, what is the relation among
them?

= Identifying iteration control structure: What is the
boundary of iteration? What actions to repeat? When to
stop?

= Identifying task hierarchy: When a new (sub) task
starts or ends?

With PBD based on conventional machine learning
approaches such as [3,14,16], to identify the above key
aspects of a task, multiple examples will be required to
generalize learned knowledge. However, to build a task
from a single demonstration, PLOW exploits the rich
information from the play-by-play description by a user.

1. USER: “LET ME TEACH YOU HOW TO FIND

HOTELS NEAR AN ADDRESS”

USER: "GO TO THIS WEBSITE"

USER: [Enters a URL, http://www.mapquest.com, in

the browser and hits enter|

USER: “PUT HOTELS HERE”

USER: [Types “hotels” in the business type field)

USER: "YOU NEED TO KNOW THE ADDRESS"

PLOW: “WHAT IS THE ADDRESS?”

USER: [Types an address, “40 South Alcaniz Street,

Pensacola, FL”, in a special GUI for inputs|

. USER: "PUT THE STREET ADDRESS HERE”

10. User: [Types the street address, “40 South Alcaniz
Street”, in the street field)

11. USER: “PUT THE CITY HERE”

12. USER: [Types “Pensacola” in the city field)

13. USER: “PUT THE STATE HERE”

14. USER: [Types “FL” in the state field]

15. USER: “CLICK THE SEARCH BUTTON”

16. USER: [Presses a button with a label “Search”|

17. USER: “HERE IS THE LIST OF HOTELS”

18. USER: [Highlights an area with a list of hotels]

19. PLOW: “CAN YOU CHECK IF I UNDERSTAND
THE LIST?”

20. PLOW: <Displays a special GUI that shows the
contents of the hotel list>

21. USER: “THIS IS THE HOTEL NAME”

22. USER: [Highlights the name of a hotel in the special
GUI|

23. PLOW: <Identifies hotel names for the other hotels
and display the names>

24. USER: “THIS IS THE HOTEL ADDRESS”

25. USER: [Highlights the address of a hotel)]

26. PLOW: <Identifies hotel addresses for the other
hotels and display them>

27. USER: “THIS IS THE HOTEL DISTANCE”

28. USER: [Highlights the distance for a hotel]

29. PLOW: <lIdentifies distances for the other hotels and
display them>

30. USER: “CLICK THE NEXT LINK TO GET MORE
RESULTS”

31. USER: [Click the link labeled “next”)

32. PLOW: “WHEN SHOULD I STOP SEARCHING?”

33. USER: “WHEN THE DISTANCE IS GREATER
THAN TWO MILES”

34. PLOW: “I WILL TRY THAT”

35. PLOW: <Visits multiple pages and extracts
information (i.e., hotel name/address/distance) until
the iteration termination condition is met and displays
the results in the special GUI>

36. PLOW: “I AM FINISHED”

37. USER: “I AM DONE”

we

PN

Figure 1: A Dialogue to Find Hotels Near an Address

Another major point is PLOW’s proactive interaction with a
user in a natural and unobtrusive manner (in Figure 1, upper

Speech GUI Input
Recognition

Parser

L

Interpretation
Manager (IM)

Generation

Figure 2: TRIPS architecture

case texts and the actions in angled brackets, both labeled
with PLOW). For instance, PLOW makes queries (Line
32), reports its status (Line 36), and verifies its knowledge
of the task under construction by presenting what it
recognizes (Line 19 ~ 20) or executing an action or a set of
actions that it has just learned (Line 23, 26, 28, 35).

Furthermore, the contextual information for an action
enables PLOW to identify Web objects (e.g., textfield, link,
etc.) in dynamic HTML pages. For instance, Line 11 (“Put
the city here”) explains the action to type a city name into a
field labeled with “City”. The NL description is used to find
the city field in future execution with a new page format
(e.g., new ads inserted at the top, reordering input fields in
the search box, etc.).

With this play-by-play and mixed-initiative approach,
PLOW is able to build a robust and flexible task from a
single demonstration. Learned tasks can be easily improved
and modified with a new example, and they can be also
reused to build a larger task and shared with other users.

PLOW ARCHITECTURE

PLOW is an extension to TRIPS [8], a dialogue-based
collaborative problem solving system that has been applied
to many real world applications.

The TRIPS System

The TRIPS system provides the architecture and domain-
independent capabilities for supporting mixed-initiative
dialogue in various applications and domains. Its central
components are based on a domain independent
representation, including a linguistically based semantic
form, illocutionary acts, and a collaborative problem-
solving model. The system can be tailored to individual
domains through an ontology mapping system that maps

jame or-allen - Google 5¢ PLOW: Tasks

~

@~ @ ™ 78 hup://scholar.google.com/scholarra v 1> [G]+ Q Current Task | Saved Tasks }-{ b

PLOW | Login GSA Per Diem Google Scholar MapQuest Google SMS _Expedia _ Starbucks Marriott_ | '@ Procedure 'FIND THE PUBLICATIONS'
¥ @ GO TO THE WEBSITE
 OPEN-URI “object "http:/ /scholar.googlc
@ WAIT-CONDITION content open-uri
¥ @ SELECT THE SEARCH

Web Images Video News Maps more»

~00gle
Google S

Scholar

Scholar Allarticles - Recent articles Results 11 - 20 of about 12,600 for author:james author:all

on of Hsp70-2 results in failed meiosis. germ cell apoptosis. and

@ FIND-OBJECT in-order-to (context ste
@ FILL-FIELD ‘object (value-of p58761)

¥ @ CLICK THE SEARCH BUTTON
@ FIND-OBJECT ‘in-order-to (context :ste
@ CLICK-LINK ‘object (value-of p61395)
@ WAIT-CONDITION content open-uri

¥ @ FIND THE RESULTS LIST
@ FIND-OBJECT ‘in-order-to (context ‘ste
@ SELECT-NODE ‘object (value-of p6670

C Mori, N Nakamura, ... - Proceedings of the National Academy of Sciences.

SA Vol. 93, pp. 3264-3268, April 1996
Developmental Biology Targeted gene distuption of Hsp70-2 results in failed
meiosis, germ cell apoptosis, and male infertilty ...

Generalized pl: gnition
H Kautz, JF Allen s

ne of the major modes of reasoning abo
called plan recognition. in which a set of observed or described actons is ... v 0 parse
- @ PARSE-TABLE :data (value-of p66702)
v o ITERATE
v © FIND THE TITLE

@ FIND-OBJECT ‘in-order-to (cortext

@ SELECT :object (value-of p69621)

*| v TO CONTINUE: CLICK THE "NEXT" LINK
@ FIND-OBJECT :in-¢
[icers _ © CLICK-LINK ‘obje
PLOW: Chat © WAIT-CONDITION

femamion Recognizing intent
el

ral language utterances
JF Allen - Computational Models o 83

Toward Conversational Human-Comouter Interaction - &
[¢

Control View Sound Help
: o the " " 14 Speed Control
ck the "next” link to get more results New Task n

SYS: Show me)
SYS: When should I stop searching Save Task

Chat =S

Figure 3: The PLOW Interface

domain-independent representations into domain-specific
representations.

Figure 2 shows the core components of TRIPS: (i) a toolkit
for rapid development of language models for the Sphinx-
IIT speech recognition system, (ii) a robust parsing system
that uses a broad coverage grammar and lexicon of spoken
language, (iii) an interpretation manager (IM) that provides
contextual interpretation based on the current discourse
context, including reference resolution, ellipsis processing
and the generation of intended speech act hypotheses, (iv)
an ontology manager (OM) that translates between
representations, and (v) generation manager (GM) and
surface generator that generate system utterances from the
domain-independent logical form.

The IM coordinates the interpretation of utterances and
observed cyber actions. IM draws from the Discourse
Context module as well to help resolve ambiguities in the
input, and coordinates the synchronization of the user’s
utterances and observed actions. Then IM interacts with a
behavioral agent (BA) to identify the most likely intended
interpretations in terms of collaborative problem solving
acts (e.g., propose an action, accept a problem solving act
or ignore it, work on something more pressing, etc.) BA
gets supports from additional reasoning modules
specialized for each application domain and reports its
status to GM that plans a linguistic act to communicate the
BA’s intentions to the user.

TRIPS components interact with each other by exchanging
messages through a communication facilitator. Thu, they
can be distributed among networked computers. The rest of
this chapter will focus on the PLOW components. For
further information about the TRIPS system, refer to [2,8].

PLOW Interface

While the core reasoning modules of PLOW are
domain/application-independent, PLOW focuses on tasks
that can be performed within a web browser. Figure 3
shows PLOW?’s user interface. The main window on the left
is the Firefox browser instrumented so that PLOW can

User Instruction User Actions
e.g., go to this webpage e.g., opens URI

Identification of Intent

Intended
Queries about collab. Actions results PLOW
problem solving / Execution

state Capabilities

Collaborative Actor 7
Task

(decides what PLOW
Invocation

should do next)
New steps, examples,
Queries about tasks rocedures, corrections, ...
what can happen next?

Task Ki <

Task Learning

Figure 4: PLOW Architecture

monitor user actions and execute actions for learned tasks.
Through the instrumentation, PLOW accesses and
manipulates a tree-structured logical model of web pages,
called DOM (Document Object Model). On the right is a
GUI that summarizes a task under construction, highlights
steps in execution for verification, and provides tools to
manage learned tasks. A chat window at the bottom shows
speech interaction and the user can switch between speech
and keyboard anytime.

The domain independent aspect of PLOW was recently
demonstrated in the work for a Military Health System for
appointment booking. Most of PLOW codes were reused
for a system called CHCS that was a terminal-based but still
widely used legacy system. The major work involved
instrumenting the terminal environment (e.g., observing key
strokes, checking screen update, etc.) as well as extending
the ontology for the healthcare domain. From a user’s point
of view, only noticeable major change to adapt was the
replacement of a browser with a terminal.

Collaborative Problem Solving in PLOW

Figure 4 shows a high-level view of the PLOW system. At
the center lies a CPS (Collaborative Problem Solving) agent
that acts as a behavioral agent in the TRIPS architecture.
The CPS agent (henceforth, called CPSA) computes the
most likely intended intention in the given problem-solving
context (based on the interaction with IM). CPSA also
coordinates and drives other parts of the system to learn
what a user intends to build as a task and invoke execution
when needed.

The CPSA understands the interaction as a dialogue
between itself and a user. The dialogue provides the context
for interpreting human utterances and actions, and provides
the structure for deciding what to do in response. In this
approach, PLOW appears to a user as a competent
collaborative partner, working together towards the shared
goal of one shot learning.

To give an overview of the collaborative problem solving,
assume that a user introduced a new step. CPSA first

(task :id <a unique identifier>
:goal <task goal>
:description <NL description of the task>
:documentation <notes generated by PLOW
but editable by a user afterward>
strigger <triggering conditions, if any>
:pre-condition <required inputs
& propositions to satisfy>
:post-condition <task outputs
& propositions to assert>
:completion-condition <a system state for
completion that includes a list of actions
to be completed & propositions
to be satisfied>
:steps
((step :preconditions <a list of propositions
to satisfy>
:id <a unique identifier>
:description <NL description of the step>
‘name <step name>
:parameters <a list of parameter
description>
:actions
((action :name <action name>
:parameters <a list of parameter
description>)

(action ...) ...))
(.s.t;p ‘name))

Figure 4: Abstract Task Model

checks if it knows how to perform the step and, if so,
initiates a dialogue to find out if the user wants to use a
known task for the step in the current task. If the user says
so, CPSA invokes another dialogue to check if the user
wants to execute the reused task or not. Depending on
user’s responses, CPSA shows a different behavior. In the
case of execution, CPSA enters into an execution mode and
presents results when successful. If failed in execution,
PLOW invokes a debugging dialogue, showing where it
failed.

In some cases, the system takes proactive execution mixed
with learning, following an explicit model of problem
solving. In particular, this type of collaborative execution
during learning is very critical in learning iteration without
requiring the user to tediously demonstrate each loop over a
significant period. Refer to [2] for the background and the
formal model of collaborative problem solving in TRIPS.

TEACHING WEB TASKS WITH PLAY-BY-PLAY

Task Representation

A task is built as a series of steps and each step may be
primitive (i.e., a self-contained terminal action) or
correspond to another task (i.e., calling a subtask).
However, a task model is more than a collection of steps. A

task model needs to contain information such as an overall
task goal, pre/post-conditions, the relationship between
steps, the hierarchical structure of a task among others.

Information in TRIPS is expressed in AKRL (Abstract
Knowledge Representation Language), a frame-like
representation that describes objects with a domain-specific
ontology using cross-domain syntax. AKRL retains the
aspects of natural language that must be handled by the
reasoning modules. While the complete specification of
AKRL is not presented in this chapter due to limited space,
examples will show how AKRL is used in PLOW.

A task model should be designed in such a way that it is
easily executable by the system as well as applicable to
further reasoning. Figure 4 shows an abstract task model in
PLOW. The model includes a task goal, supplemental
records, various conditions (pre/post/triggering/completion-
condition), and step description. Each step consists of the
name/preconditions/parameters/primitive-actions. Action
definition includes its name and parameters.

Currently, it is assumed that the steps listed in the task
model are executed sequentially in the listed ordering.
However, the task model will be extended to include
ordering constraints for flexibility (e.g., mutually exclusive
steps could be performed in parallel).

Some attributes in the task model could be inferred from
step definition if needed. For instance, if a variable is used
in a step but there is no preceding step that provides its
value, the variable should be considered as a task input.
However, explicit representation of input parameters in the
task model makes task execution and reasoning faster and
easier.

Following sections will show how a task model is
constructed through the collaboration between a user and
PLOW that involves multiple communicative acts and
highly sophisticated reasoning in PLOW. Additional
information for PLOW can be also found at [1,13].

Task Goal Definition

The task model is incrementally built as a user performs
play-by-play demonstration. Figure 5 shows a part of the
task model built from the dialogue in Figure 1. Given the
user utterance “Let me teach you to find hotels near an
address” (Line 1 in Figure 1), TRIPS natural language
understanding modules parse and interpret it. IM computes
multiple hypotheses and sends a request below to CPSA for
evaluation:

= (request :content (evaluate :content (cps-act :id
CA1268 :content (propose :who user :to plow :id x126
:what v103 :as goal) :context ((reln v103 :instance-of
Teach :object v114 :recipient v105 :agent v108) (the
v108 :instance-of Person :equals user) (the v105
:instance-of System :equals plow) (rein v114 :instance-
of Find :object v115) (a v115 :instance-of Set :element-
type v116) (kind v116 :instance-of Hotel :is-near v117)

(task :id p344

:postcondition (condition :outputs

:steps ...)

:goal ((reln v114 :instance-of Find :object v115) —— (a)
(av115 :instance-of set :element-type v116)
(kind v116 :instance-of Hotel :is-near v117)
(a v117 :instance-of Mailing-Address))
:description "find hotels near an address"—— (b)
:documentation "id: p344, created: 03/03/2009 12:49:34, user: hjung"
:precondition (condition :inputs ((role :id p456 :task-id p344 :step-id p497
:value ((a v117 :instance-of Mailing-Address)))) — (d)

((role ... :value ((the v199 :instance-of Name :associated-with v200)
(kind v200 :instance-of Hotel)))
(role ... :value ((the v213 :instance-of Mailing-Address :associated-with v214) —— ()
(kind v214 :instance-of Hotel)))
(role ... :value ((the v243 :instance-of Distance :associated-with v244) —— (g)
(kind v244 :instance-of Hotel)))))
:completion-condition (condition :completed-actions (p456 ... p786))

Figure 5: A Task Model Example

(©)

(e)

(a v117 :instance-of Mailing-Address)) :channel
desktop)) :reply-with IM126)

CPSA reasons about the validity of the proposal and make a
decision, accept or refusal. Here, the proposal is to teach a
finding action the target of which is a set of hotels near a
mailing address. When it is accepted, IM requests CPSA to
commit to the proposal. Then, CPSA requests a task-
learning module, henceforth called TL, to start the learning
process:
= (request :receiver TL :content (akrl-expression :content
p126 :context ((reln p126 :instance-of start-learn :task
v114) (rein v114 :instance-of Find :object v115) (av115
:instance-of Set :element-type v116) (kind v116
:instance-of Hotel :is-near v117) (a v117 :instance-of
Mailing-Address))) :reply-with CPSA126 :sender CPSA)

Receiving the above request, TL reasons about its
feasibility. If feasible, TL accepts the task goal (Figure 5-a)
and starts a learning process. Given TL’s acceptance
notification, CPSA updates its collaborative problem
solving state and waits for the user to define a step.

The task model also includes other useful information such
as task description (Figure 5-b) and documentation (Figure
5-¢). Note that the task description is not the text directly
from speech recognition. Instead, it is a text that the TRIPS
surface generator produced from the internal representation
of the task goal, which clearly shows that the system
understands what a user said. The same goes for the step
description in the task model. These reverse-generated NL
description is used to describe the current task in the
PLOW interface (the right side window in Figure 3).
PLOW automatically generates the documentation part but
a user can edit the text later.

A task may also have a trigger: e.g., when a user says, “Let
me teach you how to book hotels near an airport when a

flight is canceled”, the even of a canceled flight (that can be
notified in various forms) is captured as a trigger and
recorded in the task model. While PLOW is running, if such
an event is notified, PLOW finds a task with a matching
triggering condition and, if any, execute it.

Task Step Definition

High-level Step Description in Play-by-Play

When a user describes a step by saying “Go fto this website”
(Line 2 in Figure 1), IM and CPSA collaboratively interpret
and reason about the utterance. Then, CPSA requests TL to
identify a step by sending a message that contains step
description:

* (request :sender CPSA :receiver TL :content (akrl-
expression :content i132 :context (reln i132 :instance-of
identify-substep :content v127 :task-id p344) (rein
v127 :instance-of Navigate :web-destination v128
:agent vi32) (the v128 :instance-of Webpage) (a v132
:instance-of System :equals PLOW))) :reply-with p327)

Given the information in this request, TL creates a step that
does not have actions yet and inserted the step definition
into the current task model:

= (Step :preconditions ((ordering :constraint (directly-after
nil))) :name Navigate :parameters ((para :name Web-
destination :value ((the v128 :instance-of Webpage)))
:id p351 :description “go to the website” :actions null)

When there is no specific precondition, the precondition
part has a simple ordering constraint that normally indicates
a step can be performed after the completion of a preceding
step: for the first step, the preceding step is NIL.

Primitive Actions of a Step
Following the step description, a user performs a normal
navigation action in the browser and the action is detected

MapQuest Maps - Driving Directions - Map
@ () M Eheoyvy = (G Q

A% New: AOL com| Mai | O 1300

MAPQUEST © ®

_— D € PLOW: Tasks

Current Task __ Saved Tasks |-/ b |
@ Procedure FIND HOTELS NEAR AN ADDF
¥ @ GO TO THE WEBSITE

@ OPEN-URI :object "http:/ /www.n
@ WAIT-CONDITION :content oper

Traffic Signal

PLOW: Chat
Control View Sound Help

USR: let me teach you to find hotels near W —

an address (New Task)
USR: go to this website (Save Task) Dl "™ =M

SYS: Show me
@ [(®][0]®

Chat: S

Figure 6: PLOW Interface after Step Demonstration

by the Firefox instrumentation. IM receives the action and
checks with CPSA. Then, after checking the validity of the
action, CPSA requests TL to learn the action:

* (request :sender CPSA :receiver TL :content (akrl-
expression :content i331 :context ((reln i331 :instance-
of identify-example :content gui304 :step-id p351
:taks-id p344 :cps-act pursue-goal) (reln gui304
:instance-of Open-URI :actor nil :object
‘http://www.mapquest.com”))) :reply-with p377)

Using the information in this request, TL extends the action
part in the step definition above:

= (Step ... :actions ((action :name Open-URI
Jparameters ((para :name window :value (opened at
step p351)) (para :name object :value
‘http://www.mapquest.com”))) (action :name Wait-
Condition :parameters ((para :name content :value
Open-URI)))))

Note that TL inserts additional information into the action
definition based on its domain knowledge. To handle
multiple windows, a browser window to perform the
current action is specified. In addition, an action to wait for
complete web page loading is inserted. Without such
synchronization, subsequent actions could fail, in particular,
on a slow network (e.g., trying to select a menu when the
target menu does not appear yet). In navigating to a link,
there can be multiple page loading events (e.g., some travel
websites show intermediate web pages while waiting for
search results). PLOW observes how many page loading
events have occurred and inserts waiting actions
accordingly.

Figure 6 shows the PLOW interface after this step
demonstration. The right side window for the current task
under construction has a traffic signal light at the bottom
portion. The signal changes colors (green/red/yellow) based
on PLOW’s internal processing state and its expectation of
the application environment, telling if it is deemed OK for a
user to provide inputs to PLOW (green) or not (red).
Yellow implies that PLOW is not sure since, in this case,
there can be multiple page loading events controlled by the
web site server.

Dynamic Web Objects in Primitive Actions

In Figure 1, there is a step created by saying “Put the city
here” and typing a city name into a text field labeled with
“City”. Here, the observed action from the browser
instrumentation is an action that fills a text (e.g.,
“Pensacola”) into a text field. However, the semantic
description helps PLOW to find the text field in a dynamic
HTML file.

Figure 7 is a screenshot of Firefox DOM Inspector that
shows DOM nodes and their attributes/structure accessed
by PLOW for its learning how to identify dynamic objects.
For the step to put a city, PLOW finds a match for "city" in
one of the attributes of the INPUT node (i.e.,
id="startCity"). PLOW learns the relation between the
semantic concept and the node attribute as a rule for future
execution. Linguistic variation (e.g., cities) or similar
ontological concepts (e.g., town, municipality) are also
considered for the match. Right after learning this new rule,
PLOW verifies it by applying the rule in the current page
and checking if the object (i.e., a text-field) found by the
rule is equal to the object observed in demonstration.

PLOW also uses other heuristics to learn a rule. For
instance, when the node identified in the demonstration
does not have any semantic relation, it finds another
reference node traversing the DOM tree and, if found,
computes the relation between the node observed in
demonstration and the reference node found elsewhere.
With this sophisticated approach, even when there is a web
page format change, PLOW is able to find a node as long as
there are no significant local changes around the node in
focus. For further information of PLOW’s dynamic web
object identification, refer to [3].

Parameter Identification
Identifying parameters is challenging even for a simple task
and, without special domain knowledge, it is almost

@ # nossewwmapauestcom/ Inspect

Eg - Document - DOM Nodes » - [- Object-DOMNode
nodeName id dass Bl \ode Name
#ext INPUT
> DIV addressl... Namespace URI:
exh Node Type: 1
v oV cityDiv
pr Node Value
> LABEL | nodeName nodevalue &
BR * type text
#text class tin
INPUT startCity tin value
#text name startScity
#text tabindex 3
> DIV stateDiv maxlength 100
#text title Enter the city
» DIV 2ipDiv =5 startCity

#toxt

Geta Map Your Recent Locations Clear Al (2
Find a Business (optional) |4 |Q
hotels Retant v
Address or Intersection

40 South Alcaniz Street

City State ZIP Code
Pensacola

lise Cony & Paste Forms

Figure 7: DOM structure of a Web Page

impossible with only a single observation. When an object
is used in a task, the system should determine if it is a
constant or a variable. In the case of a variable, it also has
to figure out the relation between variables. Figure 8 shows
how natural language plays a critical role in PLOW’s
parameter identification, enabling it to identify parameters
from a play-by-play single demonstration.

Furthermore, TRIPS’ reference resolution capability also
identifies the relation between parameters. For instance, the
city instance in one step (Line 11 in Figure 1) is related to
the address mentioned earlier (Line 1 and Line 6). The
semantic concept CITY is a role of another concept
ADDRESS in the TRIPS ontology. A special address parser
helps to reason that the typed city name “Pensacola” in the
demonstrated action (Line 12) matches a city part of the
given full address provided by a user (Line 6 ~ 8). Without
this dependency relation from language understanding and
the verification by the address parser, PLOW will add the
city as a separate input parameter. Note that, in the final
task model, there is only a single input parameter, an
address, (Figure 5-d).

NL description also helps to identify output parameters.
From the utterances that specify which information to
extract (Line 21, 24, 27 in Figure 1), PLOW figures out that
the objects to find in those steps are related to the task
output defined in the task definition (i.e., hotel in Line 1).
Therefore, they are added as output parameters (Figure 5-

e,f,g).

Task Hierarchy

PLOW uses simple heuristics to identify the beginning/end
of a sub task. Any statement that explicitly identifies a goal
(e.g., “Let me show you how ...”) is seen as the beginning
of a new (sub) task. User’s explicit statement such as “I'm
done” or another goal statement indicates the end of the
current (sub) task. Our anecdotal experience is that users
easily get familiar with this intuitive teaching style.

Control Constructs

Conditionals

Conditionals have a basic structure of ‘if X, then do Y’,
optionally followed by ‘otherwise do Z’. However, the
action trace for conditionals includes only one action, either
Y or Z, based on the truth-value of the condition X. In
general, identifying X is very difficult, since the entire
context of demonstration should be checked and reasoned
about. However, in the play-by-play demonstration, when a
user specifies a condition, PLOW can interpret correctly the
condition from language.

Assume that a user adds a conditional step by saying “If a
zipcode is available, put the zipcode here”. Then, in the
precondition part, the step definition will include the
following proposition that states the existence of the
zipcode property:

Utterance Interpretation Key features
(Action)

Let me show you hotels > - Bare plural

how to find hotels | output - Object of an

near an address information producing

action “find”

an address > | - Indefinite
input - No decision action
Put hotels (Type Hotels > - Bare plural
“hotels”) constant - Identical to the typed
text in the action
Put the city (Type | acity > - Definite
“Pensacola”) related to the - City is arole of an
address input | address in Ontology

Figure 8: Interpretation of Noun Phrases

= (step ... :preconditions (...((reln v380 :instance-of
Have-Property :property v346 :force true) (a v346
sinstance-of Zip-code))) ...)

Iteration

The main difficulty in identifying iterative procedures from
a single example is that the action trace (a sequence of
actions) alone does not fully reveal the iterative structure.
For iteration, a system needs to identify these key aspects:
(1) the list to iterate over; (ii) what actions to take for each
element; (iii) how to add more list elements; and (iv) when
to stop.

For a system to reason about these aspects on its own, in
addition to repetitive examples, full understanding of the
action context (beyond observed actions) and special
domain knowledge will be required (e.g., what and how
many list items were potentially available, which ones were
included in the observed actions, how and when web page
transition works, etc.). Furthermore, a user would not want
to demonstrate lengthy iterations. In PLOW, natural
language again plays a key role. As shown below, we
designed the system GUI and dialogue to guide a user
through the demonstration for iteration: mixed-initiative
interaction with proactive execution and simple queries
makes the process much easier and intuitive.

In Figure 9, a user is teaching PLOW how to find hotels
near an address. When the user highlights a list of results
(Figure 9-a) and says, “Here is a list of results”, PLOW
infers that an iteration over elements in the list will follow.
Then, PLOW enters into an iteration-learning mode with
the goal of identifying the key aspects stated above. First,
by analyzing the DOM structure for the list object, PLOW
identifies individual elements of the list and then presents
the parsed list in a dedicated GUI window with each
element (essentially a portion of the original web page)
contained in a separate cell (Figure 9-b).

This GUI-based approach lets the user quickly verify the
list parsing result and easily teach what to do for each
element. Note that list and table HTML objects that contain
the desired list may also be used for other purposes (e.g.,
formatting, inserting ads, etc.), so it is fairly common that

a. MapQuest search result

c. User demonstration on one list

b. GUI for a parsed list

s near Pensacola, FL

Relevance | Distance Alpha

Days Inr

element: "This is the hotel name"
< highlight the hotel name text >

‘ « Days Inn

710 N Palafox St, Pensacola. FL (0.04 miles

« Days Inn

Highlighted list of hotels T

away)
850-438-4922

e Map

710 N Palafox St, Pensacola, FL (0.04 miles

« Directions To
« Directions From

d. New column with PLOW
execution results

P p—p———
B

« Civic Inn

\ away)
Y 850-432-3441

* Map

200 N Palafox St, Pensacola, FL (0.39 miles

* Directions To

* Directions From

- ——

THE HOTEL NAME

| =

Days Inn

e. Link to the next page below the search results
[Page: 12345678910111213 14 Next> |

“{] Civic Inn

Figure 9: Learning Iteration

some irrelevant information may appear to be part of the
list; PLOW uses clustering and similarity based techniques
to weed out such information.

After presenting the parsed list, PLOW waits for user’s
demonstration for an element. For instance, the user says,
“This is the hotel name”, and highlights the hotel name in
one of small cells in the GUI (Figure 9-c). Given this
information, PLOW learns the extraction pattern and
proactively applies the rule to the rest of elements (Figure
9-d). Note that a composite action (e.g., navigating to a
page from a link, extracting data from the new page and so
on) can be also defined for each element.

If there is an error, the user can notify PLOW with the
problem by saying, “This is wrong”, and show a new
example. Then, PLOW learns a new extraction pattern and
reapplies it to all list elements for further verification. This
correction interaction may continue until a comprehensive
pattern is learned.

Next, the user teaches PLOW how to iterate over multiple
lists by introducing a special action (e.g., “Click the next
link for more results” — see Figure 9-¢). This helps PLOW
to recognize the user’s intention to repeat what he/she
demonstrated in the first list on other lists. Here, to identify
the duration of the iteration, PLOW asks for a termination
condition by saying, “When should I stop searching?” For
this query, it can understand a range of user responses such
as “Get two pages,” “Twenty items”, “Get all”.

The conditions can be defined on the information extracted
for each element, as in “Until the distance is greater than 2
miles”. In the case of getting all results, the system also
asks for how to recognize the ending, and the user can tell
and show what to check (e.g., “When you don’t see the next
link” or “When you see the end sign”). For verification,
PLOW executes the learned iterative procedure until the
termination condition is satisfied and presents the results to
the user using the special GUI. The user can sort and/or

filter the results with certain conditions (e.g., “sort the
results by distance”, “keep the first three results”, etc.).

UTILIZING & IMPROVING TAUGHT WEB TASKS

Persistent and Sharable Tasks

After teaching a task, a user can save the task into a
persistent repository. Figure 5 shows the “Saved Tasks”
panel in the PLOW interface that shows a list of a user’s
private tasks. A pop-up menu is provided for task
management, and one of its capabilities is exporting a task
to a public repository for sharing the task with others. A
user can import shared tasks from the “Public Tasks” panel.

Current Task = Saved Tasks

Public Tasks
FIND THE ADDRESS FOR A BUSINESS
FIND RESTAURANTS NEAR AN ADDRESS m
FIND THE HOTEL PER DIEM BY FINDING THE ¢ DisPlay !
FIND MARRIOTT HOTELS UNDER THE GSA RA]T Execute E

CIND AN MARRINTT MATEL AEAD AN _AIDDND] Export

Load Tasks Delete

v

Figure 10: Task Management

Task Invocation

Tasks in the private repository can be invoked through the
GUI (Figure 5) or in natural language (e.g., “Find me
hotels near an airport”). If the selected task requires input
parameters, PLOW asks for their values (e.g., “What is the
airport?”), and the user can provide parameter values using
the GUI or natural language.

Users can invoke a task and provide input parameters in a
single utterance, e.g., “Find me hotels near LAX” or “Find
me hotels near an airport. The airport is LAX.” Results can
also be presented via the GUI or in natural language. This
NL-based invocation capability allows users to use indirect
channels, as well. For example, we built an email agent that
interprets an email subject and body so that a user can

Hotels - Vacation and hotel information from Marriott Hotels

Official Site

o000 PLOW: Tasks

D i ej /x‘ 4N http: / /www.marriott.com/default.mi v >

PLOW | Login GSA Per Diem Google Scholar MapQuest Google SMS Expedia

Find &Reserve | Deals | Destinations | Shop N

LULEL LN Search by Keyword Upcoming Reservations

Our Best Rates, Guaranteed plus more o

City or Airport Code

|sFo

State (USA only) Country

I =i]
Check-n date (mm/ddlyy) Check-outdate (mm/ddiyy)
fo1/12/09 fo1/15/09

No.of rooms Guestsiroom Marriott Rewards number

R I KR |

|~ Use Mariott Rewards points @
Special Rates

[~ aaa | senior [v]Govemment | Comorate /
discount & Military promotional code

More search options

Selecta brand | Find |

Emai/Marmiott Rewards No

Starbucks Marriott WiFi |

My Marriott Rewards Account | 4 Quick Tools

Password A

Q ! Current Task = Saved Tasks = Public Tasks

@ OPEN-URI :object "http://www.marriott.com/de
@ WAIT-CONDITION :content open-uri
¥ @ PUT THE AIRPORT I D
@ FIND-OBJECT :in-order-to (context :step ((reln
@ FILL-FIELD :object (value-of p567252) :value (
¥ @ PUT THE "CHECK IN" DATE
@ FIND-OBJECT :in-order-to (context :step ((reln
@ FILL-FIELD :object (value-of p585131) :value (
v @I PUT THE "CHECK OUT" DATE
@ FIND-OBJECT :in-order-to (context :step ((reln
@ FILL-FIELD :object (value-of p614144) :value (
¥ @ SELECT THE "MILITARY RATE" BOX
@ FIND-OBJECT :in-order-to (context :step ((reln
@ CHECK-BOX :object (value-of p774096) :value
¥ @ SELECT THE "FIND" BUTTON .
@ FIND-OBIECT :in-order-to (context :step ((reln

PLOW: Chat
Control View Sound Help

C New Task , ! Slow ‘—(j Fast
PErS (Save Task) (mecuts) 2.5 "y

@ |® |0 o

=

USR: execute the task up to this step
SYS: Alright
USR: let's edit the procedure

USR: insert a step after the step
SYS: Show me

USR: select the "military rate" box
SYS: Show me

SYS: Ok

SYS: Define a condition , delete a step or add a step

Speech Recognition
Control Font Help

Listening to: speech-in Status: READY
STARTED

Channel: Desktop

Uttnum: -

v
b

CONTINUOUS LISTENING MODE

Chat:

Figure 11: Task Editing

invoke a task by sending an email and receive the execution
results as a reply.

Here, given a user request, PLOW finds a matching task
with its natural language understanding and ontological
reasoning capabilities. A user does not necessarily have to
use the same task description used in teaching. “Get me
restaurants in a city” or “Look for eatery in a town” would
select a task to find restaurants in a city.

Reusing Tasks

In teaching a task, existing tasks can be included as
subtasks. When a user gives the description of a new step,
PLOW checks if the step matches one of the known tasks;
if a matching task is found, it is inserted as a subtask with
parameter binding between the current task and the reused
task. For instance, in one teaching session, a user has taught
how to book a flight and wants to reserve a hotel. For a step
introduced by saying, “Book a hotel for the arrival date”,
PLOW will check for a matching task for the step.

If the user already has a task to reserve a hotel with a
check-in date and a number of nights, PLOW will mark the
step as reusing another task so that, in execution, the reused
task can be called. PLOW will also infer that the arrival
date should be bound to the check-in date and consider the
number of nights as a new input parameter if there is no
related object in the current task.

Editing Tasks
To fix obsolete tasks (e.g., to update them after web site
changes) or to improve/simplify a task, PLOW lets a user

add or delete steps. To reach a step to edit, PLOW supports
(i) step-by-step execution (the default mode for
verification) and (ii) partial execution up to a certain step.
Figure 6 shows a GUI snapshot in which highlighted steps
are the ones to be executed next. One can invoke the two
modes by saying, “Let’s practice step by step” and “Execute
the task up to this step” (after clicking a step in the GUI)
respectively.

Setting up the action context (i.e., browser setting, extracted
objects, available parameter values, etc.) with real
execution is critical since the context is used in PLOW’s
reasoning for the action to edit. Figure 11 shows the
interaction between a user (USR) and PLOW (SYS) for
task editing that was to add a new step to select a check-box
for a special military rate in booking a hotel. Note that,
before the dialogue in the chat window, the user selected
the step described as “Put the check out date” in the current
task window (marked with a stop sign).

Improving Tasks from Execution Failure

Execution failure from unnecessary or missing steps can be
corrected by task editing. Major web site redesigns will
sometimes trigger web object identification failures. When
PLOW detects an execution error, it stops at the failed
action, notifies the user and initiates a debugging process by
asking for a new example from which it learns an additional
extraction pattern.

In Figure 12, the task is to find hotel per diem rates for a
city and a state. The failure occurred at the step to find a per
diem rate list for Nebraska (marked with a ladybug). In

Nebraska - FY 2009 per diem rates

&~ @-3 /I\ ¥ http: / jwww.gsa.gov/Portal/gsa/ep/conti ¥ >
Standard CONUS rates apply elsewhere.

SelectanothggStatg

Primary Destination County

Omaha Douglas

=} Printer Friendly format

Gl+ Google Q

PLOW | Login GSA Per Diem Google Scholar MapQuest Google SMS Expedia Starbucks Marriott »| >. Procedure FIND THE HOTEL PER DIEM «.
VIEW d Stdie TTidp Wiltn THYnnyriceu dreds Siuwing wiiere 1dies 11seu veiow dppry.

oO[00cC PLOW: Tasks
Saved Tasks I

Current Task

¥ @ Need-To-Know
@ CHECK-KB :obj-desc "the state" :(
@ CHECK-KB :obj-desc "the city" :ok
¥ @ GO TO THE WEBSITE
@ OPEN-URI :object "http://www.gsa
@ WAIT-CONDITION :content open-
@ WAIT-CONDITION :content open-
¥ @ SELECT THE "PER DIEM RATES" LINK
@ FIND-OBJECT :in-order-to (conte;
@ CLICK-LINK :object (value-of p43
@ WAIT-CONDITION :content open-
V @ SELECT THE STATE
@ FIND-OBJECT :in-order-to (contey
<> @ CLICK-LINK :object (value-of p44

C
@ Done

PLOW: Chat
Control View Sound Help

USR: let's practice

SYS: What is the city and the state
SYS: Ok

SYS: The task execution failed

SYS: Shall we debug the procedure
USR: yes

condition
USR: i'll show you an example
SYS: Please execute this step

SYS: Please choose between showing a example and defining a

@ WAIT-CONDITION :content open-
v n FIND THE PER DIEM RATE LIST

@ FIND-OBJECT :in-order-to (conte;

@ SELECT-NODE :object (value-of p
v @ Parse

@ PARSE-TABLE :data (value-of p46

C
Qi ewilasion Slow =) Fast
("Save Task) Timeout 25 |w)

@ [©)0 | ©®

Figure 12: Failure Correction with a New Example

teaching the task, another state that has multiple
destinations was used. However, this Nebraska table with
one destination has a significant different structure and
PLOW failed to identify the list. The dialogue in the chat
window shows how PLOW and a user interact with each
other from the start of task execution. As shown in the
browser window, the user gives a new example by
highlighting the per diem rate list for the failed step. Now,
the constructed task has become more robust with more
knowledge to handle different list structures.

EVALUATION

In 2006 and 2007, PLOW was evaluated along with other
task building systems by an independent agency as a part of
DARPA CALO project [18]. Sixteen human subjects
received training on each system and they were given ten
problems that can be performed on various web sites:

1. To whom should a travel itinerary be emailed?

List all publications from the work funded by a project
List top N candidates for given product specifications
Retrieve N product reviews for a product

wok W

List restaurants within a certain distance from an
address

In what conference an article was published?
What articles are cited in a given article?
What articles cite a given article?

O 0 =2

Who else is traveling to a location on the same day
with a person of interest?

10. What roles does a person play in an institution?

PLOW did very well in both tests, receiving a grade of
2.82 (2006) and 3.47 (2007) out of 4 (exceeding the project
goals in both cases). Furthermore, in a separate test in 2006,
test subjects were given a set of new 10 “surprise” problems
some of which were substantially different from the original
ten problems. They were free to choose from different
systems. But, PLOW was the system of choice among the
subjects: 30 out of 55 tasks were created in the surprise test
using PLOW and 13 out of 16 used PLOW at least once.
PLOW also received the highest average score (2.2 out of
4) for the constructed tasks in the test. In addition to high
test scores, anecdotal comments from the subjects in 2007
were that they were impressed by PLOW’s user
convenience with various GUI/NL interaction.

RELATED WORK

A major technique in task learning is an observation-based
approach in which agents learn task models through
observation of the actions performed by an expert [3,14,16].
However, a significant drawback of these approaches is that
they require multiple examples, making them infeasible for
one-shot learning in most cases without very special
domain knowledge.

Researchers also investigated techniques that do not require
observation. [11, 15] proposed techniques to encode
experts’ knowledge with annotation. A collaborative
scripting system (called Coscripter) with pseudo natural
language was developed to automate online tasks and the
information in the pseudo NL was used to identify web
objects [17]. A specialized GUI system for task editing and
modification was also developed as a part of the CALO
project [4]. While these approaches are useful and novel,

10

without the help of demonstration observation, the task
learning can be difficult for complex control constructs
such as iteration and dynamic web object identification.
Creo is a PBD system that can learn a task from a single
example but it has significant limitation in the range of
actions and web objects [8].

Many mashup systems were developed to extract and
integrate information from the Web [7,10,12]. While they
are powerful tools, their capability and complexity are
positively correlated (i.e., complex interfaces are provided
to provide advanced functionalities). Furthermore, there is
limitation in handling dynamic objects and understanding
extracted information for further reasoning.

CONCLUSION

PLOW demonstrates that NL is a powerful intuitive tool for
end-users to build web tasks with significant complexity
using only a single demonstration. The natural play-by-play
demonstration that would occur in human-human teaching
provides enough information for the system to generalize
demonstrated actions. Mixed-initiative interaction also
makes the task building process much more convenient and
intuitive. Without the system’s proactive involvement in
learning, the human instructor’s job could become very
tedious, difficult, and complex. Semantic information in NL
description also makes the system more robust by letting it
handle the dynamic nature of the Web.

While PLOW sheds more light on NL’s roles and the
collaborative problem solving aspects in the end-user
programming on the Web, significant challenges still exist
and new ones will emerge as application domains are
expanded. Better reasoning about tasks, broader coverage
of language understanding, and handling the dynamic
nature of web contents will be needed to address the
challenges.

REFERENCES

1. James Allen et al., PLOW: A Collaborative Task
Learning Agent, Proceedings of the AAAI Conference
on Artificial Intelligence: Special Track on Integrated
Intelligence, 2007

2. James Allen, Nate Blaylock, and George Ferguson, A
problem solving model for collaborative agents.
Proceedings of the International Joint Conference on
Autonomous Agents and Multi-Agent Systems, 2002

3. Richard Angros et al., Learning Domain Knowledge for
Teaching Procedural Skills, Proceedings of the
International Joint Conference on Autonomous Agents
and Multiagent Systems, 2002

4. Jim Blythe, Task Learning by Instruction in Tailor.
Proceedings of the International Conference on
Intelligent User Interfaces, 2005

5. Nathanael Chambers et al., Using Semantics to Identify
Web Objects, Proceedings of the National Conference
on Artificial Intelligence: Special Track on Al and the
Web, 2006

6. Allen Cypher, editor. Watch what I do: Programming by
demonstration. MIT Press, Cambridge, MA, 1993

7. Rob Ennals et al., Intel Mash Maker: Join the Web,
ACM SIGMOD Record, Volume 36, Issue 4, 2007

8. Alexander Faaborg and Henry Lieberman, A Goal-
Oriented Web Browser, Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems ,
2006

9. George Ferguson and James Allen, TRIPS: an integrated
intelligent problem-solving assistant, Proceedings of the
National Conference on Artificial Intelligence, 1998

10.Jun Fujima et al., Clip, Connect, Clone: Combining
Application Elements to Build Custom Interfaces for
Information Access, Proceedings of the annual ACM

symposium on User interface software and technology,
2004

11.Andrew Garland, Kathy Ryall, and Charles Rich,
Learning Hierarchical Task Models by Defining and
Refining Examples. Proceedings of the International
Conference on Knowledge Capture, 2001

12.David Huynh, Robert Miller, and David Karger,
Potluck: Data Mash-Up Tool for Casual Users,
Proceedings of the International Semantic Web
Conference, 2007

13.Hyuckchul Jung et al., Utilizing Natural Language for
One-Shot Task Learning, Journal of Logic and
Computation, doi: 0.1093/logcom/exm071, Oxford
University Press, 2007

14.Tessa Lau and Dan Weld, Programming by
demonstration: an inductive learning formulation.
Proceedings of the International Conference on
Intelligent User Interfaces, 1999.

15.Frank Lee and John Anderson, Learning to act:
Acquisition and Optimization of Procedural Skill,
Proceedings of the Annual Conference of the Cognitive
Science Society, 1997

16.Michael van Lent and John Laird, Learning Procedural
Knowledge through Observation, Proceedings of the
International Conference on Knowledge Capture, 2001

17. Gilly Leshed et al., Coscripter: Automating & sharing
how-to knowledge in the enterprise, Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 2008

18. DARPA CALO project: http://caloproject.sri.com

11

