Subjunctive Interfaces for the Web

Aran Lunzer
Meme Media Laboratory, Hokkaido University,
North 13 West 8, Sapporo 060-8628, Japan
aran@meme.hokudai.ac.jp

ABSTRACT

The data resources and applications accessible through today’s
Web offer tremendous opportunities for exploration: ask a slightly
different question, receive a correspondingly different answer.
However, typical browser-based mechanisms for accessing the
Web only enable users to pose one such question at a time, placing
a heavy operational and cognitive burden on any user who wants
to explore and compare alternatives. A subjunctive-interface
approach may reduce this burden. Subjunctive interfaces support
the setting up, viewing and adjustment of multiple scenarios in
parallel, allowing side-by-side instead of temporally separated
viewing, and more efficient iteration through alternatives. We
have implemented an environment in which end users can set up
custom-built Web-access interfaces that include such multi-
scenario support. In this chapter we describe three modes of use of
this environment — parallel retrieval, coordinated manipulation,
and tentative composition — and explain how these may help to
alleviate typical challenges in Web-based tasks. At the same time,
we acknowledge that the increased scope for exploration made
possible through this environment can itself present a form of
cognitive burden to users, and we outline our plans for evaluating
the impact of this effect.

Keywords

Subjunctive interfaces, exploratory information visualisation

INTRODUCTION

How inconvenient it is that so many applications for accessing
Web resources only deliver results in response to explicit, pinpoint
requests. For example, interfaces for flight enquiries typically
require the user to specify exactly one destination city, which is
fine for users with precisely formulated travel plans but a bore for
everyone else. A user who wants to compare the deals and
schedules available for a range of destinations must embark on an
exploration, submitting a succession of requests and analysing
their respective results.

One problem in such cases is that users have poor support for
covering a range of requests, even if the details of those requests
follow some regular pattern. A user searching for flights might
request information for several routes on a given date, or for a
single route over many dates, or combinations of a few routes and
dates. But if the interface only supports the handling of a single
request at a time, this burdens the user not only with a potentially
high number of interface actions to specify and submit the
requests, but also with increased mental effort in planning the
requests, remembering which requests have been made so far, and
remembering where interesting results were found.

Furthermore, one-at-a-time interfaces provide poor support for
comparing results [18], in that making comparisons requires the
user to remember — or to have written down, or to request again —

Kasper Hornbaek
Dept of Computer Science, University of Copenhagen,
Njalsgade 128-132, Bldg 24, 5" FI
DK-2300 Copenhagen, Denmark
kash@diku.dk

the details of those results that are currently out of sight. This
again can constitute both a physical and a mental burden. We
believe that these burdens can be reduced by enabling the user to
carry out a number of requests at the same time, which we refer to
as parallel retrievals.

Consider now a second kind of Web interaction. A doctor who has
access to her patients’ records through a secure Web connection
wants to retrieve images from specific stages in the treatment of a
single patient, for example to observe progress of disease within
an organ. On obtaining each abdominal image study she goes
through the same operations of selecting and scaling the desired
sub-portion of the images, in three orthogonal planes, then
adjusting the greyscale mapping so as to emphasise the boundary
of the diseased region, and finally selecting display of just the
overlays containing her own annotations. She accumulates
browser windows, one for each imaging study, so as to be able to
switch between them to help grasp the disease’s changes over time.
If she finds that the diseased region has spread beyond the bounds
of the focus area she selected for the earlier studies, she re-adjusts
those earlier views so that she can still compare like with like.

In this situation, which could equally apply to retrieving and
manipulating weather maps, or archived pictures from a Web cam,
it is frustrating to have to perform the same image manipulations
many times over, especially given the risk that information gained
from later views will upset earlier decisions. This frustration could
be alleviated if there were a way to manipulate the various
retrieved resources in concert, continuously confirming that the
results will be valid for all of them. This we refer to as coordinated
manipulation.

As a third example, consider a holidaymaker who (having
successfully selected some flights) is now installed in a foreign
city and is planning a day of sightseeing. The city is served by a
navigation-service Web site that provides estimates of point-to-
point journey times on foot or by public transport. Having made a
list of addresses he would like to visit, the visitor can use this site
to plan an itinerary for the day.

The challenge here is to come up with a sequence of visits, and the
journeys between them, that promises to be an interesting overall
experience without excessive use of travel time or leg-power. If
there were a strict constraint that all the listed sites be visited, a
‘travelling salesman’ algorithm could be put to work in search of a
time-efficient total solution — or, perhaps, the conclusion that there
is no way to visit them all within a day. However, all but the most
ardent tourist would probably take a more relaxed approach, trying
a few alternative visit orders and transport options, and being
willing to exclude sites that turn out to be inconvenient to include.
Nonetheless, this would be a frustrating task in the absence of
support for what we call tentative composition — meaning, in this
case, being able to compose and compare a number of alternative
itineraries, involving different sites and/or different visit orders.

We believe that the above three kinds of challenge can all be
addressed by offering users access to Web resources through
subjunctive interfaces: interfaces that allow a user to explore
alternatives by setting up multiple application scenarios at the
same time, viewing those scenarios side by side, and manipulating
them in parallel. In this chapter we report our investigations into
using subjunctive interfaces for Web access.

We begin by describing the RecipeSheet, the platform that we
have been using for our implementations. In the three following
sections we then introduce three usage examples that address
challenges of the kinds given above, and for each example discuss
briefly its applicability to common modes of use of today’s Web.
After these examples we address a potential downside to this
work: that in seeking to make it easier to pursue an exploration
that brings a range of information to a user’s screen, we may be
counter-productively increasing the burden on the user who then
has to evaluate that information. We outline our plans for
investigating this issue as part of our ongoing work.

SUPPORTING MULTI-SCENARIO WEB
ACCESS

Our recent work has been based on implementing Web access
mechanisms for the RecipeSheet [11][12], a spreadsheet-inspired
environment that has built-in subjunctive-interface features and
therefore supports parallel exploration of alternative calculations
and their results. Like a spreadsheet, the RecipeSheet supports the
setup of flow-like calculations in terms of dependencies between
cells. The subjunctive-interface features mean that the cells
providing inputs at the start of a flow can hold multiple values
simultaneously, the user can set up alternative scenarios based on
chosen combinations of those values, and the cells holding derived
values will then show the results for all scenarios, colour-coded
and/or spatially arranged to help the user understand which result
arose from which scenario.

A RecipeSheet user defines inter-cell dependencies in terms of so-
called recipes. There is a set of standard recipes, such as for
extracting particular tagged elements from a chunk of XML, but
users are also expected to create their own. Recipes can be
programmed directly in Smalltalk, Open Object Rexx, or XQuery;
recipes capturing behaviour from Web applications can be built
using the mechanisms of C3W [4], and Web-service recipes can
be created with the help of SOAP or REST. In addition, the setup
of cells and recipes on a sheet can be saved as a composite recipe,
that can then be used on other sheets.

Clearly, only the kinds of Web access that can be coded as recipes
— taking one or more input values as parameters, and providing
one or more results — can be used within the RecipeSheet. The
inputs and the results can be simple textual or numerical values, or
of richer types including XML and HTML. Our early
demonstrations of C3W showed how simple HTML Web
applications can be captured in a suitable form for this calculation
model. We also explained that while some Web-application results
can conveniently be delivered as string or numerical values,
allowing easy follow-on processing, for applications that present
their results in carefully crafted displays it may be preferable to
clip and show those complex displays as they are. As shown in
[12], a cell containing such a display can still be used to supply
inputs for further cell dependencies, for example by letting the
user select desired HTML sub-elements directly within the cell.

A further property of the RecipeSheet is that the processing for a
recipe is itself an ingredient — in other words, an input — that can

be specified in a cell. The RecipeSheet can therefore provide
uniform handling of variation in both inputs and processing, which
seems a natural requirement in some forms of Web access. For
example, whereas one user may want to view the results of
sending alternative keyword queries to a single search engine,
another might want to send the same query to multiple engines.
On a recipe sheet both forms of variation are straightforward, as is
dynamically switching between the two.

Given an environment in which multiple Web-access scenarios
can be supported, the potential benefits to be gained depend on
how such scenarios are created and used. Each of the situations in
the Introduction can be helped by a subjunctive interface being
used in a different way: to support parallel retrieval, coordinated
manipulation, and tentative composition respectively. The
following implementation examples illustrate these three modes of
use.

PARALLEL RETRIEVAL

Parallel retrieval refers to enabling the user of a retrieval-style
application, such as a flight enquiry site, to specify not just a
single retrieval but several alternatives, differing in arbitrary ways,
at the same time. These retrievals are handled in parallel as
separate scenarios, and their results displayed in such a way that
the user can see them all simultaneously, and can see which
retrievals delivered which results.

Fig. 1 shows a sheet that has been set up to find related research
articles. The results in the relatedPapers cell are marked up, and
then sorted, according to which scenarios they appear in. On the
sheet that appears in the background, we can see that even though
the three queries are all based on papers about the same Elastic
Windows project, just three results were found by all three queries
whereas several results were found by one query only. Thus a user
who had arbitrarily chosen just one paper as the starting point
would have missed out on many results that could be relevant.

Many researchers are investigating how the quality of search
results eventually chosen by users is affected by the number and
the order of the results that are presented. Keane et al. [5] found
that users of Google are biassed towards choosing items near the
top of the result lists, even though the chief measure determining
the result order (link popularity) is not a direct reflection of item
quality. Pandey et al. [14], seeking to counteract the Entrenchment
Problem whereby new Web pages, even if of high quality, score
low in search-engine rankings and are therefore denied the top
positions that would get them noticed, discuss methods for
randomly boosting some papers' ranks so that they have more of a
chance of being seen.

We suggest that presenting the merged results from multiple
searches is another way to work around the bias of any individual
search. In [10] we demonstrated how augmenting a Google search
with a set of additional searches narrowed by date (e.g., by adding
1990..1999’ to the search phrase) could bring to light items that,
though coming at the very top of the results for their particular era,
were drowned out of the top entries in a standard (non-date-
narrowed) search. We also suggest that allowing users to see why
each item is being offered — for example, that it appeared high in a
1990s search but not in any other — will help them to judge the
item’s relevance. Muramatsu and Pratt [13] made a call for this
kind of ‘transparency’ in search engine results, to help users of
search engines to understand — and to take control over, if they
wish — the transformations (such as stop word removal or suffix
expansion) that are applied automatically to their queries. Such

®(© |Osetup recalc Mauto| Layout: FindRelatedPapers

@ paperQuery

n Elastic Windows: Evaluation of Multi-Window Operations - Kandogan, Shneiderman (1997)

Elastic Windows: A Hierarchical Multi-Window World-Wide Web.. - Kandogan, Shneiderman (1997

Elastic windows: improved spatial layout and rapid multiple.. - Kandogan, Shneiderman (1996)

> |® findRelated L3
ActiveBibliography
Bibliography
CitingPapers
RelatedByCocitation
SameAuthorPapers
=) similarPapers

) relatedPapers

Star Coordinates: A Multi-dirr | Visua

®© M | recalc Lilauto\ Layout: FindRelatedPapers
I

4

= Encountering Awareness Information with G |® paperQuery
Managing Multiple Views Using Split-views -
Embodied Modelling Tools in a 3D Environm
Elastic Windows: Improved Spatial Layout a
Designing Information-Abundant Web Sites:
Reflections on Authoring, Editing, and Mana
Browsing Hierarchical Data with Multi-Level
Time-Frequency Formulation, Design, and.. -

[EX) Forms/3: A first-order visual language to explore the.. - Burnett, Atwood, al. (2001)

[|3 findRelated 12
D ActiveBibliography -
Bibliography
B citingPapers
RelatedByCocitation
SameAuthorPapers
SimilarPapers

Symmetric Stereo With Multiple Windowing |® relatedPapers b

User Interfaces for a Complex Robotic Task: Similarity Inheritance: A New Model of Inheritance for.. - Djang, al. (1998)

Eohancement otLocal Datlc How' i schni.s A Scalable Method for Deductive Generalization i the.. - Burnett, Yang, Summet (2002)
Graphical Definitions: Expanding Spreadsheet Languages.. - Burnett, Gottfried (1998)
Slicing Spreadsheets: An Integrated Methodology for.. - Reichwein, Rothermel, .. (1999) i@ xScenario
Detecting Errors in Spreadsheets - Ayalew, Clermont, Mittermeir (2000) =>

M Adding Apples and Oranges - Erwig, Burnett (2002)
¥ FAR: An End-User Language to Support Cottage E-Services - Burnett, Chekka, Pandey (2001)
" Interactive, Visual Fault Localization Support for .. - Ruthruff.. (2004)
End-User Assertions: Propagating Their Implications - Summet, Burnett (2002)
Final Report on FAR: An End-User Language to Support Cottage.. - Chekka, Burnett (2001)
Graphical Definitions: Making Spreadsheets Visual through.. - Gottfried, Burnett (1997)
Static Type Inference for a First-Order Declarative Visual .. - Djang, Burnett, Chen (2000)

Fig. 1 Parallel Retrieval. Searching for academic articles, using mechanisms captured from the CiteSeer and DBLP Web sites.
For an article specified in paperQuery, the sheet uses the recipe specified in findRelated to find related papers. The user has set
up the sheet so that results from multiple scenarios are merged into a single list, with markup to show which scenarios each
item appears in. In the sheet in the background the user has requested a “similar papers' retrieval for each of three articles
from the same project; in the foreground, four alternative retrievals based on a single article.

transparency in result presentation has recently gained much
attention; an extensive survey is found in [2].

However, it is far from clear how best to augment a search-result
display to help the user understand where each result has come
from. Dumais et al. [3], studying the impact of alternative formats
for marking up results with automatically derived category
information (e.g., distinguishing the various topics of pages
retrieved by an ambiguous query such as “Jaguar”), found that
users were much quicker at finding relevant items from lists
divided according to category than from the complementary form
of display in which category information was added to each item
in a single list. For an application such as that shown in Fig. 1,
where items typically belong to multiple scenarios (cf. a unique
category), and where this multiple membership itself has meaning,
the trade-off is likely to be less clear cut. In general we do not
expect that any single presentation approach would be optimal for
all parallel-retrieval situations; it depends too much on the nature
of the information within each scenario, and the distinctions
between scenarios. Our approach, therefore, is to give users the
mechanisms they need to build multi-scenario interfaces for their
own Web searches.

In any case, we believe that parallel retrievals are potentially
valuable for a wide range of Web usage situations. In Kellar et
al.’s [6] four-category classification of Web-based information-
seeking tasks, we regard parallel retrieval as being relevant to at
least Fact Finding and certain kinds of Transaction. Fact Finding
is used to refer to short-lived tasks for locating specific pieces of

information, while Transactions covers interaction with Web
applications such as shopping sites, or email or blogging tools.
The other two categories of information seeking — Information
Gathering, and Browsing — are by their nature less structured, and
therefore less likely to have the regularity that makes parallel
retrieval practical.

The fact that some Transaction-style operations have side effects,
such as making purchases, would set a context-specific boundary
on the actions that most users would want to perform in parallel.
Whereas it would be reasonable to enquire about room prices at
several hotels for the same date, for example, it would be unusual
then to proceed to book them all. On the other hand, if the user’s
task happens to be to find a single hotel with a room available for
each of several separate visits, proceeding to make a simultaneous
booking for a set of enquiries (i.e., the various visits) might indeed
make sense. Such an operation would fall within what we refer to
as coordinated manipulation, as described in the next section.

COORDINATED MANIPULATION

By coordinated manipulation we mean having simultaneous
control over several instances of an interactive application; in the
introduction we gave the example of using this for browsing
images. Within a subjunctive interface these application instances
would typically reside within distinct scenarios created by the user.

Fig. 2 shows a RecipeSheet built for the European Union's
integrated project ACGT, which is pursuing (among other things)
the development of an ‘Oncosimulator’ that can reliably simulate

a0 [Dsetup

FREMCH Couto | 4 Layout: OncoRecipeShaet

J celcycla(h) B [ACT Wil (lmp, svem) - hour chp sice

3 sheep fruction

@ 0 |Dsetup recalesl Clauto | 4 Layout: OncoRecipeSheet

[vem v e, svem) B

I { b
& chip slice W)

Scelloycle () 1> |3 ACT kol (limp, stem) > 3 hour
5 010 A
1
o - 3 view
2 sleep fraction 1>
"
[G ey froction & %
B o [
=
3 plot " 2
Latey real final —

Fig. 2 Coordinated Manipulation. Two views of a sheet for exploring results from the ACGT Oncosimulator, a model for
predicting the response of a patient-specific tumour to various forms of therapy. The five input cells at top left set the values
for various simulation parameters. Here the user has set up three scenarios representing three levels of responsiveness to
chemotherapy. In the large cell on the right, which shows an interactive 3D visualisation of the simulated tumour, user
manipulation is mirrored across all scenarios; in the background we see the outcome of rotating about a horizontal axis.

cancer growth and treatment. The 3D visualisation on the right of
the sheet supports a limited form of direct-manipulation
interaction: by clicking and dragging with the mouse, a user can
rotate a view about horizontal and vertical axes. When there are
multiple scenarios, and hence multiple views, their orientations are
synchronised by the RecipeSheet such that rotating any one view
causes the others to rotate the same amount, as seen in the figure.
Such synchronised interaction is a staple of recent developments
in coordinated and multiple views [15], where it is recognised as a
powerful technique for helping users to understand related data.

What is not readily apparent from the picture is that these views
are in fact Web browsers, and the visualisations AJAX-enabled
pages. This provides the scope for implementing coordination at
various levels, potentially applicable to a wide range of
applications. The simplest form of coordination involves mirroring
operations at the level of individual mouse and keyboard events.
This allows coordinated control of visualisations that, like the 3D
view in the figure, give uniform responses for user actions at
equivalent coordinates within the view. If one were to open a set
of Google Maps pages on different locations, for example, the
operations of panning, zooming and image selection could be
mirrored at this level. Typing in a request for navigating from the
map location to some other (common) location should also work,
showing the different routes in the individual views. Where this
simple approach would break down is if the user switches into a
mode such as a city's Street View, where the interaction options
available depend on one's precise location in the city.

A next level of coordination would be through identifying and
mirroring logical events: abstracting combinations of mouse
movements and clicks to make up events such as selecting a menu

item, or highlighting the entity at some location within an HTML
page's DOM tree. Going a level higher still, one could employ
mechanisms such as those of Koala/Coscripter [9][7] to record and
share operations in a way that would be robust even in the face of
(some) differences in page layout.

Mirroring events at an abstract level therefore makes it possible to
support not just manipulation of the objects within Web pages, but
coordinated clicking of link anchors to navigate from one page to
the next through matching regions of a Web site — for example,
through standardised sets of pages relating to hotels on a travel
site, or proteins on a bioinformatics site. Hence, as mentioned
above, the possibility of querying a travel service to find a hotel
that has a room available for each of several visits, then going
through the booking procedure for all those visits together.

The above discussion shows how a given task can straddle the
border between parallel retrieval and coordinated manipulation.
Work by Teevan et al. [17] suggests that much directed search on
the Web - that is, search for a target that is known in advance to
exist — is carried out as a mixture of the basic elements that
underlie the two. Teevan et al. distinguish between, on the one
hand, teleporting, by which they mean jumping directly to a Web
page found as the result of a query, and on the other hand
orienteering, their term for localised, situated navigation that
begins at a familiar starting point (such as a portal) and narrows in
on the target. As noted before, the best we can do as interface
designers is provide facilities for users to choose for themselves
the mix of teleporting and orienteering, and the range of scenarios
over which they wish to perform the two. For now we are
investigating what facilities make sense for the user group
developing and calibrating the ACGT Oncosimulator.

@0 | Osetup recalc Mauto | € g% B Layout: HtmiStyle

wm Web\subjunk-intro.htm

@ font I |B3 fontSize L8
arial m 14
m courier new 18
comic sans 22
palatino
@ backColour I* |@ textColour =8
m Wwhite mm black
tan red
black green

B fileName % |EB page
web\index.htm
web\japan htm supjuncive intarace s Visuansatior
- Alternative narios

n& Tor Parailal Dispiay ana Control of [

Sunjunctive Interfaces: Visualizatisna for Parallal
Display and Centrel of Altarnative Scenaries

W 2

Subjunctive Tnterfaces: Visuslisations for Parallel Display asd Contrel of |
= Altermative Scenanies =

Subjusctive Interfaces: Vissalisations & Pamallel Display and Contrel of
Alrérastive Sceenrios

.
n

Acum Lummes 1t Basper Bamik

= =
1z .I:_l. o

Fig. 3 Tentative Composition. In this case what is being composed is a rendered Web page, based on values supplied for the
page content and for various style-defining parameters. The user has set up four alternative ‘compositions’, and can see at a
glance differences between them, such as how the font style affects the amount of space needed to render a given paragraph.

TENTATIVE COMPOSITION

Some Web-based tasks can be characterised as the composition of
multiple pieces of retrieved information, where it is the overall
composed entity that serves the user’s purpose, rather than the
elements on their own. The example given in the Introduction, of
building a sightseeing itinerary, is essentially a composition of the
route recommendations returned by the navigation service in
response to various point-to-point queries. Being able to
experiment with and compare alternative compositions, such as in
this case varying the sequence of locations to be visited, is what
we refer to as tentative composition.

As with the preceding two modes of use, tentative composition
covers a broad range of users’ tasks. At the simple end of this
range are tasks in which the ‘elements’ being combined are merely
the values for placeholders within a structure that has been defined
in advance: an everyday example would be the choice of starter,
main course and dessert to make up a meal; using today’s Web
one might create an office party invitation by composing venue
details, transport information, and a map. Cases such as these can
be treated simply as parameterised retrievals, and therefore
explored using parallel-retrieval mechanisms.

At the complex end of tentative-composition tasks are cases of
general design with arbitrarily many degrees of freedom, such as

the planning of a new building or of a multi-continent concert tour.

For some of these complex domains there are already specialised
applications that include support for exploring design alternatives,
and we are not suggesting that generic mechanisms for handling
multiple scenarios could provide a similar strength of support. We
believe that subjunctive interfaces will make their mark on small-
scale, ad hoc composition of Web resources.

Supporting tentative composition requires, first, providing a
substrate on which compositions are built. Then there must be a
convenient way for the user to specify alternatives, and supportive

mechanisms for viewing the corresponding outcomes and
understanding how they differ — either in terms of the final results,
or the alternative specifications that led to them. The RecipeSheet,
having been designed to work as a substrate for flow-based
calculations based on values supplied in cells, is inherently suited
to the simplest kinds of tentative composition which, as stated
above, can be set up like parallel retrievals. Fig. 3 shows one such
example, where the ‘composition’ being carried out is the building
of a Web page, complete with style information.

Beyond these simple cases, the RecipeSheet’s supportiveness
depends on how the composition is defined as a calculation flow.
The building of a sightseeing itinerary could be tackled in various
ways: one possibility is to have a cell defining each sequential step
in the itinerary (for example, one cell specifying the first visit
address, a second cell specifying the second visit, and so on);
another is to have a single cell in which the whole itinerary is
specified as a list of addresses, and that lets the user specify
different lists for different scenarios. The fact that the RecipeSheet
makes it as easy to specify alternative processing as alternative
parameter values would be useful in experimenting with
alternative navigation services within these itineraries. However,
we readily admit that both of the above approaches have
potentially troublesome limitations: for example, the first would
be highly inefficient for a user who wished to try adding or
removing one visit from an existing itinerary, while the second
would provide poor support for grasping rapidly how two or more
itineraries differ.

While we are sure that the current design of the RecipeSheet is not
the final answer in terms of supporting tentative composition in
general, we believe its current level of support is sufficient to
begin evaluation on exploratory tasks of this kind.

RISKS OF COGNITIVE OVERLOAD: THE

PARADOX OF CHOICE

The Paradox of Choice is the title of a popular book by Barry
Schwartz [16], in which he points out that although having some
freedom to make choices in your life feels much better than having
no choice at all, too much choice is a problem in its own right.
People get stressed by the amount of mental effort involved in
weighing up alternatives, by the worry that other, better
alternatives are somewhere out there to be found, and, after
making a choice, by the fear that on balance one of the rejected
options might have been better.

Given that subjunctive interfaces are intended to improve the
quality of information users receive by encouraging them to
request and view more alternatives, Schwartz's studies undeniably
suggest that we might be doing our users more harm than good.
Especially given the vast amount of information available over the
Web, it can be argued that what users desperately need is more
filtering, not more retrievals.

However, we feel that the current popular approach to helping
users make sense of the Web — namely, using some hidden
ranking or other heuristics to deliver a small, possibly high-quality
but necessarily biassed selection of results — is asking users to put
too much trust in online systems. There is some evidence that
users are alert to this: for example, Lin et al. [8] found, in a study
of users’ attitudes to question-answering systems, a tendency to
feel uncomfortable accepting answers from systems that provided
only the bare answer. The users wanted to see some context
surrounding the answer, to help them confirm its legitimacy.

Nonetheless, there are also plenty of studies showing that giving
users too much to do is counter-productive. Beaulieu and Jones [1]
discuss the interrelationship between the visibility of system
functions, the balance of control between user and system, and the
user’s cognitive loading. They found that a relevance-feedback
retrieval interface that was designed to keep users in control of
their queries, by revealing the details of the feedback-derived
query terms and requiring the users to review and adjust those
terms, in fact caused users to play a less active role; making the
adjustments would have been just too much work. Muramatsu and
Pratt [13], who concluded from their study of transparent queries
(mentioned earlier) that perhaps the best style of interface would
be a ‘penetrable’ interface — one that lets the user know what has
been done, and also provides a chance to change it — made a point
of adding the caveat that providing too much control could
inadvertently overload the user.

Part of the issue, as Beaulieu and Jones note, is that users need to
feel that the decisions available to them are relevant to their
personal information needs, rather than being just artefacts of the
interface. For our own goals of deploying end-user programming
and customisation techniques that help users to express a range of
directions to investigate, and then to make sense of the
corresponding range of results, we must strive to ensure that users
will perceive this effort as part of what they wanted to do anyway.
If we can achieve that, there is hope that users will regard the
ability to set up and work with multiple scenarios as a welcome
level of choice, rather than an unwelcome source of stress.

STATUS AND PLANS

In this chapter draft we have outlined the role we believe
subjunctive-interface mechanisms can play in supporting users’
access to Web resources. In particular, we have identified three

kinds of challenge in Web-based interaction for which subjunctive
interfaces appear to be useful. We regard all three as lightweight
instances of end user programming, given that the user is
exploiting interface facilities to build a personal, customised view
of available information.

Over the coming months we plan to run various studies to obtain
evidence about the usability and effectiveness of the techniques
described here; our findings will be added to the second draft, for
inclusion in the final version. One study will be based on the use
of the RecipeSheet in support of the ACGT Oncosimulator, where
we hope to see users readily applying the scenario-management
facilities to request and gather results of simulations under
meaningful collections of alternative conditions, and also making
appropriate use of the coordinated-manipulation facilities in
exploring the corresponding results. In another study we shall
investigate users’ understanding of and preferences regarding the
merged presentation of parallel retrievals, seeking to build on the
context-presentation findings of [3] and follow-on work. Finally,
we hope to be able to provide some quantification of the Paradox
of Choice effects that the introduction of multi-scenario facilities
seems likely to induce.

REFERENCES

[1] Beaulieu, M. and Jones, S. (1998). Interactive searching and
interface issues in the Okapi best match probabilistic retrieval
system. Interacting with Computers, 10(3), 237-248.

[2] Cramer, H., Evers, V., Van Someren, M., Ramlal, S.,
Rutledge, L., Stash, N., Aroyo, L. and Wielinga, B. (2008)
The effects of transparency on trust and acceptance in
interaction with a content-based art recommender. User
Modeling and User-Adapted Interaction, 5.

[3] Dumais, S., Cutrell, E., and Chen, H. (2001). Optimizing
search by showing results in context. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (Seattle, Washington, United States). CHI '01. ACM,
New York, NY, 277-284. DOI=
http://doi.acm.org/10.1145/365024.365116

[4] Fujima, J., Lunzer, A., Hornbzk, K. and Tanaka, Y. (2004)
Clip, Connect, Clone: Combining Application Elements to
Build Custom Interfaces for Information Access. In
Proceedings of ACM UIST 2004, October; Santa Fe, NM,
175-184.

[5] Keane, M. T., O'Brien, M., and Smyth, B. (2008). Are people
biased in their use of search engines?. Commun. ACM 51, 2
(Feb. 2008), 49-52.

[6] Kellar, M., Watters, C. and Shepherd, M. (2007). A field
study characterizing Web-based information-seeking tasks. J.
Am. Soc. Inf. Sci. Technol. 58, 7 (May. 2007), 999-1018.
DOI= http://dx.doi.org/10.1002/asi.v58:7

[7] Leshed, G., Haber, E. M., Matthews, T. and Lau, T. (2008).
CoScripter: automating and sharing how-to knowledge in the
enterprise. In Proceedings of the Twenty-Sixth Annual
SIGCHI Conference on Human Factors in Computing
Systems (Florence, Italy, April 05 - 10, 2008). CHI '08. ACM,
New York, NY, 1719-1728. DOI=
http://doi.acm.org/10.1145/1357054.1357323

[8] Lin,J., Quan, D, Sinha, V., Bakshi, K., Huynh, D., Katz,
B. and Karger, D. R. (2003). What Makes a Good Answer?
The Role of Context in Question Answering. Proceedings of
the Ninth IFIP TC13 International Conference on Human-

Computer Interaction (INTERACT 2003), September 2003,
Zurich, Switzerland, 25-32.

[9] Little, G., Lau, T. A, Cypher, A., Lin, J., Haber, E. M. and
Kandogan, E. (2007). Koala: capture, share, automate,
personalize business processes on the web. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (San Jose, California, USA, April 28 - May 03,
2007). CHI'07. ACM, New York, NY, 943-946. DOI=
http://doi.acm.org/10.1145/1240624.1240767

[10] Lunzer, A. (in press). Using Subjunctive Interfaces to Put
Delivered Information into Context. Knowledge Media
Science: Preparing the Ground. K.P. Jantke, R. Kaschek, N.
Spyratos and Y. Tanaka, Eds. Lecture Notes in Artificial
Intelligence, vol. 4980, in press.

[11] Lunzer, A. and Hornbak, K. (2006). An Enhanced
Spreadsheet Supporting Calculation-Structure Variants, and
its Application to Web-Based Processing. In K.-P. Jantke, A.
Lunzer, N. Spyratos and Y. Tanaka (eds.) Proceedings of the
Dagstuhl Workshop on Federation over the Web, Dagstuhl
Castle, Germany, May 2005 (Lecture Notes in Artificial
Intelligence, Vol. 3847 - 2006), 143-158.

[12] Lunzer, A. and Hornbak, K. (2006). RecipeSheet: Creating,
Combining and Controlling Information Processors. In
Proceedings of the 19th Annual ACM Symposium on User
interface Software and Technology (UIST '06), Montreux,
Switzerland, Oct 2006, 145-153.

[13] Muramatsu, J. and Pratt, W. (2001). Transparent Queries:
investigation users' mental models of search engines. In
Proceedings of the 24th Annual international ACM SIGIR

Conference on Research and Development in information
Retrieval (New Orleans, Louisiana, United States). SIGIR '01.
ACM, New York, NY, 217-224. DOI=
http://doi.acm.org/10.1145/383952.383991

[14] Pandey, S., Roy, S., Olston, C., Cho, J. and Chakrabarti, S.
(2005). Shuffling a stacked deck: the case for partially
randomized ranking of search engine results. In Proceedings
of the 31st international Conference on Very Large Data
Bases (Trondheim, Norway, August 30 - September 02,
2005). Very Large Data Bases. VLDB Endowment, 781-792.

[15] Roberts, J. C. (2007). State of the Art: Coordinated \&
Multiple Views in Exploratory Visualization. In Proceedings
of the Fifth international Conference on Coordinated and
Multiple Views in Exploratory Visualization (July 02 - 02,
2007). CMV. IEEE Computer Society, Washington, DC, 61-
71. DOI= http://dx.doi.org/10.1109/CMV.2007.20

[16] Schwartz, B. (2004). The Paradox of Choice: Why More is
Less. Harper Perennial. ISBN: 0-06-000569-6

[17] Teevan, J., Alvarado, C., Ackerman, M. S., and Karger, D. R.
(2004). The perfect search engine is not enough: a study of
orienteering behavior in directed search. In Proceedings of
the SIGCHI Conference on Human Factors in Computing
Systems (Vienna, Austria, April 24 - 29, 2004). CHI '04.
ACM, New York, NY, 415-422. DOI=
http://doi.acm.org/10.1145/985692.985745

[18] Terry, M. and Mynatt, E.D. (2005). Enhancing general-
purpose tools with multi-state previewing capabilities.
Knowledge-Based Systems, 18, 2005. 415-425.

	Subjunctive Interfaces for the Web
	ABSTRACT
	Keywords

	INTRODUCTION
	supporting Multi-scenario web access
	parallel retrieval
	coordinated manipulation
	tentative composition
	risks of cognitive overload: the paradox of choice
	Status and plans
	REFERENCES

