From Web Summaries to Search Templates:
Automation for Personal Tasks on the Web

Lubomira A. Dontcheva

March 8, 2009

As the amount of content delivered over the World Wide Web grows, so
does the consumption of information. And although advancements in search
technologies have made it much easier to find information on the Web, users
often browse the Web with a particular task in mind, such as arranging travel
plans, making purchases, or learning about a new topic. When users have a task
in mind, they are often concerned not only with finding but also with collecting,
organizing, and sharing information. These types of browsing sessions, which we
call exploratory Web research sessions, typically last a long time, span several
sessions, involve gathering large amounts of heterogeneous content, and can be
difficult to organize ahead of time, as the categories emerge through the tasks
themselves [20]. Current practices for collecting and organizing Web content
such as using bookmarks or tabs, collecting content in documents, storing pages
locally, or printing them out [12] require a great deal of overhead as pages must
be saved manually and organized into folders, which distracts from the real task
of analyzing the content and making decisions.

In our work we break out of the webpage paradigm and consider the indi-
vidual pieces of content inside of the webpage to be the basic unit that must
be collected, as it is the information inside the webpage that is of most impor-
tance. If the goal is to let people more easily accomplish their information tasks,
then tools must support the manipulation of information, not webpages. In this
chapter we discuss the Web Summaries project, which was first published in
two papers [6, 5].

There are a few examples of systems that give users access over the content
inside of a webpage, such as HunterGatherer [19], Internet Scrapbook [22], and
C3W [8], but it is the Semantic Web that promises to truly transform the
way people manipulate information. Unfortunately, the Semantic Web remains
unrealized largely because it requires a large collaborative effort in defining
an appropriate data representation and adopting that representation. Content
providers are not yet willing to invest in embedding semantic information into
the existing Web and coordinating their efforts with others.

We take advantage of three trends in the World Wide Web — the grow-
ing number of structured webpages, the vast rise in online collaboration, and
pervasive search technologies — and present a new approach for collecting and

organizing Web content in a set of semi-automatic interaction techniques and
algorithms that allow people to not only collect and organize Web content more
quickly and easily but also enable them to build a form of the Semantic Web as
they accomplish their own tasks.

1 The User Experience

We designed the interface of the Web Summaries system with the goal of making
the process of collecting information as unobtrusive as possible and allowing
the user to focus on the task at hand rather than worry about organizing and
keeping track of content. The system is implemented as an extension to the
Firefox browser and is presented to the user through a toolbar (see Figure 77).
The toolbar includes four buttons and a checkbox. The “Start” button opens
the “summary” window that displays a visual summary of the content gathered
thus far. The “Select” button initiates the selection mode and enables the user
to select and label pieces of Web content. The “Add Page” button allows the
user to automatically add the content found by an extraction pattern to the
summary. This button is enabled only when there is a matching pattern that
can be used to extract content automatically. The “Add Linked Page(s)” button
initiates a different selection mode in which the user can select any number of
hyperlinks to add the content from the linked pages to the summary directly and
simultaneously. A checkbox specifies whether to visually outline the elements
found by an extraction pattern on a new webpage. If it is checked, the elements
found are outlined in purple. The summary window (shown in Figure 1a) has
buttons for opening and saving summaries and a menu for changing the layout
template used to compose the summary.

1.1 Sample user scenario

To help explain the interface, we describe an example user scenario and show
the steps taken by the user to create a summary. In particular, we describe the
steps a user takes in planning a night out in the city of Seattle.

The user starts the browsing session by visiting www.nwsource. com and look-
ing through restaurant listings. When he finds a restaurant he wants to save to
his summary, he presses the “Select” buton, which enables the selection mode.
This mode disables the webpage’s default functionality to allow the user to se-
lect page elements, such as a paragraph or an image. As the user moves the
cursor over the webpage, the page element directly underneath the cursor is
outlined in red. To select an item, the user clicks with the left mouse button.
The outline becomes purple, and the item remains highlighted while he selects
other elements. The user also assigns a label to each selected element with a
right-button context menu. This label assignment step is necessary because the
summary layout templates are defined with respect to these labels. To finish the
selection mode and save the selected elements to the summary, the user turns
off the “Select” button. The system stores the selected elements locally and

builds an extraction pattern for the selected elements in that page. The user
can view the collected content as a summary at any time by going back to the
summary window and selecting a layout template, such as a calendar, map, or
grid.

When the user finds a new restaurant he wants to save, all he has to do
is press the “Add Page” button and all of the same content is automatically
added to the summary. He can also add several restaurants to the summary
simultaneously by selecting hyperlinks. To add content simultaneously, the
user presses the “Add Linked Page(s)” button, which enables the hyperlink
selection mode. To finish selecting hyperlinks, the user turns off the “Add Linked
Page(s)” button, and the content from all the linked pages is simultaneously
added to the summary.

The user can select new page elements for pages he has already visited, with-
out returning to the page where he first selected the elements. For example, to
add the address to all the already gathered restaurants, he can select the ad-
dress on any restaurant page. He again initiates the selection mode with the
“Select” button and selects the address. The elements corresponding to previ-
ously selected page elements are highlighted in purple. When he is finished, the
summary is automatically updated to include the addresses of all the events he
has already gathered. Because the saved restaurants now include an address, the
user can see where they are located using the map layout template (Figure 1b).

In addition to gathering information about restaurants, the user can collect
any other type of information, such as movies or current events in the area.
When he goes to a new website and wants to add content, he must first specify
which content for that website is relevant. This is necessary because this system
gathers content using the structure of a given webpage, as we describe in the
next section, and different websites have different structures. If, however, he has
been to this website in a previous browsing session and has already specified
important elements, he can use the same specification and automatically collect
new content. Since the labels assigned to data from different websites are a
constrained set, all the content can be presented uniformly in one summary. The
user can add content from any number of sites and go back and forth updating
the summary. All summary elements are linked to the original webpages, and
the user can navigate directly from the summary and return to those webpages.

1.1.1 Relations

As he looks through his set of saved restaurants, the user decides to check
the review website yelp.com and look for reviews. He finds reviews about the
restaurant Brasa, which is in his collection and decides to add them to his col-
lection. He again selects the parts of the webpage of interest and adds them to
his collection. Since the content extracted from nwsource.com and yelp.com
refers to the same restaurant, the user can relate them together. To create a
relation, he draws a line from the name, “Brasa,” collected from nwsource.com
to the name, “Brasa Restaurant,” collected from yelp.com (Figure ??a). The
system responds by visually joining the extracted content and displaying “Con-

~ hotels.confd

(a) (b)

Figure 1: (a) The grid layout template places all the content in the database
on a grid in groups, according to extraction pattern. (b) With the map layout
template, the user can view the content with respect to a geographical map.
The template filters the database and presents only content that includes an
address.

necting nwsource.com to yelp.com.” Now, when the user adds a new restaurant
from nwsource.com to his collection, the corresponding review from yelp.com
is automatically retrieved and added to the collection. He can also collect hyper-
links pointing to potentially interesting restaurants at nwsource.com, and the
reviews for those restaurants will be automatically collected from yelp.com).

Upon inspecting his collection of restaurants, the user decides that he might
need to take the bus to his dinner destination. He visits the website metrokc.gov
and finds bus information for the downtown area. He adds the bus information
to his collection and interactively connects the neighborhood of Brasa — “down-
town” — to the bus route information). Now when he collects a new restaurant,
the system will automatically collect reviews for the restaurant from yelp.com
and bus schedules from metrokc.gov. To retrieve the bus schedules for all the
restaurants he has already collected, the user clicks on the “Update All” button,
and the corresponding bus schedules are retrieved automatically.

If the retrieved results are not the correct ones, the user can click on the
icon in the bottom right corner and see any other content that was retrieved.
For example, if he clicks on the icon for the “Brasa Restaurant” from yelp.com,
he will see a lit of other “Brasa” restaurants that were retieved from yelp.com,
such as “Pollo Brasa y Sazon,” “Pollo a La Brasa Vermont,” “Fogo E Brasa,”
or “Pollos A La Brasa Marion.” The user can at any time pick the best content
from this list or return to a website to collect new information.

1.1.2 Cards

As the user collects more content, his collection space quickly fills up. The
user can address the growing clutter by creating a specialized card that displays

only the information of interest. To create a card, the user clicks on the “New
Card” button and opens a canvas for card design. He first draws the outline of
the card and then draws containers inside of the card. He places content from
his collection directly into the containers. The user can resize and reposition
the containers until he is satisfied. He clicks “Done,” names the card, and can
now view all the related collected content as personalized cards. Cards can be
designed for any size or purpose and can contain information from any number
of source webpages. They also include hyperlinks to the original webpages so
that the user can at any time return to the original content.

1.1.3 Search templates

In addition to collecting content by visiting actual websites, the user can also
collect content through keyword queries and a search template. Thus, a user
can go directly from a query term, such as "seafood,” to a series of cards filled
with content from multiple sources. The system collects seafood restaurants
and any related content. Search results are considered only temporary and are
not part of the user’s collection. Thus, they are displayed separately, below
the existing collection. The user can promote any search result to the actual
collection by clicking on the “+” button in the upper left corner. He can also
delete a card with the “x” button. This way the user can quickly scan through
many restaurants and identify good options.

A search template is defined implicitly by a user-defined card. To create a
search template, the user clicks on the “New Search Template” button, selects
a card, and can optionally add additional websites or relations to be part of the
template. A search template allows the user to package all of the work he has
already done in collecting and associating content and use it to find new content
more efficiently. Figure 2 shows a query for “chocolate cake” with the “recipes”
search template, which retrieves and reformats recipes from allrecipes.com
and cooking.com. Figure 3 shows several queries for different types of cars.
Each card includes car specifications and reviews from autos.msn.com and
edmunds. com.

The Web Summaries experience separates the content presented on the Web
from its structure, presentation, and source, and allows the user to create per-
sonal summaries of content. This type of interface can lower the overhead of
gathering and managing data and allow the user to focus on the task at hand.

2 System Design

We first describe the overall system and then explain the technical details for
each part. The system includes five components: an extraction pattern reposi-
tory, a data repository, a set of pre-defined layout templates, user-defined cards,
and a set of search templates. The extraction pattern repository contains pat-
terns defined from the user-selected page elements. When the user visits a new
page, the patterns in the extraction repository are compared with the page. If

3 My Personal Web Yiew

Me b lamt b Cass » [nenced
o l & -

Lime Yogurt Pie Recipe Almost Flourless
Chocolate Cake Recipe

Update Al New Search Template | recpies

Flourless Chocolate Cake Hershey's ® Perfectly Cheesecake Topped
1 Chocolate’ Chocolate Brownies

Searching for cookies... (6)

& & A - A A

i / /
) b/

X * .4 X

Almond Cooldes Recipe Pumpkin Cookies | Big Soft Ginger Cookies Fortune Cookies | Easy Valentine Sandwich Award Winning Soft

Cookies Chocolate Chip Cookies

Searching for brownies... (6)

Mocha Brownies Recil
e Best Brownies Blonde Brownies | Best Brownies Fancy Brovnies Caramel Brownies Il

Figure 2: With the recipe search template, the user collects recipes from
cooking.com and allrecipes.com. Here the user has a collection of five cards
and has made two queries, one for “cookies” and and another for “brownies”.
The system automatically collects, extracts, and displays relevant recipes.

there are matches, the user can add the matching content to the data reposi-
tory. The data repository includes relation trees and the summary database that
holds all of the content collected by the user according to the source webpage
and semantic tags of the webpage elements. We refer to each piece of content
collected by the user as a webpage element. Each webpage element is associated
with a semantic tag, such as name, address, date, time, etc. All webpage ele-
ments collected on the same webpage form a record in the data repository. The
data repository also holds relations, which specify relationships between tags in
different records. Records that are related in this way form a relation tree.
The layout templates filter the database to create summary views. The user
can adapt the templates by authoring cards. A card defines which webpage
elements within a relation tree should be displayed and their visual arrangement.
The user can collect data by visiting webpages or through search templates.
A search template includes a set of websites and possibly relations for those
websites. When the user types a keyword query, the search template queries
each of the websites with the keyword, extracts content from the search results

with extraction patterns, triggers the collection of related content, and displays
them as a series of cards.

2.1 Gathering content semi-automatically

The page-element selection interface uses the Document Object Model (DOM)
structure to provide a mechanism for selecting content. When the user initi-
ates the selection mode, the typical behavior of the webpage is frozen, and the
browser mouse event handlers are extended to allow the user to select pieces of
the DOM hierarchy. As the user moves the cursor and clicks, the DOM nodes
directly underneath the cursor are highlighted. Once the user has selected a
set of nodes, the system generates an extraction rule for each selected node.
The extraction rule consists of the selected node, the path from the root of the
document to the selected node, and the user-assigned label. The path enables
finding analogous elements in documents with similar structure. Structural ex-
traction rules are also known as XPATH queries. The extraction rules rely on
consistent structure. Thus, if the structure changes, the user will have to go
back and re-specify extraction rules. Gibson et al. show that template mate-
rial changes every 2 to 3 months; however, they give few details on the types
of changes. To evaluate the performance of structural extraction patterns over
time, we conducted a five-month study of webpage changes. Please see [] for
details.

In addition to the structural extraction rules just described, the system also
provides content-based rules. Content-based extraction rules collect content
from new webpages by matching text patterns instead of structural patterns.
To specify a content-based rule, the user selects an element and labels it not
with a keyword, as he does with the structural rules, but with text from the
selected element that should be matched in analogous elements. For example, to
only collect articles by author “John” the user selects an article and its author,
chooses “semantic rule” from the right-button context menu, and types “John.”
A content-based rule first tries to find matching content using the structural
path, but if it is not successful, the rule searches the entire document. It finds
matching content only if the node types match. For example, if the rule finds
the word “John” in a <table> node and the selected node defining the rule is
in a <p> node, the rule will fail. This limits the number of spurious matches
and ensures consistency in the gathered content. The effectiveness and power of
content-based rules, when possible, was shown by Bolin et al. [3] in Chickenfoot.

The user may specify any number of extraction rules for a given page. As
those rules should always be applied together, the system collects the extraction
rules into extraction patterns and then stores them in the extraction pattern
repository. An extraction pattern can include any number of extraction rules
and can be edited by the user to add or remove rules. For example, the user
might care about the name, hours, and address of a restaurant. The system
creates an extraction rule for each of these elements and then groups them
together so that for any new restaurant page, it searches for all three page
elements in concert.

When the user visits a webpage, each available extraction pattern for that
Web domain is compared with the DOM hierarchy, and the pattern with the
highest number of matching rules is selected as the matching pattern. If the
user chooses to store the matched content, the webpage is stored locally, and the
elements found by the matching pattern are added to the summary database.
When the user selects hyperlinks to collect content from multiple pages simul-
taneously, the system loads the linked pages in a browser not visible to the
user, compares the pages with the extraction patterns, and adds all matching
elements to the database. If an extraction pattern does not match fully, it may
be because some of the content is absent from the page, or because the struc-
ture of the page is slightly different. In these cases, the user can augment the
extraction pattern by selecting additional elements.

Although the growing use of webpage layout templates for formatting and
organizing content on the Web makes it possible to automate collecting informa-
tion from the Web, this automation comes at a cost. The automatic extraction
is sensitive to the structure of HTML documents and depends on a sensible
organization to enable the selection of elements of interest. If the structure does
not include nodes for individual elements, the user is forced to select and include
more content than necessary. On the other hand, if the structure is too fine, the
user must select multiple elements, adding overhead to the selection process.
Most websites that do use templates tend to use templates with good structure,
because good structure makes it easier to automate webpage authoring.

2.2 Retrieval using relationships

When the user connects content collected from different webpages, he creates a
relation. We define a relation as a directed connection from tag; from website 4
to tag; from websitep. For example, when the user draws a line between the
names of the restaurants, he creates a relation from the “name” tag on North-
west Source to the “name” tag on Yelp. When the user connects restaurants
and buses, he creates a relation from the “area” tag to the “route” tag. All
relations are stored in the data repository and are available to the user at any
time. Webpage elements that are associated through relations form a relation
tree.

When the user collects content from a new webpage, the system checks for
relations that connect any of the collected webpage elements to other websites.
When such relations exist, the system uses them to generate new search queries
and limits the search results to the website specified in the relation. For example,
when the user collects information about the restaurant “Nell’s,” the system
generates two queries. To collect restaurant reviews it generates a query using
the “name” tag, i.e. “Nell’s,” and limits the search results to yelp.com. To
collect bus schedules the system generates a query using the “area” tag, i.e.
“Green Lake,” and limits the search results to the bus website, metrokc.gov.

To define this process more formally, the execution of a relation can be ex-
pressed as a database query. For a given relation r, where r = website 4.tag; —
websitep.tag;, one can express the process of automatically collecting content

for any new data record from websites for tag; as a JOIN operation or the
following SQL pseudo-query:

SELECT * FROM websitep WHERE websitep.tag; = website.tag;

Since the Web is not made up of a set of uniform databases, we use a number
of different techniques to make this query feasible. We use the Google Search
AJAX API to find webpages within websitep that are relevant. To extract
content from each of the search results, we employ the user-defined extraction
patterns. Finally, we designed a number of heuristics to compute a similarity
metric and rank the extracted search results. The system displays only the
highest ranked extracted search result to the user but makes the remaining
search results available.

In the current implementation, the system extracts content from only eight
search results because the Google AJAX Search API limits the search results
to a maximum of eight. For all of the examples in this dissertation, eight
search results are sufficient and limit the delay in collecting information. For
very common keywords, however, collecting eight search results is not sufficient.
For example, searching for “Chili’s” will yield many instances of the restaurant
chain. For those types of queries narrowing the search through one of the
approaches mentioned above would be necessary.

Our approach for collecting related content is limited to websites that are in-
dexed by general search engines. There are many websites, such as many travel
websites, that are not indexed by search engines because they create webpages
dynamically in response to user input. To handle these dynamic webpages, in
subsequent work we hope to leverage research into macro recording systems
such as WebVCR [1], Turquoise [16], Web Macros [18], TrIAs [2], PLOW [13],
and Creo [7]. These systems allow users to record a series of interactions, store
them as scripts, and replay them at any time to retrieve dynamic pages. Re-
cent research on retroactive macro recording could be even more applicable for
Web Summaries [11]. Madhavan et al. [15] are developing information retrieval
approaches to this problem that do not require user intervention.

The search process introduces ambiguity at two levels, the query level and
the search result level. The system must be able to formulate a good query so
that it can retrieve the relevant content. It must also be able to find the correct
result among potentially many that may all appear similar. Both of these forms
of ambiguity pose considerable challenges and are active areas of research. Liu
et al. [14] pose the query formulation problem as a graph partitioning problem.
Dong et al. [4] propose propagating information across relations to better inform
similarity computation. Next, we describe how we address these two types of
ambiguity.

2.2.1 Query formulation

We formulate two keyword queries in parallel. One query includes only the
extracted text content, and the other includes the extracted content and the tag
associated with the content. These two queries are usually sufficient to collect
the appropriate result within the top eight search results. Sometimes, however,

queries may include too many keywords, and the search results are irrelevant
or cannot be extracted. In such cases, We employ heuristics to reformulate the
query. If characters such as ‘/’,*-’,’4’, or -’ appear in the text, we split the
string whenever they appear and issue several queries using the partial strings.
We found this approach particularly effective for situations in which something
is described in multiple ways or is part of multiple categories. For example,
a yoga pose has a Sanskrit name and an English name. Querying for either
name returns results, but querying for both does not, as the query becomes too
specific. Other approaches for reformulating queries include using the semantic
tag associated with the webpage element or using additional webpage elements,
such as the address, to make the query more or less specific. With an interactive
system, processing a large number of queries can be prohibitive due to the delay
caused by the search and extraction process. We focus on finding good heuristics
that quickly retrieve results that are close to the desired content. If the system
fails to find a good search result, the user can always go to the website and
collect the content interactively.

2.2.2 Search result comparison

For each query we extract the first eight search results and rank the extracted
content according to similarity to the webpage content that triggered the query.
To compute similarity we compare the text of the extracted webpage elements
using the correspondence specified in the relation that triggered the search. For
example when collecting content for the “Ambrosia” restaurant from nwsource. com,
the system issues the query “Ambrosia” limiting the results to the yelp.com
domain. The search results include reviews for the following establishments:
“Ambrosia Bakery” (in San Francisco), “Cafe Ambrosia” (in Long Beach), “Cafe
Ambrosia” (in Evanston), “Ambrosia Cafe” (in Chicago), “Ambrosia on Hunt-
ington” (in Boston), “Ambrosia Cafe” (in Seattle), and “Caffe Ambrosia” (in
San Francisco). Because the relation between nwsource. com and yelp. com links
the names of the restaurants, we compare the name “Ambrosia” to all the names
of the extracted restaurants. We compare the strings by calculating the longest
common substring. We give more weight to any strings that match exactly.
For all seven restaurants in this example, the longest common substring is of
length eight; thus, they receive equal weight. Next, we compare any additional
extracted elements. We again compute the longest common substring for corre-
sponding webpage elements. In this example, we compare the addresses of the
extracted restaurants and compute the longest common substring for each pair
of addresses, resulting in a ranking that places the Seattle restaurant “Ambrosia
Cafe” as the best match to the original content. We display the highest ranked
extracted content but provide all of the extracted content to the user so that
he can correct any errors. The highest ranked content is marked as confident
when multiple webpage elements match between websites.

The problem of retrieving related information from multiple different sources
is described in the database community as data integration [10]. Data integra-
tion is the problem of combining data residing in different sources and providing

10

9 My Personal Web View

Fle » layout » Cards P | MewCard Update Al New SearchTemplate | cars P Search Config

> & >
2007 Mazda MX-5 2007 Honda Civic
Miata Hybrid

2007 Mazda CX-7

Consumer Reports
Overall Test Score

Consumer Reports
Overall Test Score

Consumer Reports
Overall Test Score

62 Read Snapshot 89 Read Snapshot 72 Read Snapshot
$22,225 - $26,188 518,883 - 524,342 520,676 - 522,272
Consumer Rating 9.0 M) 96 Reviews Consumer Rating 9.5 HEN] 17 Reviews Consumer Rating 9.3 I 104 Reviews

Searching for mazda 2007... (2)

2007 Mazda Mazda3 2007 Mazda Mazdaé

Sport Wagen

Consumer Reports. Consumer Reports
Overall Test Score

79 Read Snapshot 72 Read Snapshot

Overall Test Score

$12,928 - 518,523 $22,242 - 525,655
Consumer Rating 9.3 NN | 66 Reviews Consumer Rating 8.8 NN | 10 Reviews

Searching for honda 2007... (3)

2007 Honda Fit 2007 Honda CR-V. 2007 Honda

Ridgeline

Consumer Reports
Overall Test Score

ConsumerReports
Overall Test Score

Consumer Reports
Overall Test Score

75 Read Snapshot 74 Read Snapshot 79 Read Snapshot
§13,272 - $15,297 $19,061 - $25,887 $25,042 - $31,458
9.3 | EaTETT 209 Reviews Consumer Rating 8.7 NN 41 Reviews

Figure 3: The user is shopping for cars and using a car search template to find
new cars. He has three cards in his collection and has made two queries: “mazda
2007”7 and “honda 2007.” Each card includes car reviews from autos.msn.com
and edmunds . com.

the user with a unified view of these data. The difficulty in data integration lies
in forming mappings between heterogeneous data sources that may include dif-
ferent types of data and defining one single query interface for all of the sources.
This problem emerges in a variety of situations both commercial (when two
similar companies need to merge their databases) and scientific (combining re-
search results from different bioinformatics repositories). With the growth of
the Web, database researchers have shifted their focus towards data integration
of unstructured Web content and its applications to Web search [15]. My work
is complementary to database research in that it offers interactive techniques for
data integration on a personal scale. We provide an interface that allows users
to specify mappings between different data sources, i.e. websites, and then use
these mappings to automatically extract content from the Web.

Finally, the current implementation allows the user to specify only one-to-
one relations. In some situations a one-to-many relation is more appropriate;
for example, if the user is interested in collecting academic papers and wants to
collect all of the papers written by each of the authors for any given publication.
The system can actually query for all of the papers by a given author but it
is not designed to let the user view all elements of the collection as relevant.
In future work, we plan to explore other types of relations and also introduce

11

transformations into the relations.

2.3 Summary composition

The database organizes the webpage elements according to the user-assigned
label, the page where it was found, and the extraction pattern used to collect
it. Since the same set of labels applies to all webpages, layout templates that
filter the database to create summaries use the labels rather than the specific
HTML content.

A layout template consists of placement and formatting constraints. The
placement constraints specify how the data should be organized in the summary.
For example, a placement constraint can specify that all content with the label
“name” be placed in a list at the top of the document. The position of each
element can be specified in absolute pixel coordinates or be relative to previously
placed elements. For relative placement, the browser layout manager computes
the final content position; for absolute placement, the template specifies all final
element positions. Placement constraints can be hierarchical. For example, the
template designer can specify that content collected from the same webpage
be grouped into one visual element and that such groupings be organized in a
list. Although the hierarchy can have any depth, in practice we have found that
most layout templates include placement constraint hierarchies no deeper than
two or three levels. Formatting constraints specify the visual appearance of the
elements, such as size, spacing, or borders.

Each layout template can also specify mouse and keyboard interactions for
the summary. For example, when the user moves the cursor over an item in the
calendar, a short description of the event is presented. When the user clicks
on the item, a detailed view of that item is displayed in a panel next to the
calendar.

The layout templates are implemented with Javascript and Cascading Style
Sheet (CSS) style rules. To create the summary, the system loads an empty
HTML document and dynamically populates the document with the DOM
nodes in the database using the placement constraints of the current layout
template. Each node is wrapped in a <div> container, and the container’s class
attribute is set to the label stored with the node. This allows us to specify some
of the formatting constraints with CSS style sheets.

We provide “save” and “load” functionality, which makes it possible to
share a summary and any specified extraction patterns. The user can share
the database without sharing all the locally stored HTML documents, mak-
ing summaries like those shown in this paper no bigger than 500KB. Since the
system is implemented as a browser extension, a collaborator can install the
extension, load an existing summary and its corresponding extraction patterns,
and continue the research session.

12

(b)

Figure 4: (a) The PDA layout template is designed for a small-screen device so
that the user can take the summary anywhere. The layout separates the content
into tabs according to website and provides detailed views when the user clicks
on an item. (b) The print layout template formats the content so that it can
be printed.

2.4 Layout templates

To demonstrate different possibilities for summarizing Web content we imple-
mented a set of layout templates. We present two types of layouts: table-based
and anchor-based. The table-based layouts organize the content in a grid, and
the anchor-based layouts relate the content through a graphical element.

The grid layout template (Figure la) places webpage elements found on
the same page into one visual element, a box, and arranges these elements
according to an extraction pattern. If there is only one pattern specified for
a website, as in Figure la, the content appears to be arranged according to
website. Webpage elements labeled as “description” are available to the user
through mouse rollovers.

The PDA layout template (Figure 4a) separates the content into tabs to
make it more accessible on a small-screen device. Each tab contains a list of
the elements collected from the same website. The webpage elements labeled as
“name” or “image” are displayed in a list on each tab. When the user clicks on
a name or image, the elements found on the same webpage as the clicked item
appear. For example, on the PDA on the right in Figure 4a the user clicked on
the “Starlight Review” and is now viewing details about this event.

The print layout template (Figure 4b) organizes content such that it can be
placed on paper. It resizes images and condenses the content to minimize the
number of printed pages.

The text layout template (Figure 5a) is designed for text-intensive tasks, such
as literature surveys. The template organizes the names — or, in the case of
Figure 5a, the paper titles — in a list. The user can click on each title to see
more information, such as the paper authors or abstract. If present, a link to
the document is placed with the title.

13

Today ey || week Nonth

ignment Tdi(35832)

(a) (b)

Figure 5: (a) The text layout template is designed for collecting text content,
as is common in a literature search. The paper titles are placed in a list, and
further details for each paper, such as the authors and abstract, are available
through mouse interactions. (b) With the calendar layout template, the user
can view content with respect to time. When the user clicks on an event, details
about the event are displayed in a panel next to the calendar.

We present two anchor-based layouts, a map and a calendar. An anchor-
based layout allows layout of items with respect to a common element. To create
this relationship we analyze the collected content. Any element with the label
“address” is parsed to find the actual address, while any element with the label
“time” is parsed to find the date and time. As in previous work [21], we use
heuristics to find the address, date, and time within the selected nodes. While
these heuristics are not capable of finding an address in a whole document, they
are sufficient for finding the address in the nodes typically selected.

The map layout template (Figure 1b) has three parts, a list of names at the
top, a map in the bottom left, and a detail-view panel in the bottom right. The
user can click on a name on the list to see its details in the detail-view panel and
its location on the map. The user can also interact with the map and navigate
the content geographically. Unlike the other templates, the map layout displays
only the content that includes an address. To create a map we use the Google
Maps API [9].

The calendar layout template (Figure 5b) displays a calendar on the left
and a detail-view panel on the right. Content that includes a date and time is
placed in the calendar, and the user can navigate between the day, week, and
month view and click on events in the calendar to see more details about each
event. Similar to the map layout template, the calendar layout template filters
the database and presents only content that includes a date and time. The
implementation of the calendar is provided by the Planzo AP [17].

2.5 Authoring cards

The user can view his collection of Web content through cards. A card imposes a
uniform design on content that may come from many different websites and may
initially appear very different. It defines which content should be displayed and
how the content should be organized visually. Recall that the user’s content

14

) My Personal Web View EEX

Fle * layout » Cards b [update] [rewsearnempiate | mra > [msn | [sean | Config ¥
A
:]
‘Andaluca
Neighborhood: Downtown
407 Olive Way
Seattle, WA 95101
JV =
,I-
j
1
& & & @ @ @
Andaluca Andaluca Restaurant | | Seattle (Downtown) Nell's Nell's Restaurant Green Lake
& Bar Neighborhood Bus Neighborhood Bus
Routes s el e e Routes
L% Dk Lk Lk 4 Neighborhood: Green Lake
Neighborhood: Downtown | | 1 6804 E Green Lake Way N | | 48
407 Olive Way 2 Seattle, WA 95115 o4
Seattle, WA 98101 3 o : 76
City/neighborhood: wevw.andaluca.com 4 City/neighborhood: Green 82
Downtown 5 Lake 242
s v o 316
407 Olive Way 10 6804 E. Green Lake Way 358
Seattle, WA 98101-1108 st
Phone: 206-382-6999 Seattle, WA 98115
Web site Phone: 206-524-4044
- 3 Web site
Maps & directions 5] =] =
= Maps & directions
L}
< | &3

Figure 6: To design a new card, the user opens a canvas and begins drawing.
He first draws the outline of the card and then draws containers. To place
content in the containers, the user draws a line from the webpage element to
the container. Here, the user adds an image to the card.

collection is stored in the data repository and is accessible through relation
trees. It is the relation trees that specify which records in the data repository
are related. In database terminology, a card can also be described as defining
a view on the relation trees in the data repository — i.e., it lists the tags for
the data that should be displayed in the card. For example, a card can include
the name and address of a restaurant. Or it can also include pricing, rating,
and images. The system includes a default card, which displays all records and
webpage elements in the relation tree irrespective of the tags associated with
the webpage elements. The user can use an interactive editing tool to create
new cards at any time. Cards are persistent, can be reused, and shared with
others.

To create a new card the user clicks on the “New Card” button, which opens
a canvas directly in his collection of Web content (see Figure 6). The card de-
signer is tightly integrated with the collection space so that the user can quickly
and easily merge content from different websites without switching windows or
views. The user first draws the outline of the card and then proceeds to create
containers that hold the webpage elements. To assign data to a container, the
user clicks on a webpage element and drags a line to the container. The data is

15

3 My Personal Web View

Fe > lawut > Grk b [venced] [onsomiroriie] ot > | | [e

4 4 P
TV on the Radio sunday, March 25, 2007 Blonde Redhead saturday, April 21, 2007 the Decemberists + My Friday, May 4, 2007

mme A

Total Plays: 2945173 D . Plays Todey: 3010

o~
.. 0

23
2007 44D

The Crane Wife

W MYSPACE.COM (STANDALNEBLAVER)

> >
& @&
The Books Thursday, April 26, 2007 Ted Leo & the Pharmacists Tuesday, April 17, 2007

cant s

2007 Kitchen Table & MYSPACE.COM (SiaibAIONERATER)

Searching for april showbox.... (2)

'y 'y
@ &
Martin Sexton Thursday, April19, 2007 Rodrigo Y Gabriela Tuesday, April 24, 2007

Figure 7: The user relates upcoming.org to myspace.com to automatically
collect music samples for upcoming shows.

automatically resized to fit the size of the container. Each container is associ-
ated with the tag of the webpage element it contains and the element website. If
the element was not marked as confident during the automatic ranking process,
it is rendered semi-transparent to alert users that they may want to confirm the
information by clicking on it to go to the source webpage. When the user is
finished creating containers and assigning data, he clicks on the “Done” button,
and the system transforms his drawing into a template for organizing and dis-
playing Web content, a card. The user can at any time edit the card and add
or remove content. Currently, the cards are presented in a grid, but they could
also be manually organized into piles or arranged visually on a map or calendar.
The authoring principles behind the card designer can also extend to authoring
layout templates that organize the cards.

Figure 7 shows a collection of upcoming shows. In this example the user
has related concerts from upcoming.org with band webpages at myspace. com.
Whenever the user adds a new concert to his collection, the system automatically
collects music samples. The music samples are embedded in a music player,
and because the player is just another HT'ML object, a Flash object, one can
extract it just like any other webpage element. The music player retains full
functionality, and the user can press the “play” button on the control to listen

16

to the music.

Cards can be interactive in nature, encoding interactions specific to the type
of data that is collected. The card authoring tool does not currently provide
capabilities for specifying interactions. We could expose a scripting interface and
allow the user to specify any type of card interactions, but since Web Summaries
is designed for the novice we chose to remove all scripting from the interactions.

2.6 Template-based search

Search templates combine the user designed cards and relations as a basis for
a new type of search interface that targets the keyword query to appropriate
domains and organizes the search results in a visual summary. The user can
thus bypass visiting webpages directly and collect content through a search
template. For example, if the user wants to find vegetarian restaurants but
does not know where to start, he can simply query with the word “vegetarian”
directed towards the data underlying the restaurant card. More formally, a
search template includes a set of websites and any associated relations. When
a user types a query to the search template, the system sends the query to
a general search engine, in this case through the Google Search AJAX API,
limiting the search results to the list of websites defined in the template. For each
search result, the system extracts content using predefined extraction patterns
and triggers any relations that are in the template to collect additional content.
Due to limitations on the number of search results provided by the Google Search
AJAX API, for each query/website pair, the system processes only eight search
results. The user can also modify the search template by adding additional
websites to be queried and relations to be triggered. Extracted search results are
presented to the user as a set of cards. These are initially considered temporary,
indicated by being displayed below the main collection of cards. The user can
promote a search result to the actual collection or he can delete all of the search
results for a given query.

The success of template-based search lies in the ability to extract semantic
information from webpages. Although semantic extraction is only in its infancy,
we believe that it will only grow in the coming years, and template-based search
is an example of the powerful new applications that will take advantage of
machine-readable webpages.

3 Discussion

The interaction techniques we present enable users to transform the Web into
their own personal Web that provides personalized access to the information
they care about in the form of their choosing. First, we take advantage of the
growth in template material on the Web and design semi-automatic interac-
tive extraction of content from similar webpages using structural and content
extraction patterns. Second, we employ layout templates and user label-
ing to create rich displays of heterogenous Web content collections. Third, we

17

use search technology for proactive retrieval of content from different related
websites through user-defined relations. Fourth, we let users define their own
personalized and aesthetic views of heterogenous content from any number of
websites through cards. And finally, we introduce a new template-based
search paradigm that combines the user-defined relations and cards into a
search template. Search templates present a goal-driven search mechanism that
creates visual personalized summaries of the content users need to accomplish
their task. As users accomplish their goals with these tools, they also produce
artifacts, such as the extraction patterns and relations, that are persistent and
sharable. These artifacts can be stored in a public repository and reused by
others. Furthermore, they can be added to the websites where they originated,
thereby enhancing the existing Web with semantic information, such as relation-
ships between different websites or the types of content available in a particular
webpage. If popularized by an online community, the ideas we present here can
help realize a machine-readable World Wide Web.

References

[1] Vinod Anupam, Juliana Freire, Bharat Kumar, and Daniel Lieuwen. Au-
tomating web navigation with the webvcr. In Proc. of the WWW conference
on Computer networks, pages 503-517, 2000.

[2] Mathias Bauer, Dietmar Dengler, and Gabriele Paul. Instructible informa-
tion agents for web mining. In Proc. of the IUI, pages 21-28, 2000.

[3] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C.
Miller. Automation and customization of rendered web pages. In Proc. of
UIST, pages 163-172, 2005.

[4] Xin Dong, Alon Halevy, and Jayant Madhavan. Reference reconciliation in
complex information spaces. In Proc. of the SIGMOD, pages 85-96, 2005.

[6] Mira Dontcheva, Steven M. Drucker, David Salesin, and Michael F. Cohen.
Relations, cards, and search templates: user-guided web data integration
and layout. In Proc. of UIST, pages 61-70, 2007.

[6] Mira Dontcheva, Steven M. Drucker, Geraldine Wade, David Salesin, and
Michael F. Cohen. Summarizing personal web browsing sessions. In Proc.
of UIST, pages 115-124, 2006.

[7] Alexander Faaborg and Henry Lieberman. A goal-oriented web browser.
In Proc. of the SIGCHI, pages 751-760, 2006.

[8] Jun Fujima, Aran Lunzer, Kasper Hornbak, and Yuzuru Tanaka. Clip,
connect, clone: combining application elements to build custom interfaces
for information access. In Proc. of UIST, pages 175-184, 2004.

[9] Google Inc. http://www.google.com/apis/maps/.

18

[10]

[11]

Alon Y. Halevy, Anand Rajaraman, and Joann J. Ordille. Data integration:
The teenage years. In VLDB, pages 9-16, 2006.

Darris Hupp and Robert C. Miller. Smart bookmarks: automatic retroac-
tive macro recording on the web. In UIST ’07: Proceedings of the 20th
annual ACM symposium on User interface software and technology, pages

81-90, New York, NY, USA, 2007. ACM.

William Jones, Harry Bruce, and Susan Dumais. Once found, what then?:
A study of “keeping” behaviors in the personal use of web information. In
Proc. of ASIST, 2002.

Hyuckchul Jung, James Allen, Nathanael Chambers, Lucian Galescu, Mary
Swift, and William Taysom. One-shot procedure learning from instruction
and observation. In Proc. of FLAIRS: Special Track on Natural Language
and Knowledge Representation, 2006.

Jing Liu, Xin Dong, and Alon Y. Halevy. Answering structured queries on
unstructured data. In Proc. of WebDB, 2006.

Jayant Madhavan, Shirley Cohen, Xin Luna Dong, Alon Y. Halevy,
Shawn R. Jeffery, David Ko, and Cong Yu. Web-scale data integration:
You can afford to pay as you go. In CIDR, pages 342-350, 2007.

R. Miller and B. Myers. Creating dynamic world wide web pages by demon-
stration, 1997.

Planzo. http://www.planzo.com.

Alex Safonov. Web macros by example: users managing the www of appli-
cations. In SIGCHI Ezxtended Abstracts, pages 71-72, 1999.

m.c. schraefel, Yuxiang Zhu, David Modjeska, Daniel Wigdor, and Sheng-
dong Zhao. Hunter gatherer: interaction support for the creation and
management of within-web-page collections. In In Proc. of WWW, pages
172-181, 2002.

Abigail J. Sellen, Rachel Murphy, and Kate L. Shaw. How knowledge
workers use the web. In Proc. of the SIGCHI, pages 227-234, 2002.

Jeffrey Stylos, Brad A. Myers, and Andrew Faulring. Citrine: providing
intelligent copy-and-paste. In UIST ’04: Proc. of the 17th annual ACM
symposium on User interface software and technology, pages 185-188, New
York, NY, USA, 2004. ACM Press.

Atsushi Sugiura and Yoshiyuki Koseki. Internet scrapbook: automating
web browsing tasks by demonstration. In Proc. of UIST, pages 918, 1998.

19

