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Agent software is a topic of growing interest to
users and developers in the computer industry.
Already, agents and wizards help users automate
tasks such as editing and searching for
information. But just as we expect human
assistants to learn as we work with them, we will
also come to expect our computer agents to learn
from us. This paper explores the idea of an
instructible agent that can learn both from
examples and from advice. To understand design
issues and languages for human-agent
communication, we first describe an experiment
that simulates the behavior of such an agent. Then
we describe some implemented and ongoing
instructible agent projects in text and graphic
editing, World Wide Web browsing, and virtual
reality. Finally, we analyze the trade-offs involved
in agent software and argue that instructible
agents represent a “sweet spot” in the trade-off
between convenience and control.

he idea of intelligent agent software has recently
captured the popular imagination. From Apple

Computer’s Knowledge Navigator** video to
Microsoft Corporation’s Bob**, to the recent explo-
sion of personalized search services on the World
Wide Web, the idea of intelligent software that per-
forms the role of a human assistant is being explored
in a wide range of applications.

Indeed, there is a growing realization that such soft-
ware is not only desirable, but necessary. The com-
plexity of computer interfaces has accelerated
recently. The prevalent view has been that a computer
interface is a set of tools, each tool performing one
function represented by an icon or menu selection. If
we continue to add to the set of tools, we will simply
run out of screen space, not to mention user tolerance.
We must move from a view of the computer as a

crowded toolbox to a view of the computer as an
agency—one made up of a group of agents, each with
its own capabilities and expertise, yet capable of
working together.

Conspicuously rare in today’s agent software is a
capability considered essential in human agents: they
learn. To be truly helpful, an assistant must learn over
time, through interacting with the user and its envi-
ronment—otherwise, it will only repeat its mistakes.
Learning is essential for a software agent; no software
developer can anticipate the needs of all users. More-
over, each person’s needs change from day to day, and
knowledge learned from experience can lead to a bet-
ter understanding of how to solve problems in the
future.

Most current agent software and most of the proposed
scenarios for future agent software have an agent act-
ing to meet a user’s goals, but ignore the problem of
how the agent comes to learn those goals or actions.
We are interested not only in how to build a smart
agent from scratch, but also in how an agent can
become just a little bit smarter every time it interacts
with the user. The question is: “What is the best way
for an agent to learn?”

We have an answer: We think agents should learnby
example. The reason for this is simple. If we are striv-
ing to make a software agent act like a human assis-
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tant, we should make the communication between
user and agent as human-like as we can—not neces-
sarily personal, but intuitive and flexible. So the ques-
tion of how an agent might learn becomes: “What are
the best ways for people to teach and agents to learn?”

Agents might learn by being given explicit instruc-
tions, but giving instructions is much like conven-
tional computer programming, and we know that
programming is difficult for many people. However,
people are extraordinarily good at learning from
observing and understanding examples, especially
examples in the context of real work. So we can take
advantage of that ability and design user-agent inter-
action around the activity of demonstrating, record-
ing, and generalizing examples. Do you want your
agent to solve a new kind of problem? Show it how.

If an agent learns by watching the user work on con-
crete examples, by listening to the user’s comments,
and by asking questions, we call it aninstructible
agent. Work on instructible agents is a synthesis of
many disparate fields of artificial intelligence and
human-computer interaction: machine learning,
knowledge acquisition, program synthesis, user mod-
eling, direct-manipulation interfaces, and visual inter-
face design. Specific techniques such as constraints,
natural language processing, or statistical methods
might come into play in different kinds of instructible
interfaces.

Much of the work on instructible agents has appeared
under an interdisciplinary topic calledprogramming
by example or programming by demonstration.1 The
use of the word “programming” here may be mislead-
ing; while most of these systems do learn procedures,
the process by which they learn and how it appears to
the user is typically very different from what we cur-
rently think of as computer programming. It is more
like the interaction between a teacher and a student, or
a coach and a trainee—where the user is the coach
and the computer is the trainee.

Instructible interface agentsare embedded in direct-
manipulation interfaces like those in common use
today: text editors, graphical editors, spreadsheets,
and the like. In the near term, instructible agents will
work within the framework of familiar applications. A
user can choose to ignore the agent and operate the
application as usual. However, the agent can, either on
its own or at the user’s behest, make suggestions or
automate actions.

The central problem for such agents is to infer what
the user wants from observing the user’s actions in the
interface. There are two approaches, both explored in
this paper.

The first approach is to design an interface in which
actions express their intent. For example, the Emacs
text editor provides many navigation commands, such
as “forward word” and “forward line,” that express
movement and selection relative to text structures. But
interfaces like Emacs based on typed commands are
not for everyone. In several of the learning systems
we describe, the user can point to an object and say,
“This is an example.” The user thereby directs the sys-
tem to generalize operations involving the example
object, so that an analogous procedure can be per-
formed on another similar object in the future. The
user may annotate the example, specifying the fea-
tures to be adopted in the generalization.

The other, more ambitious approach is to let the sys-
tem decide for itself which aspects of the demonstra-
tion are relevant. This reduces the tedium of
explaining examples. As with a human agent, the
computer is given the opportunity to make mistakes.
The agent communicates with the user and learns by
correcting its mistakes.

These two approaches—direct instruction and induc-
tive inference—are complementary and have been
used together in some systems, such as Cima.2

Figure 1 The Turvy experimental setup
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Instruction has also been combined with deductive
inference (i.e., plan recognition) in the Instructo-Soar
system,3 which enables the user to supply missing
knowledge about planning operators and objects
whenever Soar fails to explain an action.

Instructible agents: Issues, experiments, and
systems

In this paper, we explore a variety of scenarios and
techniques for building instructible agents. We show
examples from learning agents we have built for inter-
active applications such as graphical editors and text
editors. We show a variety of interaction styles, from
instructing through direct-manipulation menu selec-
tion and mouse clicks to natural language input,
graphical annotation, and visual observation. We also
discuss scenarios for future agents in virtual-reality
worlds.

We begin by describing an experiment, Turvy, which
simulates user-agent interaction in a text editor, with a
human playing the role of the agent. The goal is to
understand what kind of vocabulary could serve as a
means of discourse between a user and an instructible
agent. We use that experience to develop a set of gen-
eral criteria for agent-user interaction. A system that
implements some of this agent’s learning ability,
Cima, is then described.

We move on to Mondrian, an agent that learns new
graphical procedures, both by demonstration and by
graphical annotation of video. The agent describes
what it learns through feedback in pictorial and natu-
ral language. It accepts the user’s advice about gener-
alization via speech input. Mondrian illustrates how a
media-rich, multimodal interface can enhance the
experience of teaching instructible agents. Mondrian
represents an approach where the user understands
that the purpose of the interface actions is explicitly to
teach the agent.

Another approach, which relies less on explicit
instruction and more on observing the user’s behavior,
is represented by Letizia,4 an agent that assists a user
in browsing the Web. Letizia also illustrates continu-
ous, incremental learning interleaved with perfor-
mance.

Finally, we discuss a scenario of work in progress for
an instructible agent,ACT, that learns new behavior
for animated characters in a virtual reality environ-
ment. Here both the user and the learner are repre-

sented by characters in the virtual reality world
(“avatars”) and observation, advice, and explicit
instruction play an integrated role.

How should the user and the agent
communicate?

To investigate possibilities for how a user might com-
municate with an intelligent computer agent, a user
study5 was conducted, in which a researcher, hidden
behind a screen, pretended to be an agent that learns
word-processing tasks. Figure 1 illustrates the setup:
The researcher playing the role of the agent, seated at
right, is known to the user as “Turvy.”

Example: Formatting a bibliography. Figure 2
illustrates the example task: making citation headings
for bibliography entries, using the primary author’s
surname and the last two digits of the year of publica-

Figure 2 Sample data from the “citation headings” task

Philip E. Agre:The dynamic structure of everyday life:
PhD thesis: MIT: 1988.

J. H. Andreae, B. A. MacDonald: Robot programming
for non-experts: Journal IEEE SMC: July 1990.

Kurt van Lehn:Mind bugs: the origins of procedural
misconceptions: MIT Press: 1990.

[Agre 88]
Philip E. Agre:The dynamic structure of everyday life:
PhD thesis: MIT: 1988.

[Andreae 90]
J. H. Andreae, B. A. MacDonald: Robot programming
for non-experts: Journal IEEE SMC: July 1990.

[van Lehn 90]
Kurt van Lehn:Mind bugs: the origins of procedural
misconceptions: MIT Press: 1990.

BEFORE EDITING

AFTER PUTTING AUTHOR AND DATE INTO HEADING
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tion. When first introduced to Turvy, users are told
only that its goal is to help them perform repetitive
tasks, that it watches what they do and understands “a
bit of English.” Users soon learn that Turvy knows
nothing about bibliographies or proper names or
dates. Instead, it must learn how to recognize them.
They come in many varieties: a primary author’s sur-
name is the capitalized word before the first comma,
unless there is only one author, in which case it pre-
cedes a colon. Sometimes it precedes “(ed)” and
sometimes it has a baronial prefix like “van.”

To perform this task manually on the 18 bibliography
items, the user would have to execute more than 110
mouse clicks, 70 key presses, and 90 menu com-
mands. Given the variety of special cases, creating a
keyboard macro for this task would be impractical.

Writing a C orBASIC program for this task would take
even longer. In the user tests, Turvy performed nearly
all the edits on 14 of the 18 entries, the other 4 serving
as examples. When predicting actions, Turvy aver-
aged 4 mistakes, which users had to correct.

To really understand Turvy, it is helpful to see it in
action. Figure 3 presents “Pam,” a composite of two
users from the study, working on the task described
above.

Design issues

When tested by more than a dozen users on word-pro-
cessing, file management, and drawing tasks, Turvy
revealed important design issues:

Figure 3 Dialog between Turvy and the user while formatting the bibliography

Pam: Take the last name, before the colon.
[Copies “Agre,” pastes it to a new para-
graph, types brackets, sets style.] This
is a list of publications.  Now we’ll add
the last two digits of the date. [Types
“88.”] Do you want another demo?

Turvy interprets Pam’s question to mean the
example is complete.  Turvy has formed an ini-
tial generalization and now offers to edit the
second entry (author “Andreae”).

Turvy: I can try if you want.
Pam: OK.
Turvy: [Picks “Macdonald.”] Looking for word

before first colon in paragraph, OK?
Pam: No—stop! You want the first author.
Turvy: Show me, please.
Pam: [Picks “Andreae.”]
Turvy: You picked word before comma.  You

want word before first comma or colon?
Pam: Yes! The first comma or colon.
Turvy: [While doing actions] Copy, go to start

of paragraph, OK?
Pam: OK.
Turvy: Type open bracket, paste, close

bracket, change style to “citation,” OK?
Pam: OK.

Now Turvy makes a mistake with the date.
When Pam typed “88,” Turvy assumed the
number was a constant.

Turvy: Type in blank space “88,” OK?
Pam: No, the last two digits at the end.
Turvy: Show me, please.
Pam: [Picks “75.”]
Turvy: Two digits before period at end of para-

graph?
Pam: Yes.

… Later, Turvy encounters author “van Lehn,”
mistakenly selecting “Lehn.” When the user
corrects it, Turvy asks for an explanation.

Turvy: What’s different about this case?
Pam: Hmm.
Turvy: You selected these two words, why?
Pam: Because these two words make up his

last name.
Turvy: Is there some feature of this word [high-

lights “van”] I should look for?  Lower-
case word?

Pam: [Hesitant] In this case, yes.

Turvy does the rest of the task without error.
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• The agent should learn from examples: Verbal
specifications alone are too difficult for users to
compose, and they are riddled with ambiguity and
error. Though progress is being made in instructible
natural language interfaces,6,7 we believe examples
should play a primary role.

• The agent should accept verbal and gestural hints in
conjunction with examples; this speeds learning by
focusing attention on relevant features of the exam-
ples.

• The agent should teach users its language and its
background knowledge through the feedback it
gives; verbal feedback should include only terms
the agent can recognize. Figure 4 illustrates some
forms of feedback.

• When the agent needs a hint because it cannot
explain some action, it should not ask “Why did
you do this?” Instead, the agent should make a
guess, to which the user can respond with a hint.

• Learning about special cases (e.g., “van Lehn”) as
they arise makes the agent much easier to teach; the
agent should discourage users from giving long ver-
bal instructions that try to anticipate special cases.

• The agent should watch what the user doesnot do;
implicit negative examples (e.g., the user selected
surnames but not initials) speed learning and reduce
predicted negative examples (i.e., mistakes).

Although Turvy represents just one kind of
instructible agent, it exemplifies characteristics we
advocate for instructible agents in general. To summa-
rize them:

• The agent should be able to be personalized; it
should learn what the individual user is trying to do.

• The user should be able to control the agent by
teaching it.

• The user should be able to develop a mental model
of what the agent knows about the task.

• The user should not be required to interact; the
agent can learn by watching the user work.

• The agent should learn from its mistakes.
• The agent should learn continually, integrating new

cases with prior knowledge.

Figure 5 shows the flow of information between the
user and the agent, while Figure 6 illustrates the flow
of information between application and agent. In par-
ticular, the lower half of the figure shows interactions
required for the agent to operate the application and to
augment its output with feedback (as in Figure 4).
Agents often add functionality to applications; for
example, graphical aids such as Mondrian8 deal with
interobject constraints that an ordinary drawing pro-
gram might not represent. In this case, the application

Figure 4 Examples of visual and spoken feedback

“DRAW LINE FROM MID-RIGHT OF
FIRST BOX TO MID-LEFT OF SECOND BOX.
CONTACT WITH OTHER LINE DOESN’T MATTER.”

“LOOKING FOR CAPITAL WORD
AT END OF SENTENCE BEFORE QUOTE.”

…Philip E. Agre.  “The dynamic…

File Edit Text Object

1

1

“I PREDICT YOU WILL COPY.”

Undo Create
Save Again

Cut
Copy
Paste
Clear

C
V
X

X
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may be unable to execute all of the script directly, and
must call back to the agent to compute some parame-
ters.

Incorporating feedback and user-agent dialogs can be
problematic, since most current systems provide no
means for other applications to modify their displays.
To skirt these problems, many existing agent systems
such as Eager1 are tightly coupled to applications.

Machine learning requirements

Cima (“Chee-mah”) is a symbolic learning algorithm
that has been implemented to provide the kind of
learning necessary to realize the Turvy scenario. Cima
learns about data, actions, and the conditions under
which actions are performed. Although a generic
learning system, it is designed to be readily custom-
ized for particular applications, such as text editing.

Figure 5 Interactions between user and agent

Figure 6 Interactions between application and agent

QUESTIONS

“DID YOU PICK THIS ONE BECAUSE…?”
HINTS “IT’S JUST BEFORE THE QUOTES.”

“LOOK HERE.”

“THIS IS A SPECIAL CASE.”

EXAMPLES

PREDICTIONS

REQUESTS FOR PARAMETERS

ACTIONS, FEEDBACK, DIALOGS

compute: find(B, a rectangle such that:
color(B, blue) and aligned(B.left, B2.left))

ACTIONS, DATA CRITERIA, BIASES
Draw Line L1
touch (L1.left, B1.mid-right)
touch (L1.right, B2.mid-left)
objects (L1, L2, B1, B2, B3)

Draw Line requires:
specify Line.point1(x, y)
specify Line.point2(x, y)
specify Line.color(r, g, b)

LinePoint spec prefers:
minimize-degrees-free(x, y)
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At present, it has been partially integrated with a text
editor so that it can record and learn how to search for
syntactic patterns in the text. Its design illustrates two
important differences between learning in an
instructible agent and traditional machine learning:
reliance on task-oriented background knowledge, and
the interpretation of ambiguous instructions.

Action microtheory. An agent must learn generaliza-
tions that map to executable operations within an
application. We have identified some categories of
actions and their operational criteria. This task knowl-
edge, primitive though it is, biases the learner so that
it forms plausible, operational hypotheses from very
few examples.

Most user-interface actions apply some primitive
operator (like copy or move) to selected data. Thus,
the first key to learning about actions is to learn about
data.Data descriptions1 specify criteria for selecting
and modifying objects. For instance, suppose the user
wants an agent to store electronic mail messages from
Pattie Maes in the folder “Mail from pattie,” as shown

at the top of Figure 7. The data descriptionsender’s id
begins “pattie” tells it which messages to select—
those from Pattie, regardless of her current worksta-
tion. The data descriptionfolder named “Mail from
<first word of sender’s id>” tells it where to put them.

Conventional machine-learning algorithms learn to
classify examples. But agentsdo things with data, and
to be useful, data descriptions may require features in
addition to those needed for classification. Figure 7
illustrates four types of actions: classify data, find
data, generate new data, and modify properties. Cima
encodes utility criteria that specify the characteristics
of a well-formed data description for each type of
action.

Classify actions have a single utility criterion: to dis-
criminate between positive and negative examples.
Features with the most discriminating power are
therefore strongly preferred.

Find adds a second criterion: The description must
delimit objects, and, in some domains, state the direc-

Figure 7 General types of action on data

CLASSIFY

FIND

GENERATE

MODIFY

From

To

Subject

If the message is from “pattie,”
then put it in the folder “Mail from pattie.”

Find the next telephone number
preceded by the word “fax.”

Insert a calendar template of the form:
[Next(DayName) Tab Next(DayNumber)

Move the circle to the point at which a
red line intersects a blue line.

tel 243-6166
fax 284-4707

Mon 21 toDo
Tue 22 toDo

tel 243-6166
fax 284-4707

Mon 21 toDo

maulsby@media

Tuesday meeting

Mail from pattie
pattie@media

Tab toDo].
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tion of search. Thus a text search pattern specifies
where the string begins and ends, and whether to scan
forward or backward. Features that describe more
delimiters or constraints are preferred.

Generate adds a third criterion: The description
should specify all features of a new instance. If gener-
ating a graphic, the description must specify size,

shape, color, etc.; for text, it must specify the actual
string. Thoughuser input is a valid feature value, the
system strongly prefers value “generators”—con-
stants, such as“toDo,”  or functions, such as
Next(DayName).

Modify stipulates two criteria: The description should
discriminate between positive and negative examples,
and it should generate the property’s new value. Fea-
tures that determine the new value are preferred to
those that merely constrain it. The graphics example
in Figure 7 shows a conjunction of two features,
touch(Circle.center, Line1) and touch(Circle.center,
Line2), that together determine a property value, the
circle’s new (x,y) location. By itself, each intersection
leaves one degree of freedom on the circle’s location.
The utility criteria for setting an object’s location
assume that the goal is to remove all degrees of free-
dom if possible. Hence, features that remove both
degrees of freedom, e.g.,touch(Circle.center,
Line1.midpoint), are preferred over features that
remove one degree of freedom. Cima continues add-
ing touch(Circle.center, Line) features until zero
degrees of freedom remain. If the user rejects an
example in which the circle touches two blue lines,
Cima adds a third feature—that one of the lines be
red—to satisfy the classification criterion.

Interpreting user instructions. Most machine learn-
ing systems generalize from positive and negative
examples, using biases encoded in their algorithms

and perhaps in domain knowledge. Cima learns from
examples, but also from hints and partial specifica-
tions. Hints, which may be verbal or gestural, indicate
whether features of data (such as the color of a line)
are relevant. The salient characteristic of hints is
ambiguity: Cima must choose among multiple inter-
pretations. Partial specifications, on the other hand,
are unambiguous, though incomplete, descriptions.
They specify relevant features, and even rules, and
may be input as textual program fragments or by edit-
ing property sheets. Cima’s learning algorithm com-
poses rules (which are conjunctions of features) that
meet the utility criteria for describing an action. It
combines the evidence of examples, hints, specifica-
tions, and background knowledge to select the most
justifiable features for each rule. By combining
knowledge sources, Cima is able to maximize infor-
mation gained from a small set of examples and to
choose the most justifiable interpretation of ambigu-
ous hints.

Evaluating instructible agents. It is difficult to per-
form evaluation studies on instructible agents,
because users tend not to use an instructible system
“in the same way” as they do an ordinary nonin-
structible system. However, one can specify particular
tasks with potential repetitive or semirepetitive sub-
tasks, and test whether users are able to successfully
teach the system how to do such tasks. Such a study
was conducted at Apple Computer,9 which is a good
example of how instructible agents can be evaluated.
Potter introduces the notion of “just in time” program-
ming,10 a criterion for evaluating instructibility. He
argues that the benefit of automating the task should
outweigh the cost of performing the instruction and
the possible risk of the instruction being performed
incorrectly.

Mondrian: User interface requirements for
learning from explicit instruction

As another example of an instructible agent, we con-
sider Mondrian, a prototype object-oriented graphical
editor that can learn new graphical procedures dem-
onstrated by example. Like Cima, Mondrian observes
user actions and automates procedures in the context
of a familiar interactive application—in Mondrian’s
case, a graphical editor. Mondrian implements a much
simpler learning algorithm than Cima, because it
relies more on explicit instruction, and it provides an
interface for teaching that is carefully integrated into
the underlying interactive application. Procedures are
demonstrated by user interface actions, and the results

Mondrian is a prototype
graphical editor that can

learn graphical procedures
demonstrated by example.



IBM SYSTEMS JOURNAL, VOL 35, NOS 3&4, 1996 LIEBERMAN AND MAULSBY 547

are put back into the graphical interface in the form of
icons generated by the system, so they can take part in
defining future operations.

Mondrian addresses the problem of teaching not only
procedural, but also declarative knowledge. A teacher
might need to teach not only a sequence of actions,
but also new concepts in the course of the demonstra-
tion. Mondrian’s approach to this isgraphical annota-
tion. The user can draw annotations on an image to
introduce new objects and to specify relations
between objects. These objects and relations become
hints to the learning process, as expressed in the dis-
cussion of Turvy and Cima. Whereas Instructo-Soar3

lets the user describe the relevant features of data in a
restricted form of natural language, in a graphical
domain, drawn annotations can be more natural than
verbal descriptions.

In the text domain in which Cima operates, the dis-
play is relatively straightforward. In Mondrian’s
graphic domain a rich set of media interfaces is used
to give the user the feeling of interacting with virtual
objects. Graphical objects can be drawn, moved, cop-
ied, etc. Video images can be used as sources for the
demonstration and new objects and relations intro-
duced from the video frames. Voice input can be used

to give advice to the agent and voice output is used to
communicate the agent’s interpretation of the user’s
actions. This lets the user adopt a natural “show-and-
tell” method for teaching the agent.

To make the discussion more concrete, we introduce
one of Mondrian’s application domains, automating
and documenting operational and maintenance proce-
dures for electrical devices. TheMIT Media Labora-
tory is collaborating with the Italian electronics
company Alenia Spazio S.p.A., which makes many
specialized electronic devices for the aerospace indus-
try. These devices are characterized by the following
attributes: they are complex, have relatively small user
communities, must be operated by relatively
untrained personnel under time constraints, and the
consequences of operational mistakes can be expen-
sive. All these factors conspire to make the program-
ming of automated equipment, or documentation for
teaching the procedures to people, expensive, time-
consuming, and error-prone.

A relatively untrained technician who is familiar with
the operation of the device might “teach” the com-
puter the steps of the procedure by interacting with an
on-screen simulation of the device. Figure 8 shows
the interface for teaching Mondrian how to disassem-

Figure 8 Teaching a technical procedure through a video example
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ble a circuit board. The simulation is created by teach-
ing the computer (1) about the objects involved, by
annotating images captured from videotaped demon-

strations of the procedure, and (2) the actions involved
in the procedure, by demonstrating actions in the user
interface. Mondrian records and generalizes the user-
interface actions, and synthesizes a procedure that can
be applied to other examples. Such a procedure could
also be used to drive robotic assembly or test equip-
ment on an assembly line.

Identifying objects in video frames.We would like
to give the user the illusion of interacting with a simu-
lation of a device. If we were to program such a simu-
lation “from scratch,” the programmer would produce
renderings of each object, and operating on these
objects would produce a corresponding change in the
renderings to reflect the consequences of the action.
But to do this, the underlying model of the device and
its structure must already exist. Here the purpose of
the interaction is to capture the object model of the
device and to teach the system about it.

For each step that the user wishes to describe, he or
she must select salient frames that represent the states
before and after the relevant action. Subsets of the
video image serve as visual representations of the
objects. The next step is to label the images with a
description of the objects and their structure. This is
shown in Figure 9. The group structure of the graphi-
cal editor is used to represent the part/whole structure
of the device.

A simple visual parser relates the text and lines to the
images of the parts they annotate. A part/whole graph
gives the user visual feedback, shown in Figure 10.
The tree of labels shows the conceptual structure, and
the leaves show specific images that represent each
concept in the example.

As computer vision systems become more practical,
the agent could perhaps automatically recognize some
objects and relations. Some partial vision algorithms
such as object tracking could streamline the annota-
tion process. An alternative to choosing and annotat-
ing video frames might be to have the user sketch the
parts and relations, then relate them to images through
a technique like Query by Image Content.11

Descriptions of actions. After annotating the objects
in the frame representing the initial state, the user
selects a frame to represent the outcome of the opera-
tion. To construct a description of the procedure step,
the user must use the operations of the graphical edi-
tor to transform the initial state to (an approximation
of) the final state.

Figure 9 Parts annotated with text labels

PLUG PANEL

RIBBON CABLE

RIBBON CONNECTOR

PLUG CONNECTOR

CIRCUIT BOARD

Figure 10 Part/whole graph

(A “CIRCUIT-BOARD”)

PARTS:

(A “RIBBON-CABLE”)

(A “RIBBON-CONNECTOR”)

(A “PLUG-PANEL”)

(A “PLUG-CONNECTOR”)
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The editor provides both generic operations (Cut,
Copy, Paste, Move, …) and operations specific to the
domain (for the repair domain: Assemble, Disassem-
ble, Turn On and Turn Off switches and lights, Open
and Close fasteners, etc.).

Once a procedure has been recorded, it appears in
Mondrian’s palette as a domino, with miniaturized
frames of the initial and final states of the procedure.
The newly defined operation can then be applied to a
new example. Assume that we have recorded a two-
step procedure that disassembles the ribbon cable
assembly and the plug panel assembly. First, we
choose a video frame, then we outline the parts and
add annotation labels that represent the input to the
procedure. Clicking on the domino for the Disassem-
ble-Circuit-Board procedure results in performing the
disassembly of both parts in the new example.

Documenting the procedure. We use a graphical sto-
ryboard to represent the procedure in the interface.
The storyboard, shown in Figure 11, consists of a set
of saved pictures of each step of the procedure,
together with additional information that describes the
step; the name of the operation chosen, a miniature
icon for the operation, and the selected arguments are
highlighted. The system also captions each frame of
the storyboard with a text description of the step. A
simple template-based natural language generator
“reads the code” to the user by constructing sentences
from templates associated with each function and
each kind of object. The storyboard provides a form

of automatically generated documentation, which,
although it does not match the quality of documenta-
tion produced by a technical documentation staff, is
inexpensive to produce and guaranteed not to omit
crucial steps.

Mondrian and design criteria for instructible
agents

Mondrian operates broadly within the design criteria
for instructible agents outlined in the Turvy experi-
ment, but takes a somewhat different approach than
Cima in responding to those criteria. The basic collab-
oration between the user and the agent is the same.
The user demonstrates the task on a concrete example
in the interactive application, and the system records
the user’s actions. A learning algorithm generalizes
the sequence of actions so that they can be used in
examples similar to, but not exactly the same as, the
examples used to teach the agent. The user can also
supply hints that control the generalization process
interactively. Mondrian’s graphical and verbal feed-
back communicates to the user what its interpretations
of the user’s actions are, and through this, the user
becomes familiar with its biases and capabilities.
Thus it directly meets the first three design criteria
outlined for Turvy.

In Mondrian, the user is assumed to be presenting the
examples for the explicit purpose of teaching the
agent, so the instruction tends to be more explicit than
in other systems, such as Eager, that rely more on

Figure 11 Storyboard for Disassemble Circuit Board

DISASSEMBLE CIRCUIT BOARD

UNSCREW THE RIGHT BOTTOM SCREW
OF THE FIRST ARGUMENT

UNSCREW THE RIGHT TOP SCREW
OF THE FIRST ARGUMENT
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unaided observation. The user explicitly indicates
which objects are the examples at the start of the dem-
onstration, and all subsequent operations are general-
ized relative to those examples. Mondrian does not
interrupt the user during the demonstration the way
Turvy does, although it optionally can provide its
graphical and verbal feedback at each step. Mondrian
cannot dynamically select which features of the
examples to pay attention to, as does Cima, but there
is no reason why Cima’s feature-selection algorithm
could not be incorporated.

Turvy’s last three design criteria—hints in response to
explanation failures, special cases, and negative
examples—are not covered in Mondrian, but repre-
sent possibilities for future work. Lieberman’s earlier
instructible agent for general-purpose programming,
Tinker,12 demonstrated conditional and recursive pro-
cedures using multiple examples. This approach
allows special cases and exceptional situations to be
presented as supplementary examples after the most
common, typical case is demonstrated. This technique
might also work for Mondrian.

Mondrian, like most pure action learning systems, in
terms of the action categories discussed for Cima,
concentrates on the Generate and Modify actions. The
system does not do pure Classification. It relies on the
user to explicitly perform much of the Find actions.
However, graphical annotations do allow the system
to perform a kind of Find, since actions taken on a
part described by an annotation in a teaching example
will be performed on an analogous part in a new

example that is selected by the relations specified in
the annotation.

Letizia: An agent that learns from passive
observation

Another kind of instructible agent is one that learns
not so much from explicit instruction as from rela-
tively passive observation. We illustrate this kind of
agent withLetizia, an agent that operates in tandem
with a conventional browser such as Netscape Com-
munication Corp.’s Navigator** to assist a user in
browsing the World Wide Web. The agent tracks the
user’s browsing behavior—following links, initiating
searches, selecting specific pages—and tries to antici-
pate what items may be of interest to the user. It con-
tinuously displays a page containing its current
recommendations, which the user can choose either to
follow or to ignore and return to conventional brows-
ing activity. It may also display a page summarizing
recommendations to the user, as shown in Figure 12.

Here, there is no pretense that the user is explicitly
teaching the system. The user is simply performing
everyday activities, and it is up to the agent to make
whatever inferences it can without relying on the
user’s explicit help or hints. The advantage of such
agents is that they operate more autonomously and
require less intervention on the part of the user. Of
course, this limits the extent to which they can be con-
trolled or adapted by the user.

Letizia is in the tradition ofbehavior-basedinterface
agents,13 so called to distinguish them fromknowl-
edge-based agents. These have become popular lately
because of the knowledge bottleneck that has plagued
pure knowledge-based systems. It is so difficult to
build up an effective knowledge base for nontrivial
domains—as in conventional expert systems—that
systems that simply track and perform simple pro-
cessing on user actions can be relatively attractive.
The availability of increased computing power that
can be used to analyze user actions in real time is also
a factor in making such systems practical. Rather than
rely on a preprogrammed knowledge representation
structure to make decisions, the knowledge about the
domain in behavior-based systems is incrementally
acquired as a result of inferences from the user’s con-
crete actions.

In the model adopted by Letizia, the search for infor-
mation is a cooperative venture between the human
user and an intelligent software agent. Letizia and the

Figure 12 Letizia helps the user browse the World Wide
Web

USER BROWSING

SEARCH CANDIDATES

RECOMMENDATIONS
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user both browse the same search space of linked Web
documents, looking for “interesting” ones. No goals
are predefined in advance. The user’s search has a
reliable static evaluation function, but Letizia can
explore search alternatives faster than the user can. In
parallel with the user’s browsing, Letizia conducts a
resource-limited search to anticipate what pages a
user might like to see next. Letizia adopts a mostly
breadth-first search strategy that complements the
mostly depth-first search strategy encouraged by the
control structure of Web browsers such as Netscape’s
Navigator. Letizia produces a recommendation on the
current state of the user’s browsing and Letizia’s own
search. This recommendation is continuously dis-
played in an independent window, providing a kind of
“channel surfing” interface.

User interest is inferred from two kinds of heuristics:
those based on the content of the document and those
based on user actions in the browser. Letizia reads
each page and applies a simple keyword-based mea-
sure of similarity between the current document and
the ones the user has explicitly chosen so far. This
measure simply counts keywords and tries to weight
them so as to find keywords that occur relatively fre-
quently in the document but are rare otherwise. This is
a standard content measure in information retrieval.

The second kind of heuristic is perhaps more interest-
ing. It uses the sequence of user actions in the browser
to infer interest. Each action that the user takes—
selecting one link rather than another, saving links, or
performing searches—can be taken as a “training
example” for the agent trying to learn the user’s
browsing strategy. For example, if the user picks a
page, then quickly returns to the containing page
without choosing any of the links on the page, it might
be an indication that the user found the page uninter-
esting. Choosing a high percentage of links off a par-
ticular page indicates interest in that page.

One characteristic of instructible agents is the method
used to temporally relate the actions of the user and
the actions of the agent. In Turvy, Cima, and Mon-
drian, the interaction is conversational: the user and
the system “take turns” in performing actions or giv-
ing feedback. In Letizia, the agent is continuously
active and accepting actions in parallel with the user’s
activity. This increases the sense of autonomy of the
agent.

Because of this autonomy, Letizia does not satisfy
many of the advisability criteria developed in the

Turvy study. The user’s influence on the agent is lim-
ited to browsing choices—but these choices are made
not to influence the agent, but to directly accomplish
the user’s browsing goals.

However, each individual decision that Letizia makes
is not so critical as it is in Cima or Mondrian. Because
Letizia is only making suggestive recommendations
to the user, it can be valuable even if it makes helpful
suggestions only once in a while. Because it is contin-

uously active, if it misses a possible suggestion at
some time, it will likely get another chance to find
that same choice in the future because of consisten-
cies in the user’s browsing behavior. There is a real-
time trade-off between requiring more interaction
from the user to make a better decision and exploring
more possibilities. However, in the future we will
probably back off from the pure unsupervised learn-
ing approach of Letizia and provide facilities for
accepting hints and explicit instruction.

In Cima’s discussion of categories of actions for
instructible agents, Letizia’s task is one of almost pure
Classification—classifying a possible link as either
interesting or not. Find, Generate, and Modify are not
relevant.

ACT: Teaching virtual playmates and helpers

In the ALIVE  project (Artificial Life Video Environ-
ment), developed in the Autonomous Agents Group at
the MIT Media Laboratory,14 people experience an
imaginative encounter with computer agents, as their
own video images are mixed with three-dimensional
computer graphics.ALIVE  agents are designed with
“believability” in mind: the goal is to have the user
perceive the agent as having distinctive personal qual-
ities. Following ethological principles, their behavior

In Letizia, the agent is
continuously active and

accepting actions in parallel
with the user’s activity.
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arises from complex interactions among instinctual
motivations, environmental releasing mechanisms,
and the dampening effects of frustration and satiation.
At present, all behaviors must be preprogrammed.
While some unanticipated behavior emerges from the
interaction of these programs, the agents are nonethe-
less noticeably limited, especially in their ability to
play with users.

Perhaps the most interesting class of real agents
includes those who interact with us adaptively, chang-
ing their behavior so that we cannot quite predict
them. They learn to help us or frustrate us, becoming
a more useful assistant or challenging opponent. The

goal of theALIVE  Critter Training project (ACT) is to
augment agents with the ability to learn from the user.
ACT is an attempt to bring the kind of learning repre-
sented by Cima to a virtual reality world. By training
agents, users can customize and enrich theirALIVE
experiences. And dealing with the unpredictable
results of training is in itself entertaining and instruc-
tive.

The initial version of theACT system learns to associ-
ate predefined actions with new releasing mecha-
nisms. In particular, actions may be chained together
as a task. Conceptually,ACT is an agent’s learning
“shadow,” watching the agent interact with the user
and otherALIVE  agents and learning to predict their
actions.ACT has an implicit motivation—to please the
user by learning new behaviors.

One scenario consists of anALIVE  world in which the
user and a synthetic character named Jasper play with
virtual LEGO** blocks. Figure 13 shows Jasper help-
ing the user to build a slide; since he does not already
know what the user wants to build or what a slide is,
he watches the user’s actions and pitches in to per-
form any action he can predict, whether it is to gather
up the right sort of blocks or to do the actual building.

The assembly task here resembles the disassembly
task that we taught to Mondrian earlier by graphical
annotation of example video frames, and the learning
strategy of recording and generalizing user actions is
like that explored in Turvy and implemented in Cima.
As in Cima, the agent looks for patterns in sequences
of user actions and uses utility criteria to choose gen-
eralizations.

The spectrum of instructibility

Just as “direct manipulation” and “software tool” are
metaphors describing the user’s perception of operat-
ing the computer, so too is “instructible agent.” Physi-
cal tools translate a person’s actions in order to
manipulate objects, and software tools translate physi-
cal actions (captured by a mouse, keyboard, etc.) into
commands for manipulating data. In contrast, an
agent interprets the user’s actions, treating them as
instructions whose meaning depends on both the con-
text in which they are given and the context in which
they are carried out. Whether its task is to help format
text or search the World Wide Web, the agent, unlike a
tool, must deal with novelty, uncertainty, and ambigu-
ity. The relationship between user and agent is based
on delegation and trust, rather than control.

Because of this, some researchers have objected to the
notion of agents on the presumption that they rob
users of control over their computers.15 At the heart of
the antiagent argument lie two beliefs: first, that direct
manipulation is good enough for the vast majority of
tasks; and second, that “real” programming must be
done in a formal language.

Figure 14 illustrates the spectrum of approaches to
accomplishing tasks with a computer, comparing
them in terms of their effectiveness and ease of use.
The “English Butler” at the far right requires an intro-
duction: this is a pre-educated, intelligent agent of the
sort portrayed in Apple’s Knowledge Navigator
video. It understands a good deal of natural language
and already knows how to carry out a variety of tasks;
the user need only give a vague description and the
Butler reasons its way to an executable program.

On the graph shown in Figure 14, brighter hue means
more or better. The top line compares the approaches
by the degree of artificial intelligence they require.
Other than its skill at program optimization, a C++
compiler evinces little intelligence, as do direct
manipulation interfaces, though some have “smart”
modes: for instance, drawing programs that snap

The goal is to have the user
perceive the ALIVE agent as
having distinctive personal

qualities.
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Figure 13 Building a slide together

The user (shown in silhouette) wants to
build a slide for the ALIVE character,
Jasper, using virtual LEGO blocks.

Jasper is naturally helpful: he tries to
learn what the user is building so he can
pitch in.

Jasper pays attention to the way the blocks are
connected.  He watches for repeated actions.

The user sets up the ladder
frame and attaches two rungs.

When the lad-
der gets too
tall for his
arms’ reach,
Jasper’s
“behavior sys-
tem” adopts
another
method—
climbing or
jumping—to
extend his
reach.

Jasper predicts
that rods of
various colors
should be
attached
some distance
apart along the
frame.

Soon he has placed rungs all
along the frame.  Meanwhile, the
user has attached the slide.

All done!
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objects to one another (Intellidraw**) and text editors
that predict input (Quicken**) or correct it automati-
cally (Microsoft Word**). In contrast, the English
Butler must be highly intelligent if it is to translate
vague instructions into viable procedures; it must
interpret natural language, maintain a model of dis-
course with the user, formulate plans, and change
plans “on the fly” when they fail or when unexpected
opportunities arise.

Instructible agents cover a range of intelligence.
Some, like Mondrian, use only very simple rules of
inference. This makes them highly efficient and effec-
tive for learning certain tasks. They rely on a well-
designed user interface to harness the user’s intelli-
gence. Other systems, like Cima, use more sophisti-
cated learning methods and background knowledge,
trying to maximize the agent’s contribution to the
learning/teaching collaboration. What all instructible
agents have in common is that they avoid relying on
the agent’s intelligence to plan the task: for this, they
rely on the user.

The second scale on Figure 14, run-time adaptability,
refers to a system’s ability to change its program in
response to changing conditions. Once a program is
compiled, it is set in stone—unless written in a

dynamic language such asLISP. Direct-manipulation
user interfaces generally do not adapt their behavior,
except to store default values and preferences. The
English Butler must be highly adaptable, otherwise its
plans would fail. Instructible agents range from macro
recorders that fix on a procedure after a single exam-
ple (Mondrian) or a few examples (Eager), to systems
that learn continuously and try to integrate new con-
cepts with old ones (Cima).

On the third scale, task automation, traditional pro-
gramming and the English Butler score highest, since
they are able to execute procedures without user inter-
vention. Of course, this maximizes the risk of doing
something bad. Direct manipulation automates only
certain types of tasks, such as updating all paragraphs
of a given style to a new format. Instructible agents
can be used to automate tasks completely, but in gen-
eral they are intended for “mixed-initiative” collabo-
ration with the user, as exemplified in all the systems
we have discussed.

The next scale, programmability, concerns the degree
to which programmers can determine a system’s
behavior. A “serious” programming system enables
programmers to describe any computable task and to
choose an optimal method for doing so. At the oppo-

Figure 14 Comparing a range of instructible systems
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site extreme, direct-manipulation interfaces are inher-
ently nonprogrammable, though as noted above, some
offer restricted forms of task automation that the user
may parameterize. Nor is the English Butler truly pro-
grammable, since it decides for itself how to accom-
plish a task, and it can perform only those tasks it is
capable of planning. Instructible agents are program-
mable, and in theory could provide a “Turing-com-
plete” instruction set, though in practice they tend to
restrict the forms of program that users can create,
either because they lack some primitives and control
structures or because they cannot infer them from a
given set of examples. The inevitable (and desirable)
limit on an agent’s exploration of hypotheses is a
good argument for providing other means of instruct-
ing it: in other words, learning agents can be part of a
programming system, not necessarily a replacement
for one.

Another issue—a controversial one, as noted above—
is the degree to which the end user can control the
system’s task behavior. A C++ program gives the end
user no control, except through its user interface. A
direct-manipulation interface provides a high degree
of control, provided it is simple to understand and
offers immediate feedback. Unfortunately, direct-
manipulation interfaces are becoming more complex
and feature-ridden, as software vendors respond to
users’ demands for more powerful features. There is
no control without understanding, and such complex-
ity makes understanding the interface practically
impossible. The English Butler takes commands but
can easily get out of control by misinterpreting them;
we presume that this is the sort of agent that
Shneiderman15 decries. Instructible agents are more
easily controlled, because the user can define their
behavior in detail, as exemplified in Mondrian. An
agent that learns continuously from user instruction,
such as Turvy, affords user control over more complex
behavior. Systems such as Letizia, that learn by obser-
vation only, can avoid robbing the user of control by
offering suggestions rather than executing actions;
since they cannot be guaranteed to do the right thing,
they learn to make it easier for the user to do the right
thing.

The last two scales on Figure 14 have been paid the
most attention by the designers of instructible agents.
The effort of instruction involves the cognitive and
physical operations needed to transmit knowledge
from the user to the computer. Programming in a for-
mal language is high-effort in both respects, whereas
direct manipulation has demonstrated success in mini-

mizing effort—until tasks become repetitive or
require great precision or involve visually complex
structures. Delegating tasks to the English Butler is
simplicity itself—in theory—because the user does
not even have to know precisely what he or she wants.
In practice, describing a task in words is often more
difficult than performing it. Although instructible
agents vary somewhat in ease of use, the goal is gen-
erally to minimize the effort of instruction beyond that
needed to demonstrate an example.

Finally, learning how to instruct the computer is the
first and greatest hurdle users will encounter.
Although direct manipulation interfaces removed the
“language barrier” between user and machine, they
are now likely to come with an instructional video to
guide the new owner through the maze of special fea-
tures. Learning to instruct the English Butler requires
little or no effort, unless it has “quirks” (such as
unpredictable limitations) about which the user must
learn. Similarly, the users of instructible agents must
learn about their limitations (such as Turvy’s
restricted vocabulary) and about the tools of instruc-
tion (such as Mondrian’s graphical annotations). As
noted above, feedback is considered crucial for help-
ing users learn how to teach.

We think instructible agents represent a “sweet spot”
in the trade-offs represented by the spectrum shown in
Figure 14. They provide a way for the user to easily
delegate tasks to a semi-intelligent system without
giving up the possibility of detailed control. While
they take advantage of manyAI (artificial intelligence)
techniques, they do not require full solutions toAI
problems in order to be useful, and they can enhance
the usefulness of existing applications and interfaces.
The best part is that, as you use them, they just keep
getting better.

**Trademark or registered trademark of Apple Computer, Inc.,
Microsoft Corp., Netscape Communications Corp., LEGO Sys-
tems, Inc., Aldus Corporation, or Intuit.
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