
Supporting User Hypotheses in Problem Diagnosis
on the Web and Elsewhere

Earl J. Wagner
MIT Media Laboratory

20 Ames St
Cambridge MA 02139

ewagner@media.mit.edu

Henry Lieberman
MIT Media Laboratory

20 Ames St
Cambridge MA 02139
lieber@media.mit.edu

ABSTRACT
People are performing increasingly complicated actions on
the web, such as automated purchases involving multiple
sites. Web services will only increase the complexity of
these interactions. Things often go wrong, however, and it
can be difficult to diagnose a problem in a complex process.
Information must be integrated from multiple sites before re-
lations among processes and data can be visualized and un-
derstood. Once the source of a problem has been diagnosed,
it can be tedious to explain it to someone else, and difficult
to review the steps of the diagnosis later.

We present a web interface agent, Woodstein, that monitors
user actions on the web and retrieves related information to
assemble an integrated view of a transaction. It manages
user hypotheses during diagnosis by capturing users’ judg-
ments of the correctness of data and processes. These hy-
potheses can be shared with others, such as customer service
representatives, or saved for later. We will see this feature in
the context of diagnosing problems on the web, and discuss
its broader applicability for debugging systems in general.

INTRODUCTION
The state of consumer interfaces for e-commerce is at a cross-
roads. Most Americans have access to the web and many are
familiar with the convenience of late-night banking and the
thrill of last-minute bidding. On the horizon is the advent
of web services, currently being explored and developed for
business-to-business interactions, but inevitably to have a di-
rect influence on consumers’ interfaces for purchases and
online transactions. And yet most work in e-commerce in-
terfaces for consumers—both in research and in the devel-
opment of web sites—has been focused on what happens
leading up to a transaction: how to provide appropriate and
compelling recommendations, how often to send promotions
and updates by email and other means, and so on. Interfaces
for supporting customers after a transaction have received
little attention and promising new trends like “customer self-

service” are based on surprisingly old-fashioned technology
like site-specific searching[6].

The issue of what happens when something goes wrong in
e-commerce concerns vendors particularly because of the
possibility of losing customers. A recent study found that
after a bad customer service experience, 80% of customers
would be less likely to buy from the online vendor again[3].
And customers are contacting support—nearly half (44%)
of online buyers have made a support contact in the past six
months[2].

Vendors will continue to work to reduce these numbers, both
to build the value of their brands and limit the impact of cus-
tomer service on their bottom lines. But we can expect the
need for customer service to remain, just as we can expect
the newest software with great features to always have a few
bugs. The question then becomes to how to make the best of
a bad situation.

Although the reasons for contacting customer service vary,
some issues are more common than others. Just over a quar-
ter of all contacts are due to a delayed delivery of a product
or service and another quarter arise because of a billing or
pricing issue[2]. Anyone who has made more than a few
purchases online is familiar with these types of problems.
Looking at your credit card transactions history, you wonder
about that one order you never received. Or you purchased
something then discovered that you received less, or paid
more, than you expected. Diagnosing and resolving these
problems and other can be an ordeal in itself. It helps to
be organized and save order confirmation pages, as well as
all the emails back-and-forth with a vendor—for every order
you’ve ever placed. Then once you realize there’s a prob-
lem with a particular order and try to figure out what went
wrong, there’s even more bookkeeping for documentation of
conversations with customer service, product codes and se-
rial numbers, and so on.

It is experiences like these that make consumers wary when
initiating purchases in the first place. Indeed, the more com-
plex a product or service is, the greater the quality of cus-
tomer service will influence the decision[2], with financial
services and airline and hotel reservations being the transac-
tions of most concern. Importantly, these are also the trans-
actions that are likely to span multiple sites, creating greater
potential complications. Consider what happens when there’s

1

a miscommunication among multiple sites over the course of
a transaction. Then it’s the user’s problem to resolve. The
user has to go back and compare each step of what each
vendor did with what it should have done. The user must
assemble a complete history of the entire transaction, then
return and both seek amends from the party at fault and re-
solve things with everyone else.

We see these as the areas that vendors should really be fo-
cusing on when developing new consumer-facing technolo-
gies. Web transactions are becoming increasingly complex
and cannot be successfully handled with techniques devel-
oped back when we were told that “operators are standing
by”. Fortunately, we see an opportunity for software agents,
working on the web, to provide advanced help for consumers
in diagnosing and resolving their own problems, truly fulfill-
ing the potential of customer self-service. An agent can re-
trieve information about an online transaction and visualize
its entire history, even across multiple sites. In particular, it
can show the flow of payments or items as they pass from
one site to another. It can even be of help while diagnosing
the source of a problem, by helping the user generate a hy-
pothesis about the cause. All of this helps users “debug” the
steps that a vendor took or that they took, or even just their
own mental models of a process.

More importantly, we see this technique for annotating ob-
jects with user judgments as being more broadly applica-
ble. This approach can help with current problems in e-
commerce transactions, but also with monitoring processes
on the web in general. It could help programmers during
debugging and even help end-users diagnosing problems in
systems in general.

In the rest of this paper we will discuss a software agent,
Woodstein1 with these features. Woodstein monitors user
actions on the web and retrieves related information to as-
semble an integrated view of a transaction. We will see its
data-history view, in which it presents the history of a trans-
action from the perspective of the transaction data such as
prices and quantities of stock. We will also see the agent
work at an even more abstract level, in supporting the an-
notation of objects in its data-history view, including trans-
action data, to help users manage their hypotheses while di-
agnosing a problem. We will see how these hypotheses can
be shared as well as just saved for later reference. We will
finish by sketching out the broader possibilities suggested by
user annotations for problem diagnosis.

OVERVIEW OF WOODSTEIN
Woodstein is a software agent that works with a user’s web
browser to answer questions like “How did that data get that
value?” “Why did that happen?” and “What’s happening
now?”. It monitors a user’s actions on the web to create a
record of the user’s overall process. For example, by watch-

1Named after Bob Woodward and Carl Bernstein, the Washington
Post reporters who uncovered the Watergate scandal. When their
editor, Ben Bradlee, wanted to know what they had discovered,
he’d stand at the door of his office and yell “Woodstein!’ into the
newsroom to call them in.

ing the user browse an online retailer and add items to a
shopping cart, it recognizes that the user is making a pur-
chase. Later, when the user is looking at another page re-
lated to the process, Woodstein modifies the information in
the page so that it can be directly inspected. Within the user’s
credit card transactions history page, a single charge can be
examined. The history of the overall purchase process can
be retrieved and reviewed, making it convenient to under-
stand the context of the data, such as how the charge amount
was computed.

Woodstein works by matching a user’s actions to the steps of
an abstract model for the process. Through this recognition,
it knows to look for more information about the process on
other web pages and web sites, even if the user never visited
them. By watching the user select a credit card and shipper
for a purchase, Woodstein knows to go to the sites of the
bank and shipper to gather more information about the status
of the purchase, including whether it has been paid for and
delivered.

Woodstein collects and presents information about a user’s
data items and processes. A data item can be simple such
as prices, addresses or dates, or it can be composite such as
an entire transaction record or order. A process is either a
user action, such as loading a page or clicking a link, or a
web site reaction such as creating a new order. It is then
able to explain the context and history of processes and data
described in pages, such as how the items appeared in the
shopping cart page. It answers questions about the history
and current status of the overall process, as well as how data
in the process was set.

Successfully diagnosing a problem requires an understand-
ing of the causal relations within a system. Woodstein pro-
vides a “data-history” view to show the history of how a data
item was computed and created. The user can revisit previ-
ous pages in its history within this automatically generated
audit trail. For a purchase, the user can jump from the charge
amount in the credit card transactions page to a saved copy
of the order confirmation page in which the purchase price
appears.

If the user feels that a process or data item looks incorrect,
the judgment can be recorded through the object’s context-
sensitive menu. Woodstein then helps the user in diagnosing
the source of the problem, even if it is just the user’s incorrect
understanding of the process—which is why we speak of an
object as looking incorrect. Through the process of elimi-
nation, it makes further annotations and then suggests other
objects to examine. With these “effective” annotations that
trigger behavior by the agent, users save their intermediate
judgments and have a record of their process of diagnosis.

2

Figure 1. Viewing a stock purchase transaction

Figure 2. Inspecting the purchased stock

AN EXAMPLE OF HOW WOODSTEIN MANAGES A USER’S

HYPOTHESIS
Woodstein’s support for visualizing a user’s actions and man-
aging user hypotheses can be seen with an example. Con-
sider an employee at Yoyodyne who is enrolled in his com-
pany’s stock purchase plan. Each pay period Yoyodyne sets
aside a portion of his paycheck and, once a year, uses this
money to purchase a block of Yoyodyne shares with its bro-
ker, SN-AFU. He has set up his account at SN-AFU to auto-
matically transfer the shares to his broker, Sellwell.

The employee is browsing on the web and decides to review
Yoyodyne’s share purchases at SN-AFU. He notices that the
number of shares most recently purchased seems lower than
usual at 250, rather than over 400 (Figure 1).

The employee wants to interact with the shares directly to
see their history. When analyzing this page, Woodstein added
its logo that overlays the bottom right of the page. The em-
ployee turns on Woodstein’s inspector by clicking on the
logo. Woodstein converts all of the objects it recognized
while analyzing the page to buttons (Figure 2). When the
user moves the mouse into a button, Woodstein darkens the
button and updates the browser window’s status bar to indi-
cate what will clicking will do. This explanation also pro-
vides the actual name of the button’s process or data item.

The employee wants to know how the number of shares pur-
chased was set and presses down on its button, revealing a
menu. He selects “How was this set?” (Figure 3).

Figure 3. Asking how the stock was purchased

Figure 4. Viewing how the stock was purchased

Woodstein opens a pop-up window showing the history of
the shares with English descriptions of the processes and
data involved (Figure 4). This window is the “data-history”
view and it shows how the data item “shares at SN-AFU”
was set. The top frame, in grey, answers the employee’s
question by indicating that the shares resulted from the pro-
cess “SN-AFU set shares at SN-AFU”. Each data item is set
as the result of a process. Processes take data items as inputs
and set a data item as the result. The bottom frame shows
how the process took the number of shares purchased as its
input and set the number of shares at SN-AFU as its output.

Woodstein created this record by matching the Yoyodyne’s
original concrete steps in exercising the employee’s stock
purchase plan with its abstract process model for the action.
After Yoyodyne purchased the stock at SN-AFU, Woodstein
knew to look at both web sites and match the stock trans-
action. In this view, Woodstein presents the information it
gathered from the sites involved in the purchase, revealing
the first few steps back of the history of the shares.

Processes and data items are both presented as buttons in
Woodstein’s inspection mode, but process buttons are rounded
while data buttons are rectangular2. All buttons for the same
data item or process are equivalent across different views, so
interacting with an object’s button in the page is the same as
interacting with it in the data-history view. Woodstein pro-
vides multiple views to show the different relations among
the processes and data. For instance, a page shows the origi-
nal context of processes and data items, but the data-history
view shows how they are causally related. Each data item is
set as the result of a process. Processes take data items as
inputs and set a data item as the result.

2As is standard in data-flow diagrams.

3

Figure 5: Noting that the quantity of stock purchased
looks wrong

Figure 6: Viewing how the quantity of stock purchased
was wrong

Returning to the scenario, the employee thinks that “shares
at SN-AFU” looks incorrect. He presses down on its but-
ton in the data-history view and selects “This looks Wrong”
(Figure 5). The button turns red to indicate it has been anno-
tated as looking incorrect. Woodstein then marks the objects
used to compute the data item, both the process that created
it, “SN-AFU set shares at SN-AFU”, and that process’ in-
put, “shares purchased”, yellow to indicate that they may be
incorrect (Figure 6).

In response to the employee noting the incorrectness of the
data item, Woodstein opens a pop-up window to guide him
through the rest of the process of diagnosing the problem
(Figure 7). It put the objects it marked on the list of objects
for him to examine.

In addition to automatically identifying objects for the user
to examine next, Woodstein also performs the process of
elimination to help the user identify the source of the prob-
lem. If the output of a process looks wrong, but all of the
inputs look right then something must have gone wrong with
the process. Similarly, if the output looks wrong but the pro-
cess itself and all but one if its inputs look right, then the
problem must reside with the remaining input.

The next step is to determine the correctness of the process
that set the shares, “SN-AFU set shares at SN-AFU”. Mov-
ing the mouse over the button for the process updates the
debugging trail window which provides the employee with
some guidance. If the problem looks like it started before
the process, the process should be marked as correct. The
employee notes that the input share quantity was also 250,
so he marks the process as correct (Figure 8). Woodstein,
in turn, narrows the problem to the input and updates the
data-history view with both new annotations (Figure 9).

The employee still doesn’t know why so few shares were
purchased, though, so he continues. He clicks on the triangle

Figure 7. Viewing the record of the diagnosis

Figure 8: Noting that the stock purchase looks successful

Figure 9: Viewing how the quantity of stock to purchase
looks wrong

Figure 10: Viewing how the number of stock to purchase
was computed

4

Figure 11: Viewing the saved page for the computation
of the number of stock to purchase

next to the “shares purchased” data item to open its history,
scrolls the history into view, and clicks on the the process
that set the data item (Figure 10).

The process that resulted in shares being purchased was “Yoy-
odyne set shares purchased”. Clicking on a process or data
item causes it to become selected and its button to appear
pressed in. The shares at SN-AFU were previously selected
because the employee asked how they were set. Now the
process for Yoyodyne setting shares purchased is selected.
When an object is selected, Woodstein opens its “saved-
page” view with page it saved for the object. The page is
either the page the user interacted with directly, or a page
the agent retrieved with the first appearance of the data item
or a description of the process. In this case, the view features
the saved copy of a retrieved page with the number of shares
Yoyodyne intended to purchase (Figure 11). It is accessible
through the “Number of Shares” label, which stands for the
process that set the number of shares.

As in other views Woodstein presents the data items and pro-
cesses it is tracking as possibly annotated buttons within the
saved page. Just as in any other of Woodstein’s views, the
user can interact with any of these buttons to access the his-
tory of his data and the processes they were involved in.

The employee looks in the data-history view and sees the
inputs to Yoyodyne setting the number of shares purchased.
Yoyodyne used the share purchase budget and the share price
in computing the number of shares. Within the saved page,
he can see some of the history for the share price. Yoyodyne
started with two prices, the price at the beginning of the pe-
riod and the price at the end of the period. Then it took 80%
of the lower of the value, which resulted in the share price
of $20. So far, that looks right, and the prices of the shares
themselves look right to the employee so he marks them. He
looks over the rest of the saved page and notices something
unusual. His total contribution this year was $8000, which
looks correct, but for some reason only $5000 was used to

Figure 12: Viewing how the budget for the stock to pur-
chase looks wrong

Figure 13: Viewing how the IRS limit limited the share
purchase budget

purchase shares. It looks like this may be the problem, so
he goes back to the data-history view to see the history of
the budget, and how it was computed using his total contri-
bution. He clicks open the share purchase budget data item
(Figure 13).

He sees that Yoyodyne set the budget, and this process took
his total contribution and an IRS limit as inputs. It looks like
limit may be the problem. He clicks on it to select it, opening
the saved page that explains it in more detail (Figure 14).

It looks like this is in fact the source of the problem he ran
into. This obscure and newly-introduced policy limited the
amount that could be spent on his stock. With Woodstein,
the employee was able to easily diagnose this problem and
see that it was actually a problem with his own understand-
ing of the stock purchase plan policies. He was able to see
the history of how SN-AFU’s transfer process and Yoyo-
dyne’s purchase process interacted with his own data to cre-
ate the result on his SN-AFU account page. By tracing the
history of the stock through the data-history view, he avoided
having to look up the history of these processes on each in-
dividual site’s pages. Tracing back into the history enabled
him to see the exact policy that caused the unexpected result
and, with the saved page view, he was able to see the expla-
nation of the policy on Yoyodyne’s site buried deep within
its help pages.

The employee is happy to have identified the source of his
problem. Now he wants to find out if there’s an alternate
program he can enroll without the restriction. He goes to the
debugging-trail view and clicks on the “Complain” button to
generate an email (Figure 15).

Within the email’s user-editable area, he asks for more in-
formation. The CSR who receives this will be able to under-
stand the exact context of the request based on the path the
employee took.

5

Figure 14. Viewing the saved page for the IRS limit

Figure 15. Complaining about the IRS limit

Figure 16. Viewing a stock transfer transaction

Figure 17. Viewing how stock was transferred

We can see how beneficial Woodstein has been by looking at
the steps the user would have to go through to find the same
information without Woodstein. He would have seen the
problem symptom at Yoyodyne’s broker, SN-AFU. The next
step would have been to visit Yoyodyne’s internal pages. He
would log in, find the section for his stock purchase plan ac-
count, and load the purchase history page showing how the
stock was purchased, if it was available at all. At that point
he would have to go back and carefully read the help for
the stock purchase plan in order to find the single sentence
describing the IRS limit. Alternately, he could call Yoyo-
dyne’s internal support. After waiting on hold and providing
information identifying himself, he would talk with a CSR
and, after both have traced through the process of the share
purchase, he would eventually learn about the limit.

We can see how Woodstein’s records of a user’s exploration
and diagnosis are helpful by continuing with the example
after time has elapsed. A few months later, the employee
is browsing the web and loads his transaction history for
his broker, Sellwell. He sees the automatic transfer from
SN-AFU and remembers that there was something unusual
about it. He now wants to be reminded what the problem
was (Figure 16).

He inspects the transaction, loads the data-history view and
sees that he had inspected the transferred stock when it was
still at SN-AFU (Figure 17).

In this example, we have seen how Woodstein presents the
complete history of the purchased stock, even when it ap-
pears on multiple sites. Furthermore, we saw how it records
the user’s interaction with Woodstein’s history record itself.
The user can make use of the interaction record to, for in-
stance, familiarize someone else with the identified source
a problem. Later, Woodstein supports reviewing interaction
history when other pages related to the process are visited.
From user testing we have found that even first-time users of
Woodstein can perform a simple diagnosis like we saw in the
beginning of this example, in which the history of some data
is accessed and the user traces back to a particular policy that
affected it, in about 5 minutes.

EVALUATION
We tested the Woodstein’s integrated view and complaint
generator with 16 subjects [12]. We hypothesized that sub-
jects who used one of Woodstein’s views would be more
successful in diagnosis and diagnose problems more rapidly.
The eight subjects in the control group diagnosed problems
spread across multiple pages of multiple web sites, then sim-
ply complained about the relevant data item or process. The
eight subjects in the experimental group used one of Wood-
stein’s views, its process-history view, to see an overall his-
tory of the steps of the process in identifying the data item
or process to complain about. Woodstein’s process-history
view differs from its data-history view, presented earlier, by
showing the entire process spanning multiple sites as a pro-
cess tree much like the tree-view of a file browser.

Participants were told how the use the system and saw it

6

demonstrated. This took 5 minutes for control group and
20 minutes for the experimental group. They then spent
about 10 minutes taking a “quiz” consisting of using the
agent to select a particular data item and complain about it.
For the experimental group, this required accessing a saved
page through one of Woostein’s history views. Participants
then had 20 minutes to solve a “test” problem involving a
simulated user’s data and an organization’s policies. In this
problem, each participant played the role of a student who
is unable to graduate from his educational institution and at-
tempts to identify the exact reason and policy involved. The
experimental group used one of Woodstein’s history views,
while the control group just used pages on the web site.

All participants in the experimental group of the user study
were successful in diagnosing the test problem, taking an
average of 5 minutes. Only two participants in the control
group were successful, requiring an average of sixteen min-
utes. In addition, at the end of the experiment session, we
asked participants in the experimental group to rate differ-
ent aspects of their experiences with the agent and whether
they’d use it for problems they might encounter. Interest-
ingly, half would have used the agent to diagnose a problem
if they knew it were to take longer than 5 minutes on the
phone. Of the remaining four, three would use the agent if
they knew a phone resolution would take 15 minutes.

Reflecting the difficulty of managing information about credit
card purchases, half of the participants in the experimental
group said they “strongly agree”3 that they’d like to have an
agent like this one to help in visualizing and managing their
credit card transactions. Two said they “agree” they’d like
to have it, and the remaining two participants discussed the
weaknesses they perceived in the agent later in a free-from
section. One noted the potential for privacy problems and
the other preferred a more interactive process for complain-
ing. Though a CSR is interactive, no CSR is able to provide
all perspectives of a transaction involving multiple vendors,
as Woodstein can. The agent could be extended to support
an interaction with a CSR, however.

In fact, one of the original motivations for Woodstein is the
state of current support involving limited, text-based media
including phone conversations and email. Even a perfect in-
teraction with customer service by phone still lacks the ben-
efits of a web-based interface. In order to resolve a problem,
a customer must be sure to call during the hours support is
offered, and have a block of uninterrupted time. The web, on
the other hand, is always available and if some information
is not immediately at hand, a decision or investigation can
be postponed. Furthermore, it is often easier to understand
complex information when it is presented graphically[7]. All
of the advantages of a slick web site’s presentation are lost
when the customer has to hear his options or receive instruc-
tions over the phone. In fact, all of the advantages of a dig-
ital format are lost. With both the user and a CSR using an
agent like Woodstein, both could highlight and talk about

3Participants expressed their level of agreement with a 7-point Lik-
ert scale: 1=strongly disagree, 2=disagree, 3=somewhat disagree,
4=neutral, 5=somewhat agree, 6=agree, 7=strongly disagree

data items and processes, and even hypothetical possibiliites
and future events.

MANAGING HYPOTHESES WHEN DIAGNOSING PROB-

LEMS IN SYSTEMS
We see the possibility of user annotation as more broadly
applicable beyond just e-commerce on the web. Computer
users interact with systems everyday and often run into prob-
lems. When a problem is repeatable or particularly signifi-
cant, a user may send a bug report in an informal way. Some
systems, like Bugzilla[8], have been developed for automat-
ically managing users’ bug reports. Further, some applica-
tions, like Mozilla[9], “close the loop” and automatically
send a bug report when erroneous behavior is detected, such
as when the program crashes. These applications often al-
low users to provide some free-form information about what
they were doing when the problem occured, but they don’t
support user diagnosis in general. Unlike a developer, how-
ever, a user is in the perfect position to diagnose hard-to-
find bugs involving configuration details. Further, we sus-
pect that many users would be interested taking a few mo-
ments to diagnose a configuration problem with their operat-
ing system then have to reinstall the entire system and all of
their applications. In fact, often users have to do exactly that
and reassemble the history of what they installed to identify
a conflict. Of course, perfectly developed software with no
bugs would be ideal, but other factors govern the adoption of
new software. Regardless, a higher-level way of managing
hypotheses during diagnosis would be helpful.

RELATED WORK
A companion paper[13] discusses Woodstein’s basic behav-
ior without object annotation and hypothesis management. It
explains more fully how Woodstein tracks user actions and
it presents Woodstein’s other views.

No existing system that we are aware of directly attacks
the problem of end user debugging of electronic commerce
transactions or Web interactions.

Program Slices
A program slice is akin to the notion in business of an “audit
trail”. Audit trails are used to track the history of a record
and show all of the processing it has undergone. Program
slicing in particular is a software engineering technique for
focusing only on the parts of a program that affect the value
of a particular variable[14]. It is helpful for debugging, when
a programmer knows a variable has the wrong value and
wants to know how it was computed.

Program slice tools typically highlight the lines of code, mod-
ules or files in a slice[1]. This is useful for programmers, for
whom the source code is the primary representation of the
program. Within the domain of web actions, however, we
don’t expect the abstract models to be particularly meaning-
ful to end-users. Rather than presenting the abstract descrip-
tion of the process, Woodstein generates explanations of the
process’ actual concrete execution.

Some tools present slices via control-flow graphs or program

7

dependency graphs[5]. Woodstein presents the program de-
pendencies in the data history view, and the program execu-
tion tree in the process history view.

End-User Debugging
Some researchers have focused on how to better support end-
users and novice programmers in debugging. In what she
calls “end-user software engineering”, Margaret Burnett in
particular has focused on creating visualizations to support
end-users in debugging spreadsheets [10].

Capturing User Annotations
Little research has focused on capturing user annotations,
and less still on what we call “effective” annotations with a
semantic meaning for the system that manages the annotated
objects.

Trellis is a system that supports user annotation of objects
in an applications interface[4]. Annotations in Trellis are
typically used to indicate the original context of some infor-
mation, allowing users to refer back to this context.

Third Voice is a system for managing user annotations of
web pages, allowing users to see pages on the web overlayed
with the comments of other users[11].

CONCLUSION
We have presented Woodstein, a web interface agent for en-
abling end-users to visualize and understand their actions on
the web. Further, Woodstein helps users manage their judge-
ments of the correctness of their data and processes and di-
agnose the sources of problems they run into. We saw an
example of how this record of a user’s judgements can be
useful both to share with others, including customer service,
as well as for future reference.

ACKNOWLEDGEMENTS
Thanks to Marc Millier for his help in developing the ex-
ample scenario, Chris Laux for help in refining Woodstein’s
interface and Mary Jane for inspiration.

REFERENCES
1. Thomas Ball and Stephen G. Eick. Visualizing program

slices. In IEEE/CS Symposium on Visual Languages,
pages 288–295, 1994.

2. David Daniels, Corina Matiesanu, and David Schatsky.
Jupiter Consumer Survey Report: The State of
Customer Service 2003. Jupiter Research, 2003.

3. David Daniels and David Schatsky. Quantifying the
Cost of Poor Service: Investing in Customer Service to
Defend Revenues. Jupiter Research, April 2002.

4. Yolanda Gil and Varun Ratnakar. Trellis: An interactive
tool for capturing information analysis and decision
making. In Lecture Notes in Computer Science 2473.
Springer-Verlag, 2002.

5. Tommy Hoffner, Mariam Kamkar, and Peter Fritzson.
Evaluation of program slicing tools. In Automated and
Algorithmic Debugging, pages 51–69, 1995.

6. Esteban Kolsky. The Six Steps for Web Self-Service in
Customer Service. Gartner, Inc., March 2002.

7. Richard Mayer. Multimedia Learning. Cambridge
University Press, 2001.

8. The Mozilla Organization. Bugzilla: The mozilla bug
database.

9. The Mozilla Organization. Mozilla.

10. J. Ruthruff, E. Creswick, M. Burnett, C. Cook,
S. Prabhakararao, M. Fisher II, and M. Main. End-user
software visualizations for fault localization. In ACM
Symposium on Software Visualization, 2003.

11. Third Voice.

12. Earl J. Wagner. Woodstein: A web interface agent for
debugging e-commerce. Master’s thesis, MIT Media
Laboratory, 2003.

13. Earl J. Wagner and Henry Lieberman. Understanding
your actions on the web. In Submitted to Proceedings of
CHI’04, 2003.

14. Mark Weiser. Program slicing. In Proceedings of the
Fifth International Conference on Software
Engineering, pages 439–449, New York, 1981. IEEE.

8

