
Efficient Text Summarization Using Lexical Chains
H. Gregory Silber

Computer and Information Sciences
University of Delaware

Newark, DE 19711

silber@ udel.edu

Kathleen F. McCoy
Computer and Information Sciences

University of Delaware
Newark, DE 19711

mccoy@cis.udel.edu

ABSTRACT
The rapid growth of the Internet has resulted in enormous
amounts of information that has become more diff icult to access
eff iciently. Internet users require tools to help manage this vast
quantity of information. The primary goal of this research is to
create an eff icient and effective tool that is able to summarize
large documents quickly. This research presents a linear time
algorithm for calculating lexical chains which is a method of
capturing the “aboutness” of a document. This method is
compared to previous, less eff icient methods of lexical chain
extraction. We also provide alternative methods for extracting
and scoring lexical chains. We show that our method provides
similar results to previous research, but is substantially more
eff icient. This eff iciency is necessary in Internet search
applications where many large documents may need to be
summarized at once, and where the response time to the end user
is extremely important.

Keywords
Summarization, NLP, lexical chains, cohesion, linguistics,
algorithm

1. INTRODUCTION
1.1 Motivation
Automatic text summarization has received a great deal of
attention in recent research. The rapid growth of the Internet has
resulted in enormous amounts of information that has become
increasingly more diff icult to access eff iciently. The abilit y to
summarize information automatically and present results to the
end user in a compressed, yet complete form, would help to solve
this problem. Further, for a proposed Internet application,
eff iciency, even on large documents, is of substantial importance.

1.2 Background Research
Current research in automatic text summarization has generally
viewed the process of summarization in two steps. The first step
of the summarization process is to extract the important concepts
from the source text into some form of intermediate

representation. The second step is to use the intermediate
representation to generate a coherent summary of the source
document [4].

Many methods have been proposed to extract the important
concepts from a source text and to build the intermediate
representation. Early methods were primarily statistical in nature
and focused on word frequency to determine the most important
concepts within a document [5].

The opposite extreme of such statistical approaches is to attempt
true “semantic understanding” of the source document.
Obviously the use of deep semantic analysis offers the best
opportunity to create a quality summary. The problem with such
approaches is that a detailed semantic representation must be
created and a domain specific knowledge base must be available.

The major problem with purely statistical methods is that they do
not account for context. Specifically, finding the aboutness of a
document relies largely on identifying and capturing the existence
of not just duplicate terms, but related terms as well . This concept,
known as cohesion, links semantically related terms which is an
important component in a coherent text [2].

The simplest form of cohesion is lexical cohesion. Morris and
Hirst first introduced the concept of lexical chains [6]. Lexical
chains represent the lexical cohesion among an arbitrary number
of related words. Lexical chains can be recognized by identifying
sets of words that are semantically related (i.e. have a sense flow).
Using lexical chains in text summarization is eff icient, because
these relations are easily identifiable within the source text, and
vast knowledge bases are not necessary for computation. By
using lexical chains, we can statistically find the most important
concepts by looking at structure in the document rather than deep
semantic meaning. All that is required to calculate these is a
generic knowledge base that contains nouns, and their
associations. These associations capture concept relations such as
synonym, antonym, and hyperonym (isa relations).

Barzilay and Elhadad have noted limitations in previous
implementations of lexical chains. Because all possible senses of
the word are not taken into account, except at the time of
insertion, potentially pertinent context information that appears
after the word is lost. The problem that results is referred to as
“greedy disambiguation” [1]. Barzilay and Elhadad presented a
less greedy algorithm that constructs all possible interpretations of
the source text using lexical chains. Their algorithm then selects
the interpretation with the strongest cohesion. They then use
these “strong chains” to generate a summary of the original
document. They also present an examination of the usefulness of
these lexical chains as a source representation for automatic text
summarization [1]. Barzilay and Elahadad used Wordnet as their
knowledge base. Wordnet is a lexical database which captures all

senses of a word and contains semantic information about the
relations between words. The algorithm first segments the text,
then for each noun in the segment, for each sense of the noun, it
attempts to merge these senses into all of the existing chains in
every possible way, hence building every possible interpretation
of the segment. Next, the algorithm merges chains between
segments that contain a word in the same sense in common. The
algorithm then selects the chains denoted as “strong” (more than
two standard deviations above the mean) and uses these to
generate a summary.

This research defines a linear time algorithm for computing
lexical chains based on the work of Barzilay and Elhadad.

2. A LINEAR TIME ALGORITHM FOR
COMPUTING LEXICAL CHAINS
2.1 Research Design
The issue of time complexity arises if an algorithm such as
Barzilay and Elhadad’s is to be used effectively for information
retrieval. This research differs in focus from that of Barzilay and
Elhadad in that our major focus is on eff iciency, while their focus
was on the feasibilit y of such methodologies. We take this
approach because our goal is to provide an eff icient means of
summarization for internet material that can still produce superior
results. Additionally, in extending their research, care was taken
to examine the effect of the pruning step that is not required by
our algorithm. Lastly, a more complex scoring algorithm, which
is machine trainable, was devised to allow more detailed research
into the relative importance of different types of relations between
words in the source text.

2.2 Issues related to Wordnet
Wordnet is a lexical database that contains substantial semantic
information. In order to facilit ate eff icient access, the Wordnet
noun database and tools were rewritten. The result of this work is
that accesses to the Wordnet noun database can be accomplished
an order of magnitude faster than with the original
implementation.

2.3 The Algor ithm
Our algorithm attempts to implement the methods of Barzilay and
Elhadad, as well as an extended scoring system that we propose.
The segmentation of the text is currently implemented to allow
comparison; however, it does not run in linear time. The
algorithm is described in detail i n figure 1.

Figure 1 – L inear time algor ithm for computing lexical chains

This first phase of our implementation constructs an array of
“meta chains.” Each meta chain contains a score and a data
structure which encapsulates the meta-chain. The score is
computed as each word is inserted into the chain. While the
implementation creates a flat representation of the source text, all
interpretations of the source text are implicit within the structure.
This concept is ill ustrated in Figure 3. Each dot represents a
sense of a word in the document. Each line represents a semantic
connection between two word senses. Each set of connected dots
and lines represents a meta-chain. The gray ovals represent the
list of chains to which a word can belong. The dashed box
indicates the strongest chain in our representation.

Notice that in some senses of the word machine, it is semantically
similar to friend, while in other senses, it is semantically similar to
computer (i.e. in the same meta-chain). The algorithm continues
by attempting to find the “best” interpretation from within our flat
representation. We view the representation as a set of transitively
closed graphs whose vertices are shared. In figure 3, the sets of
lines and dots represent five such graphs. The set of dots within
an oval represent a single shared node. That is to say, that while
two of these graphs may share a node, the individual graphs are
not connected. The “best” interpretation will be the set of graphs
that can be created from the initial set mentioned above, by
deleting nodes from each of the graphs so that no two graphs
share a node, and the overall “score” of all the meta-chains is
maximal.

Figure 2: Computation of best chain

The computation of the best interpretation is shown in figure 2.

With this method, we can find the set of chains which maximize
the overall score without actually having to construct them all

Figure 3: Implicit interpretations within our representation.

A friend just bought a new
computer. The machine is a very
fast computer.

1) Tag the corpus using semantag. Semantag is a Brill style Part of
Speech Tagger designed for eff iciency available from
http://www.rt66.com/gcooke/SemanTag on the Internet.

2) For each noun in the source document, form all possible lexical
chains by looking up all relation information including
synonyms, hyponyms, hypernyms, and siblings. This
information is stored in an array indexed on the index position of
the word from Wordnet for constant time retrieval.

3) For each noun in the source document, use the information
collected by the previous step to insert the word in each “meta
chain” . A “meta chain” is so named, because it represents all
possible chains whose beginning word has a given sense number.
Meta-chains are stored by sense number. The Sense numbers are
now zero based due to our reindexing of Wordnet. Again, the
implementation details are important, as they allow us to retrieve
the meta-chain in constant time.

1) For each word in the document

a) For each chain that the word belongs to.

i) Find the chain whose score will be affected most
greatly by removing this word from it.

ii) Set the score component of this word in each of the
other chains to which it belongs to 0, and update the
score of all the chains to which the word belongs to
reflect the word’s removal.

explicitl y. This fact is really the most important concept of this
research. The fact that we can extract the interpretation
(independent set of non-intersecting chains) of the text with the
highest score without actually having to construct any other
interpretations is the insight that allows this algorithm to run in
linear time.

2.4 Runtime Analysis
In this analysis, we will not consider the computational
complexity of part of speech tagging, since that is not the focus of
this research. Also, as it does not change from execution to
execution of the algorithm, we shall take the size and structure of
Wordnet to be constant. We will examine each phase of our
algorithm to show that the extraction of these lexical chains can
indeed be done in linear time. For this analysis, we define
constants in Table 1. Initially, we may be greatly concerned with
the size of these constants; however, upon further analysis, we see
that most synsets have very few parent child relations. Thus the
worst case values may not reflect the actual performance of our
application. In addition, the synsets with many parent child
relations tend to represent extremely general concepts. These
synsets will most likely not appear very often as a direct synset for
words appearing in a document.

Value Wrst Avg

C1=# of senses 30 2

C2=parent/child “ is a” relations 45147 14

C3=# of nouns in Wordnet 94474 94474

C4=# of synsets in Wordnet 66025 66025

C5=# of siblings 397 39

C6=# of chains a word can belong to 45474 55

Table 1: Constants from Wordnet

2.4.1 Collection of Wordnet information
For each noun in the source document that appears in Wordnet,
each sense that the word can take must be examined. Additionally,
for each sense, we must walk up and down the
hypernym/hyponym graph collecting all parent and child
information. Lastly we must collect all of the senses in Wordnet
which share immediate parents with the word in question. All of
the complexity in this step is related to the size of Wordnet which
is constant. The run-time is given by the formula:

n*(log(C3)+C1*C2+C1*C5).

2.4.2 Building the graph
The graph of all possible interpretations is nothing more than an
array of sense values (66025+n in size) which we will call the
sense array. For each word, we examine each relation computed
as above from Wordnet. For each of these relations, we modify
the list that is indexed in the sense array by the sense number of
said relation. This li st is modified by adding the word to the list,
and updating the lists associated score. Additionally, we add the
chains pointer (value stored in the array) to a list of such pointers
in the word object. Lastly, we add the value of how this word
effects the score of the chain based on the scoring system to an
array stored within the word structure.

Clearly, because of the implementation all but the computing of
the score component of the word are O(1). Because we also keep
an array of sentences within each chain object with the words
organized by their sentence number, we can easily find whether a

word is within a certain distance of any other word in the chain in
O(window size) time. The window size defaults, while
adjustable, are taken as a constant and are generally small .

Consequently, the runtime for this phase of the algorithm is:

n*C6*(4+window size) which is also clearly O(n).

2.4.3 Extracting the Best Interpretation
For each word in the source document, we look at each chain to
which the word can belong. A list of pointers to these chains are
stored within the word object, so looking them up takes O(1)
time. For each of these, we simply look at the maximal score
component value in all of these chains. We then set the scores of
all of the nodes that did not contain the maximum to 0 and update
all the chain scores appropriately. The operation takes:

n*C6*4

which is also O(n).

2.4.4 Overall Run Time Performance
The overall runtime performance of this algorithm is given by the
sum of the steps listed above. These steps give us an overall
runtime of:

n * (1548216 + log (94474) + 45474 * (4 + window size)) worst case

or

n * (326 + log(94474) + 55 * 4 + window size) average case.

While in the worst case, these constants are quite large, in the
average case, they are reasonable. This algorithm is O(n) in the
number of nouns within the source document. Considering the
size of most documents, the linear nature of this algorithm makes
it usable for generalized summarization of large documents.

3. EXPERIMENTS
3.1 Experimental Design
Experiments were conducted with the following research
questions in mind. Does our linear time algorithm perform
comparably with existing algorithms for computing lexical
chains? How does a more complex scoring algorithm effect
summarization?

These experiments were carried out on documents selected at
random from the original set of documents tested by Barzilay and
Elhadad.

3.2 Experimental Results
The results compared were strong chains (two standard deviations
above the mean of the chains’ scores). Metrics were used to score
chains. It is important to note that while flexible, these metrics
were selected based on intuitive reasoning as to how lexical
cohesion relationships might work in practice. More work is
certainly necessary, and these values are by no means optimal.
The values were merely selected to test the alternative scoring
system approach. The results showed that although minor
differences between results existed, they were relatively
insignificant. Results of three selected documents are available
online at http://www.eecis.udel.edu/~silber/results.htm.

4. DISCUSSION
4.1 Analysis of Our Algor ithm
The experiments were conducted with the intention of
determining how well our algorithm duplicates the experimental
results of Barzilay and Elhadad. In conducting such an analysis,
we must consider the known differences in our algorithms. The
first, and possibly most apparent difference in our algorithms, is
in the detection of noun phrase collocations. The algorithm

presented by Barzilay and Elhadad uses a shallow grammar parser
to detect such collocations in the source text prior to processing
[1]. Our algorithm simply uses word compounds appearing in
Wordnet (Wordnet stores such words connected by an underscore
character). This difference may account for some of the
differences observed in the results.

The next inherent difference between the algorithms is that
Barzilay and Elhadad attempt to process proper nouns which our
algorithm does not address. Although not clear how it is done,
Barzilay and Elhadad do some processing to determine relations
between proper nouns, and their semantic meanings.

Upon analysis, these differences seem to account for most of the
differences between the results of our algorithm with
segmentation, and the algorithm of Barzilay and Elhadad.

5. CONCLUSIONS
In this paper, we have outlined an eff icient algorithm for
computing lexical chains as an intermediate representation for
automatic machine text summarization. In addition, several issues
that affect eff iciency were discussed.

The algorithm presented is clearly O(n) in the number of nouns
present within the source document. While in the worst case, the
constants that arise from this analysis are quite large, in the
average case, the constants are manageable, and in practice, they
are quite small . In tests conducted on a Sun Sparc Ultra10
Creator, a 40,000 word corpus was summarized in eleven seconds
including generation.

Careful experiments reveal that our eff icient method of text
summarization produces similar results to the algorithm of
Barzilay and Elhadad. Most of the inconsistencies between the
output of the two algorithms can be attributed to differences in the
ancill ary components of the two summarization systems.

While not a major issue our algorithm does not prune the
intermediate representation during its construction, and thus our
algorithm provides the generation algorithm (in our case, a
sentence extraction algorithm) with a more complete picture of the
source text. In future work on the generation aspects of
summarization, this factor may become more important.

An alternative scoring system to the one proposed by Barzilay and
Elhadad was devised. This scoring system, while not currently
optimized, provides good results, and allows the user to tune the
importance of different types of relations, which in turn affect the
summary. This scoring system also provides a notion of distance
which allows for adjusting scores based on the size of “gaps”
within the chains.

In their research, Barzilay and Elhadad showed that lexical chains
could be an effective tool for automatic text summarization. By
developing a linear time algorithm to compute these chains, we
have produced a front end to a summarization system which can
be implemented eff iciently. An internet interface was developed
to convert HTML documents into input to the summarizer. An
operational sample of the summarizer is currently available on the
World Wide Web for testing at
http://www.eecis.udel.edu/~silber/research.htm.

6. FUTURE WORK
As this is ongoing research, there are many aspects of our work
that have yet to be addressed. Issues regarding the extraction of
lexical chains, segmentation, scoring, and eventual generation of
the summary text must be examined further.

Segmentation, as implemented by Barzilay and Elhadad, is
ineff icient. It may be possible to incorporate segmentation
information by making the distance metric of our new scoring
system dynamic. By using segmentation information to determine
the distance metric, we may be able to take advantage of
segmentation without the expense of merging together chains
computed from individual segments [1].

Examinations of the performance of our algorithm on larger
documents should be conducted. Moreover, further analyses on
the effects of pruning, as required by Barzilay and Elahadad, on
these larger documents are also warranted

The scoring system proposed in this research requires
optimization. Currently, its values are set based on the linguistic
intuition of the authors. In future work, we hope to use machine
learning techniques to train these values from human-created
summaries.

Lastly, experiments to evaluate the effectiveness of a summary
must be conducted. These experiments are necessary to examine
how well our summary can assist a user in making a decision or
performing a task. Since no two people would summarize the
same document in precisely the same way, evaluation is one of the
most diff icult parts of text summarization.

7. ACKNOWLEDGMENTS
The authors wish to thank the Korean Government, Ministry of
Science and Technology, whose funding, as part of the Bili ngual
Internet Search Machine Project, has made this research possible.
Additionally, special thanks to Michael Elhadad and Regina
Barzilay for their advice, and for generously making their data and
results available.

8. REFERENCES
[1] Barzilay, Regina and Michael Elhadad. Using Lexical

Chains for Text Summarization. in Proceedings of the
Intelli gent Scalable Text Summarization Workshop
(ISTS’97), ACL Madrid, 1997.

[2] Halli day, Michael and Ruqaiya Hasan. Cohesion in
English. Longman, London, 1976.

[3] Hearst, Marti A. Multi -paragraph segmentation of
expository text. In Proceedings of the 32nd Annual
Meeting of the ACL. 1994

[4] Jones, Karen Sparck. What might be in summary?
Information Retrieval, 1993.

[5] Luhn, H.P. The automatic creation of literature
abstracts. In H.P. Luhn: Pioneer of Information
Science. Schultz, editor. Spartan, 1968.

[6] Morris, J. and G. Hirst. Lexical cohesion computed by
thesaural relations as an indicator of the structure of the
text. In Computational Linguistics, 18(1):pp21-45.
1991.

[7] Stairmond, Mark A. A Computational Analysis of
Lexical Cohesion with Applications in Information
Retrieval. Ph.D. thesis, Center for Computational
Linguistics, UMIST, Manchester, 1999.

