
Requirements Elicitation for an Intelligent Software
Test Environment for the Physically Challenged

Warren Moseley Ph.D.

St. Andrews Presbyterian College

Laurinburg, NC 28352, USA

910-277-5252

moseleycw@yahoo.com

ABSTRACT
This paper is about the elicitation of the requirements for
an intelligent interface for a software test development
environment that will accommodate the physically
challenged (PC). This research explores the use of eye-
tracking mechanisms and digital manipulative user
interfaces that are especially enhanced for the PC. In
addition these devices provide assistance for the
knowledge elicitation phase for an Intelligent User
Interface to such an environment. It was never a stated
objective of PCTA (Physically Challenged Test
Assistant) to include any intelligent augmentation of the
environment. It was challenge enough to get a paraplegic
to operate the software test environment. However, in the
process of evaluating the data collected in the evaluation
of the user interface it was discovered that empirical data
existed to predict some of the impasses that occur in the
software development and more uniquely in the software
testing process.

Keywords
Knowledge Acquisition, Knowledge Elicitation, Scenario-
Based Engineering, Software Architecture, Design
Patterns, Physically Challenged, Eye Tracking, Digital
Manipulatives, Object Oriented Architecture, Americans
with Disabilities Act (ADA) of 1990, Intelligent Process
Automation.

INTRODUCTION
PCTA is a subset of a larger research effort called the
Physically Challenged Assistant (PCA). PCTA involves
studying the testing patterns of the Physically Challenged
(PC) and the non-PC software developers to provide
interface and coordination requirements necessary to build
a software test environment and to aid the PC person to
integrate into a multi-user coordinated software team.

PCTA is a software architecture framework for
understanding the system components and their
interrelationships of a Software Test Environment to
support the PC. This understanding is necessary for the
analysis of existing systems and the synthesis of future
systems that will contain knowledge intensive
components.

The Americans with Disabilities Act (ADA) of 1990
stipulates that employers must make reasonable
accommodations for those with disabilities. It is not easy
to determine just how a physically challenged person will
interact with an environment, and hence employers have

focused their attention to jobs that require only one
person to accomplish and usually ones that are not time
critical. Seldom in the American or International
workplace would you find a quadriplegic as a part of
multi-user coordinated software development team. The
Physically Challenged Assistant (PCA) covers situations
that are time-dependent and ones that include user
interaction and task coordination. PCA allows employers
to more readily conform to the ADA, and to mainstream
valuable assets.

SOFTWARE FRAMEWORKS ENHANCE THE
KNOWLEDGE ELICITATION AND SYSTEMS
ANALYSIS PROCESS
In support of analysis and knowledge elicitation, software
architecture frameworks capture domain knowledge and
community consensus. They facilitate evaluation of
design and implementation components. They ease
simulation and prototyping of environments to support
the target users. In support of synthesis, architecture
frameworks provide a basis for establishing product lines
and using domain knowledge to construct and maintain
modules, subsystems, and systems in a predictable
manner. PCTA provides this framework for reuse and
understanding. An example of a software framework that
has provided serious return on the initial investment is
the ACE[] (Adaptive Communication Environment) and
the Computer Integrated Manufacturing (CIM)
Applications Framework developed at SEMATECH.[1]

The realization that given the extra emphasis on the user
input, it was empirically possible to study the testing
patterns of the PC and the non-PC software developers.
This data is used to provide interface and coordination
requirements necessary to build an intelligent software
test environment to aid the PC person to integrate into a
multi-user coordinated software team.

Consider the following figure. The original idea was to
create an abstraction for the User Interfaces (UI) for the PC

Software
Development
Workstation

UI for the
Non PC

UI for the
PC

and the Non-PC. Implementations of these separate
abstractions would provide a suitable working
environment. We expected little difference between the
workstation level and the actual end product. The latter
has proven true, but the abstraction of the interfaces
brought up some more significant issues. In examining
the data from the original prototype the PC person
provided more data than the non-PC person did, i.e. focus
of attention. The focus of PC person attention could be
the derived from eye tracker data. Focus of attention was
never an objective of the original concept. The question
arose, just what is the person thinking and how does that
affect the approach to the software testing process. The
user interface must support the role of a coordinated team
player. This requirement differentiates PCA from just
adding devices to an existing software support
environment for the PC.

A SIMPLE OVERVIEW OF SOFTWARE TESTING
A quality analysis-oriented test of a computer program
consists of:

1. Running the program with a controlled set of inputs

2. Observing the run-time effect the inputs have on the
program

3. Examining the program outputs to determine their
acceptability

This may sound trivial for a non-PC person but without
assistance just controlling a set of inputs, observing the
run-time effects, and analyzing the output can be a
monumental, sometimes impossible task for a PC
individual. A quadriplegic just cannot crawl under a desk
to connect a network interface cable, flip the switches on a
density meter, or manipulate the dials and gauges of a
water quality instrument. PCTA makes the interface for
the PC as seamless as possibly feasible. Our original
approach to evaluation of this environment was to
question the user and managers to determine the ease and
level of usage, but now focus of attention is non-
intrusively traceable.

Contemporary testing technology advocates both a static
and a dynamic quality analysis process. A dynamic test
constitutes the process of running programs under control
and observable circumstances. Static testing includes
manual code inspections, structured walkthroughs, or the
use of automated tools that analyze software by looking
for certain kinds of common errors. Just holding a code
inspection or structured walk-through can sometimes be a
monumental task for the PC individual. PCTA attempts
to combine the best of static and dynamic testing.

CHALLENGES FOR THE PC
The computer is now, and will continue to be an essential
part of the toolkit for the physically challenged. It offers
new hope of extended independence to those who
previously had little hope. These rapid technological
advances translate to increases in system complexity. The
ability to study and to manipulate complex computing
environments is critical to the creation of working and

meaningful environments for the physically challenged.
An important part of the cooperative environment is the
communication devices for the PC individual. Using
these devices as a means to a solution creates a distributed
application because these interface devices are in
themselves powerful and complex computers with very
sophisticated application software, some of which already
operate as distributed systems. Following are some of
the devices that make PCA a reality.

The Liberator
The Liberator is a specially modified computer adapted to
the needs of the PC.

Figure 1 - The Liberator

The extended demands for multi-user coordination in
PCA make it necessary to encapsulate the functionality of
the Liberator into a larger distributed computational
model. Liberator's capabilities can be extended to contain
powerful programming tools to augment the
communication capability of the PC.

Liberator’s clock and calendar serve as organizers that are
particularly useful in the software development process
and in research associated with the development process.
In this study we used this device as one of the interfaces
to the software test environment. But of greater
significance a slight modification provides a non-intrusive
monitoring and data acquisition mechanism to help
determine just exactly what the PC person was doing. In
the initial findings time was a factor that impacted the
overall software development and hinders the PC
participant from being an immediate asset to the
development team.

Though it is possible to derive some of the cognitive task
data from the Liberator interface, we found it limited
when trying to track exactly what the participant was
doing at a fine-grained micro level. For instance we
could tell that the person was working on debugging a
segment of code, but it was difficult to determine just
what cognitive activity was activated. Coordination of
chronological elements with other parts of the
environment produced task sequences at a coarse grain
level. Often a shift of attention to an associated
document, diagram, or piece of test equipment alluded the
Liberator. The Liberator allows for other assisting

devices to be added to enhance and monitor the software
development interface .
The Eye Tracker

The ION™ Eye Controlled Cursor Control System is an
access device that operates completely through head and
eye motion giving the PC person total access to the
computing environment.

Figure 5 - The ION™ Eye Tracking Mechanism

Software adds eye control to basic software for head
control, and allows full control of a computer with only
the eyes. Two tiny cameras in the headset observe both
the user’s eye and the beacon on your monitor, allowing
the computer and the ION™ Eye Control Software to
determine where the PC Person is looking on or off the
screen. The ION™ can also sense intentional blinking,
and uses that for clicking and dragging. Eye tracking
mechanisms give us insight into the cognitive tasks for
PCTA. This will provide a focal point for future studies
into the cognitive aspects of the software testing process.

Digital Manipulatives for the PC Person
In many educational settings, manipulative materials
(such as Cuisenaire Rods and Pattern Blocks) play an
important role in learning and enabling the exploration of
mathematical and scientific concepts through direct
manipulation of physical objects. Resnick [2] and MIT
researchers have developed a new generation of "digital
Manipulatives" -- computationally enhanced versions of
traditional children's toys have been developed by the
Media Lab at MIT. These new manipulatives enable
exploratory investigation of design concepts. PCTA uses
digital manipulatives such as computationally augmented
versions of blocks and tubes to help create a construction
environment that are mentally challenging and physically
useful to those who are physically challenged.

Resnick [3] sees the use of digital manipulatives as part of
a broader trend within the computer interface research
community. Manipulative objects have traditionally been
abstract objects, such as those found in object-oriented
languages and direct-manipulation graphical interfaces.
Physical object analogs exist for most abstract objects.

In research efforts variously described as "ubiquitous
computing," "computer-augmented environments," and
"things that think," [4] researchers are now exploring ways
of adding computational capabilities to everyday objects
ranging from notepads, desktops, eyeglasses, new
Liberators, and the ION™ Eye Control System.

Resnick and the MIT Media Lab researcher focus their
attention to direct manipulative learning aspects, and in
particular the use of the physical devices as a part of the
learning environment for young children. PCTA switches
the focus of their attention to the use of directive
manipulatives as a means of adding functionality to the
participatory software development environment. The use
of these devices as a mechanism for non-intrusive means
of data collection and knowledge elicitation for the PC
individual provides a foundation for an adaptive
development environment based on an intelligent user
interface.

Programmable LEGO™ Bricks
The MIT Programmable Brick is a tiny, portable
computer embedded inside a LEGO™ brick, capable of
interacting with the physical world through sensors and
motors. PCA significantly reduces the volume of input
necessary for the PC person by using visualization and
direct digital manipulative techniques. PCTA was the
first target area for digital manipulatives by PCA in a
distributed object computing environment. In the first
prototype we used the LEGO™ RCX Brick.

Figure 5 the LEGO™ RCX Brick used in PCTA

Several projects in a lake ecology study required extensive
software enhancements to the scientific laboratory
equipment software to include new real-time data
acquisition capability. We chose a water quality
experiment and the software test environment for the
equipment used to monitor water quality to test our
strategy of using direct manipulatives for the PC.

Figure 6 shows lab equipment with RCX bricks
attached. Specially modified panels were placed in each of
the operational modules of the laboratory test equipment.
There were usually several RCX bricks and other interface
apparatus that allowed computer controlled operation.

Figure 6 - Lab Equipment with attached

RCX Lego™ Bricks

. We attached the infrared sensors and transmitters to
designated portions of the laboratory test equipment and
likewise modified the user interface devices to use the
infrared sensors and transmitters of the LEGO™ Brick to
control the test equipment hardware to make the
manipulation of the software test environment hands-free.
These devices can be operated by screen representation of
the physical devices from computer interfaces, but also
from embedded processors in devices such the ION™.

THE PROGRAMMING ENVIRONMENT
In PCA wires are both a practical and conceptual
nuisance. They limit not only what the user can build
but also how they think about their constructions. The
part of PCA that is unique is that it provides a new way
to think about and explore software products, software
processes, and more importantly the software design
process for PC people. PCA gets rid of the wires and
embeds computational capabilities directly in the digital
manipulatives. The wires in LEGO™/Logo[5] confuse the
kids, and in PCTA they are unnecessary physical hurdles
for the PC individual. The PC person just can’t crawl
under a desk and connect a wire to the NIC(network
interface card) of a computer, and then connect that wire
to the computer in the lake ecology lab equipment. These
scientific experiments were restricted to inside the lab, but
the lake ecology project involved the installation of air
and water temperature sensors in the lake. We did not
attempt to have the PC install these outdoor sensors.

PCTA USES A CORBA-BASED SOFTWARE
ARCHITECTURE
PCTA uses a client server architecture model derived from
the Object Management Group’s (OMG) Common Object
Request Broker (CORBA)6. The most important facet for
selection of CORBA as a basis for PCTA was the
potential of subsuming every other form of Client/Server
Middleware. CORBA uses objects as the unifying
metaphor for bringing existing applications to the bus.
At the same time it provides a solid foundation for a
component-based future and Software Framework
Construction.

Computer in
the Liberator

Software Test
Environment
Controller

RCX
Lego
Bricks

Laboratory
Test
Equipment

ORB(Object
Request Broker)

IDL IDL IDL IDL

Tubes

Patches

Figure 8 - Corba Diagram of PCTA Architecture

CORBA does not have a LOGO binding. Open/Doc does.
It is possible to simulate a CORBA Object Request
Broker (ORB) using Open/Doc there are computers in the

Liberator and all of the rest of the interface devices to
support the PC person. All of the software applications
in all of the computers that are connected to PCTA are
either Object-Oriented applications or have been wrapped
to appear to use distributed objects. Figure 8 shows a
highly simplified architecture diagram for the PCTA.
The use of CORBA architectural patterns provides the
foundation for the creation of a framework for a software
test environment that is adaptable to the needs of the PC.

The PC Person no longer has to deal with the constraints
of the physical environment. The use of the digital
manipulatives provides an interface to the software
architecture. The software architecture is able to be
controlled by the devices and the computers in the
software test.

SUMMARY
This research involved the creation of a context for design
and a support environment to create applications for the
physically challenged (PC). It is extended to include
scenarios in which the physically challenged will be a part
of the development team. PCTA involves empirically
studying the testing patterns of the PC and the non-PC
software developer.

 D. C. Schmidt, “An OO Encapsulation of Lightweight OS
Concurrency Mechanisms in the ACE Toolkit,” Tech. Rep.
WUCS-95-31, Washington University, St. Louis, September
1995.
1 Computer Integrated Manufacturing Applications
Framework Specification v 1.2, SEMATECH,
Technology Transfer Document 93066196E-ENG,
SEMATECH Consortium, Austin, TX. March, 1 1995
2http://el.www.media.mit.edu/groups/el/papers/mres/black
-box/proposal.html
3Resnick, M., Bruckman, A., and Martin, F. (1996).
Pianos Not Stereos: Creating Computational
Construction Kits. Interactions, vol. 3, no. 6
(September/October 1996).
4Resnick, M., Berg, R., Eisenberg, M., Turkle, S., and
Martin, F. (1996). Beyond Black Boxes: Bringing
Transparency and Aesthetics Back to Scientific
Instruments. Proposal to the National Science Foundation
(project funded 1997-1999).
5Resnick, M., Martin, F., Sargent, R., and Silverman, B.
(1996). Programmable Bricks: Toys to Think With. IBM
Systems Journal, vol. 35, no. 3-4, pp. 443-452.
6 R. Orfali, Client/Server Programming with Java and
CORBA, John Wiley, New York, 1996, ISBN 0-471-
16351-1.

