
A Reporting Tool Using “Programming by Example”
For Format Designation

Tetsuya Masuishi
Business & Information Systems

Development Division,
Hitachi, Ltd.

890 Kashimada, Saiwai
Kawasaki, 211-8567, JAPAN

+81 44 549 1703
masuishi@bisd.hitachi.co.jp

Nobuo Takahashi
Software Division, Hitachi, Ltd.

Kaneichi Building
549-6 Shinano-cho, Totsuka

Yokohama, 244-0801, JAPAN
+81 45 826 8543

takah_nb@gm.soft.hitachi.co.jp

ABSTRACT
This paper describes a report tool in which report formats are
designated by "Programming by Example"-like operations.
Users specify a sample layout of an example row of relational
table data on a sheet, and select an iteration pattern of the sample
layout. The tool extracts a set of general formatting rules from
the sample layout. The rules consist of absolute positions of non-
iterative data, relative positions of iterative data, the iteration
pattern, and the increment of the iteration. The tool interprets
the rules and generates new reports of the format for different
table data.

Keywords
Reporting Tool, Relational Database, Programming by Example,
User Interface

1. INTRODUCTION
Data warehouse technologies have enabled centralized data
management for decision support and planning applications. As
many decisions are made by the centralized database, many
formats of reports are printed for the decision makers.

Many end-users, sometimes even decision makers themselves, in
planning offices have to design the report formats, since the
formats represent the view of the data and cause considerable
effects on the planning decision.

Such reports in Japan for decision making is a kind of
reconstructed table style reports which include instance text
strings and numerical data, while most of such reports in the
states include graphs which already implies analysis results. The
reason of the difference might be the difference of their cultures.

The reconstruction is needed because relational tables in
practical use have usually many columns. We have assumed the
data are stored in a relational database. The reconstruction is
applied to place data of many columns to fit in the width of the
paper. It is difficult to grasp reports that exceed both of the

width and the height of the paper. Since the number of rows of
tables are usually big enough to exceed the height of the paper,
we need to reconstruct the relational table to make reports of
many pages in one direction which we can handle easily. Figure
1 shows an example of a Japanese style reconstructed table
report. Japanese reports usually include many ruled lines to
separate adjacent data, rather than tabulation spaces. The reason
is maybe the fact that Japanese words are not separated by spaces.

Many software packages called “reporting tools” support such
reconstruction. Reporting tools have usually a scripting language
to make programs. A program generates a report of a fixed
format by embedding various data of a relational database.

This paper describes user interface of a report tool, which
designates formats of reports. The user interface is designed in a
“programming by example” manner [1][2]. A user creates a
sample report for example table data. The tool extracts the
implied formatting rules. The tool interprets the rules to
generate reports reading relational table data as input. The
extraction process is deterministic and does not include any

statistical recognition or learning process.

Sugiura and Koseki [3] shows a data entry system from e-mail
text into a database. The system generates a macro program that
reads e-mail text, extracts data from the text and inserts the data
into database. A generalization process is employed generate a
general–purpose macro program from a history of sample

Sex AddressBalanceNameNo
M 890 Kashimada, Saiwai, Kawasaki$ 88.75Taro Suzuki1
F 549-6 Shinano-cho, Totsuka, Yo..0Hanako Sato2
...3

Relational Table Data

Reconstraction

890 Kashimada, Saiwai, Kawasaki
$ 88.75Taro Suzuki1 Balance

549-6 Shinano-cho, Totsuka, Yo..
0Hanako Sato

2
Balance

...
......3 Balance

Address

Address

Address

Figure 1 Typical Japanese Reconstracted Report

operations. Our problem is easier because the input is a
structured table in a database, not like e-mail text in natural
language. Instead, our system employs a simple generalization
process for just one example.

Myers [4] uses just one example for text formatting. The
generalization process includes parsing the example text special
words (ex. “chapter”, “section”, and “Appendix”), numbers,
separators, and decorations (ex. lines and boxes). The parsing
process encounters ambiguity. Our problem is well structured
enough to make the system deterministic and easy-to-use
practically.

2. SYSTEM OVERVIEW
2.1 Phases and Users
The reporting tool is used in two phases:

• Format making phase, and

• Report generating phase.

The two phases can be done by different users, and some users
may do just the latter phase.

2.1.1 Making Formats
In this phase, a user makes a format not a report. Conventional
reporting tools do not require table data for making formats, but
this tool requires table data for us to make a sample report.
(Users anyway need table data even for usual tools when they
“debug” their formats.) The tool extracts a set of formatting
rules and stores them in a persistent file called a format file.

2.1.2 Generating Reports
There are other users who generate reports by specifying a format
file and table data. Table data can be specified by a file name if
the data is stored in a file like in CSV (Comma Separated Value)
file format, or by a set of retrieval statements like select
statements in SQL (Structured Query Language) for a connected
relational database.

2.2 System Configuration
The tool consists of:

• Format editor, which enable users to edit interactively to
make format files, and

• Report generator, which enable users to generate reports by
specifying a format file and table data (Figure 2).

2.2.1 Format Editor
The format editor is an interactive editor for a user to make a
sample report using a set of relational table data, to extract a set
of formatting rules, and to save them into a format file. The
editor reads a format file and example table data.

2.2.2 Format File
A format file is a conventional file that includes a set of
formatting rules in our proprietary file format.

2.2.3 Report Generator
Report generator is a program that requires a format file and a
set of relational table data and that generates a new report of the
specified format.

3. USER INTERFACE OF FORMAT
EDITOR
3.1 Programming by Example
We have employed a “Programming by Example”-like user
interface for the format editor. A users makes a sample report to
make formatting rules and does not have to specify general
formatting rules directly. The set of rules works as a program
that generates reports for other sets of relational table data. So,
the process of the format editor is a kind of “programming by
example”. Since some of the rules are specified directly by the
user for practical use, the process should be said as “a simple
and practical version of programming by example.”

3.2 Window Configuration
The format editor consists of two main windows:

• Sheet window, which represents the sample report, and

• Table window, which shows the example table data.

3.2.1 Sheet Window
The sheet window shows the sample report as a sheet image.
Editing scheme of the sheet window is the following:

• Put objects on the sheet window,

• Specify iterative objects, called “a block”,

• Specify iteration pattern for the block, and

• Specify increment of the iteration.

3.2.2 Table Window
The table window shows the example table data as a relational
table image. The user can copy-and-paste table data to the sheet
window.

3.3 Objects on the Sheet Window
The objects on the sheet window consist of:

• Fixed text string including column names,

• Functions,

• Ruled lines, and

• Example data.

Figure 2 System Configuration

Relational Table Data
Report

Generator

Format
EditorExample

Relational Table Data

Format
File

Report

Making
a Sample Report

Specifying
a Format and
Table Data

3.4 Editing Objects on the Sheet Window
3.4.1 Text String
Any text strings can be put on the sheet window and usual text
string attributes like fonts can be specified.

3.4.2 Column Names
The user can copy-and-paste useful column names from the table
window to the sheet window.

3.4.3 Functions
Some built-in functions are provided like date, time and so on.
They work as variables.

3.4.4 Ruled Lines
Ruled lines can be drawn on the sheet window and usual line
attributes like width and pattern can be specified.

3.5 Selection of an Example Row on the Table
Window

3.5.1 Example Row
When starting up the editor, a default example row, the first row,
is highlighted on the table window. The user can change the
example row by clicking the mouse button.

Multiple example rows can be specified for special cases. Seven
example rows are necessary to make a report which shows
weekly trend generated from daily table data.

3.6 Placement of Example Data
3.6.1 Row Data
Data of example row(s) on the table window can be copy-and-
pasted to the sheet window. Numerical data can be put as well
as string data.

3.7 Specifying Iteration
3.7.1 Specifying Iterative Objects (Block)
The system makes a report by iterating print of a specified set of
objects with a fixed increment of position. The user specifies
which object is iterative or not. A rectangular area that
surrounds the iterative objects is called a “block”. The user can
specify iterative objects by specifying a block by a rectangular
rubber band of the mouse.

3.7.2 Specifying Iteration Pattern
The system provides iteration patterns, some of which are shown
in Figure 3. The user specifies a pattern from the menu of the
provided patterns.

3.7.3 Specifying Increment of Position for the
Iteration

Users can specify the increment of position for the iteration by

the mouse. The user can specify the increment directly. The
system can calculate the increment when the user put other data
than the example rows (Figure 4).

3.7.4 Viewing the Image of the Sample Report
The sheet window displays the final image of the sample report,
which includes iterated images of the iterative objects. The
iterated images are produced by the example table data of the
corresponding rows which are calculated by incrementing the
row numbers of the specified example row(s) by the number of
the example row(s), typically one.

3.8 Adjustment
After the image of the sample report is displayed, some
adjustment can be specified to create sophisticated reports.

3.8.1 Page Break and Column Break
Conditions for page break and column break can be specified.
Typical condition is “when the data of the specified column
change, create a new page.”

3.8.2 Unified Print
When a column has repeatedly occurring data, they should be
unified in some sophisticated reports like in Figure 5.

4. EXTRACTING FORMATTING RULES
4.1 Formatting Rules
The format editor stores a set of formatting rules for a sample
report. Formatting rules consist of the following information.

4.1.1 List of Objects
Formatting rules include the list of objects on the sheet.

4.1.2 Block Information
Formatting rules include information about the block, including
the absolute position and the size of the block.

4.1.3 Non-Iterative Objects
Formatting rules consist of the attribute of the objects and the
absolute position on the sheet.

4.1.4 Iterative Objects
Formatting rules for iterative objects includes

Figure 3 Examples of Iteration Patterns

Block Block

Bl
oc

k

Block

D1[1]
D3[2]

C1
C3

C2 D2[1]

Figure 4 Calculating the Increment
and the Image of the Sample Report

D3[0]
C1 C2 C3

D1[0] D2[0] D3[0]

Ex
am

ple
 R

ow

D1[1] D2[1] D3[1]
D2[2] D3[2]

D1[3] D2[3] D3[3]
D1[4] D2[4] D3[5]

C1
C3

D1[0] D2[0]C2Block
D1[2]

D1[1]
D3[1]

C1
C3

C2 D2[1]

D1[1]
D3[3]

C1
C3

C2 D2[3]D1[3]

Sheet Window

D1[2]

Table Window

Calculated Increment
Sample Placement of
Other Data than the
Example Row

• For example data

(1) Column name,

(2) Relative row displacement in the example table from the
base of the example row, and

(3) Relative position in the sheet from the base position of the
block.

• For the other objects

(1) Attribute of the object and

(2) Relative position in the sheet from the base position of the
block.

4.1.5 Iteration Pattern and Increment
Formatting rules include the specified iteration pattern and the
increment.

4.1.6 Adjustments
Formatting rules include the specified adjustment.

5. GENERATING REPORTS
When a format file and a set of table data are given to the report
generator, it generates a repot according to the algorithm, briefly
described in the following.

(1) Put the entire non-iterative object on the sheet.
(2) Iterate the following sub-step for all rows of the table data.

Put all of the iterative objects at the current position with
substituting the example data to the given table data at the
current row of the iteration

(3) Apply the adjustment.

This algorithm generates a new report of the given format from
the given table data.

6. EVALUATION
6.1 Project
We have applied the system to a real project at a Japanese
company. They have developed more over than 500 formats.
The applied formats includes:

(1) Reports for Planning and Decision Making

(a) Sales reports for sales persons and divisions

(b) Sales reports for products and areas

(c) Cost reports for products

(2) Mission Critical Forms

(a) Monthly reports to customers

(b) Bills

(c) In-house order forms

(3) With Images

(a) Employee files including facial photo image

(b) Price lists with product photo image

We have not been informed that they encountered any formats
impossible by the format editor, except functions for detailed
presentation like round corners for crossing ruled lines.

6.2 As an Example of “Programming by
Example” System

We have designed the extraction process to be deterministic for
practical use. The system extracts formatting rules
deterministically, not statistically. Just one sample report is
needed for extracting general formatting rules. To make this
possible, we have some generating information been specified
directly, like iteration.

This design was possible because the problem of generating
reports from relational table data is well structured.

7. REFERENCES
[1] Cypher, Allen (ed.), Watch what I do: Programming

by demonstration, MIT Press, 1993.

[2] Myers, Brad A., Demonstrational Interfaces: A Step
Beyond Direct Manipulation, IEEE Computer (August
1992), 61-73.

[3] Sugiura, A and Koseki, Y., Simplifying Macro
Definition in Programming by Demonstration, Proc.
UIST, (1996), 173-182.

[4] Myers, Brad A., Text Formatting by Demonstration,
Proc. CHI, (1991), 251-256.

Figure 5 Unification of Repeatedly Occurred Data

C1
C2 C3

X
C2[0] C3[0]

C4[0] C5[0]

C4 C5

C2[1] C3[1]

C4[1] C5[1]

C2[2] C3[2]

C4[2] C5[2]

C2[3] C3[3]

C4[3] C5[3]

X

X

Y

C1
C2 C3

X

C2[0] C3[0]

C4[0] C5[0]

C4 C5

C2[1] C3[1]

C4[1] C5[1]

C2[2] C3[2]

C4[2] C5[2]

C2[3] C3[3]

C4[3] C5[3]
Y

