
SUITOR: An Attentive Information System
Paul P. Maglio Rob Barrett Christopher S. Campbell Ted Selker

IBM Almaden Research Center
650 Harry Road, NWED-B2

San Jose, CA 95120

{pmaglio, barrett, ccampbel, selker}@almaden.ibm.com

ABSTRACT
Attentive systems pay attention to what users do so that they can
attend to what users need. Such systems track user behavior,
model user interests, and anticipate user desires and actions.
Because the general class of attentive systems is broad — ranging
from human butlers to web sites that profile users — we have
focused specifically on attentive information systems, which
observe user actions with information resources, model user
information states, and suggest information that might be helpful
to users. In particular, we describe an implemented system,
Simple User Interest Tracker (Suitor), that tracks computer users
through multiple channels — gaze, web browsing, application
focus — to determine their interests and to satisfy their
information needs. By observing behavior and modeling users,
Suitor finds and displays potentially relevant information that is
both timely and non-disruptive to the users’ ongoing activities.
Keywords
Attentive systems, intelligent agents, peripheral information,
multimodal input, user modeling, interest tracking.

1. INTRODUCTION
Computer users are routinely bombarded with information from a
variety of sources. Running applications vie for screen real estate
to display hints, help, status, alerts, and other sorts of information.
In attempting to manage competing sources of information, users
often configure their screens so that they can attend to what is
most important at any time, while still maintaining the ability to
monitor and interact with less important information.
Nevertheless, monitoring the information at hand can be a full
time job, and even then is prone to error, as unwanted and
unneeded information can often find its way into the user’s
environment. Can the user interface do a better job of supporting
users’ information needs? We think so. In this paper, we explore
an attentive systems approach to information delivery that is
intended to help users manage information by keeping track of
what the user is doing and presenting information appropriately.
We define attentive systems as systems that watch the user, model

the user, and anticipate the user. The general class of attentive
systems includes human butlers, new commercial devices such as
TiVo [28] that automatically record television programs that the
user likes or regularly watches, and web sites such as
Amazon.com [1] that monitor book-buying and book-browsing
behavior to model buyer interests and ultimately suggest
additional books. Here we are concerned specifically with
systems of this last sort, attentive information systems that support
users’ information needs. In observing user actions, such a
system might track what web page the user is browsing or what
application currently has focus. It might observe many different
sorts of actions or it might observe just a few that are relevant for
a specific task. To predict what information might be useful, an
attentive system must learn from a user’s history of activity to
improve the relevance and timeliness of its suggestions, modeling
the user and adapting its models over time. In suggesting
potentially useful information to the user, an attentive information
system should not intrude on the user’s ongoing activity,
displaying suggestions in the margins or on the periphery of the
user’s current task.
Attentive information systems are distinguished by three main
qualities. First, they gather evidence about user behavior from
multiple sources, possibly even across multiple modalities. When
only a single source of data about user activities is monitored,
there is a high chance of making incorrect inferences of user
intentions. Multiple sources help systems disambiguate intentions
and build a more accurate model of the user. In particular,
multiple inputs disambiguate intentions by helping systems take
account of the context of user actions. For example, if the system
knows only that the user is visiting the IBM home page, it might
be reasonable to assume that the user is interested in IBM’s
products. However, if the user also has a stock analysis
application open and is also reading email about IBM’s second
quarter earnings, it might be better to infer that the user is
interested in the current stock price or other financial news.
The second distinguishing quality of an attentive system is that it
models the user at a very fine level of detail. The user model is
kept up-to-date by closely tracking user behavior and interests.
For instance, if the user is sending email to a friend about dinner
plans, it might be appropriate to inform him or her of the hours
and fare of local restaurants — but only as long as plans are being
made. Once plans to meet have been set, such information is no
longer relevant.
The final quality of an attentive information system is that it
provide users with information that is relevant but not critical to
task performance, and that this information be presented in a non-
distracting way. Because it is difficult to guarantee correct and
appropriate suggestions that anticipate the user, it would be
unreasonable for such systems to issue a key-press command,

interrupt the user with a noisy alert, or replace the contents of a
window. We call this sort of information peripheral information
because it is both peripheral to the task and peripheral to the
display. The key to peripheral information is that it is not critical
to task performance. Unlike what is generally studied in the
literature on monitoring and supervisory control (e.g., [18]),
inattention to a peripheral display does not result in catastrophe,
such as a nuclear meltdown or a plane crash. However, by
providing peripheral information, an attentive system gives the
user the opportunity to learn more, to do a better job, or to keep
track of less important tasks
We designed the Simple User Interest Tracker (Suitor) to be an
attentive information system. It provides an architecture in which
simple programs (or agents) monitor user actions, process user
actions or world events, and communicate suggestions to users
through a variety of means. Suitor pays constant attention to what
the user is doing, determines what information will most likely be
interesting, and delivers that information on the spot. For
instance, we have created agents that can (a) monitor web
browsing, (b) monitor a user’s eye-gaze to determine where on the
screen the user is actually reading, and (c) find additional
information about the topic that is being read on the current web
page using external web search services. The key is that a user
interacts with the computer as usual — reading, typing, clicking
— and the system infers user interest based on what it sees the
user do.
In what follows, first we explore several scenarios to illustrate
how Suitor attends to user actions and attends to user information
needs. Then we detail Suitor's architecture and implementation,
discussing issues of user observation, user modeling, and
peripheral information. Finally, we discuss related work, and
conclude with some thoughts on future directions.

2. SCENARIOS
In one mode, Suitor delivers information to its user through a
scrolling one-line text display located at the bottom of the screen
(see Figure 1) — a peripheral display. Suitor can also deliver
information through a web browser, by email, or to a personal

digital assistant such as a PalmPilot.
To see Suitor in action, consider how it might affect the
information environment of a computer user named George. The
following scenarios are fully implemented, except as noted in the
text.
While debugging a program, George notices a headline in the
scrolling display about terrorism threats in Europe. Because he
flies to Europe twice a month on business, George clicks on the
headline and the full story appears in a browser window.
Throughout the day, George selects stories concerning the same
topic from the scrolling display and even goes to the web to
search for additional information. Soon he notices new stories
about terrorism in Europe, air safety, and security at airports
appearing in greater numbers in the scrolling display. In fact,
there are now more stories about world news in general.
Like many information push systems, Suitor polls a variety of
news categories — including world news, local news, politics,
sports, and weather — to obtain headlines to display. Unlike
standard push, the user is not modeled statically, for instance, as a
set of check boxes for selecting broad topics of interest (e.g.,
[21]). Rather, Suitor infers what categories of news are of interest
by attending to ongoing user activities. Likewise, Suitor is not
constrained to any one type of information but can display what
might be relevant to the user at the time.
Suppose George begins using Microsoft Word to edit a
manuscript. After working for a few minutes, Word tips begin
scrolling across the display, interspersed with headlines and stock
quotes. From one of these scrolling tips, George notices that Ctrl-
f is the keyboard shortcut for the menu navigation Edit—Find. In
this way, Suitor provides information that is likely to be more
relevant to the user’s ongoing activity than an arbitrary news
headline. When George stops using Word, Suitor stops
displaying Word tips.
Suitor contains a number of agents to attend to web browsing and
eye gaze. Browsing activity that can be monitored includes
current URL, entered URL, web page text, and entered search
terms. For example, if George opens a browser and goes to the
IBM home page. A few seconds later the current IBM stock price
and news about IBM appears in the scrolling display. On seeing
the stock prices, George remembers that he wants to invest his
bonus in hard-drive storage technology, so he clicks on the IBM
stock symbol in the scrolling display, which opens a new browser
window with details on the day’s activity of the stock. Next,
George checks the stock of a competing hard-drive storage
company, Seagate technologies. Later, George discovers that he
is getting quotes for both IBM and Seagate updated every half
hour, as well as business news about each company.
Using eye-gaze information, Suitor can determine what
application George is looking at or what information George is
reading in the scrolling display. Suitor can use this as positive
relevance feedback to adjust its model of George and thus to
provide more timely information. Suppose George continues to
be interested in investing in hard-drive storage technology, always
reading the stock quotes for IBM and Seagate but ignoring quotes
for other companies such as General Electric. After a while, stock
quotes for IBM and Seagate continue appearing regularly but
quotes for General Electric appear far less frequently. Suitor does
not require the user to maintain a list of stock symbols but rather
it infers from ordinary behavior what stock prices to display.

Figure 1: Sample screen showing scrolling display.

Now suppose George is working in Word and glances down to
read a headline that looks interesting. A browser window opens
and loads the story of the headline he has just read. After
glancing briefly at the story, George decides that it is not
interesting and continues working in Word. A few minutes later,
George reads another headline that seems interesting. The story
for it loads in the open browser window and he spends time
reading it. Headlines of related stories begin appearing in the
scrolling display. By reading or clicking any of the related
headlines, the associated story can be obtained. Because George
takes the time to read the stories behind some of the headlines,
Suitor infers that he might be interested in reading related stories
as well. Because these stories appear in a new browser window, it
does not interfere with current browsing or with any other current
task. Suitor does not take control of any task or force the user to
perform any specific action.
Suitor can take advantage of multimodal information to help it
better predict what is likely to be of interest to the user and to
create an accurate user model. Suppose George begins editing his
resume and then starts to search the web for employment
opportunities. He goes to Sun Microsystems's web site to see
current job listings. Two openings at other companies in System
Administration — George’s field — appear in the scrolling
display. He clicks on both listings and two browser windows
appear with details of the positions. One of the positions offers
more money than Sun but George continues to look for more
options. He has heard that Hewlett Packard is a good place to
work so he goes to their main web site. In the scrolling display
appears a shortcut URL for going directly to HP's job listings.
Clicking on this URL, George investigates employment at HP.
Suitor can also use eye-gaze information to help disambiguate
user interests. Suppose George is reading a magazine in his web
browser but skips over most of the articles until he comes to one
on the design of the new US currency. Tracking George’s gaze,
Suitor knows that this is the only topic he has actually read. In
the scrolling display, there is a TV listing for a PBS special about
the new currency. By clicking on the listing, George gets the
times and days he can catch the show. In the future, Suitor could
set a VCR to record relevant programs so that they can be viewed
at a convenient time.
Suitor also contains agents that interface with the PalmPilot to
upload text. The PalmPilot can act as a peripheral display or as a
mobile information delivery device. Suppose George has been
busy all day and has not had time to explore any of Suitor's
suggestions. Suitor can upload news stories, stock quotes,
employment listings, movie schedules, and TV listings directly to
his PalmPilot before he leaves. Riding home on the bus George
can catch up on the news and plan his evening. A program in the
PalmPilot keeps track of the information read so that it can repeat
back to Suitor what has been viewed on this device.
To see how Suitor can implement these scenarios, we now turn to
details of its architecture and implementation.

3. ARCHITECTURE AND
IMPLEMENTATION
Suitor provides an architecture for creating simple programs —
agents — to investigate user activity, reflect on that activity,
gather information from the user’s computer or the outside world,
and report relevant information to the user. More precisely,

Suitor implements an interprocess communication mechanism that
enables separate programs to work together to (a) gather
information about the user, (b) gather information about the state
of the world, and (c) report information to the user. This
mechanism amounts to a shared blackboard and a corresponding
scheme for dispatching information posted on the blackboard to
interested agents. In addition to a communication scheme, Suitor
also provides the infrastructure for developing and deploying
agents, for remembering what the user is interested in, and for
reporting to the user through a variety of means, such as a
scrolling headline display, email, or PalmPilot.1

Implemented in Java, Suitor programmers can create modules and
applications that track user behavior, infer user interest, find
related information, and display that information to the user.
Modules are groups of agents that perform a specific function; for
instance, we have implemented a gaze module that monitors
where the user is looking, what application is being looked at, and
what text is being read. Applications are standalone programs
that run independently of Suitor yet contain agents that can
communicate with Suitor through Java’s remote method
invocation (RMI).
Agents communicate with one another through a common
currency of facts. These might represent a notification or the text
of a news story. All facts know which agent submitted them, what
time they were submitted, when they should expire, and what
other facts they depend on. All agents registered to listen for a
certain type of fact are invoked when that type of fact is posted to
the blackboard. Facts remain on the blackboard until they either
expire or are explicitly retracted. Suitor periodically scans
through all facts and removes those that have expired. An agent
can also remove facts by asking Suitor to retract all facts it has
submitted. This is useful in trying to keep up with the user's ever-
changing interests.
There are four main functions a Suitor module might perform:
watching the user (user input), remembering user actions (user
model), getting information from local and remote databases
(information gathering), and making suggestions (peripheral
display). To create the scenarios described previously, modules
were created that (a) monitor what application is being used, (b)
monitor what web page is being viewed, (c) track where the user
is looking on the screen, (d) record text input from the keyboard,
(e) maintain a user model of descriptive keywords, (f) find stock
prices and news, and (g) download information to a PalmPilot. A
separate scrolling display application (a news ticker) was created
to output information unobtrusively at the bottom of the screen.

3.1 Observing Users and the World
Investigator agents gather information from the world outside of
Suitor. They can monitor user actions, watch a web site for new
information, or scan through local and remote databases.
Investigators can submit facts about the user or the world when
some event occurs or when some data has been collected.
Investigators do not operate on facts; they merely monitor state.

1 See [29] for details of our initial implementation, which was
called deFacto.

3.1.1 Gathering Information from Outside
Observing users in particular often requires connecting to the
operating system (e.g., to observe running applications, keyboard
input) or to the outside world (watch user’s eye-gaze). In either
case, native code must be written that sends data to Java-based
Suitor. For example, the module that watches what application
the user is currently working with relies on native C++ functions
to determine the window with focus and the name of its
executable.
Similarly, the user’s eye-gaze is monitored by a module written in
C++ to calculate the coordinates of gaze direction at 30 frames per
second. The camera uses an array of LED's to project infrared
light to the user's eye, resulting in a reflectance point on the
cornea and the illumination of the pupil. With the reflectance
point and the center point of the pupil along with a short
calibration session, the location of eye-gaze can be easily
calculated to within half an inch (see also [9,31] for information
on our gaze-tracking system).
Watching a user’s web browsing in Suitor is done by an
independent application written with the Web Intermediaries
(WBI) development kit [2,3,10]. This WBI application sits
between the browser and the web, watching the flow of HTTP
traffic between the two. Several types of information can be
gathered this way about user activities, including the current URL,
the text contained on the current page, and query data in
submitted web forms.
One way of finding information that might be relevant to the user
is to observe news sources on the web, such as CNN [4] or
Yahoo! News [30]. That is, a module for gathering news can be
constructed out of investigator agents that periodically poll web
resources, submitting facts on new headlines, stories, or other
information available there. Which headlines and stories are
relevant to the user depends on what the user is interested in, as
determined by Suitor’s current user model.

3.2 Modeling Users
Reflector agents can submit facts and operate on facts. That is, in
producing their own facts, reflectors think about (reflect on) the
facts that are submitted by other agents. Reflectors essentially
decide what to do about the information discovered by
investigators and other reflectors. They can be used, for instance,
to construct a model of the user’s interests.

3.2.1 Modeling Users as Text
Suitor’s user model is simple. Text gathered by investigators
monitoring user interactions with the computer are combined and
analyzed to produce a small list of key words. Of course, Suitor
can use other sorts of user models, including statistical or
probabilistic models [7,8]. In the case we have implemented, text
is gathered from user keyboard input, from user email, from web
pages read, and from files visited in Emacs. Key words are
derived from these text sources by determining the frequency of
the words in the pooled text at a given time relative to the
frequency of the words overall. The keywords are those words
whose frequency is high in the current set relative to their overall
frequency (following, for instance, [15,23]).
The user’s current interest is represented as a list of words that
distinguish the sorts of text being written and read at any given
time. Facts about what the user is typing and what the user is

viewing constantly flow into Suitor’s blackboard from
investigator agents. As these facts arrive, reflector agents
determine the word frequencies and update the current list of key
words, that is, the current model of the user. As the user’s
interests change over time — as the user’s activities shift from one
task to another — the key words that represent the user’s interests
change. Thus, our user model contains both the user’s current
interest — current list of key words — and the user’s history of
interests — old lists of key words.

3.3 Displaying Suggestions
Actor agents are essentially the inverse of investigators; they act
on facts that have been submitted to Suitor but they cannot submit
facts themselves. Actors process facts from reflectors and perform
some action (side effect) on the outside world, such as displaying
information to the user. For instance, our scrolling ticker displays
headlines and other facts to the user. Before actor agents select
facts from the blackboard for display on the screen, reflector
agents prioritize the news and other facts that investigator agents
have gathered by comparing them with the user model. More
precisely, before information is displayed, it is rated according to
how much it overlaps the current and long-term model of user
interests. Only facts that have some overlap with the user’s
interest are selected for display, and then they are ordered
according to how much they overlap.

3.3.1 Displaying Suggestions Peripherally
An attentive system like Suitor ought to present suggestions to the
user that are not distracting, yet are timely and relevant to the task
at hand. Constant monitoring of user actions and the concomitant
modeling of user interests are meant to ensure that suggestions are
timely and relevant. For its display, Suitor provides a one-line
scrolling ticker at the bottom of the screen to show the user its
suggestions. This sort of scrolling display is intended to be both
informative and unobtrusive. To try to ensure that Suitor’s
suggestions are not too distracting, we have begun to
experimentally test the relative informativeness and distractibility
of a variety of scrolling ticker displays.
Our hope is that scrolling displays are at least a little like the
automobile’s speedometer. The automobile driver’s main task is
driving, but speed information displayed in the periphery is not
overly distracting and at the same time informative. The
speedometer is designed perfectly to convey non-essential but
useful information [20]. It embodies a kind of peripheral
information — information is not central to the current task, but
that might be helpful to it or that might be informative in other
ways.2 Such an interface is peripheral because the normal
mechanism for accomplishing the task is still available. The
interface simply seeks to make the task easier and richer.

2 The term ambient information has been used to refer to subtle
environmental cues when designed into systems to convey
information such as network traffic peripherally [11]. Specific
environmental changes, such as the frequency of background
noise or amount of background lighting, are associated with
specific changes in system status. Of course, the design problem
here is to make the mapping from system state to environmental
state as obvious as possible [19].

3.3.2 Testing Ticker Displays
We conducted a pilot study to assess how distracting and how
effective three single-line text displays are in conveying
information under dual-task demands — that is, when the user is
working on a primary task such as text editing, but has a
secondary task of keeping track of scrolling information. We
tested three kinds of tickers: (a) continuous scrolling text (CS), (b)
discrete scrolling text (DS), and (c) serial presentation (SP). In
the CS case, text scrolls at a constant rate horizontally from right
to left. In the DS case, text scrolls quickly to the center of display
vertically, where it stops for some period before scrolling off the
display. In the SP case, text does not scroll at all; rather, it is
shown in a constant position in the center of the display, each
update replacing existing text with new text.
To our knowledge, only two classes of ticker-like displays have
been systematically explored, CS and SP — and then only to
compare these and other display schemes in terms of
informativeness rather than in terms of dual-task demands.
Studies directly comparing CS and SP found no difference in
comprehension for the display reading task [14]. Other studies
comparing CS to static displays found that text is read more
slowly [25] and is less comprehensible [6] when scrolling than
when displayed on a static page, and this effect does not depend
on the number of words on the screen or on window size [5].
Studies comparing SP and static pages of text show that
comprehension performance is about the same [13], and that
reading latency is about the same as well [22]. Overall, these
studies fail to show strong differences in informativeness among
CS, SP, and static displays.
Our study used a dual-task procedure that is similar to real task
demands faced by computer users. The first task required editing
the text of a document of moderate reading difficulty and the
second task involved reading fictional news headlines from one of
the tickers. Participants were instructed to give both equal
priority (text editing and headline reading). Distraction was
measured as the change in performance for text editing alone (i.e.,
no scrolling ticker) versus text editing while concurrently reading
the ticker. Our results showed that the discretely scrolling ticker
had the least impact on editing performance. For CS, the number
of corrections decreased by 32% from the no ticker condition; for
SP, the number of corrections decreased by about 20%; and for
DS, corrections decreased by about 10%. All pairwise differences
were significant.
Informativeness was defined as how well the headlines were
remembered, as measured by a post-experiment multiple-choice
test. No difference was found among the displays, and this was
not the result of floor or ceiling effects, as scores spanned a
normal range from 30% to 100% correct, with means of 70% for
CS, 67% for DS, and 76% for SP.
Overall, our results show a difference for distraction but not for
informativeness. Thus, the different displays serve different
functions in a dual-task situation. Peripheral information should
be both informative, presenting users with previously unknown
facts, and non-distracting, enabling users to remain focused on
their primary tasks. Because the discrete ticker was highly
informative and only slightly distracting, we believe that this is
exactly the sort of display that can be used effectively to
peripherally inform computer users. This is why we have chosen
it as Suitor’s main means for displaying suggestions.

3.4 Putting It All Together
Having described the various sorts of agents and functions
available in Suitor, we can now show an example of Suitor in
action. In this scenario, news headlines are scrolling by in the
ticker display, and the user looks down and reads one. Because
the user’s gaze dwells on a particular headline longer than some
threshold period (indicating interest in the topic), the news story
associated with it is displayed in a browser window.
More precisely, as shown in Figure 2, the gaze module has an
investigator agent that periodically posts facts to the blackboard
indicating where the user is looking. A reflector agent, triggered
when gaze information is posted to the blackboard, determines
whether the user is gazing at the scrolling ticker display. If the
user has been looking at the display long enough, a reflector agent
inside the ticker application determines which headline in
particular the user is looking at — this is done inside the ticker
itself, as the ticker knows what headlines are being displayed.
Finally, the reporter module looks up the story and posts a fact to
trigger an actor agent that communicates directly with the
browser.
Tracking eye gaze in particular seems a very powerful means for
gathering evidence about user interest [27]. If the user pays
attention to certain displayed information, the system can take that
as positive relevance feedback, effectively suggesting that it
display more of the same sort of information. Conversely, if the
user does not pay attention to certain information, the system can
take that as negative feedback, suggesting that it not display
similar information again. In these cases, gaze is not used to
control the system explicitly, such as for directly selecting what to
display; rather, gaze is at least one step removed, figuring in the
calculation of user interest, which in turn figures in what is
displayed.
In this way, Suitor provides a non-command interface, as it relies
on pooled evidence to respond to user actions. That is, Suitor
relies on natural eye movements and other ordinary user actions as
control signals rather than on explicit user commands [12]. The
user is not forced to check a box for a category of news and then
click a button for delivery of news. Rather, Suitor works behinds
the scenes inferring from normal user actions what information to
display. The option is available, however, for the user to interact
with Suitor in a more direct manner. For example, if Suitor
displays a headline that the user wants additional information on,
the user can click the headline and the full story will appear in the
current browser window. Suitor can then infer from this action
that the user is interested in the specific topic of the headline and
to a lesser extent, the general category of the headline (i.e., sports,
world news, and politics). Thus, positive relevance feedback can
be obtained by watching what the user does when interacting with
the peripheral information display.

4. RELATED WORK
We are not the first build attentive systems. In the domain of web
browsing, for instance, Lieberman’s Letizia [15,16] is attentive, as
it monitor’s web use and scouts the web ahead of the user,
determining the potential relevance of links on each page viewed.
Letizia observes browsing, models user interest as a set of key
words, and displays suggestions in a browser window placed off
to the side.

Suitor Blackboard

Gaze Module

GazeChecker GazeAtTicker

GazeCheckTimer

Ticker Application

TickerEventReflector

BrowserActor

NewsReflector

CurrentGazeFact

BrowserStoryFact

GazeAtTickerFact

StorySelectionFact

Reporter Module

Figure 2: When the user reads a headline in the scrolling ticker display, agents
determine that the user has read a headline, which headline was read, and
ultimately display the story in a browser window.

In the domain of text editing, the Remembrance Agent (RA) is
attentive because it monitors user input from several sources and
displays relevant documents in a non-distracting manner [23].
The RA watches input from the keyboard and text information in
Emacs, suggesting related information culled from text files
located on the user's computer. Some of the text information
scanned includes old e-mail, papers, files of notes, as well as other
text documents. The RA determines the similarity of the text
documents and the current text by the relative frequency of words
common to both. If relevant documents are found, the first line of
each is displayed in a window at the bottom of the screen.
More recently, the RA has been implemented on wearable
computer systems and collects more evidence about the user,
including location (through GPS), people nearby, and timestamp
[24]. This information is more about the context than the user's
actions. Like the desktop version, the wearable RA presents
relevant information in an unobtrusive window at the bottom of a
heads-up-display.
Help systems can also be attentive, but these typically monitor
fewer input sources (often only one), have pre-existing user
models (expert models), and focus on user performance in a single
task. Software help agents most often watch command sequences
for a specific application [8,17] or text from keyboard input [25].
COACH (Cognitive Adaptive Computer Help) [25] is a good
example of an attentive interface because it continuously updates
its user model based on keyboard input, offers help when the user
is having a problem, and displays help peripherally.
Suitor is different from the Letizia, the Remembrance Agent, and
help systems such as COACH in that it collects multiple sources
of user behavior as well as context related directly to user actions.
In Suitor, a wide range of user actions can be monitored,
including keyboard input, mouse gestures, the current URL, text
of the current web page, and the application with focus. We have
also built agents to track eye gaze so that Suitor can determine
what application the user is looking at, what suggested
information the user is reading, and what web page the user is
reading, as well as specific text the user is reading.

5. CONCLUSION AND FUTURE WORK
Suitor passively tracks computer users to determine their interests,
and then delivers them relevant and timely information. In the
cases we have implemented, there is a simple mapping from
detection of user interest to method for finding relevant
information. For application help, once it is found that the user is
interested in changing the font size (by watching what keystrokes
are taken or what menu items are selected), for example, the
system can look in its database for documentation on this. For
news stories relevant to the current web page, once it is
determined what the page is about (by keying on the URL’s
server), well known web sites can be polled for stock prices or
related news. For information relevant to what is typed or what is
read, once words of interest are determined, related text can be
retrieved from local files or from distant databases. Thus, Suitor
does not do very deep or detailed reasoning to develop its
suggestions. Although this may be appropriate for some of the
cases we have explored here, one clear direction for future work is
to create more elaborate chains of reasoning so that individual
user actions do not completely determine the information or
suggestions Suitor derives.

A related direction for future work is to create more elaborate user
models that integrate evidence from a variety of sources, for
instance, by combining user actions with keyboard input and gaze.
Our simple text-based user model already combines text written
and text read to determine a set of currently relevant words.
However, it does not combine text with any understanding the
user’s behavior in terms of the user’s goals. By considering
evidence of user behavior derived from a variety of sources more
generally, we hope to be able to build more accurate models of
user interest and user need than we can without an understanding
of user goals.
In summary, Suitor is a framework for developing attentive
information systems — systems that monitor user behavior, model
user interest, and make helpful suggestions. We have
implemented methods for observing user behavior that ranges
from spying on application usage and text typed to tracking eye
gaze and web browsing. We have implemented a simple user
model from the words typed and the words read that describes the
user’s interest at any time. We have implemented and tested
schemes for displaying suggestions peripherally — so that they
are not too distracting. But in the end, we have only just begun to
explore ways of tracking users and of finding and displaying
related information.

6. ACKNOWLEDGMENTS
Gentry Underwood contributed greatly to Suitor. Carlos
Morimoto and Myron Flickner developed our gaze tracking
system [9]. Denis Lalanne implemented our user model. Teenie
Matlock provided helpful comments on a draft of this paper.

7. REFERENCES
1. Amazon.com, Inc. Amazon.com – Earth’s Biggest

selection. Available at http://www.amazon.com/.
2. Barrett, R., Maglio, P. P., & Kellem, D. C. How to

personalize the web. In Proceedings of CHI '97, 1997.
3. Barrett, R. & Maglio, P. P. Intermediaries: New places

for producing and manipulating web content.
Computer Networks and ISDN Systems, 30, 1998, 509-
-518.

4. Cable News Network, CNN Interactive. Available at
http://www.cnn.com/.

5. Duchnicky, R. L. & Kolers, P. A. Readability of text
scrolled on visual display terminals as a function of
window size. Human Factors, 25, 1983, 683-692.

6. Granaas, M. M., McKay, T. D., Laham, R. D., Hurt, L.
D. & Juola, J. F. Reading moving text on a CRT
screen. Human Factors, 26, 1984, 97-104.

7. Heckerman, D. & Horvitz, E. Inferring informational
goals from free-text queries: A bayesian approach, in
Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, 1998, 230-237.

8. Horvitz, E. Breese, J., Heckerman, D., Hovel, D., &.
Rommelse, K. The Lumiere project: Bayesian user
modeling for inferring the goals and needs of software

http://www.amazon.com/
http://www.cnn.com/

users, in Proceedings of the Fourteenth Conference on
Uncertainty in Artificial Intelligence, 1998, 256-265.

9. IBM Research. BlueEyes. Available at
http://www.almaden.ibm.com/cs/blueeyes/.

10. IBM Research. Web Intermediaries – WBI. Available
at http://www.almaden.ibm.com/cs/wbi/.

11. Ishii, H. & Ullmer, B. Tangible bits: Towards seamless
interfaces between people, bits, and atoms. In
Proceedings of CHI ’97, ACM Press, 1997, 234-241.

12. Jacob, R. J. K. Eye movement-based human computer
interaction techniques: Toward non-command
interfaces, in R. Hartson & D. Hix (Eds.), Advances in
Human Computer Interaction, Vol. 4. Ablex,
Norwood NJ, 1993, 151-190.

13. Juola, J. F., Ward, N. J., & McNamara, T. Visual
search and reading of rapid serial presentations of letter
strings, words, and text. Journal of Experimental
Psychology: General, 111, 1982, 208-227.

14. Kang, T. J. & Muter, P. Reading dynamically
displayed text. Behaviour & Information Technology,
8, 1989, 33-42.

15. Lieberman, H. Letizia: An agent that assists web
browsing, in International Joint Conference on
Artificial Intelligence, 1995, 924-929.

16. Lieberman, H. Autonomous interface agents, in
Proceedings of CHI ‘97, 1997, 67-74.

17. Linton, F., Joy, D., & Schaefer, H., Building user and
expert models by long-term observation of application
usage, in Proceedings of the Seventh International
Conference on User Modeling, 1999, 129-138.

18. Moray, N. Monitoring behavior and supervisory
control, in K. R. Boff, L. Kaufman, & J.P. Thomas
(Eds.), Handbook of Perception and Human
Performance: v. II, Wiley, New York, 1986.

19. Norman, D. A. Cognitive engineering, in D. A.
Norman & S. W. Draper (Eds.), User centered system
design, Erlbaum, 1986.

20. Norman, D. A. Things that make us smart. Addison-
Wesley, Reading MA, 1993.

21. PointCast, Inc. Welcome to PointCast. Available at
http://www.pointcast.com/.

22. Potter, M. C., Kroll, J. F. & Harris, C. Comprehension
and memory in rapid sequential reading, in R.
Nickerson (Ed.), Attention and Performance VIII.
LEA, Hillsdale NJ, 1980.

23. Rhodes, B. J., & Starner, T. The remembrance agent:
A continuously running information retrieval system, in
Proceedings of the First International Conference on
the Practical Application of Intelligent Agents and
Multiagent Technology, 1996, 487-495.

24. Rhodes, B. J. The wearable remembrance agent: A
system for augmenting memory, Personal
Technologies, 1, 1997, 218-224.

25. Sekey, A. & Tietz, J. Text display by ‘saccadic
scrolling’. Visible Language, 16, 1982, 62-76.

26. Selker, T., COACH: A teaching agent that learns,
Communications of the ACM, 37(1), 1994, 92-99.

27. Starker, I. & Bolt, R. A. A gaze-responsive self-
disclosing display, in Proceedings of the Conference
on Human Factors in Computing Systems, CHI ’90,
1990, 3-9.

28. TiVo Inc. Welcome to TiVo. Available at
http://www.tivo.com/.

29. Underwood, G., Maglio, P. P., & Barrett, R. User
centered push for timely information delivery.
Computer Networks and ISDN Systems, 30, 1998.

30. Yahoo! Inc, Yahoo! News. Available at
http://dailynews.yahoo.com/.

31. Zhai, S., Morimoto, C., & Ihde, S. Manual input
cascaded (MAGIC) pointing, in Proceedings of CHI
‘99, 1999..

http://www.almaden.ibm.com/cs/blueeyes/
http://www.almaden.ibm.com/cs/wbi/
http://www.pointcast.com/
http://www.tivo.com/
http://dialynes.yahoo.com/

	INTRODUCTION
	SCENARIOS
	ARCHITECTURE AND IMPLEMENTATION
	Observing Users and the World
	Gathering Information from Outside

	Modeling Users
	Modeling Users as Text

	Displaying Suggestions
	Displaying Suggestions Peripherally
	Testing Ticker Displays

	Putting It All Together

	RELATED WORK
	CONCLUSION AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

