
Jabberwocky:
You don’t have to be a rocket scientist to change

slides for a hydrogen combustion lecture
David Franklin, Shannon Bradshaw and Kristian Hammond

Intelligent Information Laboratory
Northwestern University

{franklin, bradshaw, hammond}@infolab.nwu.edu

ABSTRACT
In designing Jabberwocky—a speech-based interface to
Microsoft PowerPoint—we have tried to go beyond simple
commands like “Next slide, please” and make a tool that
aids speakers as they present and even learns as they
rehearse their presentations. Jabberwocky looks at the
contents of the slides, extracting key words and phrases and
associating them with their places in the presentation. By
listening for these phrases (and synonymous phrases derived
using syntactic rules) Jabberwocky is able to follow along
with the presentation, switching slides at the appropriate
moments. In this paper, we discuss the implementation of
this system—a component of our Intelligent Classroom
project—and look at how we are using it.

Keywords
Speech-based user interfaces, approximate natural language
understanding, intelligent environments.

INTRODUCTION
In the Intelligent Classroom, we are enabling new modes of
user interaction through the use of multiple sensing modes
and plan recognition—the Classroom uses cameras and
microphones to determine what the speaker is trying to do
and then takes the actions it deems appropriate. It controls
automated VCRs and slide projectors and also produces a
video of the presentation. One of our goals is for the
speaker to be able to interact with the Classroom as he
would with an A/V technician: sometimes through
commands (speech and/or gesture), and often by just going
about his presentation and trusting the Classroom to do the
right thing.

The Jabberwocky system is the result of our
incorporation of Microsoft’s PowerPoint presentation
software into the Intelligent Classroom. In addition to
some simple command-based approaches, we have
implemented two techniques based on slide contents. In the
first, the system is listening for particular words and
phrases that indicate when the speaker is going on to a new

slide or point. The second utilizes some probabilistic
techniques to match the speaker’s words to the content of
slides; the matches indicate which slide to show. By
combining all of these approaches, Jabberwocky is able to
support a wide range of presentation styles, allowing
speakers to lecture in whichever manner they feel will be
the most effective. For example, the probabilistic approach
lets the speaker skip around in his presentation by
describing the slide that he wishes to skip to—this would
prove invaluable for answering audience questions. In the
extreme, this could even support a speaker who wished to
do an unstructured lecture from a large body of slides.

In this paper, we focus on the speech-based aspects of
Jabberwocky. (The computer vision and plan recognition
aspects are detailed in other Intelligent Classroom papers [6]
[7].) First we look at the ways people tend to lecture and at
how Jabberwocky should be implemented to support this.
Then we look at the basic operation of Jabberwocky:
listening for particular words, phrases and commands that
indicate when the speaker wishes to change slides. Then we
discuss how Jabberwocky extracts key words and phrases
from the slide contents and how these can be used to follow
along with a strictly linear slide presentation. Then we
look at a probabilistic approach to determining what slide
the speaker is lecturing from, based on what words he uses.
Then we present two examples of Jabberwocky at work.
Finally, we summarize this work and look at some future
directions for the research.

HOW DO PEOPLE LECTURE?
Our primary goal as we implemented Jabberwocky was to
construct something that we would actually use. To address
this we needed to envision how such a system would be
used and then make sure that the system’s requirements
were reasonable to attain. We did not wish to invent new
ways of lecturing but instead to enable people to utilize
slides in their preferred lecture styles.

Lecture Styles
One curse of overhead transparencies, slides and PowerPoint
is that the speaker is essentially forced to give his
presentation in precisely the same way every time. To
deviate from the prescribed order, he must either rifle
through his set of overhead transparencies, skip over all the
slides (one at a time) between the current slide and the
desired one, or, in PowerPoint, find the slide in a buried

menu. As a result of this inconvenience, speakers tend to
let the slides dictate the presentation instead of support it.

There are, of course, speakers who refuse to be deterred.
A speaker from our laboratory once gave a presentation
using a box of more than one hundred overhead
transparencies. He had painstakingly organized them into at
least twenty categories and did numerous practice talks to
become proficient at extracting slides to respond to
particular questions. During his conference presentation, an
audience member asked one of the questions he had a slide
prepared for, and he quickly located the appropriate slide and
displayed it. As the audience murmured its admiration, he
said “I’m glad you asked that!” However, many speakers
are not willing to go to such lengths to prepare for a
presentation—nor should they have to be.

With PowerPoint, speakers may use hypertext links
within their slides to create flexible presentations.
However, this requires a great deal of preparatory effort and
also forces the speaker to use the mouse for much of his
navigation through his lecture. The point here is that
although it is possible to give flexible presentations using
slide-based media, almost no one even tries to, dissuaded by
the effort.

Perhaps it is not surprising that many of the most
dynamic and spontaneous teachers avoid using slides in
their presentations. They wish to address students’
questions or reorganize their lecture on the fly to meet their
particular students’ needs. They wish to explore interesting
tangents when the lecture provides an opportunity. It is
very difficult to do these sorts of things in the confines of a
traditional slide-based lecture.

Supportive Technologies
In our design, we wish to make use of existing
technologies as much as possible; we use IBM’s ViaVoice
software for voice recognition and Xerox’s part of speech
tagger as a part of our syntactic analysis of the slide
contents.

ViaVoice supports two modes of voice recognition:
continuous dictation and command-based. In the
continuous dictation mode, ViaVoice attempts to recognize
every word that is said, using the surrounding words as
clues to help with ambiguous words. The software
promises 95% accuracy, which can be achieved when the
system is trained and the speaker is consciously over-
enunciating. When a speaker talks conversationally, the
accuracy can easily fall below 70%. In the command-based
mode, ViaVoice listens for specific commands. The
command language is specified using a context-free
grammar. The software expects commands to be preceded
and followed by brief pauses—this is how commands are
distinguished from dictation. The accuracy of the
command-based mode seems very good.

Xerox’s part of speech tagger [12] uses a hidden
Markov model to find the most probable syntactic parse of
a sentence or phrase. It utilizes a lexicon of nearly 60,000
words, including common proper names and informal
language.

THE BASIC OPERATION OF JABBERWOCKY
Basically, Jabberwocky uses the speaker’s slides as a rough
outline. As the speaker goes about his presentation,
Jabberwocky listens for clues as to where the speaker is in
this outline. Usually, the clues confirm that Jabberwocky
understands where they are, but occasionally, the clues will
indicate that Jabberwocky is lost. (A speaker who tends to
go off on tangents or who just skips around a lot is likely
to confuse the system—and his listeners.) These clues take
two forms: (1) words and phrases that are indicative of
particular slides and slide points and (2) commands that
indicate how the speaker wishes to move through his
presentation.

Before the speaker begins his presentation,
Jabberwocky analyzes the slides and constructs a
hierarchical “plan” for following along with the
presentation. The steps in the top-level plan correspond to
individual slides, and each slide’s plan has steps
corresponding to its key points. These steps are essentially
of the form: “if you hear the speaker say ‘probability
distribution’ then he must be discussing the third point.” If
it is able to choose these “clues” well, Jabberwocky will
have enough information to keep track of the speaker’s
place during the presentation.

Once the presentation has begun, Jabberwocky listens
for the set of clues appropriate to its current place in the
presentation. It will listen for the key words and phrases
associated with the current slide (to keep track of which
point the speaker is on) and the next slide (to see when the
speaker has gone on), and for the various commands that are
appropriate to the slide presentation. As the speaker moves
through the presentation, Jabberwocky changes which
words, phrases and commands it is listening for.

Commands allow speakers direct control of their
presentation. This level of control may be needed to
remedy system mistakes (like switching slides too early or
too late). Also, this level of control may be useful when
indirect control is awkward or infeasible. For instance,
while a well-rehearsed speaker may have no difficulty
leading Jabberwocky, a less confident speaker may wish to
allow Jabberwocky to lead him. Such a speaker often does
not know what is on the next slide, and needs to command
“next slide” to find out. In addition, almost any speaker
would prefer saying “skip ahead to the conclusion slide” to
trying to describe its contents. The various commands used
in Jabberwocky will be discussed as appropriate through out
the paper.

CHOOSING IMPORTANT WORDS AND PHRASES
To be successful, Jabberwocky must do a good job of
extracting key phrases from the slides—these phrases serve
as Jabberwocky’s “understanding” of the presentation. This
is in lieu of a rigorous natural language understanding of
the presentation, which is simply not feasible for
Jabberwocky. Fortunately, this deeper understanding is not
necessary for Jabberwocky; a human A/V assistant can
match what the speaker is saying to the contents of the
slides without any technical knowledge of the presentation’s
subject matter. It appears that a purely syntactic
understanding is sufficient for knowing what to do. It is
like Alice’s situation after reading the poem Jabberwocky in
Lewis Carroll’s “Through the Looking-Glass.” [3] The
poem was nonsense to her, but she was still able to glean a
little meaning from it: “Somehow it seems to fill my head
with ideas—only I don’t exactly know what they are!
However, somebody killed something: that’s clear at any
rate.”

Extracting Key Phrases from the Slides
The primary way that Jabberwocky locates words and
phrases that are representative of slides and slide points is
through syntactic analysis. Much of the meaning of a
sentence can be grasped just by looking at the various
actors and actions in the sentence. In discussing a slide
point, the speaker can be expected to mention its actors and
actions. They may be discussed in a different order than
they appear in the slide (i.e. changing a sentence from the
passive to the active voice). The speaker may even
dramatically change how they are described (i.e. converting
adjectives into prepositional phrases). These potential
problems are dealt with by choosing phrases to
independently represent the actors and actions and by
creating numerous synonymous phrases for actors and
actions that can be expressed in many ways.

Jabberwocky locates phrases for the important actors
and actions in a sentence by first finding all the noun and
verb phrases, and filtering out words and phrases that are

not “interesting.” Articles, pronouns, propositions and
words that essentially serve as syntactic glue are filtered
out. This filtering process often eliminates uninteresting
phrases from consideration and also can strip a cumbersome
phrase down to its key elements. Jabberwocky considers
these key elements (and the paraphrases developed using
them) as representative phrases for the sentence. (These
techniques for selecting important words and phrases have
also been employed on Rosetta [2], a system that indexes
research papers based on how they have been cited, and on
DRAMA [10], which uses free-form text in its indices for
case-based retrieval.)

Jabberwocky also looks at non-text objects in the slide
when creating key phrases. With slides containing graphs,
tables or pictures, we can anticipate that the speaker will
mention them in discussing the slide. So, for a slide with a
table, Jabberwocky will also listen for phrases like “in this
table” and “in the table on the right.” For each of the
different objects we expect to find embedded in a
PowerPoint slide, we have enumerated a number of key
phrases that could refer to it.

How Do People Paraphrase Their Slides?
When designing slides, speakers tend to be as concise as
possible—putting as much content as possible into just a
few words. As a result, slides are often full of convoluted
language; overly complicated noun and verb phrases
abound. But, when speaking, people tend to use more
natural language, avoiding the stilted prose of their slides.
Therefore, it is unreasonable to assume that speakers will
describe actors and actions (in the slide contents) using
exactly the same words as the slides do. So, for each actor
or action phrase, we construct a number of synonymous
phrases, using a number of syntactic transformation rules.

With verb phrases, we construct a phrase for each way
the adverbs and helping verbs can be moved or eliminated.
From the verb phrase “can immediately advance”, we also
get “can advance immediately” and “immediately advance”
(among others). Also, since our matcher converts all verbs

Jabberwocky provides speech
based control of PowerPoint

jabberwocky, provide, speech, base, control powerpoint, control,
powerpoint

Figure 1: Phrase extraction in Jabberwocky. On the left, a slide, with identified phrases underlined.
On the right, the words and phrases that Jabberwocky will be listening for.

listen, give, present slide, slide present, present, slide switch, switch
slide, present, slide switch, switch slide, slide, appropriate moment,
moment, appropriate

slide switch, switch slide, switch will, will switch, switch, will,
explicitly tell, tell, recognize, begun discuss, discuss, have begun,
different slide, slide

example

 It listens to you as you give your slide
presentation, switching slides at the
appropriate moments.

 It will switch slides when you explicitly
tell it to, or when it recognizes that you
have begun discussing a different slide.

 For example...

to their root forms, the phrases also account for verb
conjugation changes due to tense, plurality or use of the
passive voice.

With noun phrases, we break the phrase into smaller
units: the adjectives, the modifier nouns and the subject
noun. From the noun phrase “current information
management technology” we get “current”, “information
management” and “technology” for the three units. Given
these, we construct key phrases using the following rules:

• The modifier nouns can serve as a key phrase (as in
“information management”).

• The modifier nouns can be separated from the adjective
and subject noun (as in “current technology for
information management”).

• Different subsets of the adjectives and modifier nouns
can be used (as in “information technology”).

Finally, we take one and two word subsequences of the
resulting phrases—this makes the system more tolerant of
words being missed by the speech recognizer. Using these
rules for converting noun and verb phrases into a large
number of words and phrases, Jabberwocky is able to cover
most of the ways a speaker will paraphrase their slides,
without diluting their meaning so much that it makes
wishful false matches.

In Figure 1, we see the verb and noun phrases that
Jabberwocky identified in an example slide (on the left) and
the words and phrases that Jabberwocky derived from them
(on the right). It is important to note that the phrases on
the right are made up of words in their root forms and also
that they omit certain connecting words like prepositions
and possessives. So the phrase “present slide” would be
found in the phrases “when you are presenting slides” and
“in presenting your slides” among others.

SKIPPING AROUND IN THE SLIDES
During the course of a typical presentation there are often
situations where the speaker needs to deviate from the
planned presentation: an audience member’s question
addresses a previous slide; time constraints require the
speaker to condense his presentation. Sometimes the
speaker may not even have a planned presentation; he may
have a body of slides that he wishes to use during an
improvised discussion. In this section, we look at how the
word and phrase “clues” from the previous section, coupled
with a probabilistic approach, can support these sorts of
dynamic presentations.

A Probabilistic Foundation

Our probabilistic approach utilizes Bayes’ Law to update a
probability distribution across the set of slides. When
Jabberwocky decides that the speaker may want to skip to

another slide, it will first assign an initial probability to
each slide (based on how likely it is that the speaker will
skip to it). Then, after each word or phrase that it hears, it
will update these probabilities in response (using Bayes’
Law). Finally, when one slide clearly dominates,
Jabberwocky switches to that slide.

• The s’s refer to the indices of slides and the p’s refer to
the key words and phrases that have been extracted from
the slide content. In addition:

• P(s|p) is the probability that the speaker wants slide s
given that he just said phrase p. We compute this using
the other values.

• P(s) is the probability (immediately prior to hearing
phrase p) that the speaker wants slide s. P(s) is simply
the last value of P(s|p') (where p' is the most recent
phrase). Jabberwocky uses P(s) as an intermediate value;
P(s|p1,p2) is equal to P(s) after hearing phrases p1 and p2

(assuming that the probabilities are independent.)

• P(p|s) is the probability that the speaker would say
phrase p, if he wants slide s. If the speaker were to
simply read verbatim from the slides, P(p|s) would
simply be the number of times phrase p appears in slide s
divided by the number of phrases we have extracted from
the slide. Since most speakers do not just read the slides,
we also consider it possible (though less likely) that the
speaker will use phrases that appear elsewhere in the
presentation. (For most presentations there will be a
number of important phrases that are spoken repeatedly
throughout the presentation, but that will only appear in
a few slides.) So, we compute P(p|s) as a weighted sum
of the probabilities based on phrases in the slide and
phrases in the presentation.

• P(p) is the probability that the speaker would say
phrase p in the current situation. This is simply the sum
of all the P(p|s), weighted by P(s).

Fitting it into Jabberwocky
In a situation where the speaker wants to skip to a
particular slide, he will tell Jabberwocky (through a
command) that he wishes to skip and then will begin
discussing the desired slide. For example, the speaker
might say “Please skip back <pause> to the slide that talks
about how Jabberwocky extracts phrases from the slide
contents.” By the time Jabberwocky has updated the
probabilities for the phrases “extracts”, “phrases” and “slide
contents” the probability for the desired slide will be
sufficiently high that it is switched to.

When the speaker makes a slide-skipping command,
Jabberwocky must first set up the probability distribution
by assigning initial values to the P(s). Based on the
particular command, Jabberwocky may be able to reduce the
set of slides to consider. For example, if he says “skip
back…” then we need only consider slides that have been

Bayes’ Law: P(s|p) = P(s) * P(p|s) / P(p)

seen already. Jabberwocky distributes the probability
evenly among the slides that it is considering.

Then, as the speaker talks, Jabberwocky listens for all
the phrases it has extracted from the set of slides under
consideration. When it hears one of these phrases, it
computes P(s|p) for each slide and updates the probability
distribution. Then if the probability for one slide is
sufficiently high (90%), it will skip to that slide and
continue the presentation from there. Otherwise,
Jabberwocky will continue listening for phrases and
updating the probabilities.

In a truly freeform lecture (where the speaker is treating
his slides as a set—rather than sequence), Jabberwocky will
remain in the probabilistic mode indefinitely. In this case,
the probability distribution is set up to favor slides that
have not yet been viewed. But also, when updated, the
probabilities are adjusted such that no slide becomes too
improbable. We will need to do more practical
experimentation to determine how to best constrain the
probabilities and facilitate this mode of lecturing.

LEARNING WHAT THE SPEAKER MIGHT SAY
There are two situations in which Jabberwocky fails to
match the speaker’s words to the correct slide: when the
voice recognition drastically mis-hears what the speaker said
and when the speaker uses too many synonyms in
paraphrasing a point. In both cases, Jabberwocky’s shallow
understanding (of phonetic similarity and of synonymy)
renders it incapable of making the match.

When we examined the first situation, we immediately
noticed that the mis-hearings were somewhat consistent.
With a phrase like “information systems”, if the speech
recognizer heard “and permission systems” once, it was
likely to hear it that way much of the time. This means
that if Jabberwocky listens while the speaker practices his
presentation (even just a few times), it will encounter most
of the recognition errors for that presentation. Better still,
this makes it unnecessary for the speaker to go through the
tedious process of training the voice recognition system.

With the second situation, we were faced with a
frustrating problem. Though we would like to use
something like WordNet [11] to capture semantic
similarities between words, in technical presentations, it
will not find the important synonyms that are specific to a
particular technical field. So, pending a better solution, we
simply memorize phrases that seem potentially
synonymous, so that they can be recognized later.

What Words Should Be Remembered?
In our methods for dealing with the situations where the
basic techniques fail, we have consciously avoided forcing
Jabberwocky to rely on a deep understanding. Instead, we
rely on the speech recognizer and speaker to be reasonably
consistent so that we can simply match their words and
phrases against their past words and phrases. To determine
which words and phrases are worth remembering,
Jabberwocky uses the same phrase extraction methods that
it uses in analyzing the slide contents. In addition, because
ViaVoice’s vocabulary is much larger than the lexicon in
Xerox’s part of speech tagger, we also extract large words
that are not successfully tagged. This deals successfully
with both mis-hearings and with obscure technical words.

How Does the Learning Take Place?
Jabberwocky must do more than just identify what words
and phrases are important to remember; it must also know
what slides or slide points to associate them with. (If it
makes many bad associations, Jabberwocky is essentially
learning how to do a bad job of running the slide
presentation.) Jabberwocky simply associates the phrases
with the slides (and even slide points) that they were heard
with. Because of this, while rehearsing with Jabberwocky,
the speaker should make sure that they stay well
synchronized.

When they do get out of synch, the speaker can inform
Jabberwocky by issuing commands like “next slide” or “no,
go back.” The phrases immediately preceding the command
are then associated either with the next slide (for the first
command) or with the previous slide (for the second). A
speaker may further aid Jabberwocky by telling which slide
points he is lecturing from (as in “here is slide point one.”)

Jabberwocky heard (from the speech recognizer):

 1) "You might wonder how does annoy them talking
about"

 2) "You wonder how does the northern talking about"

 3) "You wonder how is it now been talking of a"

Phrases that were learned:

do annoy, annoy, how do, wonder how, wonder might,
might wonder, wonder, talk

how do, wonder how, wonder, northern talk, talk

wonder how, wonder, now talk, talk

Figure 2: Learning phrases in Jabberwocky. Across the top, what the speaker said. On the left, what Jabberwocky heard
the three times the speaker spoke. On the right, the words and phrases that Jabberwocky learned.

The speaker said: You might wonder: "How does it know what I'm talking about?"

With speakers who reliably discuss every point in order on
their slides, this level of training should help Jabberwocky
to provide error-free control of their slides.

In Figure 2, we examine how Jabberwocky learns from
the narration it hears. On the left, we see the text from a
slide title and three ways that Jabberwocky heard the speaker
discuss it. The speaker added the phrase “you might
wonder” as a transition into the slide and Jabberwocky
learned several phrases involving the word “wonder.” Now
Jabberwocky can anticipate the speaker’s transition. The
speech recognizer had problems with the phrase “does it
know what I’m” (monosyllabic words tend to cause the
most difficulty). The phrases it learned as a result
(involving “annoy” and “northern”) will help it the next
time the speech recognizer mis-hears the words in the same
way.

EXPERIMENTS
In this section we take a look at Jabberwocky in action.
First, we do a free-form lecture on a set of five slides,
showing how the words and phrases extracted from the
slides allow Jabberwocky to identify which slide the speaker
is lecturing from. Second, we train Jabberwocky by
rehearsing a presentation three times and see the words and
phrases that it learns. Jabberwocky is implemented on a

network of a Macintosh (for text processing using
Common Lisp) and a PC (running IBM ViaVoice and
Microsoft PowerPoint.)

Using an Untrained Jabberwocky
In the first experiment, the speaker lectured from a set of
five slides that informally describe the operation of
Jabberwocky. Since this is a free-form lecture,
Jabberwocky assumes nothing about the order of the slides
but uses the probabilistic method to determine what slide to
switch to and when. Figure 3 shows the results of the
experiment. Across the top are the slides that were lectured
from, shown in the order they were lectured from. On the
left is what the speaker said (as heard by Jabberwocky.)
The words in bold indicate the places where Jabberwocky
decided to switch slides. The underlined words were used as
evidence for switching to the next slide. On the right is a
chart displaying the probability distribution as the talk
progressed. Time progresses downward, and the further the
solid regions extend to the right, the more confident
Jabberwocky was.

Looking at the speaker’s narrative (on the left) and
comparing it to the slide contents (across the top), we can
see that Jabberwocky usually switched to a new slide within
five words of when the speaker started discussing it. The

Figure 3: Results from the first experiment.
Across the top, the five slides that the speaker lectured from. On the left, what Jabberwocky heard the speaker say in his

narration. On the right, the probability distribution during the course of the talk.

Jabberwocky
All there is to know about
Jabberwocky in ten minutes or
less!

Jabberwocky provides
speech based control of
PowerPoint

It listens to you as you give your
slide presentation, switching
slides at the appropriate
moments.

It will switch slides when you
explicitly tell it to, or when it
recongizes that you have begun
discussing a different slide.

For example...

How does it know what
I m talking about?

When you start it up,
Jabberwocky extracts all the text
from the slide presentation.

Then, it looks for all the key
words and phrases in each slide
point.

Finally, when you are speaking,
it tries to match your words to
theses words and phrases.

But, I often change the
way I say things.

Yes, people often do "complex
noun-phrase construction" when
writing slides and then speak
using more natural prose.

When listing key phrases,
Jabberwocky also enumerates a
number of ways you might
restate them, using a number of
simple syntactic transformations.

It doesn't sound like it
really understands me.

I would liken Jabberwocky to
the A/V guy who gets stuck
doing a Computer Theory
conference; he has no clue about
the details but knows enough to
follow along.

"Somehow it seems to fill my
head with ideas only I don't
know what they are! However,
someone killed something: that's
clear at any rate."

<pause> today it all to you ever thing to one know about jabberwocky 10 minutes to less <pause> so
for stop what does into <pause> the essentially provides a speech based interface to microsoft's
power plant presentation software <pause> it listens is to presenters lads switching sides of the
appropriate moments <pause> it switches the slide when it's possibly tell until when recognizes the
jurors discussed in different <pause> for example <pause> new wonder how is the norm talking
about <pause> while winning started up jabberwocky to extract the text premise slides in the
presentation <pause> then defines key words and phrases and in each from <pause> finely when
you speak it matches your words to these words and phrases <pause> blame myself and change the
way say things <pause> and the people often construct complex now praises when making their
slides and then in discussing them use more natural process <pause> when this thing key phrases
jabberwocky also uses the number of samples and tactic transformations <pause> to enumerate the
number of ways to my mistake them <pause> so you replied that doesn't sound like it really
understands be all <pause> troops <pause> i would like in jabberwocky to the tv guide the computer
theory conference <pause> his clueless regarding what's been talked about <pause> the still able to
follow along <pause> hornet's like alice from lewis carroll said the looking glass after reading the
jabberwocky <pause> she said somehow it seems to fill my head with ideas <pause> only at don't
know what they are <pause> however someone killed some thing that's clear to anyone

five words roughly correspond to two phrases. Looking at
the probability distribution (on the right), we see that
Jabberwocky was nearly always confident. Isolated spikes
indicate places where Jabberwocky was distracted due to the
speaker inadvertently saying a key phrase from a different
slide. Even though none of these spikes were big enough
to cause Jabberwocky to incorrectly change slides, they do
suggest that it may be difficult to do large-scale free-form
lectures without having unwanted slide changes.

Learning through Rehearsal
In the second experiment, the speaker rehearsed his
presentation with Jabberwocky three times, allowing
Jabberwocky to learn the phrases the speaker tended to use
in presenting his slides. The speaker used the slides from
the first experiment and employed a somewhat consistent
narrative in discussing them. The speaker guided
Jabberwocky through the talk, using commands like
“beginning the next slide” and “beginning the second point”
so that Jabberwocky would be able to accurately associate
the phrases with the right slide points.

Before the learning began, Jabberwocky had extracted
129 words and phrases from the slides, using the syntactic
approaches discussed earlier. From the first rehearsal,
Jabberwocky learned 43 new phrases. These consisted
largely of phrases taken from speaker transitions, as well as
a number of speech recognition errors. From the second
rehearsal, Jabberwocky learned 24 new phrases, and
rediscovered 14 phrases from the previous rehearsal. From
the third rehearsal, Jabberwocky learned 18 new phrases, and
rediscovered 23. The increase in rediscovered phrases is due
to the speaker’s consistency in transition and the speech
recognizer’s consistency in mis-hearing certain phrases.

Figure 4 shows some interesting phrases that
Jabberwocky learned through the course of the rehearsals.
The first two (“billion stance” and “clueless forgetting”) are
due to the speech recognizer mis-hearing the speaker’s
words. The third set of phrases is due to the speaker’s

setting up the quotation from “Through the Looking
Glass.”

RELATED WORK
Jabberwocky’s Bayesian method for skipping around in the
slides has much in common with the methods used by
Heckerman and Horvitz [9] for the Microsoft Office
Assistant. They take typed free-text queries, extract key
terms, and then use a Bayesian approach to determine which
of the thousands of help topics will be most useful as an
answer to the query. They do almost no grammatical
analysis of the text and the probabilities were all human-
generated in an impressive knowledge-engineering effort.

Everett, Wauchope and Perez-Quinones [5] build
natural language interfaces for virtual reality systems. A
challenge they face in one of their VR worlds is that
nothing is labeled with names. As a result, different people
will often use very different language in referring to the
same objects. But, since the number of reasonable
commands and queries is very limited, they are able to get
good results by simply scanning for key words and then
deciding what the person wants based on these key words
and on what is around them in the virtual world. Like the
Microsoft Office Assistant research, this work is able to use
a shallow language understanding because it is able to
severely limit the number of things that the user might say.

Allen et al. [1] deal with noisy speech input to their
TRAINS and (the more recent) TRIPS systems. These
systems collaborate with a human user to plan routes
between cities for various tasks. Unlike the previously
described systems, TRAINS-96 actually parses the speech
input into speech acts. To eliminate some of speech
recognition errors (their speech recognizer was about 70%
accurate), the system performs statistical error correction
based on a corpus of previously transcribed dialogues with
the system. Then, a parser looks for plausible speech acts
in the revised utterance, which are finally filtered and
interpreted in the context of what the system and user are
currently doing.

Figure 4: Results from the second experiment. Interesting phrases learned for the fifth slide.

New phrase: "billion stance"
Jabberwocky heard: "... doesn't delicate billion stance be no."
Speaker actually said: "... doesn't sound like it really understands me at all."

New phrase: "clueless forgetting"
Jabberwocky heard: "... theory conference is clueless forgetting what's been talked about."
Speaker actually said: "... theory conference is clueless regarding what's being talked about"

New phrases: "like alice", "lewis carroll", "look glass", "glass factory"
Jabberwocky heard: "... like alice from lewis carroll still looking glass factory..."
Speaker actually said: "... like Alice from Lewis Carroll's "Through the Looking Glass" after reading..."

Another domain of research in which speech input is
used in an interesting way is in intelligent environments.
These systems provide multiple modes of input—usually
including speech and gesture. But, in contrast to previously
described work (which use unconstrained speech input),
these systems tend to rely exclusively on command
grammars. The Intelligent Room [4] is a conference room
featuring three display screens, wireless microphones and a
dozen cameras (to track the locations of people and to
observe gestures). It serves as an intelligent command post
for disaster relief planning and as a laboratory tour guide.
People can command the room to display information on
the display screens and ask questions about what is shown
there.

Another interesting intelligent environment, IBM’s
VizSpace project [8], allows a human user to manipulate
the objects in its display through a combination of speech
and gesture. The user can add, remove, relocate and resize
any of a number of graphical objects. This research focuses
on the issue of how to combine the speech and gesture
information to produce natural interaction.

CONCLUSIONS
In this paper, we discussed Jabberwocky: a speech-based
interface to PowerPoint. We looked at how we hoped to
use it in support of many different presentation styles. We
also looked at the techniques needed to support these styles:
phrase matching, a probabilistic approach and some
learning. Jabberwocky is now a usable system (as
demonstrated in our first experiment), giving us the
opportunity to actually invite people to use it—to see
whether it is also use ful .

Through these experiences we will learn ways in which
to extend Jabberwocky to render it more useful. Some
future work we are already aware of concerns looking at
non-phrasal clues for going on. For instance, if a speaker
finishes the last point of a slide and then pauses, this could
be an indication to go on. Also, in analyzing the phrases
that Jabberwocky learned through the rehearsal process, it
became clear that there are many words that are bad to listen
for; monosyllables are nearly always mis-heard and there are
many words that are commonly used in paraphrasing. We
need to find a principled way of identifying (and rejecting)
these words.

One of the triumphs of this research is that we are able
to use inaccurate speech recognition input to accurately
control a presentation. The reason for this success is that,
since Jabberwocky knows what it should hear, it is able to
make strong assumptions when it hears things that are not
exactly what it expects. This is why we can follow along
with presentations that we do not quite understand—in

observing a lecture at the rocket scientist convention, we
can tell when it is the appropriate moment to change the
slides. We use our task knowledge to make less knowledge
go further.

REFERENCES
1. Allen, J., Miller, B., Ringger, E., and Sikorski, T.

(1996). Robust Understanding in a Dialogue System.
In Proceedings of 34th Meeting of the Association for
Computational Linguistics.

2. Bradshaw, S., and Hammond, K. (1999). Constructing
Indices from Citations in Collections of Research
Papers. In Proceedings of the 62nd Annual Meeting of
the American Society for Information Science.

3. Carroll, L. (1871). Through the Looking Glass.

4. Coen, M. (1998). Design Principles for Intelligent
Environments. In Proceedings of Fifteenth National
Conference on Artificial Intelligence.

5. Everett, S., Wauchope, K., and Perez-Quinones, M.
(1998). Creating Natural Language Interfaces to VR
Systems: Experiences, Observations and Lessons
Learned. In Proceedings of Fourth International
Conference on Virtual Systems and Multimedia.

6. Franklin, D. (1998). Cooperating with people: the
Intelligent Classroom. In Proceedings of Fifteenth
National Conference on Artificial Intelligence.

7. Franklin, D., and Flachsbart, J. (1998). All gadget and
no representation makes Jack a dull environment. In
AAAI Spring Symposium on Intelligent Environments.
AAAI TR SS-98-02.

8. Lucente, M., Zwart, G. and George, A. (1998).
Visualization Space: A Testbed for Deviceless
Multimodal User Interface. In AAAI Spring
Symposium on Intelligent Environments. AAAI TR
SS-98-02.

9. Heckerman, D., and Horvitz, E. (1998). Inferring
Informational Goals from Free-Text Queries: A
Bayesian Approach. In Proceedings of Fourteenth
Conference on Uncertainty in Artificial Intelligence.

10. Wilson, D., and Bradshaw, S. (1999). CBR Textuality.
In Proceedings of the Fourth UK Case-Based Reasoning
Workshop.

11. WordNet. Available and described at http://www.-
cogsci.princeton.edu/~wn/w3wn.html

12. Xerox Part of Speech Tagger. Available at
parcftp.xerox.com/pub/tagger/tagger-1-0.tar.z and
described at http://kb.rxrc.xerox.com/grenoble/mltt/-
fsNLP/tagger.html

