A Task-based Architecture for Application-aware

Robert Farrell
Peter Fairweather

T J Watson Research Center
Yorktown Heights, NY 10598 USA
+1 914 945 {3398,2138}

{robfarr, pfairwea}@us.ibm.com

ABSTRACT

Users of complex applications need advice, assistance,
and feedback while they work. We are experimenting
with “adjunct” user agents that are aware of the history
of interaction surrounding the accomplishment of a
task. This paper describes an architectural framework for
constructing these agents. Using this framework, we
have implemented a critiquing system that can give
task-oriented critiques to trainees while they use
operating system tools and software applications. Our
approach is generic, widely applicable, and works
directly with off-the-shelf software packages.

Keywords
Adjunct, agent, architecture, critic, event, graphical
user interface, plan recognition, task model.

INTRODUCTION

Help systems for software applications typically
provide information on operating an application’s
complex commands and options without giving the
user help completing tasks [8]. While computer-based
instruction [2] may provide effective support for new
users executing common tasks, more advanced users are
left without adequate assistance. To address this
shortcoming, we have been experimenting with
“adjuncts” to software applications that can be easily
authored to handle new tasks. Our adjuncts are user
agents that execute alongside an application or set of
applications, take task advice from the user, and
provide task-specific support in the context of the
user’s work. Unlike traditional methods of training and
assessment, our adjunct monitors actual behavior with
live software applications.

PROBLEM

We are building a prototype adjunct, the Task Critic,
for Networking System Administrators. Trainees will
download the system following a web-based course or
classroom instruction. When they need practice or
assistance with particular job tasks, they can perform
them with the help of the Task Critic. The critic
provides an individualized evaluation of the user’s
solution steps as well as hyperlinks to help pages and
supporting training materials.

Adjuncts

Eric Breimer
Computer Science Department
Rensselaer Polytechnic Institute
Troy, NY
+1 518 276 6907

breime@cs.rpi.com

Let’s take an example. Suppose a new system
administrator needs to find the speed of the COM1 port
on an employee’s computer. He needs help, so he
brings up Task Critic and searches for this task. Once
he selects the task, the system immediately starts
monitoring his actions on the desktop, in command
shells, and within certain applications.

The administrator selects the Printers icon. The task
critic explains that the Printers tool shows available
printers, not information about COM ports. Next, the
administrator starts up the Notepad text editor and
loads the autoexec.bat file. The task critic explains that
autoexec.bat lists commands run at startup while he
wants a file that lists configuration settings. Finally, he
loads the win.ini file and finds the speed of the COM1
port. The system stops monitoring and the user
continues his work.

ARCHITECTURE

Our proposed architectural framework (see Figure 1)
supports the interaction between users, applications,
and adjuncts. Our adjuncts are user agents that are
conjoined to applications, attend to their events, and
instead of belng active, are subordinate to the user.

¢ Primitive
E Text Editor : Events (b)
: = Capture

E E-mail > Module (d)
»...j Generic p—
Agghcaﬂon (_)_ Ev&;ns l oFg;osT
Tasks@) W |

AdV'S »| Analysis Modulr
User (1) P (e)
Critic - o S —
| nterpretatlons
Adjuncts (3) (© T T

' Task App f
H Model (h) Model (i)

Support Services (4)

Figure 1: Architecture for Adjunct Agents

Users (1) can work on more than one target application
(2) (e.g., a Text Editor and E-mail) to accomplish a task
and can interact with more than one adjunct (3).
Support Services provide both task and application
tracking.

To receive application-aware communications from an
adjunct user agent, a user must register their identity
with the agent and optionally select a high-level task
or tasks (a). As the user works, the Support Services
interpret the events being generated (b) as applying to
these tasks. The agent can use this information (c) to
provide in-context assistance, performance summaries,
directed feedback, or detailed critiques.

Support Services
Support Services comprise two major components: the
Capture Module (d) and the Analysis Module (e).

Capturing Events

Our Capture Module can “spy” on events being
generated by one or all applications. It can capture both
user events and application events. User events
(“inputs™) are the result of actions the user actually
took on the application: key presses, mouse
movements, dialog use, and window controls.
Application events (“outputs™) are generated by the
application to control itself, typically in response to
user events: creation and destruction of user interface
widgets, painting of windows, and population of
default values in text fields are all examples of such
events.

We chose to represent primitive events as n-tuples
where the first element of the tuple is an enumerated
event type (e.g., ActivateWindow, SelectMenu,
PressKey) and the other elements are strings of
characters, usually representing names of windows.
“Filtering controls” (g) allow the capture module to
discard certain classes of events from consideration and
enable agents to suspend and resume the capture
process.

Our implementation uses the “hooks” provided by the
Microsoft Windows operating system to capture
events. Our event processor is essentially a tree where
each node tests a different attribute of the Windows
event structure. An event that passes all of the tests is
converted in a generic event (f) and is passed on to the
analysis module.

Analyzing Events

The Analysis Module receives events from one or more
Capture Modules on different computer systems. If the
computer supports multiple users, the Capture Module
also report the user’s identity, implemented as a
Windows login name.

The Analysis Module adds a time stamp to each
incoming generic event, then performs a bottom-up
reconstruction of the user’s hierarchical task structure,
starting with the incoming generic events.

Each generic event is matched against the available
recognition rules. The recognition rules typically do
four things:

1.Determine the context, if any (e.g., entering a
window).

2.Match events of various event classes

3.Check semantic constraints (e.g., are the window
titles the same?) and temporal constraints (is the
action before the result?)

4.Create a new inferred event, justify the event with the
matched supporting events, and remove the
supporting events from further processing.

The Analysis Module alternates between reading
events and matching recognition rules. Events that do
not match the current context are put into buffer to be
matched later. Otherwise-equivalent more-recent events
will be preferred during matching.

Once a new inferred event has been added, the system
stores the parent-child relationship to the supporting
events. The system immediately matches inferred events
against other recognition rules. Thus, event
recognition proceeds depth-first. The growing “forest”
of inferred events is called an interpretation of the
generic events (see Figure 2).

Nt

Viewed Searched for
Win.ini CcOoM1

Started Opened Used FINL
text editor win.ini feature
ActivateWindow SelectMenu ‘&Open’ PressKey
‘Pad” InitDialog ‘Open’ ‘&Find’

Figure 2: An Interpretation of the Event Stream

The work done by the Support Services is similar to
that done in many programming by demonstration
systems (for example, see [7]). However, the emphasis in
our system is on building hierarchical plans from
events, not in generalizing from examples.

PROTOTYPE AGENT: Task Critic

We have tested our architectural framework by building
a system for critiquing users of basic Windows
operating system tools and desktop applications. Our
Task Critic (see Figure 3) is a separate performance
support tool that is available as an icon on the
trainee’s desktop. It allows the trainee to choose a
relevant task collection (e.g., Working With
Communications Ports), select a task (e.g., Determining
COM Port Characteristics), and then perform that task
using the applications installed on their desktop.

[

Tark Facwa fup i

S —

o i i A HOT 8 B Tl "
Nesapaa 1. St Tt Edied aaol Tatics

s Tesd Eritwsopl i dlw =l

I B

| S R L) ﬁllh |l:’11-r:. it Thas

1

Eﬁ Tand Fritimt

anile
L L]
% e Wi iR

I [BmiTadcdm

Figure 3: Task Critic

The Task Critic consists of the adjunct user interface, a
task model, an application model and an evaluation
module that computes the critique.

Adjunct User Interface

The Task Critic user interface consists of a single
primary window with popup dialogs for browsing
tasks and help. The task browser allows the user to
select their desired task from a list of task collections. A
‘tape recorder’ graphic indicates that monitoring has
begun. The small, resizable critic window allows the
user maximal screen real estate for performing the task
on the application, while the dual-pane design allows
the user to see both the task description and the
system’s evaluation simultaneously. The critic
provides on-demand, incremental evaluation.

Task Model
Tasks are represented as hierarchical AND/OR trees of
goals and subgoals (see

Find a word

— S

View file Search for word
containing word

/\ K A

Start Open Use FIND
Application File feature find

Scroll until

Figure 4). All subgoals are ordered linearly unless
otherwise noted. Goal descriptions are identical to
event descriptions, except goals may contain element
variables that match any string.

Find a word

— S

View file Search for word
containing word

/\ K a

Start Open Use FIND
Application File feature find

Scroll until

Figure 4: Task model

Application Model

The Application Model must be pre-populated for each
target application. It enables the recognition rules to be
completely application-independent. The application
model for the text editor includes parent/child
relationships between windows and cause/effect
relationships between pressing a button (e.g.,
Search|Find) and bringing up a window (the Find
window).

The Application

System administrators work with many applications,
but this example uses only one: the Notepad text editor.
The event types for the text editor consists of
operations on applications (Start/Exit), windows
(Open/Close), files (Save), and documents (searching,
editing).

When running the capture module on the Notepad text
editor, we found that window titles were insufficient to
differentiate application windows, so our event
descriptions include the user interface widget. In our
previous work [4], we used unchanging portions of
content for unique window identification. For some
applications, it may be necessary to include the relative
position of windows or other information.

Adjunct

Our Task Critic evaluates the user’s inputs by starting
with the most recent task. The system recursively
matches the goals in the goal descriptions against the
events in the interpretation, starting with the high-
level goals. If a goal matches an event, then the goal is
marked as achieved, the pairing is stored, and it’s
subgoals are matched against the event’s supporting
events. If the goal is a near miss (only one element of the
two n-tuples does not match), the pairing between goal
and event is stored. If the goal does not match any
events, then it counts as omitted. A second pass is
made over the interpretation, recursively querying each
of the events to see if it has been paired with a goal. The
events that are highest in the interpretation forest are
returned as unexpected. The system passes the lists of
achieved, omitted, near miss, and unexpected events
through a simple dialogue generation procedure and
uses template-based natural language generation to
create the final output to the user.

DISCUSSION AND FUTURE WORK

Critiquing is an effective mechanism for improving
human behavior, especially that of near-expert users.
The critiquing method introduced here encourages
reflexive problem solving and challenges the user to

create self-explanations [1] for perceived expectation
failures. A critiquing system can also reduce the “gulf
of evaluation” [6] — the effort required to interpret the
feedback provided by a system.

Expert critiquing systems have had a large impact
where there is a good source of expert knowledge and
where complex constraints must be fulfilled (e.g.,
spelling checkers) [9]. This is precisely the situation
we find when the user is presented with a real-world
task such as systems administration. The challenges of
the real task create a useful role for an adjunct agent.

Critiquing can be difficult because users can perform
any actions between the time they start the task and
when they ask for an evaluation. Unlike many critic
systems, which are only checking constraints on final
solutions, our system examines the entire history (see
[3D).

In the future, we would like to extend our framework to
handle collaborative work in organizations. We need
to include primitives for describing constraints on
resources and users as well as timing.

CONCLUSIONS

We have introduced an architectural framework that
enables user agents to interpret and respond to events
originating from other applications. Our architecture
separates the interpretation of events from how they are
used. It is able to capture events from multiple
applications on multiple computer systems. We have
showed how we have built a task-oriented critiquing
system that uses the hierarchical interpretation of
events to provide assessment and assistance. By
separating event interpretation from task goals, the
system supports critiquing of the entire history of
events, including unexpected and near miss events.

ACKNOWLEDGMENTS

We would like to thank Dan Oblinger for numerous
discussions, Jacob Ukelson for his interest and
support, and Dick Lam for helping with the GUI code
review.

REFERENCES

1. Conati, C. and VanLehn. Teaching meta-cognitive
skills: implementation and evaluation of a tutoring

system to guide self-explanation while Iearnin%
from examples. In Proceedings of AIED’99: the 9"
World Conference on Artificial Intelligence and
Education, Le Man, France, 1999.

Gibbons, A.S. and Fairweather, P.G. Computer-
based instruction: design and development.
Educational ~ Technology Publications, Inc.:
Englewood Cliffs, NJ.

Farrell, R. Capturing Interaction Histories on the
Web. In Proceedings of the 2" Workshop on
Adaptive Systems and User Modeling on the
WWW. Toronto, CA, 1999.

Farrell, R. and Lefkowitz, Lawrence S. Supporting
development of task guidance for software system
users: lessons from the WITS project. Bloom and
Loftin Eds. Facilitating the development and use
of interactive learning environments, pp. 127-162,
1998.

Fuerzeig, W. & Ritter, F. Understanding Reflective
Problem Solving. Psotka, J, Massey, L.D., &
Mutter, S.A. (Eds.), Intelligent Tutoring Systems:
Lessons Learned. Lawrence Erlbaum Associates,
Hillsdale, NJ. 1988.

Norman, D. and Draper, S.W. eds. User-Centered
Design: New Perspectives on Human-Computer
Interaction. Lawrence Erlbaum Associates:
Hillsdale, NJ, 1986.

Lieberman, H. Modrian: A Teachable Graphical
Editor. Cypher, A. et al (Eds.) Watch What | Do:
Programming by Demonstration. The MIT Press:
Cambridge, MA, 1993.

Priestly, M. Task-oriented or task-disoriented:
designing a usable help web. In Proceedings on the
sixteenth annual international conference on
computer documentation, 1998, pp. 194-199.

Silverman, B. Survey of Expert critiquing systems:
practical and theoretical frontiers. CACM Vol 35,
pp. 106-127, 1992.

