
Extending software through
metaphors and metonymies

Simone D.J. Barbosa
Computer Science Department
Pontifícia Universidade Católica

R. Marquês de São Vicente, 225 – Gávea
Rio de Janeiro, RJ 22453-900

Brazil
+ 55 21 521-8627

sim@les.inf.puc-rio.br

Clarisse Sieckenius de Souza
Computer Science Department
Pontifícia Universidade Católica

R. Marquês de São Vicente, 225 – Gávea
Rio de Janeiro, RJ 22453-900

Brazil
+ 55 21 529-9462 ext. 4344

clarisse@inf.puc-rio.br

ABSTRACT
This article is about applications that can be customized or
extended through their own user interface. This is achieved by
the interface’s ability to interpret users’ non-literal expressions,
namely metaphorical and metonymic ones. Such increased
interpretive intelligence depends on static and dynamic models of
the domain and application, from which new figurative meanings
are abducted automatically or semi-automatically. The system
performs controlled modifications on the underlying models,
based on its inferences about users’ intentions as they produce
figurative utterances.

Keywords
End-User Programming, Metaphor, Metonymy, Abductive
Reasoning, Interfaces for Knowledge-Based Systems.

1. INTRODUCTION
Academia and industry alike have recognized the need to create
extensible software in order to allow users to tailor applications
to their particular needs and alleviate the programming effort
involved in software upgrades [2, 7, 8, 19, 20]. Nevertheless,
most extension mechanisms to-date have focused primarily on
the automation of repetitive tasks (through different techniques,
such as macro recording and programming by demonstration [3]),
or on extensions that involve the use of script and programming
languages.

Commercially available extensible applications have typically
suffered from rigid and unhelpful interfaces. One of the major
difficulties for extending software is the user’s lack of
knowledge about the underlying application model and about the
role of familiar interactive patterns in turning interface events
into function triggering protocols.

We propose mechanisms that help interfaces become more
“intelligent” by assigning meaning to users’ non-literal
expressions, i.e. input that is not a primary well-formed syntactic
and/or semantic interactive sentence. By interpreting
metaphorical and metonymic expressions, our mechanisms
recognize meaningful constructs beyond those explicitly
modelled by the original designer. Thus, we are not only
customizing or extending user interfaces, but actually extending
software applications, through intelligent user interfaces.

In our approach, end-user programming (EUP) mechanisms are
cast as abductive processes [14] that operate on figures of speech.
Metaphors and metonymies have been chosen because they
mirror a natural way of thinking about things we know little or
nothing about [15, 16, 17, 21].

Compared to alternative approaches that try to meet major EUP
cognitive challenges by progressively disclosing commands and
programming structures [6, 7], ours allows users to achieve
changes without even knowing that what they want to do is
innovative in any sense. This feature is also distinctive in
comparison to most programming by demonstration approaches
[3].

However, not knowing about extensions may have undesirable
side effects. Consequently, our approach distinguishes between
vanishing and permanent extensions. Vanishing ones result from
interpreting figurative utterances and performing the inferred
actions on discardable extended copies of the original models.
Permanent ones require that the users be made aware of
extensions and carefully decide about the need or convenience of
replacing the original models with the extended ones.

Permanent extensions can be also achieved with the support of
interactive dialogs, such as wizards. In this case, all the
underlying models of the application are communicated to users
in more detail, and EUP is treated as an intentional user activity.
However, this paper concentrates mainly on vanishing
extensions.

 Our approach has been partially implemented and tested for
conceptual consistency in three separate modules: the intelligent
UI knowledge base and reasoner, the graphic environment, and a
preliminary knowledge acquisition interface. In the following, we
will disclose and discuss aspects of our system’s models and

reasoning processes, and provide examples of interpreting
vanishing non-literal expressions based on a toy application.

2. EXTENSIONS THROUGH ANALOGIES
Many researchers in the field of Cognitive Science agree that we
humans think and express ourselves in non-literal ways [15, 17,
21]. In particular, we make use of metaphors and metonymies in
order to understand or explain a concept in terms of others, by
highlighting a concept’s characteristics or relations, and hiding
others. It is also known that, in order to effectively use this kind
of figurative language in our communication, it is necessary for
sender and receiver to share knowledge, assumptions, and
cultural background [17].

Lakoff presents evidence of the existence of a real system of
conventional conceptual metaphors. Our approach takes into
consideration what he considers to be the most robust evidence
[16]:

• Generalizations governing polysemy, that is, the use of
words with a number of related meanings.

• Generalizations governing inference patterns, that is,
cases where a pattern of inferences from one
conceptual domain is used in another domain.

• Generalizations governing novel metaphorical
language.

In computer applications, dealing with conceptual metaphors
requires that the designer’s knowledge and assumptions be
communicated to users in a consistent interface language [1, 4].
For sake of computational efficiency, a balance must be found
between interface language and application language, so that
both are good enough for man and machine.

It is impossible to represent, computationally or not, all common
sense knowledge that arises from our experience in the world.
Thus, computer applications should not be expected to behave
like partners in a natural communicative process, capable of
negotiating meanings until they reach mutual understanding.
Rather, computer users should be aware that they are interacting
with a rational artifact created by a human designer, who
consciously embedded in it only part of his or her knowledge and
assumptions about the application domain and the users’ profile
[5].

One of the hardest EUP challenges is related to the users’ lack of
knowledge about such embedded application and domain models.
When first interacting with an application, users typically have
an incomplete and imprecise model of it. Our approach helps fill
this knowledge gap with an enhanced representation of domain
and application models, which are manipulated by abductive
mechanisms that interpret metaphorical and metonymic
utterances. These utterances often account for what is diagnosed
as imprecise and incomplete knowledge in traditional
approaches.

When a user is familiar with a portion of the application and has
built a partial conceptual model of it, he or she is likely to make
sense of unfamiliar portions in terms of known concepts, prone to
overgeneralization or overspecification that give rise to
misconceptions. So, instead of correcting users in an effort to
adjust his or her models to the application, we try to adjust the
application to meet the user’s conception.

Underlying model adjustments can certainly have undesirable
side effects. Our model handles this problem by supporting
vanishing extensions made during the interpretation of users’
utterances. This ensures that a metaphorical or metonymic
expression will keep this status of figurative speech until it is
explicitly integrated to the domain discourse with its
corresponding syntactic and semantic specification.

One way to achieve explicit integration may occur after several
sessions of interaction with the application, when patterns of
metaphorical and metonymic expressions may arise. The
application may offer users the option to make them persistent,
as a computational equivalent of turning live metaphors into dead
metaphors. In the next section we will describe representations
and computations involved in interpreting metaphor and
metonymy.

3. MODELLING FOR METAPHORS AND
METONYMIES
Calculating metaphors and metonymies requires a special
representation structure — static and dynamic domain and
application models, enriched by metaphorical and metonymic
chain classifications. In order to describe how the domain and
application models must be represented, we first need to
understand what is a user utterance, and what variations of literal
utterances we want to interpret.

A user utterance is a syntagmatic expression [23], a linearized
rule-based combination of elements in the user interface
language. The interaction paradigm determines the form of the
expression, like object+verb and verb+object, for instance. A
literal utterance has a clear, direct and unambiguous
interpretation, derived from the language grammar.

A metonymic utterance occurs when reference to an element is
made by another element with which the first has a relation of
part-whole, content-container, cause-effect, producer-product,
among other possibilities. For example, when we say “He’s got a
Picasso”, we mean he’s got a work of art produced by Picasso. In
a computer application, we might express “copy the boldface”, to
mean “copy the text formatted in boldface”. Still regarding
computer applications, metonymies can also be used to generate
iterations and recursions. For instance, in a graphical editor that
allows users to group objects, if a user selects a group and
chooses a different fill color, it iterates through all elements in
the selected group and applies the chosen fill color to each
element that can be filled, individually. Moreover, if an element
is itself a group, the operation is performed on its elements too,
recursively. Nevertheless, such usage of metonymies is typically
ad hoc, or incidental, not to be consistently found elsewhere in
the application. Users must learn where such metonymies may be
used in isolation, for they cannot predict the behavior of
seemingly analogous situations.

In order to be able to generate metonymic expressions, designers
need to represent relations among elements and identify which
ones may be part of a metonymic chain. Composition and
aggregation relations, such as part-of, are natural candidates for
metonymy. Other relations must be explicitly declared as having
metonymic potential, such as relations representing location,
ownership, possession, creation, and many others.

For each element in a non-literal expression, we traverse the
metonymic chains in the static domain model, making a
paradigmatic substitution and checking if the resulting
expression has a literal interpretation. A valid substitute becomes
the metonymic target. The utterance interpretation is the result of
an iteration through every element in the original expression
obtained by following the chain to the metonymic target, or every
metonymic target reached from the original expression,
depending on the direction traversed.

The direction of traversal should go from “whole” or “producer”
to “part” or “product”, and then if the search fails it should go
from “part” or “product” to “whole” or “producer”. For instance,
in a bibliographical domain, if we have a relation “Quincas
Borba” written by “Machado de Assis” and we ask to copy
“Machado de Assis”, all references corresponding to literary
works of “Machado de Assis” would be copied. On the other
hand, if we ask to copy “Quincas Borba”’s biography, the result
would be the copy of the author’s biography (Machado de
Assis’s). The following pseudo-code illustrates our procedure for
generating part-whole, contained-container, and other
metonymies:
given an utterance of the form S-A-O (<subject> <action> <object>)

for each defined X-A-O,
if there is a metonymic relation X-part-of-S or X-contained-in-S,

consider an iteration, executing the utterance X-A-O for every instance
of X in X-part-of-S or X-contained-in-S; then stop

if there is a metonymic relation S-part-of-X or S-contained-in-X,
consider the utterance X-A-O and stop

for each defined utterance S-A-X
if there is a metonymic relation X-part-of-O or X-contained-in-O,

consider an iteration, executing the utterance S-A-X for every instance
of X in X-part-of-O, or X-contained-in-O; then stop

if there is a metonymic relation O-part-of-X or O-contained-in-X,
consider the utterance S-A-O and stop

Metaphors may arise when comparing the relations between
pairs of elements. For example, there may be a relation “written
by” linking a text to its author, and the instances “O Cortiço
written by Aluísio de Azevedo”, and “O Guarani written by José
de Alencar”. The expression “Aluísio de Azevedo’s O Guarani”
will result in retrieving an instance of “Something written by
Aluísio de Azevedo”. If the underlying domain representation is
rich enough to single out Alencar’s O Guarani as his most
famous novel, the metaphorical representation can qualify
“something written by” with the attribute “most famous”, and
thus retrieve’s Azevedo’s novel that is, for him, as remarkable as
O Guarani is for Alencar. We thus see that this interpretation is
at the boundaries of poetic use. The appropriateness and
sophistication of interpretations is directly proportional to the
expressiveness of the underlying domain models.

Our mechanism for generating metaphors can also be used to
create synonyms that express the designer’s idea of equivalence
in particular contexts. For instance, in an academic institution
there might be a “text” classification including “paper”,
“article”, and “report”. A systematic interpretation of these
words in terms of each other is equivalent to neutralizing the
distinctions among them, and making them interchangeable in
some or in all contexts.

Many researchers have investigated the computation of analogies
[10, 11, 12, 13, 24]. Our work is based on Holyoak and
Thagard’s criteria of similarity and structure. When a non-literal
utterance is encountered, the application will first look for
classifications in which the elements occurring in the utterance
may be substituted by a similar token, and check if the resulting
utterance is valid. If the utterance involves two types A and B,
we look for structural similarity that matches the classical
analogy model A:X::B:Y. If many different alternatives are found,
the mechanism may look for similarities among the attributes of
the eligible types. The most similar candidate to the type
occurring in the original utterance will then be selected for the
replacement.

We may use classifications, relations, and attributes to generate
and disambiguate metaphorical interpretations for users’ non-
literal expressions. However, when it is impossible to
disambiguate terms or when there are many alternatives for
interpretation, the application may present choices to users, along
with an explanation about how they were generated, and have
users select the one they mean, or discard them all and try to use
another form expression. The following pseudo-code represents a
proposed procedure for interpreting command-related metaphors:
given an utterance of the form S-A-O (<subject> <action> <object>)

if there is only one construct C = X-A-O, where the substitution of S
for X results in a valid operation, and there is at least one path of
relations or one common classification between X and S, execute the
corresponding operation and stop.
if there is only one construct C = S-A-X, where the substitution of O
for X results in a valid operation, and there is at least one path of
relations or one common classification between X and O, execute the
corresponding operation and stop.

if there are many constructs C= Xi-A-O that constitute valid
operations,

verify for which Xi there are more classifications in common with
S, execute the corresponding constructs, then stop
if there are many constructs C= S-A-Xi that constitute valid operations,

verify for which Xi there are more classifications in common with
O, execute the corresponding constructs, then stop

if there are many constructs C= Xi-A-O that constitute valid
operations,

verify for which Xi there are more relations in common with S,
execute the corresponding constructs, then stop
if there are many constructs C= S-A-Xi that constitute valid operations,

verify for which Xi there are more relations in common with O,
execute the corresponding constructs, then stop

if there are many constructs C= Xi-A-O that constitute valid
operations,

verify for which Xi there are more attributes in common with S,
execute the corresponding constructs, then stop
if there are many constructs C= S-A-Xi that constitute valid operations,

verify for which Xi there are more attributes in common with O,
execute the corresponding constructs, then stop

We acknowledge the existence of different approaches to analogy
making and metaphor interpretation [9, 10, 11, 12, 13, 24] that
make use of more sophisticated algorithms. Nevertheless, our
main purpose here is not natural language interpretation. Instead,
we want to provide users with more flexible yet artificial means
of expressing instructions to an extensible application. We
assume users will not need such complex mechanisms as used
for natural language processing, since they will be aware that

they are exchanging utterances with an artifact that has limited
interpretive power.

The abductive mechanisms described here for generating
metaphors and metonymies are generic, but they are applied to
domain-specific models. They may be used in a variety of
domains, but the richness of representation will determine the
potential for abductions. However, they are not independent of
interaction style. They are strongly dependent on the level of
articulation (i.e. on how many parts constitute what sorts of
wholes in the language) and expressiveness (i.e. on what
contents can be conveyed by linguistic forms) of the interface
language(s). For instance, a highly visual direct manipulation
interface typically has a low level of articulation (because icons
and images cannot be decomposed into many and varied
meaningful constituents), whereas a command language may
offer a finer level of articulation and higher expressiveness
(because of natural language based regularities such as the
morphology of number markers, the conjunction of phrasal
constituents, and the like). Researchers have shown that a

combination of visual and textual language styles maximizes the
benefits and help overcome such limitations [18].

The next section will illustrate how these mechanisms can be
used to augment user interface language expressiveness in the
prototype application we have partially implemented.

4. UNDERSTANDING USERS: A SAMPLE
CASE
We have built a simple toy application, inspired by Pattis’ world
inhabited by robots and beepers [22]. This world consists of 10
streets intersecting 10 avenues, making up a total of 100 corners.
A robot named Karel can move from corner to corner, one step at
a time, in the direction it is facing. It can also turn left, pick
elements and put elements at its current corner. These elements
can be beepers, toys, blocks, platforms, and connectors. In this
world there are also walls, which the robot cannot traverse.

 Figure 1 illustrates the static domain model of this world.

TRANSPORTABLE

THING

FIXED

part_of

is_a

located

CONTAINER

ACTOR

ROBOT

CORNER

WORLD

FEET

supports located

supports
part_of

part_of

is_a is_a

is_a is_a
is_a

is_a part_of

part_of
is_a

BLOCK PLATFORM CONNECTOR

BEEPER TOY WALL

Figure 1 — Static domain model of Karel’s world.

As we mentioned earlier, static and dynamic models support the
interpretive processes. The static model presents not only
inheritance (is_a) and composition (part_of) relations, but any
static relations the designer should choose to represent. In Figure
1 we see that besides is-a and part-of relations, we have
supports and located. The represented types may also have
attributes, which we have chosen not to represent in this drawing
for sake of clarity.

The designer must define which relations in the static model can
be used within metonymic chains. Composition (part_of)
relations are chosen by default. So, in this example, the designer
chose the located, and supports relations. Figure 2 shows a
partial dynamic model of our domain, illustrating a few
operations and their pre and post conditions. Later in this section
we will describe some metonymic and metaphorical expressions
that are interpreted using these models.

ACTOR TRANSPORTABLE

has
CORNER

<actor> pick <transportable> operation

precondition

ACTOR
has

CORNER

postcondition

TRANSPORTABLE

<actor> paint <block> using <color> operation

precondition

BLOCK COLOR

postcondition
color

<actor> paint <platform> using <color> operation

precondition

PLATFORM COLOR

postcondition
color

Figure 2 — Partial dynamic domain model of Karel's world.

According to Figure 2, the designer has defined three operations:
<actor> pick <transportable>, <actor> paint <block> using
<color>, and <actor> paint <platform> using <color>.
Some classifications are implicitly defined in the static model, by
inheritance relations (is_a). However, we often need additional
classifications in order to obtain more sophisticated metaphorical
utterances. Figure 3 presents one of the classifications involved
in this example.

 values of attribute size: small, medium, large

classification
big_stuff

large big

wide

long
tall

classification
small_stuff

small
little

narrow
short

Figure 3 — Classifications to be used for generating metaphors.

Combining the static and dynamic models, on the one side, with
the classifications provided by designers, on the other, the
following utterances exemplify metaphorical and metonymic
expressions that can be interpreted:

user utterance corresponding sequences
of action

reasoning

robot-1 pick
platform-1

robot pick <toy> where
(platform-1 part_of <toy>)

metonymic

robot-1 pick
corner(1,3)

for every <transportable>
where (<transportable>
located corner(1,3)),
robot-1 pick <transportable>

metonymic

robot-1 paint toy-1
using green

for every <block> in (<block>
part_of toy-1),
robot-1 paint <block> using
green;
for every <platform> in
(<platform> part_of toy-1),
robot-1 paint <platform>
using green

metonymic

robot-1 paint block-1
using block-2

robot-1paint block-1 using
block-2.color

metonymic

robot-1 paint toy-
1.feet

robot-1 paint <platform>
where (<platform> part_of
toy-1)

metaphoric

robot-1 pick big
blocks

for every <block> where
<block>.large,
robot-1 pick <block>

metaphoric
(used here
for
synonym)

There are two ways in which users may benefit from metaphors
and metonymies. One is that expert users may wield these
mechanisms as a more efficient way of communication, which
can serve rhetorical purposes such as focusing on some aspects of
objects in detriment of others. For example, saying “paint
corner(X,Y)” may serve to express the user’s focus on the
location of objects in detriment of their shape or size. The other
is that they may gain more understanding about the underlying
domain and application models, if interpretive chains are
unfolded and combined with explanations for the system
reasoning. This would be used primarily by naïve users that are
unfamiliar with large portions of the application. Explanations
could incorporate the models, the operations, and the utterances
involved in such abductive processes, and could make use of
textual languages and visual representations. The designer
should however be careful with the level of interference when
designing for disclosure and explanations. A delicate balance
between eagerness and obtrusiveness should be reached, in order
to keep naïve users well informed about the interpretations
without hindering efficiency as a whole.

5. EXTENSIBILITY
Our approach brings about some relevant changes relative to
EUP techniques. Users may express themselves in a non-literal
fashion, and achieve extensions without necessarily knowing
they are doing so. In this section, we present exemples of literal
and non-literal expressions, in order to show the inferencing
capabilities of our mechanisms.

The constructs provided for creating subtypes, aggregates and
relations are:
1. <A> is a (used to create a subtype of B)
2. <A> is a collection of < B>(used to create an aggregate)
3. <A> <some-relation> (used to create a relation between A

and B)
4. <A> is like a with <P> (inheritance in addition to some part

or attribute)
5. <A> is like a without <Q> (used to create a clone of type A,

and then remove some part or attribute)
6. <A> is like a with <P> instead of <Q> (used to create a

clone of type A, and then substitute some part or attribute)

Therefore, we may have literal utterances like the following:
a toy is a transportable object (inheritance)

a toy is a collection of blocks (aggregation)
a platform is a toy block
a platform supports a toy (relation only)
a platform is a toy part that supports the toy (inheritance + relation)

In order for an utterance to be literal, syntactic and semantic
rules must be followed. If there is any variation to these, the
utterance is considered to be non-literal, and the metaphorical
and metonymic interpretation mechanisms are triggered.

When a word or expression is found that cannot be understood in
the provided context, the extension mechanism verifies if that
word would be valid in any other context, and then maps from
the valid context the appropriate elements and structure needed
to make sense of it in the actual context. This consists of a
mechanism to generate polysemies, or related meanings to a
single word, one of the evidences of usage of metaphors
presented by Lakoff [16].

Further evidence presented by Lakoff may also be accounted for.
Previous abductive processes used to interpret metaphor and
metonymy may be stored in order to be used as inference patterns
that can be potentially generalized and used in mappings with a
different domain. Moreover, our mechanisms offer ways to create
types and meanings. Consider the following lines, with excerpts
of interaction in a command language environment. The letter U
indicates a user’s utterance, and the letter A indicates an
application response. In it, a morphological rule of many
languages (namely that plurals are marked with the suffix
‘-s’) is effective to facilitate representation.

Suppose that toy is a yet-to-be-defined type.
U: a toy is like a beeper, but with blocks and connectors
A: what is blocks (type or attribute)?
U: block is a type
A: “blocks” means one or more than one “block”?
U: yes
A: what is connectors (type or attribute)?
U: connector is a type
A: “connectors” means one or more than one “connector”?
U: yes
A more direct interface may be provided, with wizards and
dialogs that present all the alternatives for a given concept at a
glance, with one of them selected by the application as a default.
This interactive style is more useful when we have multiple types
referenced in an utterance, such as the following example:
U: a lamppost is like a wall and like a robot
In this case, the user must be prompted to select which attributes,
parts, and relations are valid and which aren’t, by taking as a
starting point all elements related to walls and robots. If only one
type is mentioned in the user’s utterance, the application may
provide an interpretation, tell the user it has done so and
proceed, allowing the user to intervene if he finds it necessary.
For instance:
U: a lamppost is like a wall, but with orientation and state
A: [I consider orientation an attribute, with one of the possible values:
north, south, east, west]
A: what is state? (type or attribute)
U: attribute
A: what are the possible values of “state”?
U: on, off
A: are on, off disjoint values?
U: yes

Our approach brings about the need for a designer’s tool, in
which the designer can represent his model and run simulations
of possible extensions to it. The tool should also provide for
special tags and rules that govern how extensions are made, in
which order the elements in the model are traversed when
generating possible interpretations, incompatibility tags between
pairs of elements, cardinality of attributes, and the like. A
decision the designer must make is as to whether he should make
this kind of control and rule customization available to users, and
to what extent.

Let us now consider a non-literal operation extension. Given the
operation defined as:
for a <robot> to pick a <beeper> from a <corner>,
before: <beeper> located <corner>,
after: <beeper> located <robot>

The following exchange illustrates the creation of a new
operation based on an existing one:
U: to borrow is like for a robot to pick a beeper from another robot
A: for <robot-1> to borrow <beeper> from <robot-2>
A: before: <beeper> located <robot-2>
A: after: <beeper> located <robot-1>
U: change located to owned-by
A: for <robot-1> to borrow <beeper> from <robot-2>
A: before: <beeper> owned-by <robot-2>
A: after: <beeper> owned-by <robot-1>
U: owned-by is the inverse of owns
A: X owned-by Y <–> Y owns X
U: to rent is like for a robot to borrow a corner from another robot
A: for <robot-1> to borrow <corner> from <robot-2>
A: before: <corner> owned-by <robot-2>
A: after: <corner> owned-by <robot-1>

6. CONCLUSIONS
We have described a powerful interpretive mechanism that can
handle non-literal expressions. When incorporated in an
extensible application’s interface, they allow users to express
themselves inaccurately, by means of a metaphorical or
metonymic utterance that refers to a known element of the
domain. Following a process of abductive reasoning, our
mechanism generates literal interpretations to the metaphorical
or metonymic formulations. The resulting interpretation has a
vanishing nature, i.e., the substitution is only considered valid
for the current situation and context. Permanent changes must be
explicitly intended by users.

Interfaces built according to this approach have enhanced
interpretive intelligence, in that they are able to assign meanings
by generating abductive interpretations. They also exhibit
pragmatic intelligence, since they can actually act upon the
application model and produce modifications equivalent to end
user programmable ones, proposed by macro recording, scripting
or programming by demonstration approaches.

Our main contribution for UI intelligence is that with
metaphorical and metonymic operators, our approach
considerably increases the users’ communicative power, and
allows them to follow a more “natural” pattern of thought and
expression. Thus, it increases the users’ chance of achieving
their goals, even when they do not have a complete model of the
application and underlying domain. Another related benefit
arises from the fact that our mechanism can generate not only

possible interpretations, but also explanations about these
interpretations, if reasoning paths are unfolded. So, it can teach
users about the underlying models and design assumptions.
Additionally, given the power of metaphors and metonymies in
our acquisition of new knowledge and information [15, 17, 21],
this may potentially reduce an application’s learning curve.

Because it is possible to generate multiple interpretations for a
single non-literal utterance, we need heuristics to disambiguate
and give precedence to interpretations. Our model should be
applied to a variety of domains, in order to produce more refined
heuristics. We believe that some universal heuristics may be
found across domains, but that more sophisticated heuristics may
prove to be domain-dependent. We should then decide whether
the latter should be embedded in the interpretive mechanism, or
disambiguation should be left to users at runtime.

Our future work involves testing the power and limitations of our
approach in real-world applications. It is likely impractical to
model a complex application in its entirety, so that its potential
metaphors and metonymies can be consistently handled.
Nevertheless, it may be possible to model a subset of the
application in more detail, taking our interpretive and extension
mechanisms into account. The designers would have to anticipate
users’ needs for enhanced interpretive abilities, or for
extensibility, and calibrate the specificity of the model
accordingly.

We acknowledge the overhead on the designers as more
decisions and more unknown variables come into the picture.
Nevertheless, we plan to provide them with tools to facilitate the
modelling process, and to help anticipate potential distortions
that may arise from the application of our mechanisms to the
intended model. Such a design tool should not only guide
designers through the representations, but also generate a set of
metaphorical utterances corresponding to each literal utterance,
so the designer would be able to use this information to fine-tune
the representation and correctly reflect his or her assumptions
about the domain and the application.

Finally, we believe the scalability of our approach is highly
dependent of the degree of specificity of the application, due to
the need for rich knowledge representation at a semantic level.
Therefore, we reckon that it is more suitable for domain-specific
applications, instead of general-purpose ones. Again, this
assumption must now be empirically tested through a series of
prototypes.

7. ACKNOWLEDGMENTS
The authors would like to thank CNPq for providing financial
support to this work. They would also like to thank the Semiotic
Engineering Research Group at PUC-Rio for their contributions
to some of the ideas presented in this paper.

8. REFERENCES
[1] Barbosa, S.D.J.; da Cunha, C.K.V.; da Silva,
S.R.P. (1998). “Knowledge and Communication
Perspectives in Extensible Applications”. In Proceedings
of IHC’98. Maringá, PR.

[2] Barbosa, S.D.J.; da Silva, S.R.P.; de Souza, C.S.
(1999). “Extensible Software Applications as a Semiotic
Engineering Laboratory”. To be published in Working
Papers in the Semiotic Sciences. Legas, Ottawa, Canada.

[3] Cypher, A. (ed., 1993) Watch What I Do:
Programming by Demonstration. The MIT Press.
Cambridge MA.

[4] da Silva, S.R.P.; Barbosa, S.D.J.; de Souza, C.S.
(1997). “Communicating Different Perspectives on
Extensible Software”. In Lucena, C.J.P. (ed.) Monografias
em Ciência da Computação. Departamento de
Informática. PUC-RioInf MCC 23/97. Rio de Janeiro.

[5] de Souza, C.S. (1996). “The Semiotic
Engineering of Concreteness and Abstractness: from User
Interface Languages to End-User Programming
Languages”. In Andersen, P.; Nadin, M.; Nake, F. (eds.)
Informatics and Semiotics. Dagstuhl Seminar Report No.
135, p. 11. Schloß Dagstuhl., Germany.

[6] DiGiano, C. (1996). “A vision of highly-learnable
end-user programming languages”. Child’s Play ’96
Position Paper.

[7] DiGiano, C. and Eisenberg, M. (1995). “Self-
disclosing design tools: A gentle introduction to end-user
programming”. In Proceedings of DIS ’95. Ann Arbor,
Michigan. August 23-25, 1995. ACM Press.

[8] Eisenberg, M. (1995). “Programmable
Applications: Interpreter Meets Interface”. SIGCHI
Bulletin. Apr. Vol. 27(2), ACM Press.

[9] Fauconnier, G. and Turner, M. “Conceptual
Integration Networks”. Cognitive Science. Volume 22,
number 2 (April-June 1998), pages 133-187.

[10] French, R. (1995). The Subtlety of Sameness.
Cambridge, MA: The MIT Press.

[11] Furtado, Antonio L. (1992). “Analogy by
Generalization – and the Quest of the Grail”. ACM
SIGPLAN Notices, Volume 27, No. 1, January 1992.

[12] Hofstadter, D. (ed., 1995). Fluid Concepts and
Creative Analogies. Basic Books, A Division of
HarperCollins Publishers, Inc. New York NY.

[13] Holyoak, K.J. and Thagard, P. (1996). Mental
Leaps: Analogy in Creative Thought. Cambridge, MA.
The MIT Press. 1996.

[14] Josephson, J.R and Josephson, S.G. (eds.) (1996)
Abductive Inference: Computation, Philosophy,
Technology. Cambridge University Press.

[15] Lakoff, G. (1987) Women, Fire, and Dangerous
Things. The University of Chicago Press. Chicago.

[16] Lakoff, G. (1993) “Contemporary theory of
metaphor”. In Ortony (ed.), Metaphor and Thought, 2nd

Edition. Cambridge: Cambridge University Press.

[17] Lakoff, G. and Johnson, M. (1980). Metaphors
We Live By. The University of Chicago Press. Chicago.

[18] Maybury, M.T. (ed., 1993). Intelligent
Multimedia Interfaces. Menlo Park, CA: American
Association for Artificial Intelligence.

[19] Myers, B.A. (1992). Languages for Developing
User Interfaces. London. Jones and Bartlett Publishers,
Inc. Boston. 1992.

[20] Nardi, B. (1993). A Small Matter of
Programming. Cambridge, MA: The MIT Press.

[21] Ortony, A. (ed., 1993) Metaphor and Thought, 2nd

Edition. Cambridge: Cambridge University Press.

[22] Pattis, R.E.; Roberts, J.; Stehlik, M. (1995) Karel
the Robot: A Gentle Introduction to the Art of
Programming. New York, N.Y. John Wiley and Sons.

[23] Saussure, F. de. (1916). Cours de Linguistique
Générale. Paris, Payot.

[24] Way, E.C. (1991). Knowledge Representation and
Metaphor. Kluwer Academic Publishers. The Netherlands.

