Neural Representations through Shadows

Kushagra Tiwary Camera Culture, MIT Media Lab

Tiwary*, Klinghoffer*, and Raskar; Towards Learning Neural Representations from Shadows, ECCV 2022 Klinghoffer*, Somasundaram*, Tiwary*, and Raskar; Physics vs. Learned Priors: Rethinking Camera and Algorithm Design for Task-Specific Imaging; ICCP 2022

3D Reconstruction from RGB has exploded

<u>Source</u>

Differentiable Rendering has become a <u>dominant hammer</u>

PSDR-Cuda

(a) initial guess (b) r

Source: CVPR 2021 Tutorial

(b) real photograph (c) camera gradient (d) t

gradient (d) table albedo gradient (e) light gradient

e) light gradient (f) our fitte

(c) camera gradient (d) table albedo gradient (e) light gradient (f) our fitted result (per-pixel contribution) (per-pixel contribution)

Rasterization Based

Redner

Neural Rendering has become a <u>dominant hammer</u>

... but largely ignore physical cues present in the scene

ToF + Neural Rendering

Appearance Embeddings

Over-reliance on Photometric Consistency

Over-reliance on Photometric Consistency

Second Order Cues Provide Vital Information

Shadows Provide a lot of Information:

- Object Concavities
- Cast Shadows \rightarrow Geometry
- Independent of textures and surface reflectance models

Instead, let's exploit Second Order Cues- shadows

Overall Approach to Exploit only Shadows

What are Shadows?

All points in the world <u>without</u> a direct path to the *light source* are defined to be in **shadow**.

Quick Primer on Shadow Mapping

Shadow Map: Distance to the scene from the light's perspective

Shadow Mapping

Let's consider pixels:

- $(u_{2}^{c}, v_{2}^{c}, 1) \rightarrow (x_{2}^{c}, y_{2}^{c}, z_{2}^{c})$
- $(u_1^L, v_1^L, 1) \rightarrow (x_2^L, y_2^L, z_2^L)$
- Function **F**: pixel -> Depth at Pixel
- Transformation **T: from_camera_to_light**

Shadow Mapping:

- **1.** F_{camera} ((u^c₂, v^c₂, 1)) = (x^c₂, y^c₂, z^c₂)
- **2.** $F_{light}((u_1^L, v_1^L, 1)) = (x_2^L, y_2^L, z_2^L)$
- **3.** $T(x_{2}^{C}, y_{2}^{C}, z_{2}^{C}) = (x_{2}^{L}, y_{2}^{L}, z_{2}^{L})$
- 4. If $z_1^L < z_2^L$ then point (x_2^C, y_2^C, z_2^C) is <u>IN</u> shadow.

Differentiable Shadows Forward Model

Evolution of Depth and Shadow Masks on Validation Data

Recovering Poorly Sampled Vertical Surfaces with Neural Shadow Fields

Scene	RMSE Shadow Mesh	RMSE Vanilla NeRF
Cuboid	0.0078	0.097
Vase	0.010	0.0.011
Bunny	0.0109	0.0106
Chair	0.0092	0.0096

Real World Scene: Hand Imprint

Camera View

Threshold Shadows

Light View

Light Shadow forced to be 0

Real World Scene: Hand Imprint

Validation Mask

All Cues should be exploited

Shadows

Tiwary, Klinghoffer*, and Raskar; Towards Learning Neural Representations from Shadows, *ECCV 2022* **ORCA: Objects as Radiance Field Cameras, *Upcoming*

Tiwary, Klinghoffer*, and Raskar; Towards Learning Neural Representations from Shadows, *ECCV 2022* **ORCA: Objects as Radiance Field Cameras, *Upcoming*

Ignore Shadows

Summary

Can recover Hidden Geometry

Differentiable Shadow Forward Model

Recover Texture less objects

Exploit Shadows

