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Dream: Can we figure out everything that makes up this room?

“Enhance (34, 46)”: Infinite zoom, Super resolution, Virtual Camera from Mirror’s Perspective
“Go right”: Parallax, Perspective Change, Occlusion-Aware 
“Enhance (57, 19)”: Perspective Change, Parallax, Occlusion-Aware, Super Resolution
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Making Esper Possible.. 

NeRF (original paper)
PBR (book): Physically-based rendering 

Neural Radiance Fields: 
Enables learning a 5D world 

from pixel data

Light Transport:
Models the distribution of radiance 
in a scene, enables inference of  

properties through secondary cues

Insight: Modelling complex light transport enables learning 
of hidden neural fields

https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation
https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation
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Secondary Cues: Reflections, Shadows, Triangulation 

Reflections Shadows Triangulation
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Exploiting reflections is challenging

Distorted by 
reflector’s geometry

2D projection of the 
3D environment

Mixed with reflector’s 
texture
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ORCa: Turning Objects into Radiance-field Cameras

Multi-view capture in living room

Only the object is within 
camera’s field-of-view 

(masked for clarity)
Place Virtual Cameras 

in the room
Object’s Perspective Virtual Camera View

Virtual Camera Depth

Diffuse 
Radiance

Surface 
Normal (right)

Specular 
Radiance
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Reflections can be modelled as radiance fields captured 
by virtual camera

Specular 
Object

3D Environment

Real 
Camera Real per-pixel 

cone
Virtual 

Camera

Virtual 
per-pixel cone

3D Environment
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Environment Radiance Fields enable Virtual View synthesis for viewpoints that 
are beyond field-of-view of the original camera

ORCa recovers fine environment details
Sampling 2D Environment 

Map*
Sampling 5D Environment 

Radiance Field

*Dave et. al, Pandora (RGB only)
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Advantages of Environment Radiance Fields

Nearby surrounding objects

Object imaged

Scene

Cannot model 
parallax or depth 

2D Environment Map* 5D Environment Radiance Field

Parallax effect in 
translated views

Depth map of the 
environment

Reconstruction of Captured 
Images (masked for clarity)

*Dave et. al, Pandora (RGB only)
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ORCa: Three step approach
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Virtual pixel: Differential Surface 
viewing the vase

Incoming Radiance on Virtual Pixel: Radiance from the 
environment, or specular radiance

Virtual Pixel Radiance depend on Pixel, Size, Local 
Geometry and Camera Pose
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Same camera pose, but virtual pixel 
views a completely different area because 

of local geometry. Higher the local curvature, the more 
area the virtual pixel views! 

Virtual Pixel Radiance depend on Real-Pixel Size, Local 
Geometry and Camera Pose

Note: Shifted Virtual Viewpoint, or 
Apex of Cone
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Exploit faint reflections by 
converting any surface into a 

virtual pixel

Convert any surface into a Virtual Pixel if you know local 
surface geometry
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Summary: Virtual Pixel Radiance depend on Pixel, Size, 
Local Geometry and Camera Pose

Real 
Camera

Virtual 
Camera

Virtual per-
pixel cone

Specular Flat Surface Specular Convex Surface Specular Concave Surface

• Virtual cone same 
size as real cone

• Low Curvature samples 
smaller area

• Virtual viewpoint further 
from surface

• Virtual camera 
outside the surface

• High Curvature samples 
larger area

• Virtual viewpoint closer 
to surface
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Object Surface as Virtual Sensors & Pixels

Single Pixel

Surface S

1. Trace Primary Rays for each 
pixel & sample N points {p1, …, pn}

os

2. For each point (pi) on the 
ray, estimate local geometry  

by fitting an osculating 
sphere to pi

Osculating sphere’s radius is related to the mean curvature!
K (Mean Curvature*) = 2/∇n

* Exploring Differential Geometry in Neural Implicits, Novello et. Al 

r

https://arxiv.org/abs/2201.09263
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Consider one such osculating sphere…

Single Pixel

Surface S 1. Trace Primary Rays for each 
pixel & sample N points {p1, …, pn}

os

2. For each point (pi) on the ray, 
fit an osculating circle

r

4. Use Os to calculate 
intersection points & surface 
normal at neighboring rays 

5. Computed Reflected Rays 
from Os – Primary Ray 

Intersection Points 

6. Closest point to reflected rays is the virtual viewpoint (least 
squares)

 
(this heuristic holds true in the limit and approximates the true 

virtual viewpoint as dS -> 0)

3. Trace Neighboring Rays from 
Neighboring pixels

Virtual Viewpoint Vp
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Virtual Sensors Sample using Virtual Cones…

Surface S

r

Surface S

1. Sample new rays connecting 
virtual viewpoint to Os -  Ray 

intersection points. 

Vp

2. Average distance/2 between 
center point and neighboring 

points is the radius

r

3. We have our virtual 
cone, and we can sample 
the world from the virtual 

camera using virtual cones
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Accurate diffuse-specular separation and smoother geometry
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Tradeoffs in Resolution

Multi-view Images of a 35cm 
cup in 10m wide hallway

Extracted Hidden Radiance Field of the 
environment 

Data Priors, Environment Priors could fix 
this! 



21

Summary: Hidden Radiance Field Cameras 
enable finer recovery, parallax, and depth 
estimation

Object’s Perspective Virtual Depth

Virtual Camera
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Secondary Cues: Reflections, Shadows, Triangulation 

Reflections Shadows Triangulation
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Imaging Behind Occluders using Shadows

Mannequin is 
occluded

3D Reconstruction
Of Hidden Mannequin

C. Henley et al., “Imaging behind occluders using two-bounce light”, ECCV 2020 

(a) Two-bounce NLOS Imaging(c) Experimental Setup(d) Reconstruction with 10 Measurements (b) ApplicationSettings

Hidden Target

SPAD Multiplexed 
Illumination

Backprojectionfrom 
intensity only

Backprojectionfrom 
transients 

(60 psresolution)

Occluder

StreetsTunnels

CorridorsForests
10 cm
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Imaging Behind Occluders Pipeline

60 Shadow 
Measurements

(a) Two-bounce NLOS Imaging (c) Experimental Setup (d) Reconstruction with 10 Measurements(b) Application Settings

Hidden Target

SPADMultiplexed 
Illumination

Backprojection from 
intensity only

Backprojection from 
transients 

(60 ps resolution)

Occluder

Streets Tunnels

Corridors Forests
10 cm

Occluder

Relay WallRelay Wall

Hidden 
Mannequin

Experimental Setup

C. Henley et al., “Imaging behind occluders using two-bounce light”, ECCV 2020 

Shadow 
Carving
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Learning Neural Fields from Shadow Measurements
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What are Shadows?
All points in the world without a direct 
path to the light source are defined to 
be in shadow.
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Quick Primer on Shadow Mapping

SL at p: Distance stored in 
“Shadow Map”

ZL at p: Real distance 
from shadow point to 

light source

Shadow Map: Distance to the scene from the light’s perspective 

Source

Point in Shadow: 
if SL at p < ZL at p

https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping
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Differentiable Shadows Forward Model
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Recovering Hidden Geometry using Shadows

Photometric Consistency: 
Changing viewpoints to top-down 
leads to poor 3D reconstruction

Vase Dataset: Poorly Sampled 
Vertical Faces, Oblique Lighting 
exposes Vase Geometry, Texture Less

Neural Fields from Shadow 
Constraints: Learns Vase is 
Hollow, forced to exploit hidden 
geometry!
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What cue comes next? 

Ramesh, let’s use these cues to 
extract hidden information: 
- Optical blur
- Image Noise
- demosaicing
- scattering, time-of-flight
- what else..?? 

Kush, great but this 
seems intractable..
Meta Question: how 
do you even know 
what cue to use..

https://link.springer.com/chapter/10.1007/978-981-16-7621-5_3
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We learn Stereopsis

Visual Cliff Experiment 
(Gibson & Walk, 1960)

Depth Perception 
might be innate, or
Learned when baby 
start crawling?

Evolution of Depth 
perception in Babies 

Today
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We learn Stereopsis
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Can we automatically learn Stereopsis? 

Environment: no monocular cues.
• Spheres at varying distances 
• Spheres with varying sizes
• No Shading & Lighting Cues

Goal: Figure out the distance to the 
sphere. 
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Can we automatically learn Stereopsis? 

reward = -0.5

Environment: no monocular cues.
• Spheres at varying distances 
• Spheres with varying sizes
• No Shading & Lighting Cues

Goal: Figure out the distance to the 
sphere. 

Actions: Place Cameras 
• Choose Positions 
• Choose Yaw
Reward: Depth Estimation
• Neural network trained from 

scratch estimates depth
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Can we automatically learn Stereopsis? 

reward = +0.3

Environment: no monocular cues.
• Spheres at varying distances 
• Spheres with varying sizes
• No Shading & Lighting Cues

Goal: Figure out the distance to the 
sphere. 

Actions: Place Cameras 
• Choose Positions 
• Choose Yaw
Reward: Depth Estimation
• Neural network trained from 

scratch estimates depth
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Testing the agent if it has learned Stereopsis

Jointly optimize depth perception (neural network) & place 
cameras (policy)

Camera Placement Heatmap when Agent Places 3 Cameras (N=7000)

Train Policy

Train Reward 
Function



37

Testing the agent if it has learned Stereopsis

Table 1: Increases 
“coverage” leads to better 
depth estimation shows 
reliance on multi-view cues

Table 2: Distribution of Actions by the 
camera placement policy: 
1. Maximize Coverage 
2. Maximize Baseline 

Test the Depth Estimation Network in isolationEvaluating the Policy

Sweep the Monocular Case Sweep the Stereo Case
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Making Esper Possible.. 

NeRF (original paper)
PBR (book): Physically-based rendering 

Neural Radiance Fields Light Transport

?

https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation
https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation
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Secondary Cues: Reflections, Shadows, Triangulation 

Shadows Triangulation
Virtual DepthVirtual Camera

Reflections

Collaborators: 
Akshat Dave
Nikhil Behari
Tzofi Klinghoffer
Connor Henley
Tristan Swedish
Siddharth Somasundaram
Bhavya Agarwalla

Mentors/Advisors: 
Ashok Veeraghavan
Fadel Adib
Pulkit Agrawal
Ramesh Raskar

Thank you to all the collaborators! 
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Shadow Mapping

uL
1,vL

1

uC
2, vC

2

Shadow Mapping: 

1. Fcamera ((uC
2, vC

2, 1) ) = (xC
2, yC

2, zC
2)

2. Flight((uL
1,vL

1, 1) ) = (xL
2, yL

2, zL
2) 

3. T(xC
2, yC

2, zC
2) = (xL

2, yL
2, zL

2)

4. If zL
1 < zL

2 then point (xC
2, yC

2, zC
2) is IN 

shadow. 

Let’s consider pixels: 

- (uC
2, vC

2, 1) -> (xC
2, yC

2, zC
2)

- (uL
1,vL

1, 1) -> (xL
2, yL

2, zL
2)

- Function F: pixel -> Depth at Pixel

- Transformation T: from_camera_to_light
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True Virtual Viewpoint Approximation

Effect of Pixel Resolution On Virtual Viewpoints 



43

Putting it all together…

(a) Learn Implicit Surfaces & 
Estimate Diffuse Radiance

(b) Map Surfaces as Virtual 
Sensors & Pixels

(c) Estimate Environment Radiance 
Field using virtual cones

Make this slide better, put it inside as 
components & then show arrows
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Quantitative results on depth estimation

Per-Pixel Absolute Error increases with distance similar 
to most stereo setups

Example Captured 
Images

Nearby surrounding objects

Scene Setup
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Accurate diffuse-specular separation and smoother geometry
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ORCa Applications

Virtual Object Insertion Material Editing

from learned environment radiance fields
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Analysis: Object size as virtual baseline
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Ablation: Effect of curvature estimation
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Current Limitations
Approximations in our implementation
– Glossy surfaces with low roughness(roughness not explicitly modeled)
– Single reflecting object
– Inter-reflections not considered
–Mean Curvature approximation

Physical Constraints on exploiting reflections
– Virtual Resolution
– Depth Estimation by Virtual Baseline
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Opportunities with multi-view reflections
Objects as safety mirrors 

for navigation
Handling reflections in 

other imaging modalities

Zeise, Björn, and Bernardo Wagner. "Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping." ICINCO (2). 2016.
Scheiner, Nicolas, et al. "Seeing around street corners: Non-line-of-sight detection and tracking in-the-wild using doppler radar." CVPR. 2020.

Thermal RGB 

Radar 


