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Dream: Can we figure out everything that makes up this room?

.
“Enhance (34, 46)”: Infinite zoom, Super resolution, Virtual Camera from Mirror’s Perspective

“Go right”: Parallax, Perspective Change, Occlusion-Aware
“Enhance (57, 19)”: Perspective Change, Parallax, Occlusion-Aware, Super Resolution



Making Esper Possible..

Insight: Modelling complex light transport enables learning
of hidden neural fields

Neural Radiance Fields: Light Transport:
Enables learning a 5D worla Models the distribution of radiance
from pixel data in a scene, enables inference of

properties through secondary cues

NeRF (original paper ) 4
PBR (book): Physically-based rendering



https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation
https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation

Secondary Cues: Reflections, Shadows, Triangulation

< X >

Reflections Shadows Triangulation




Exploiting reflections is challenging

Distorted by Mixed with reflector’s 2D projection of the
reflector’s geometry texture 3D environment




ORCa: Turning Objects into Radiance-field Cameras

Only the object is within
camera’s field-of-view

(masked for clarity) in the room
Virtual Camera View
T | | T R——
Diffuse Specular .
Radiance Radiance
LI SRR S
e Surface -
Multi-view capture in living room Normal (right)

Place Virtual Cameras

Virtual Camera Depth



Reflections can be modelled as radiance fields captured
by virtual camera

Real per-pixel
cone

Real ~
Camera Virtual
Camera

P

%
per-pixel cone

Specular
Obiject

3D Environment 3D Environment



ORCa recovers fine environment details

4 N
Sampling 2D Environment Sampling 5D Environment

Map* Radiance Field

(U /

Environment Radiance Fields enable Virtual View synthesis for viewpoints that
are beyond field-of-view of the original camera

*Dave et. al, Pandora (RGB only)



Advantages of Environment Radiance Fields

[ZD Environment Map”* 1 5D Environment Radiance Field

Reconstruction of Captured
Images (masked for clarity)

Nearby surrounding objects

Parallax effect in Depth map of the
translated views environment

Cannot model
parallax or depth

Object imaged

Scene

*Dave et. al, Pandora (RGB only) 10



ORCa: Three step approach

(b) Objects Surface as Virtual Sensor

® Real camera origin

-« Real pixel cone
® Surface intersection

<« Virtual pixel cone

»

® Virtual camera origin

Mean Curvature
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Virtual Pixel Radiance depend on Pixel, Size, Local
Geometry and Camera Pose

Incoming Radiance on Virtual Pixel: Radiance from the

environment, or specular radiance

Virtual pixel: Differential Surface

viewing the vase
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Virtual Pixel Radiance depend on Real-Pixel Size, Local
Geometry and Camera Pose

Same camera pose, but virtual pixel
views a completely different area because py

of local geometry. Higher the local curvature, the more

he virtual pixel views!
ay \\ area t

Note: Shifted Virtual Viewpoint, or
Apex of Cone
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Convert any surface into a Virtual Pixel if you know local
surface geometry

(e

Exploit faint reflections by

converting any surface into a
. virtual pixel
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Summary: Virtual Pixel Radiance depend on Pixel, Size,
Local Geometry and Camera Pose

Specular Flat Surface Specular Convex Surface Specular Concave Surface

Virtual
~ Camera
Camera \
Virtual per- f
pixel cone

V_|rtual croncle sanme Lr?]w”ClrJrvrature samples - :—Ilrgh rCurrvature samples . Virtual camera
size as real cone smaller area arger area outside the surface
* Virtual viewpoint further « Virtual viewpoint closer
from surface to surface
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Object Surface as Virtual Sensors & Pixels

Surface S

2. For each point (p;) on the
ray, estimate local geometry
by fitting an osculating
sphere to p;

* Exploring Differential Geometry in Neural Implicits, Novello et. Al

1. Trace Primary Rays for each
pixel & sample N points {p1, ..., pn}

Single Pixel

Osculating sphere’s radius is related to the mean curvature!
K (Mean Curvature®) = 2/Vn
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https://arxiv.org/abs/2201.09263

Consider one such osculating sphere...

1. Trace Primary Rays for each
pixel & sample N points {p1, ..., pn}

Surface S

\

4. Use O, to calculate

intersection points & surface .
normal at neighboring rays \ |

Single Pixel

5. Computed Reflected Rays

2. For each point (p;) on the ray, from O, — Primary Ray
fit an osculating circle o ‘ Intersection Points
0, — ’ / v 3. Trace Neighboring Rays from
Lz Neighboring pixels
r ’II »

6. Closest point to reflected rays is the virtual viewpoint (least
Virtual Viewpoint V sqguares)
(this heuristic holds true in the limit and approximates the true

virtual viewpoint as dS -> 0) -



Virtual Sensors Sample using Virtual Cones...

Surface S

Surface S

3. We have our virtual
cone, and we can sample
the world from the virtual
camera using virtual cones

—_ 1. Sample new rays connecting
SN virtual viewpoint to O, - Ray

2. Average distance/2 between Intersection points.

center point and neighboring
points is the radius

18



Accurate diffuse-specular separation and smoother geometry

Ref-NeRF PANDORA ORCA Ground Truth 2 PANDORA ORCA Ground Truth

Total Radiance\Diffuse
Total Radiance\Diffuse

Normal
Normal

Specular
Specular




Tradeoffs in Resolution

Multi-view Images of a 35cm
cup in 10m wide hallway

Extracted Hidden Radiance Field of the
environment
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Summary: Hidden Radiance Field Cameras
enable finer recovery, parallax, and depth
estimation

Virtual Camera

Obiject’s Perspective Virtual Depth
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Secondary Cues: Reflections, Shadows, Triangulation

Pixels Not in
Shadow

Shadow
Pixels

Pixels Not in
Shadow

Reflections Shadows

X

Triangulation
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Imaging Behind Occluders using Shadows

3D Reconstruction
Of Hidden Mannequin

Mannequin is l

occluded

C. Henley et al., “Imaging behind occluders using two-bounce light”, ECCV 2020
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Imaging Behind Occluders Pipeline

Relay Wall Relay Wall

Hidden
Mannequin

Occluder

ay
"

Experimental Setup

C. Henley et al., “Imaging behind occluders using two-bounce light”, ECCV 2020

60 Shadow
Measurements

Shadow
Carving
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Learning Neural Fields from Shadow Measurements

Binary Shadow Masks captured with Proposed approach to exploit Estimated Depth, Shadow Mask, Disparity Map,
varying camera position and fixed lighting > shadow cues in the scene > and Mesh only through binary shadows

e
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What are Shadows?

Pixels Not in
Shadow

Shadow
Pixels

Pixels Not in
Shadow

All points in the world without a direct
path to the light source are defined to
be in shadow.
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Quick Primer on Shadow Mapping

Shadow Map: Distance to the scene from the light’s perspective

S| atp- Distance stored in

Point in Shadow:
i _ “Shadow Map”

if SL atp < ZL atp

Z, .t p- Real distance
from shadow point to
light source

LIT BY LIGH

- IN SHADOW

-~

Source
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https://learnopengl.com/Advanced-Lighting/Shadows/Shadow-Mapping

Differentiable Shadows Forward Model

% (x4 y4q. 24) \
(X1, ¥1, 1)

Aampled points along rays :]
—>
Pose L
(x2, y2, 22)/

L

\

, { > Volumetric
Renderer
f‘
o v
Depth Maps
(x“n, Yn, 240) Projection  —»| Soft Comparison
T / A )

Complex Scene Volumetric
Represented as a Renderer
Volume C [

/

Depth Maps

Ground
Truth



Recovering Hidden Geometry using Shadows

Vase Dataset: Poorly Sampled
Vertical Faces, Oblique Lighting
exposes Vase Geometry, Texture Less

Photometric Consistency:
Changing viewpoints to top-down
leads to poor 3D reconstruction

Neural Fields from Shadow
Constraints: Learns Vase is
Hollow, forced to exploit hidden
geometry!

29



30

What cue comes


https://link.springer.com/chapter/10.1007/978-981-16-7621-5_3

We learn Stereopsis

S . .

) ’ L ’ ’ vda . -
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We learn Stereopsis




Can we automatically learn Stereopsis?

N

Goal: Figure out the distance to the
sphere.

Environment: no monocular cues.
» Spheres at varying distances

» Spheres with varying sizes Z
* No Shading & Lighting Cues




Can we automatically learn Stereopsis?

Goal: Figure out the distance to the
sphere.

loss = 15.0

Environment: no monocular cues.
» Spheres at varying distances

» Spheres with varying sizes

* No Shading & Lighting Cues

Place Cameras T
« Choose Positions
« Choose Yaw
‘ . maces Camera
Reward: Depth Estimation IS Matrix

* Neural network trained from
scratch estimates depth

%o

reward =-0.5 KD

< X >
34




Can we automatically learn Stereopsis?

Goal: Figure out the distance to the
sphere.

Environment: no monocular cues.
» Spheres at varying distances

» Spheres with varying sizes

* No Shading & Lighting Cues

Place Cameras
« Choose Positions
« Choose Yaw

Camera
Matrix

Reward: Depth Estimation
* Neural network trained from
scratch estimates depth

&

reward = +0.3

< X >
35




Testing the agent if it has learned Stereopsis

Co-Design Reward Curves for Depth Estimation

2 {4 = Qurs
loss = 8.0 e Random Search

zp red

T

Train Reward

g
ViT /&/ . S|
Function 27
T T > o

Images Camera é i
Matrix t q 0

- @ 0 10000 20000 30000 40000 50000

X > Train Policy Jointly optimize depth perception (neural network) & place

/N

cameras (policy)

Camera Placement Heatmap when Agent Places 3 Cameras (N=7000)

3 Cameras - First Camera 3 Cameras - Second Camera 3 Cameras - Third Camera




Testing the agent if it has learned Stereopsis
~ CEvaluatingthePolicy

Cam  Mean Std Mean Std
Config (x,z) (x,2) Yaw  Yaw
1 (—4.6,79.2)  (10.0,1.9) -15.7 39.8
2 (—8.3,78.3)  (7.8,27)  -3.6  43.3
(4.6,77.7) (9.1,3.2) 88  43.7
3 (—10.4,77.8) (6.4,2.9) -06  43.7
Coverage L1 Loss (-1.1,77.6)  (8.6,3.1) 93  43.1
0 14.0 (8.5,77.3) (7.2,3.3) 154  41.2
1 9.2 4 (-11.4,77.7)  (5.4,3.0) 3.2 45.1
9 79 (—4.3,77.6)  (7.5,3.2) 114 435 L . | L . |
3 57 (3.5,77.2) (7.5,3.2) 151  41.7 ) ’ ) ’
- El_ol-g»lw;;)ﬂ Ezggﬂ ;740 igz Sweep the Monocular Case Sweep the Stereo Case
Iable 1: Irlcreases (=6.5,77.9)  (6.7.3.0) 80  44.2 ) )
coverage” leads to better (—0.17,77.4)  (7.3,3.3) 140 415 Depth Error Vs. Imaging Setup and Baseline (N=1000)
- - (6.6,77.1) (6.8,3.4) 179  41.7
dePth estlmatlor? S_hOWS (12.2,77.2) (4.5,3.3) 187 405 10.5
reliance on multi-view cues =
Table 2: Distribution of Actions by the A~ 10.0
camera p|acement po|icy: 5 —— Multi-View Setup- Fixed Cam, x = {-15, 0}
. = | —— Stereo Setup- Fixed Cam, x = {-15)
9.5
1. Max!m!ze Cover.age 7 -~ Monocular Setup
2. Maximize Baseline S
. 9.0-
851 —, . v v -
-10 -3 0 S 10

Variable Camera position (x)
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Making Esper Possible..
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Neural Radiance Fields Light Transpor

NeRF (original paper)
PBR (book): Physically-based rendering
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https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation
https://pbr-book.org/3ed-2018/Light_Transport_I_Surface_Reflection/The_Light_Transport_Equation

Secondary Cues: Reflections, Shadows, Triangulation

m“wm‘i

L] -

Virtual Camera Virtual Depth

X

N

A 4

Reflections Shadows Triangulation

Thank you to all the collaborators!

| ;;ﬁ

< . : Collaborators: Mentors/Advisors:
8 A Akshat Dave Ashok Veeraghavan
: Nikhil Behari Fadel Adib
Tzofi Klinghoffer Pulkit Agrawal
Connor Henley Ramesh Raskar
Tristan Swedish

Siddharth Somasundaram
Bhavya Agarwalla




Backup Slides

Learning Hidden Neural Kushagra Tiwary
I media camera Shadows Culture, MIT Media Lab MIT
lab culture 40



Shadow Mapping

Let’s consider pixels:

(us,, v&,, 1) -> (Xcz, ycz, %)

(s )
f camera

Function F: pixel -> Depth at Pixel

Transformation T: from _camera_to _light

Shadow Mapping:

1. Feamera (U, V&5, 1) ) = (Xcz, ycz, z%)

2. Flight( ) =
s T(x5 ¥% 25) = )
s If 7, <7 then point (x%, y¢, z¢,) is IN
shadow.

41



True Virtual Viewpoint Approximation

I Incoming Real-Cone

. Surface Normals

I Reflected Rays

@ Real Pixel

. Virtual Viewpoint




Putting it all together...

(b) Map Surfaces as Virtual (c) Estimate Environment Radiance
Sensors & Pixels Field using virtual cones

E— v )

Environment
Curvature Sensor -l MLP

Estimation cstimation -l
I

Diffuse MLPI

da| Sec 3.2 |

(a) Learn Implicit Surfaces &
Estimate Diffuse Radiance

Make this slide better, put it inside as

components & then show arrows
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Quantitative results on depth estimation

Nearby surrounding objects

»”

€ '! ~

-
»

Example Captured
Images

Estimated environment

depth from reflections

Ground truth depth

1.0

- 0.8

0.6
0.4

0.2

Per-pixel absolute error

Fi

0.0

Per-Pixel Absolute Error increases with distance similar

to most stereo setups
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Total Radiance\Diffuse

Normal

Specular

Accurate diffuse-specular separation and smoother geometry

Ref-NeRF PANDORA ORCA Ground Truth » PANDORA ORCA Ground Truth

Total Radiance\Diffuse

Normal

Specular




ORCa Applications

from learned environment radiance fields

Virtual Object Insertion Material Editing
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Larger Virtual

Smaller Virtual

Baseline

Baseline

Analysis: Object size as virtual baseline

Total Radiance Specular Radiance EnV. Depth Projected
onto Object Surface

e = B e S, -
e k‘ \“Q\‘. _:_/ ."' '\
/ " ,'1;'\7;\.. i ! = \
7 \t(‘t ‘\-.‘_‘ ‘.r ’

Multi View Baseline

Virtual Camera
Baseline

—

Virtual

Radiance on
Object
Surface

Camera Plane

Capture /-J

A
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Ablations

ORCa

Ablation: Effect of curvature estimation

Naive Virtual Cone Estimation Ours with No Curvature
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Current Limitations

Approximations in our implementation

— Glossy surfaces with low roughness(roughness not explicitly modeled)
— Single reflecting object

— Inter-reflections not considered

— Mean Curvature approximation

Physical Constraints on exploiting reflections

— Virtual Resolution
— Depth Estimation by Virtual Baseline
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Opportunities with multi-view retlections

Objects as safety mirrors Handling reflections in
for navigation other imaging modalities

Thermal

Zeise, Bjorn, and Bernardo Wagner. "Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping." ICINCO (2). 2016.
Scheiner, Nicolas, et al. "Seeing around street corners: Non-line-of-sight detection and tracking in-the-wild using doppler radar." CVPR. 2020. 50



