Neural Rendering and Secondary Cues: Learning Hidden Neural Radiance Fields

Kushagra Tiwary

PhD Student, Camera Culture, MIT Media Lab

Learning Hidden Neural Fields using Reflections and Shadows

Kushagra Tiwary PhD Student, Camera Culture, MIT Media Lab MIT

Dream: Can we figure out everything that makes up this room?

"Enhance (34, 46)": Infinite zoom, Super resolution, Virtual Camera from Mirror's Perspective "Go right": Parallax, Perspective Change, Occlusion-Aware "Enhance (57, 19)": Perspective Change, Parallax, Occlusion-Aware, Super Resolution

Making Esper Possible. Insight: Modelling complex light transport enables learning of hidden neural fields

Neural Radiance Fields: Enables learning a <u>5D world</u> from pixel data

Light Transport:

Models the distribution of radiance in a scene, <u>enables inference of</u> properties through secondary cues

4

Secondary Cues: Reflections, Shadows, Triangulation

Pixels Not in Shadow

Shadow Pixels

Pixels Not in Shadow

Shadows

Triangulation

Exploiting reflections is challenging

Distorted by reflector's geometry

Mixed with reflector's texture

2D projection of the 3D environment

ORCa: Turning <u>Objects into Radiance-field</u> <u>Cameras</u>

Only the object is within camera's field-of-view *(masked for clarity)*

Place Virtual Cameras in the room

Multi-view capture in living room

Object's Perspective

Diffuse Radiance

Surface Normal (right)

Specular Radiance

Virtual Camera View

Virtual Camera Depth

Reflections can be modelled as radiance fields captured by virtual camera

ORCa recovers fine environment details

Sampling 2D Environment Map*

*Dave et. al, Pandora (RGB only)

Sampling 5D Environment **Radiance Field**

Environment Radiance Fields enable Virtual View synthesis for viewpoints that are beyond field-of-view of the original camera

Advantages of Environment Radiance Fields

Reconstruction of Captured Images (masked for clarity)

2D Environment Map*

Cannot model parallax or depth

Scene

*Dave et. al, Pandora (RGB only)

5D Environment Radiance Field

Parallax effect in translated views

Depth map of the environment

ORCa: Three step approach

- Real camera origin
- Real pixel cone

(b) Objects Surface as Virtual Sensor

11

Virtual Pixel Radiance depend on Pixel, Size, Local Geometry and Camera Pose

Virtual pixel: Differential Surface

viewing the vase

Incoming Radiance on Virtual Pixel: Radiance from the

environment, or specular radiance

Virtual Pixel Radiance depend on Real-Pixel Size, Local Geometry and Camera Pose

Same camera pose, but virtual pixel views a completely different area because of local geometry.

Higher the local curvature, the more area the virtual pixel views!

Convert any surface into a Virtual Pixel if you know local surface geometry

Exploit faint reflections by

converting any surface into a virtual pixel

Summary: Virtual Pixel Radiance depend on Pixel, Size, **Local Geometry and Camera Pose**

Virtual cone same size as real cone

- Low Curvature samples High Curvature samples ulletsmaller area larger area
- Virtual viewpoint further Virtual viewpoint closer from surface to surface

Specular Concave Surface

Virtual camera outside the surface

Object Surface as Virtual Sensors & Pixels

* Exploring Differential Geometry in Neural Implicits, Novello et. Al

Consider one such osculating sphere...

(this heuristic holds true in the limit and approximates the true virtual viewpoint as $dS \rightarrow 0$)

Virtual Sensors Sample using Virtual Cones...

Surface **S** 3. We have our virtual cone, and we can sample the world from the virtual camera using virtual cones 1. Sample new rays connecting virtual viewpoint to O_s - Ray intersection points. 2. Average distance/2 between center point and neighboring points is the radius ν_p

Accurate diffuse-specular separation and smoother geometry

Tradeoffs in Resolution

Multi-view Images of a 35cm cup in 10m wide hallway

Extracted Hidden Radiance Field of the environment

Data Priors, Environment Priors could fix this!

Summary: Hidden Radiance Field Cameras enable finer recovery, parallax, and depth estimation

Object's Perspective

Virtual Depth

Secondary Cues: Reflections, Shadows, Triangulation

Imaging Behind Occurrence using Shadows

C. Henley et al., "Imaging behind occluders using two-bounce light", ECCV 2020

3D Reconstruction Of Hidden Manneq.....

Experimental Setup

60 Shadow Measurements

C. Henley et al., "Imaging behind occluders using two-bounce light", ECCV 2020

Learning Neural Fields from Shadow Measurements

Binary Shadow Masks captured with varying camera position and fixed lighting

Proposed approach to exploit shadow cues in the scene

Estimated Depth, Shadow Mask, Disparity Map, and Mesh only through binary shadows

What are Shadows?

Pixels Not in Shadow

Shadow Pixels

Pixels Not in Shadow

All points in the world without a direct path to the *light source* are defined to be in **shadow**.

Quick Primer on Shadow Mapping

Shadow Map: Distance to the scene from the light's perspective

Differentiable Shadows Forward Model

Recovering Hidden Geometry using Shadows

Vase Dataset: Poorly Sampled Vertical Faces, Oblique Lighting exposes Vase Geometry, Texture Less

Photometric Consistency: Changing viewpoints to top-down leads to poor 3D reconstruction

Neural Fields from Shadow Constraints: Learns Vase is Hollow, forced to exploit hidden geometry!

What cue comes r

We learn Stereopsis

Can we automatically learn Stereopsis?

Goal: Figure out the distance to the sphere.

Environment: no monocular cues.

- Spheres at varying distances
 Spheres with varying sizes
- No Shading & Lighting Cues

Can we automatically learn Stereopsis?

Goal: Figure out the distance to the sphere.

Environment: no monocular cues.

- Spheres at varying distances
- Spheres with varying sizes
- No Shading & Lighting Cues

Actions: Place Cameras

- Choose Positions
- Choose Yaw

Reward: Depth Estimation

 Neural network trained from scratch estimates depth

reward = -0.5

Can we automatically learn Stereopsis?

Goal: Figure out the distance to the sphere.

Environment: no monocular cues.

- Spheres at varying distances
- Spheres with varying sizes
- No Shading & Lighting Cues

Actions: Place Cameras

- Choose Positions
- Choose Yaw

Reward: Depth Estimation

Neural network trained from scratch estimates depth

reward = +0.3

Testing the agent if it has learned Stereopsis

Camera Placement Heatmap when Agent Places 3 Cameras (N=7000)

Co-Design Reward Curves for Depth Estimation

cameras (policy)

Testing the agent if it has learned Stereopsis

Evaluating the Policy

Coverage	L1 Loss
0	14.0
1	9.2
2	7.2
3	5.7

 Table 1: Increases
 "coverage" leads to better depth estimation shows reliance on multi-view cues

Cam	Mean	Std	Mean	Std
Config	(x,z)	(x,z)	Yaw	Yaw
1	(-4.6, 79.2)	(10.0, 1.9)	-15.7	39.8
2	(-8.3, 78.3)	(7.8, 2.7)	-3.6	43.3
	(4.6, 77.7)	(9.1, 3.2)	8.8	43.7
3	(-10.4, 77.8)	(6.4, 2.9)	-0.6	43.7
	(-1.1, 77.6)	(8.6, 3.1)	9.3	43.1
	(8.5, 77.3)	(7.2, 3.3)	15.4	41.2
4	(-11.4, 77.7)	(5.4, 3.0)	3.2	45.1
	(-4.3, 77.6)	(7.5, 3.2)	11.4	43.5
	(3.5, 77.2)	(7.5, 3.2)	15.1	41.7
	(10.9, 77.4)	(5.5, 3.2)	17.0	40.7
5	(-12.1, 77.7)	(4.6, 3.1)	5.4	43.4
	(-6.5, 77.9)	(6.7, 3.0)	8.0	44.2
	(-0.17, 77.4)	(7.3, 3.3)	14.0	41.5
	(6.6, 77.1)	(6.8, 3.4)	17.9	41.7
	(12.2, 77.2)	(4.5, 3.3)	18.7	40.5

Table 2: Distribution of Actions by the
 camera placement policy:

- . Maximize Coverage
- 2. Maximize Baseline

Test the Depth Estimation Network in isolation

Sweep the Monocular Case

Sweep the Stereo Case

Making Esper Possible..

Neural Radiance Fields

<u>NeRF (original paper)</u> <u>PBR (book): Physically-based rendering</u>

Secondary Cues: Reflections, Shadows, Triangulation

Virtual Camera

Virtual Depth

Reflections

Thank you to all the collaborators!

Shadows

Triangulation

Akshat Dave Nikhil Behari Tzofi Klinghoffer Connor Henley Tristan Swedish Siddharth Somasundaram Bhavya Agarwalla

Collaborators:

Mentors/Advisors:

Ashok Veeraghavan Fadel Adib Pulkit Agrawal Ramesh Raskar

Backup Slides

Learning Hidden Neural Fields using Reflections and Shadows

Kushagra Tiwary PhD Student, Camera Culture, MIT Media Lab MIT

Shadow Mapping

- $(u_{2}^{c}, v_{2}^{c}, 1) \rightarrow (x_{2}^{c}, y_{2}^{c}, z_{2}^{c})$
- $(u_1^L, v_1^L, 1) \rightarrow (x_2^L, y_2^L, z_2^L)$
- Function **F**: pixel -> Depth at Pixel Transformation T: from_camera_to_light

Shadow Mapping:

- 1. $F_{camera}((u_{2}^{C}, v_{2}^{C}, 1)) = (x_{2}^{C}, y_{2}^{C}, z_{2}^{C})$
 - 2. $F_{light}((u_1^L, v_1^L, 1)) = (x_2^L, y_2^L, z_2^L)$

3.
$$T(x_{2}^{C}, y_{2}^{C}, z_{2}^{C}) = (x_{2}^{L}, y_{2}^{L}, z_{2}^{L})$$

4. If $z_1^L < z_2^L$ then point $(x_{2,}^C y_{2,}^C z_{2,}^C)$ is <u>IN</u> shadow.

True Virtual Viewpoint Approximation

Putting it all together...

(b) Map Surfaces as Virtual Sensors & Pixels

(a) Learn Implicit Surfaces & **Estimate Diffuse Radiance**

(c) Estimate Environment Radiance Field using virtual cones

Make this slide better, put it inside as components & then show arrows

Quantitative results on depth estimation

Example Captured Images

Estimated environment depth from reflections

Per-Pixel Absolute Error increases with distance similar to most stereo setups

Total Radiance/Diffuse

Normal

Specular

ORCa Applications from learned environment radiance fields

Virtual Object Insertion

Material Editing

Analysis: Object size as virtual baseline

Ablation: Effect of curvature estimation

Approximations in our implementation

- Glossy surfaces with low roughness(roughness not explicitly modeled)
- Single reflecting object
- Inter-reflections not considered
- Mean Curvature approximation

Physical Constraints on exploiting reflections

- Virtual Resolution
- Depth Estimation by Virtual Baseline

Current Limitations

Opportunities with multi-view reflections

Objects as safety mirrors for navigation

Zeise, Björn, and Bernardo Wagner. "Temperature Correction and Reflection Removal in Thermal Images using 3D Temperature Mapping." ICINCO (2). 2016. Scheiner, Nicolas, et al. "Seeing around street corners: Non-line-of-sight detection and tracking in-the-wild using doppler radar." CVPR. 2020. 50

Handling reflections in other imaging modalities

