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People must often decide whether to trust new potential part-
ners in the absence of reliable information about their past 
behavior (Axelrod, 1984; Delton, Krasnow, Cosmides, & 
Tooby, 2011; Frank, 1988). Although forming an entirely new 
exchange relationship can be extremely advantageous, a deci-
sion to trust also entails the risk of substantial loss if one’s 
partner acts in an untrustworthy manner. Consequently, any 
capacity that enhances accuracy in detecting the trustworthi-
ness of other people would offer a significant competitive 
advantage.

In the absence of reliable information about an individual’s 
reputation, nonverbal cues may serve as one possible source of 
information about his or her likely actions. Indeed, ample evi-
dence indicates that humans regularly use specific cues, often 
without conscious awareness, to infer the motivations of oth-
ers with some level of accuracy (Ambady & Weisbuch, 2010; 
Knapp & Hall, 2010). To date, however, the nature of the cues 
that might predict trustworthy or untrustworthy behavior, or 
even whether such cues exist, remains unclear. Yet, for coop-
eration to occur to the degree it does in humans, it appears 
theoretically necessary that people have access to information 
related to reliable, albeit imperfect, signals of trustworthy 
intent of potential partners or to the likelihood of subsequent 

encounters with them (Delton et al., 2011; Frank, 1988).1 If 
people lack access to trust-relevant signals in situations in 
which reputational information is absent (e.g., interactions 
with strangers) and in which the likelihood of repeated interac-
tions is low, it is likely that the advantages of acting opportu-
nistically would reduce cooperation substantially.

Given the theoretical import and adaptive advantages of an 
ability to assess trustworthiness, the search for trust-relevant 
signals has long occupied the attention of scholars from many 
fields (e.g., psychology, behavioral economics, evolutionary 
biology). Researchers have looked in vain for a single dynamic 
“golden cue” that predicts whether a person can actually be 
trusted (Ambady & Weisbuch, 2010; Knapp & Hall, 2010). In 
a similar vein, researchers have also looked for and identified 
certain markers that affect judgments of trustworthiness of 
static faces (Todorov, Baron, & Oosterhof, 2008); however, 
there is little reliable evidence linking such markers to peo-
ple’s actual behaviors (Todorov, 2008).2
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We believe that past difficulties in identifying trust-relevant 
signals may stem from attempts to look at cues individually or 
in isolation from social interaction. We suspect that if reliable 
trust-related signals are to be found, they will likely emerge 
dynamically and be processed intuitively within the context of 
interpersonal situations between individuals who are unfamil-
iar with one another. Given that each member of such a dyad 
is attempting to assess the intentions of an unfamiliar other, 
signals will likely be subtle and unfold over time as each per-
son evaluates his or her potential partner. As Frank (1988) 
noted, interpreting signals of cooperation must either be costly 
or entail some level of uncertainty, because a costless and per-
fectly reliable signal would have long since relegated opportu-
nistic individuals to extinction.

Given the increasing volume of work suggesting that the 
interpretation of nonverbal cues is highly context dependent 
(Ambady & Weisbuch, 2010; Barrett, Mesquita, & Gendron, 
2011), we expect that no single cue will possess substantial 
trust-related predictive power on its own. As Keltner and his 
colleagues have shown, nonverbal signals of complex social 
states, such as embarrassment, are often composed of a set of 
cues (e.g., Keltner & Buswell, 1997). Indeed, sets, by their 
nature, can be more informative than any of their individual 
components because of their ability to resolve ambiguities 
inherent in the interpretation of single cues (cf. Hall, Coats, & 
Smith Lebeau, 2005). Accordingly, we expect any trust- 
relevant signal to be composed of a set of cues that are emitted 
in close temporal proximity and that, when taken together, 
convey reliable information about an individual’s intentions.

To examine if and how individuals can assess the likeli-
hood that a novel partner will cooperate, we designed a two-
phase strategy. The goal of the first phase was to demonstrate 
that exposure to nonverbal cues increases accuracy in assess-
ing trustworthiness and to identify a set of cues that are reli-
ably predictive of trust-relevant behavior. The goal of the 
second phase was to manipulate the expression of the candi-
date cues with exacting precision in order to assess their causal 
impact on subsequent decisions to trust a partner.

Experiment 1
Experiment 1 constituted the exploratory phase of this project. 
The primary goal was to identify a set of nonverbal cues that 
constitute a signal related to the trustworthiness of a novel part-
ner. To accomplish this goal, we constructed a paradigm in 
which individuals would interact with a previously unknown 
other in a “get to know you” conversation (either face-to-face or 
over a Web-based chat) and then play an economic game with 
this individual that pitted self-interest against joint interest.

Our strategy in this phase was quite straightforward. First, 
if information about the trustworthiness of another person is 
conveyed through nonverbal cues, then accuracy in judging 
the cooperative intent of a partner should be greater when an 
interaction occurs face-to-face, as opposed to over a Web-
based chat in which only semantic information is available. 

Second, if such nonverbal information exists, one should be 
able to identify a candidate cue set by linking expressions of 
specific cues to actual economic behavior. Identification of 
such a signal would, of course, be an initial step, with final 
confirmation of a cue set requiring validation through experi-
mental manipulation (which we undertook in Experiment 2).

Method
Participants. Eighty-six individuals (34 male, 52 female) 
from the undergraduate participant pool at Northeastern Uni-
versity agreed to take part in the experiment. They were 
assigned randomly to 43 dyads, with the only requirement for 
assignment being unfamiliarity with the assigned partner.

Procedure. Dyads were randomly assigned to one of two con-
ditions: face-to-face interaction or Web-based chat. In the 
face-to-face condition, the members of each pair were brought 
into a single lab and seated at a table. In the Web-based condi-
tion, the 2 participants were instead brought individually into 
two separate rooms. Participants in both conditions were told 
that the purpose of the study was to explore how people form 
impressions of one another, but were not told any details about 
the economic-exchange game that they would play following 
their initial interaction.

In this first part of the experiment, participants were asked 
to have a conversation for 5 min. Participants in the face-to-
face condition spoke face-to-face, whereas participants in the 
Web-based condition spoke over the Internet using AOL 
instant messenger (AIM). Participants using AIM were asked 
to refrain from using emoticons. In both conditions, partici-
pants were encouraged to speak about whatever they liked, 
with the exception that they should not discuss what tasks 
might be coming next. They were given several conversation 
probes (e.g., “What are your plans for spring/summer break?” 
“What do you like about living in Boston?”) but were told that 
they should not feel limited to these topics.

The reason for prohibiting any discussion of the upcoming 
economic game was to remove any possibility for strategic 
deception. Given that partners could not discuss the game, and 
did not even know its rules or form, active deception was 
unlikely. Rather, it was our goal to determine if a partner’s 
general level of cooperative intent could be discerned prior to 
engaging in any type of negotiation with him or her.

After providing the instructions, the experimenter left the 
participants alone to have their conversation for 5 min. Partici-
pants in the face-to-face condition were recorded digitally for 
the duration of their conversation by three different cameras: 
two that captured a head-on view of each participant and one 
that captured a side view of the dyad as a whole. In the Web-
based condition, participants’ AIM dialogue was recorded as 
text.

Following the initial interaction, participants played a  
single round of the Give-Some Game (cf. DeSteno, Bartlett, 
Baumann, Williams, & Dickens, 2010; van Lange & Kuhlman, 
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1994). Participants in the face-to-face condition were removed 
to separate rooms to complete the game; those in the Web-based 
condition remained in their separate rooms to complete it. The 
Give-Some Game is an analogue of a typical prisoner’s dilemma 
but allows for a greater range of behaviors. Each participant is 
given four tokens, each worth $1 to the participant if he or she 
keeps it, but $2 if given to the partner. Maximal cooperation and 
communal gain occur if each individual gives all four tokens to 
his or her partner (i.e., an $8 payoff for each person). Maximal 
individual (i.e., selfish) gain accrues to someone who gives no 
tokens and whose partner gives all four (i.e., a payoff of $12 for 
the receiver and $0 for the giver). The game thus provides an 
incremental measure of cooperative intent, with intermediate 
levels of giving corresponding to degrees of cooperative (i.e., 
trustworthy) or selfish (i.e., untrustworthy) behavior.

In addition to reporting how many tokens they would offer, 
participants estimated the number of tokens they believed 
their partner would offer. Once offers were complete, partici-
pants received their respective payoffs. There was no expecta-
tion that partners would see each other again; therefore, 
individuals had no reason to feel pressure to reciprocate.

Coding of nonverbal cues. The digitally recorded interac-
tions from the face-to-face condition were coded by a set of 
independent coders; each interaction was coded by two sepa-
rate individuals (interrater agreement: ρ = .87). Using all three 
camera angles and Noldus Observer XT software (Noldus 
Corp., Leesburg, VA), coders marked the start and stop times 
for each of 12 types of cues throughout each interaction. The 
cues to be coded were selected on the basis of their frequencies 
of appearance; a cue had to be expressed by at least 5 partici-
pants in the data set (although in practice, most cues were 
expressed by many more individuals) to be coded. The final 
coding provided a time-synchronized stream of nonverbal 
cues that were emitted by each participant in each dyad. The 
12 nonverbal cues in the coding scheme were the following: 
smile, laugh, lean forward, lean back, arms crossed, arms 
open, face touch, hand touch, body touch, head shake, head 
nod, and look away.3

Results
A mixed-model analysis of variance treating dyad as a random 
factor to control for nested dependencies among participants 
confirmed that, in accord with our primary hypothesis, accu-
racy in predicting trustworthy behavior was greater when indi-
viduals had access to the nonverbal cues of their partners, F(1, 
41) = 3.99, p = .05. As depicted in Figure 1, the average pre-
diction error (i.e., average absolute value of the discrepancy 
between the predicted and received number of tokens) was 
smaller in the face-to-face condition than in the Web-based 
condition. However, general levels of giving were equivalent 
in the two groups (see Fig. 1). Thus, access to nonverbal  
cues enhanced accuracy in assessing subsequent trustworthy 

behavior but did not influence the actual occurrence of such 
behavior.

In order to identify a candidate signal that was predictive of 
trustworthy or untrustworthy behavior, we constructed candi-
date sets of cues based on both existing knowledge relating 
cues to affiliative or avoidant behavior (Ambady & Weisbuch, 
2010; Knapp & Hall, 2010) and examination of zero-order 
correlations between frequencies of the 12 cues and the actual 
economic behaviors of participants. We examined the ability 
of combinations of cues to predict cooperative behavior using 
multilevel models that allowed for the control of dyadic 
dependencies within the data. The general model used to 
assess the signal value of cue sets with respect to self- and 
partner-expressed cues, respectively, took the following form:
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Fig. 1.  Results from Experiment 1. The graph in (a) shows mean prediction 
error (i.e., absolute value of the difference between the number of tokens 
participants expected they would receive and the number they actually 
received) as a function of condition. The graph in (b) shows mean number 
of tokens given to the partner as a function of condition. Error bars signify 
±1 SE.
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	 Yij  =  b0j  +  b1j X  +  rij,

where

	 b0j  =  ϕ00  +  m0j

and

	 b1j  =  ϕ10.

Yij refers to the number of tokens offered for exchange by  
(depending on the analysis) participants or partners (i) nested in 
dyads ( j); X refers to the mean frequency of the cues (expressed  
either by participants or by partners, depending on the analy-
sis) in the set; rij refers to participant-level error; ϕ00 and ϕ10 
refer, respectively, to population-value estimates for the inter-
cepts and slopes linking frequencies of the cues to the num-
ber of tokens given; and µ0j refers to dyad-level variability in 
intercept values of the dependent variable (i.e., tokens given 
by participants or partners, depending on the analysis). The 
final candidate set for a trust-relevant signal, determined on 
the basis of power to predict cooperative behavior and estab-
lished knowledge relating cues to affiliation- and avoidant- 
relevant intentions, consisted of four cues: hand touch, face 
touch, arms crossed, and lean away.

As expected, none of these cues offered significant predic-
tive ability when examined in isolation. However, when the 
cues were taken together in a unit-weighted manner (i.e.,  
the mean value of occurrence across the set of four cues), the 
resulting signal was predictive of trust-relevant behavior. The 
more frequently an individual expressed these cues, the less 
trustworthy was his or her behavior (i.e., the fewer tokens  
the individual offered to his or her partner), ϕ10 = –0.15, p = 
.03. Similarly, the more frequently an individual’s partner 
expressed these cues, the fewer tokens the individual decided 
to offer the partner, ϕ10 = –0.13, p = .03.

Discussion
In Experiment 1, exposure to nonverbal information increased 
accuracy in assessing the trustworthiness of another person by 
approximately 37%. Thus, the results of this experiment sup-
port the existence of a trust-relevant signal. In addition, we 
were able to identify a specific candidate cue set that was 
directly associated with trust-related economic behavior. It  
is important to note, however, that although the identified cue 
set received empirical validation in this sample, the study  
was clearly exploratory. The findings could have stemmed 
from random sample variations or from spurious correlations 
between specific cues. For example, given that most people 
unconsciously generate a multitude of potential cues, certain 
cues might covary with others (e.g., nodding the head while 
leaning away), which would make spurious correlations 
between some subsets of cues nearly inevitable. In order to 
validate the cue set, we therefore needed to achieve exacting 

control over all potentially relevant cues so that we could 
manipulate and isolate them experimentally. This strategy 
would be truly confirmatory and would allow for a clean test 
of the cue set’s causality.

Experiment 2
Experiment 2 constituted the confirmatory phase of this proj-
ect. Specifically, its goals were to allow for experimental vali-
dation of the causal efficacy of the target cue set identified in 
Experiment 1. Accomplishing this goal required the ability to 
manipulate target cues orthogonally to nontarget ones with 
high precision. However, a fundamental challenge inherent in 
this research design is that individuals regularly emit cues out-
side of their own awareness, which makes it difficult even for 
trained confederates to express individual cues in a reliable 
and orthogonal fashion. Our strategy for meeting this chal-
lenge was to employ a social robotics platform that allowed 
the specific cues emitted by one member of each dyad (the 
robot) to be controlled to a degree not possible with humans.

The procedure for Experiment 2 thus closely mirrored that 
of Experiment 1, with the principal exception being that one of 
the members of each dyad was replaced with the robot Nexi 
(see Fig. 2). The primary manipulation centered on whether 

Fig. 2.  Nexi, the humanoid robot tele-operated in Experiment 2.



Trust Detection	 5

Nexi expressed the target cue set identified in Experiment 1. 
The causal power of the cue set would be confirmed to the 
extent that Nexi’s expression of the target cues resulted in 
reduced perceptions of her trustworthiness and subsequent 
reductions in the number of tokens expected from and offered 
to her.

Method
Participants. Sixty-four individuals from the greater Boston 
community agreed to take part in the experiment (22 male, 42 
female; mean age = 21 years, SD = 2.06 years). These indi-
viduals were randomly assigned to one of two conditions:  
target cues versus control.

Procedure. The procedure for the second experiment was 
based on that of the first, but with several noteworthy excep-
tions. The primary difference was that we employed a Wizard-
of-Oz paradigm, so called because Nexi was controlled by  
two operators in a separate room. Participants completed the 
experiment individually rather than in dyads (i.e., Nexi was 
the partner for each participant). They were brought into a lab 
where the humanoid robot was already positioned. Partici-
pants were seated across from Nexi, with a small, low table 
separating them. Nexi welcomed each participant with a wave, 
saying, “Hello. It’s nice to meet you.” Participants were then 
told that for the first part of the experiment, they would have a 
conversation with Nexi for 10 min. As before, they were not 
given any specific details about the second half of the experi-
ment, which again involved playing the Give-Some Game. 
The duration of the conversation was extended from the previ-
ous study’s 5 min so that participants would have time to 
adjust to interacting with a robot. At the start of the conversa-
tional segment, Nexi provided a few details about herself (e.g., 
where she was built) to allow participants to become comfort-
able with conversing with a robot.

As in Experiment 1, participants were given a set of con-
versation probes (e.g., “What do you like about living in Bos-
ton?”), but in this experiment, they were asked to stick to these 
topics during their interaction. Participants were not told that 
Nexi was being tele-operated by experimenters in an adjacent 
room. The experimenter left participants in the room with 
Nexi for the duration of their interaction. Three different cam-
eras were again used to record all interactions.

Thirty-one of the 64 participants were assigned to the target-
cues condition; the remaining 33 were assigned to the control 
condition. In the control condition, Nexi made several conver-
sational gestures throughout the interaction, but did not engage 
in any of the target cues that were found to be predictive of 
untrustworthy behavior in Experiment 1. In the target-cues con-
dition, some of the conversational gestures from the control 
condition were replaced with the target cues (i.e., hand touch, 
face touch, arms crossed, and lean away); each target cue 
occurred one to three times (i.e., frequencies similar to those 
observed in Experiment 1). The robot’s expression of all cues 

was based on prototypical human motions. That is, the gestures 
were created by an animator who distilled them from examples 
of human motions.4 Care was taken to keep the robot’s overall 
amount of movement consistent across conditions.

Prior to beginning the experiment, we prepared scripted 
responses to each of the conversation probes. A single female 
experimenter served as the voice of Nexi and interacted with 
all participants. Her speech and head movements were tracked 
and mapped to the robot’s head and mouth movements in  
real time. Cameras and microphones embedded in the robot 
allowed the experimenters who tele-operated Nexi to see and 
hear participants conversing with the robot, and face-tracking 
software was utilized to keep Nexi’s gaze centered on partici-
pants’ faces. A different experimenter operated Nexi’s torso  
and arms throughout the conversation, using a graphical user 
interface (GUI) to do so. In this way, the experimenter who 
spoke with the participants could remain blind to each partici-
pant’s experimental condition (i.e., target cues vs. control). 
For detailed specifications of the technology underlying 
Nexi’s animation and control, see Robot System Design in the 
Supplemental Material; Video S1 in the Supplemental Mate-
rial provides a video example of Nexi’s interaction with 
participants.

Following the “get to know you” period, participants were 
moved to a separate room, where they played the Give-Some 
Game assuming Nexi was their partner. They also completed 
several questionnaires that probed their views of and familiar-
ity with Nexi; the questionnaires included items assessing how 
much they trusted Nexi and how much they liked the robot 
(7-point scales).

Results
The causal efficacy of the signal in question would be con-
firmed to the extent that Nexi’s expression of the cues in the 
set caused participants to judge her to be less trustworthy and 
correspondingly led them to expect and offer fewer tokens in 
the economic game. We used the structural equation model 
depicted in Figure 3 to examine whether this was the case. 
Results confirmed the cues’ signal value; Nexi’s expression of 
the target cues was associated with a significant decrement in 
her perceived trustworthiness. This decrement directly pre-
dicted lower expectations for the number of tokens Nexi would 
give and also directly predicted a reduction in the number of 
tokens that participants offered to her. The cues, however, had 
no effect on economic decisions other than via their impact on 
perceived trustworthiness. Trimming the direct paths linking 
condition to the number of tokens expected to be received and 
the number of tokens given did not diminish the model’s good-
ness of fit, χ2(2) = 3.76, p = .15.5

Finally, the effects of the cues appear to have been quite 
narrowly focused on trust, as their presence or absence did not 
influence the degree to which participants liked Nexi (t < 1). 
This finding suggests that the presence of the cues did not pro-
duce a general “antihalo” effect such that evaluations of the 
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robot on any social dimension became more negative. In many 
ways, this finding mirrors a familiar experience for many peo-
ple in that most can point to individuals whom they like but 
with whom they would not trust their money.

Discussion
These findings are noteworthy for two primary reasons. First, 
they provide a stringent confirmatory test for the validity of 
the nonverbal signal identified in Experiment 1. The robotic 
system allowed us to gain precise control over the cues in 
order to manipulate them in an experimental manner (i.e., as 
orthogonal from any other cues) and, thereby, test their causal 
impact. As predicted on the basis of the correlational data from 
Experiment 1, presence of the cue signal caused individuals to 
perceive Nexi to be less trustworthy, which directly affected 
their economic behavior toward her.

Second, these findings also offer the first evidence that the 
human mind will respond to trust-relevant signals emitted by 
humanoid robots in the same manner as they respond to simi-
lar signals emitted by humans. It remains to be explored 
whether the impact of these cues stemmed from the ascription 
of moral intentions to Nexi’s “mind” (cf. Gray, Young, & 
Waytz, in press; Waytz, Epley, & Cacioppo, 2010; Waytz, 
Gray, Epley, & Wegner, 2010), or simply from nonconscious 
utilization of the cues as predictors of Nexi’s subsequent moral 
behavior. Irrespective of mechanism, however, these findings 
clearly indicate the readiness of the human mind to respond in 
the expected manner to humanlike biological motion emitted 
by robotic entities.

General Discussion
Taken together, these findings are among the first to identify a 
human capacity to assess whether an unfamiliar individual is 
likely to behave cooperatively in a given situation.6 They offer 

empirical support for a phenomenon that has long been theo-
rized to allow for the existence of cooperation, especially in 
one-shot dilemmas. Yet it is also important to note that the 
cues we have identified are almost surely not the only ones 
that affect judgments of trustworthiness. In the circumstances 
we examined, cooperation was fairly common, but the default 
expectation in many contexts may be that cheating will occur. 
In such situations, a different set of cues, such as those typi-
cally associated with motivations for affiliation (e.g., leaning 
forward, affirmative head nods), might hold greater predictive 
power to detect fair and cooperative, as opposed to selfish and 
opportunistic, tendencies. Indeed, the informational value of 
any set of cues is likely to depend on context-based expecta-
tions about partners’ intentions.

As noted, these findings also offer initial evidence that the 
human mind will use nonverbal cues to predict the trustworthi-
ness of humanoid robots, thereby opening many avenues for 
increasing the capacity of robots to function as interaction 
partners capable of building trust and social bonds with 
humans through either the presence or the absence of specific 
gestures. In so doing, our findings support the view that robot-
ics technology has now reached a level where its mirroring of 
human social cues, though imperfect, is nonetheless sufficient 
to embody the basic components necessary to engage the 
social mind’s interpretive machinery.

We readily acknowledge the view that robotics might not 
constitute a valid method to study human behavior, as robots 
clearly do not look or move exactly like their human counter-
parts. Such imperfections might bias the human mind’s 
responses to nonverbal cues. Although this is certainly a valid 
concern, it is one that, to our minds, can be addressed empiri-
cally as opposed to being based on subjective impressions of  
the “humanness” of any robot. Indeed, within the paradigm of 
“computers as social actors,” a wide range of technological 
embodiments capable of expressing social cues (e.g., from com-
puters that interact via text or speech, to animated avatars, to 

Condition Untrustworthiness

Predicted Nexi
Would Give

Gave Nexi

0.25* (0.74)

–0.31* (0.18)

–0.24* (0.19)

0.33* (0.30)

0.09 (0.16)

–0.18 (–0.43)

Fig. 3.  Path model depicting participants’ decisions and expectations in Experiment 2 as a function 
of condition (dummy coded: 0 = control condition; 1 = target-cues condition) and Nexi’s perceived 
untrustworthiness. Standardized parameters are presented (raw coefficients are inside parentheses). 
Asterisks indicate significant parameters, p ≤ .05.
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physical robots) has been shown to evoke natural human social 
responses and social judgments, depending on how the cues and 
embodiments are technologically implemented (Blascovich & 
Bailenson, 2011; Kidd & Breazeal, 2008; Sidner, Lee, Kidd, 
Lesh, & Rich, 2005; Siegel, Breazeal, & Norton, 2009).

In the present case, the data clearly suggest that partici-
pants’ minds responded to Nexi’s nonverbal cues as they 
would to those of a human. Had Experiment 2 failed to con-
firm the findings of Experiment 1, any number of reasons 
could have been posited. For example, the findings from the 
human-human interactions could have been incorrect, or the 
technology of the robot might not have been capable of ade-
quately mirroring human movement. However, when the find-
ings of the two experiments are viewed as a whole (i.e., the 
expression of the cues by the robot confirmed the cues’ pre-
dicted impact based on human-human interactions), we 
believe that the most parsimonious explanation is the prof-
fered one. Any alternative explanation would require one to 
accept the view that a biasing agent (e.g., timing of move-
ments) inserted itself such that it not only produced the pre-
dicted behavioral effects (i.e., effects matching those from the 
human-human interactions), but also did so via the predicted 
mediator.

We maintain that interdisciplinary techniques, such as those 
used here, hold great promise for the study of human social 
dynamics. Although it is true that the use of interdisciplinary 
techniques can often be accompanied by increased ambigui-
ties in the interpretation of any single experiment, as the sim-
ple act of combining different technologies and paradigms can 
similarly combine the methodological shortcomings of each, 
the potential risks that result can be offset through the use of 
multiple approaches. When findings converge across method-
ologies, confidence in their robustness is greatly increased, as 
the number of ways in which replication can erroneously 
emerge becomes vanishingly small.
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Notes

1.  Delton et al. have presented a model simulation showing that 
cooperation in one-off interactions can occur regularly if expecta-
tions for future interaction are nonzero. However, their model also 
suggests that an adaptive advantage in deciding to cooperate may 
stem from an ability to gain insight into the trustworthy intent of a 
partner.

2.  One exception has been evidence suggesting that individual dif-
ferences in facial width are associated with differences in selfish 
behavior (Stirrat & Perrett, 2010). Such a marker, however, is static, 
and thus unable to account for differences in interactions across 
situations.
3.  Supplementary Methods and Analyses, in the Supplemental 
Material available online, provides additional information on cue 
selection and cue frequencies.
4.  Prototypical examples of target cues were derived from the video 
recordings of Experiment 1.
5.  Note that the initial model was saturated, and thus fit perfectly. 
Therefore, the nonsignificant chi-square test for the reduced model 
indicates not only a lack of substantive change in fit for the reduced 
model, but also an acceptable fit for the reduced model overall.
6.  Frank, Gilovich, and Regan (1993) presented initial findings dem-
onstrating that trustworthiness (operationalized within the context of 
a prisoner’s dilemma) could be assessed with greater-than-chance 
accuracy; however, this seminal work did not address the mecha-
nisms by which such judgments might occur.
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Supporting Online Material 

  

SUPPORTING TEXT AND ANALYSES 

 

Identification and Analysis of Cue Set in Experiment 1 

Selection of the set of target cues occurred through several stages.  The first stage 

involved examination of the mean frequencies of cues and correlation matrices for 

associative links between specific cues and trust-relevant economic variables (i.e. tokens 

given by individuals expressing cues and corresponding tokens given by partners).  

Tables S1 and S2 present the relevant data.  Note that significance values are not 

provided, as due to the dyadic nesting of the data, standard errors are not valid; 

coefficient estimates, however, are valid. 

 

As expected and readily noted from the data, the frequencies of expression of many 

individual cues covary.  Consequently, use of the zero-order correlation matrix on its own 

to suggest predictive power represented only an initial starting point, but not a firm 

decision basis (note, correlation values were also screened to ensure that they were not 

overly influenced by a few outliers).  Moreover, we firmly believed that a strict reliance 

on an item-by-item significance-testing basis to form a composite would be misguided 

even if the standard errors for zero-order correlations were not biased due to the inherent 

dyadic dependencies.  It was our a priori view that predictive power would come from a 

set of cues, as opposed to single cues, as the meaning of any one cue in isolation is often 

difficult to interpret.  Therefore, we did not rely on a mechanistic quantitative 

methodology (e.g., stepwise regression) to build the regression model (due to the 

correlations among the variables and the necessity such a method would have required 

with respect to lower power levels due to the need to control for family-wide error).  

Indeed, traditional stepwise methodologies are not readily available for the multilevel 

model analyses that are needed to calculate the appropriate standard errors for 

significance testing.  We therefore began to choose sets of cues based both on the above 

correlation matrix and a prior expectations about the general meanings of certain cues 

with regard to motivation.  Indeed, examining sets is quite important, as they can 

disambiguate the meaning of specific single cues in a given instance.  For example, 

leaning away could be a marker for non-engagement or simply a posture change for 

comfort; however, when it co-occurs with crossing arms, it is more likely a marker of 

nonafiliation (and a simple zero-order correlation between this cue and trust-relevant 

behavior would be unable to pick up the contextual difference and thereby be attenuated).  

Once a candidate set of cues was selected as a signal (based on the multilevel modeling), 

we would then rely on the cross-validation of the findings in a separate sample to rule out 

concerns about capitalization on chance or spurious relations.  Thus, although there is 

some necessary subjectivity inherent in selecting the final set of cues based on data from 

Experiment 1, tests of validity of those cues in Experiment 2 constitute a stringent test of 

their causal impact.  Through manipulating their presence or absence with great 

precision, the ability of the corresponding signal to cause alterations in perceived 

trustworthiness and subsequent economic behavior could be rigorously examined. 

Candidate sets of cues were subjected to analysis using multilevel models of the 
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form identified in the main text.  The final set of cues (based on the criteria noted above 

and a requirement of explaining significant variance in economic behavior [alpha 

criterion < .05 when combined]) consisted of four items:  face touch, hand touch, 

crossing arms, leaning back.  It is instructive to note that although this set of cues has not 

been previously associated with untrustworthy perceptions, it does possess partial overlap 

with sets of cues previously identified to signal a sense of unease within interpersonal 

interactions (Knapp & Hall, 2010). The independent variable consisted of the mean 

frequency across these items.  As such, the model may be viewed as a causal indicator 

one wherein increasing frequencies of specific individual indicators increases scores on 

the overarching construct (here untrustworthiness).  That is, increasing frequencies of 

these cues, especially when coinciding the expression of the others in the set, functions to 

signify greater untrustworthiness. 

 

Recognition of Cues by Nexi in Experiment 2 

Finally, in order to confirm that the robot-emitted cues were recognized as 

corresponding to their human counterparts, we had participants subsequently (i.e., after 

their participation in the primary parts of the experiment) view videos of Nexi expressing 

the target cues.  After viewing each cue, participants were presented with 5 multiple-

choice options to identify it; one option was always “none of the above.” 

 

If participants selected “none of the above,” they were asked to write in a description of 

what they believed Nexi was doing.  For the “Lean Back” item, we included descriptions 

of the nature “twisted away” as acceptable, as Nexi’s leaning back (modeled after the 

prototypical one expressed by humans in Experiment 1), consisted of drawing the neck 

and upper torso back while rotating slightly to one side. 

 

To facilitate analysis of the findings, responses were dummy-coded:  0=incorrect answer, 

1=correct answer.  Given the 5 options for each question, chance recognition would be 

20%.  For each of the four cues, a one-sample t-test comparing mean recognition values 

against a chance level of .20 confirmed that recognition for all cues was significantly 

greater than chance (all t’s > 20; all p’s < .001). 

 

Cue (mean proportion correct; standard error) 

Arms Crossed (.91; 0.04) 

Face Touch (.96; 0.03) 

Hand Touch (.97; 0.02) 

Lean Back (.64; .06)
§
 

 
§
The lower recognition level for leaning back is to be expected given the fact that Nexi 

leans backward in a direction aligned with participants’ lines of sight in the video.  Given 

the reduction in accurate depth perception that accompanies viewing Nexi on a two-

dimensional monitor as opposed to in person, the lower accuracy level makes sense.  Of 

great import, the level of recognition was still greatly above chance. 

 

 

 



 3 

 

 

 

 

 

Table S1 

Descriptive Statistics for Cue Frequencies 
      

Cue N Minimum Maximum Mean Standard 

Deviation 
      

      

Smile 42 4 31 18.71   6.954 

Laugh 42 0 23   8.52   6.383 

Lean Forward 42 0 5   1.52   1.435 

Lean Back 42 0 3     .55     .916 

Arms 

Crossed 

42 0 14   1.76   3.230 

Arms Open 42 0 3     .19     .552 

Face Touch 42 0 20   4.60   4.013 

Hand Touch 42 0 16   3.76   4.089 

Body Touch 42 1 13   4.93   3.316 

Head Nod 42 1 34 18.05      7.865 

Head Shake 42 0 18   5.33   3.613 

Look Away 42 4 55 26.07 14.477 

 

*Note minimum and maximum refer to the number of occurrences within a single 

individual. 
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ROBOTIC SYSTEM DESIGN 
 

 Overview 

We are investigating the use of nonverbal cues as a powerful signal that can reveal 

information about the dynamics of trustworthiness not only between humans but also 

between robots and humans. As such, by using a robotic system, we are taking advantage 

of its consistent and programmed behavior to tightly control the nonverbal cues that are 

displayed. By having this control, we can eliminate other subtle gestures that a 

confederate, or a human actor pretending to be a subject, could unintentionally exhibit. 

Furthermore, by using robots, we can also investigate whether this dynamic can translate 

and replicate onto humanoid robots. 

We have developed a system that allows remote robot operators to have a 

conversation with a person through the robot while simultaneously controlling the robot’s 

movement as effortlessly as possible. In order to achieve as natural a social interaction as 

possible, our system combines various fully-autonomous and semi-autonomous interfaces 

to teleoperate our humanoid robot, Nexi. 

 

 Research Platform 

Our hardware platform is a mobile, upper torso humanoid robot named Nexi, who is 

part of our MDS (Mobile-Dexterous-Social) robot line as seen in Figure S1. The MDS 

robot is 4-feet tall and has 15 facial degrees of freedom (DoFs), 4 neck DoFs, a pair of 3 

DoF shoulders, a pair of 5 DoF lower arms and hands, DoFs, a mobile wheel base with 2 

DoFs, and a torso DoF.  The face has several facial features (eyes, eyelids, eyebrows, and 

jaw) to support a diverse range of facial expressions and an articulate mandible for 

expressive speech.   The neck mechanism has 4 DoFs to support a lower bending at the 

base of the neck as well as pan-tilt-yaw of the head. The head can move at human-like 

speeds to support human head gestures such as nodding, shaking, orienting, craning the 

neck forward, and recoiling the neck back.  

In the following sections below, we explain the various fully-autonomous and semi-

autonomous interfaces implemented in order to control Nexi’s head, mouth, eyebrows, 

eyes, and body. 

 

Head Control for Communicative Cues 

The mode of control for the robot’s head is similar to that used in previous work with 

the MeBot robot (Adalgeirsson & Breazeal, 2010). Adalgeirsson et al.’s main motivation 

in their design was to create an interface that would capture the natural head movements 

of the operator while also not costing the operator too much cognitive load. Thus by 

using faceAPI, a realtime face-tracking software library, to estimate the operator’s 3D 

head orientation, we automatically captured the natural head movements as the operator 

simply sat in front of a camera. Head movements like nods and shakes, which convey 

important communicative information, were easily generated through this interface.  

To teleoperate the robot’s head movements, we mapped the operator’s x,y,z head 

orientations estimated from faceAPI to the robot’s pitch, yaw, and roll head joints, which 

is demonstrated in Figure S2 (see below). By controlling the robot’s head through this 

interface, we were able to achieve fairly natural movements that corresponded in realtime 

to that of the operator’s head movements. In our experiment, the operator responsible for 

talking with the participants was the one whose head movements were tracked and 



mapped to the robot’s head movements. 

 

Mouth Control for Lipsyncing 

By using Annosoft’s realtime lipsync sdk, we extracted the visemes, or the visible 

mouth positions that occur in speech, from an incoming audio source. We then perform 

the appropriate mappings between the human-visemes to robot-visemes to have the robot 

speak with human-like mouth movements.  The robot’s mouth animation visemes were 

designed by a professional animator. And it is important to note that this mapping is not 

one-to-one as our robot’s mouth has only 3 DOFs that allow the jaw to move up and 

down, jut in and out, and roll left and right. However, the resulting articulated jaw 

produced readable mouth positions that corresponded in realtime to the operator’s speech 

(as seen in Figure S3).  

 

Eye Control for Gaze 

In interpersonal communication, establishing eye-contact serves as a signal that the 

channel for communication is open between the participants, and the individuals involved 

are attending to each other. As such, for the robot to establish eye-contact, we used 

OpenCV, an open source computer vision library, to detect and track faces viewed from 

the camera in the robot’s right eye. Once a face is found, the robot maintains eye-contact 

by centering the face in its field of vision. 

OpenCV possesses some limitations in tracking face targets, especially when they are 

in motion (i.e., faces of individuals who are moving around a room).  Fortunately, the 

setup of the experiment had the participant sit in a chair, at a suitable distance from the 

robot, making the face much easier to track.  Nonetheless we instituted two override 

modes that a monitoring operator could activate in cases of unpredicted failures of 

OpenCV. For the first override, we used a graphical interface in which an operator could 

literally see through the eyes of the robot using embedded cameras in Nexi.  Whenever 

the participant’s face was not centered in the image, the operator could manually click in 

the interface where the robot’s eyes should be correctly centered (allowing autonomous 

tracking to resume from that point).  Second, if the autonomous tracking continued to fail 

even after manual corrections, we would turnoff autonomous tracking completely and fix 

the gaze point at a predetermined location where an average height participant would 

most likely be located on the fixed-positioned chair.  This secondary override was used 

only once (participant in the control [no target cue] condition) and caused no appreciable 

effect on the participant’s data with respect to deviations from others in this condition. 

 

Eyebrow Control for Expression 

To make the robot’s face appear engaged in the conversations, we moved the robot’s 

eyebrows according to the energy of the operator’s voice. As the energy of speech 

increased (measured using the root-mean-squared (rms) value of the signal’s amplitude), 

the robot’s eyebrows rose. At first, we anticipated that the eyebrow movement might 

seem too exaggerated, but the resulting movement only made the robot’s facial 

expressions appear more conversational and lively. 

 

Body Control for Gestures 



To control the robot’s arms and neck, we developed a button interface that can easily 

activate and deactivate various body gestures (shown in Figure S4). The robot’s arm and 

body gesture animations were designed by a professional animator to resemble human-

like movements as much as possible. These included animations for initiating each 

gesture and also for releasing them. The Gesture Controller window contains start and 

stop buttons for the following predictive gestures: hand-touch (low, middle), face-touch 

(left, right), cross-arms, lean-back (left, middle, right), and a few combination gestures 

like cross-arms plus lean-back (pictures of Nexi demonstrating these gestures can be 

found in Figure S5). In addition to these predictive gestures, we also have other 

communicative gestures for only conversational purposes like hand waving and emphasis 

gestures.  To provide the operator with direct visual feedback, we graphically display the 

robot performing the current gesture in motion. This feedback mechanism allows the 

operator to see the direct effects of his/her control and know when the robot has 

completed a gesture. 
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Figure S1: Research platform Nexi, an upper torso humanoid robot designed to be 

mobile, dexterous, and social. 

 



 
 

Figure S2: Using faceAPI to detect the operator’s 3D head orientation, we can capture the 

natural head movements of the operator and project them onto our humanoid robot. 

 

 

 
 

Figure S3: Using Annosoft’s realtime lipsync sdk, we can detect visemes like /a/, /ei/, and 

/ou/ from speech. And with appropriate mappings, the robot can display human-like 

mouth positions that correlate with the speech. 

 

 

 



 

 
 

Figure S4: The body control interface consists of the Basic MDS GL window and the 

Gesture Controller window. The Basic MDS GL window serves as visual feedback for 

the operator. And the Gesture Controller is a button interface to engage and disengage 

both the predictive gestures and the non-predictive communicative gestures. 

 

 

 

 



  
Figure S5: Nexi demonstrating the predictive gestural cues: hand touch, face touch, arms 

cross, and lean back. Note: the neck also recoils back in the lean-back gestures. 
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