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Abstract

We propose a new approach to perform classi�cation in the presence of large
amounts of irrelevant or noisy instances. This is achieved by designing a convex ob-
jective function whose optimization �nds the most relevantsamples for classi�cation,
and uses them to discriminate between classes. In particular, we combine the logis-
tic loss with a combination ofL 2 andL 2;1-type regularization penalties that enforce
within-group sparsity. We study the properties of theL 2;1 regularization, compare it to
standard regularization penalties, and propose the �nal algorithm with its optimization.
Experimental results in real world applications show improvement over unstructured
regularization penalties.
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1 Introduction

Automatic object detection and recognition from images, oractivity recognition from
video have been a long standing problem in computer vision. Most popular methods
pose the object and activity recognition as a binary classi�cation problem using dif-
ferent features (e.g. appearance, shape) and classi�ers (e.g. boosting, support vector
machines). The classi�ers are typically learned using manually labeled data that, in the
case of object recognition, includes a bounding box where the object is located and,
in the case of activity recognition, the start and the end of the action. Critical to the
success of the classi�cation problem is the choice of the positive samples within the
labeled bounding box (e.g. object recognition) or segment (e.g. actions). Similarly, it
is important to carefully select the negative samples.

Typically, the labeling is not accurate and the positive andnegative classes might
contain many irrelevant samples and outliers that can dramatically bias the classi�er
parameters. Moreover, traditional classi�er such as SVM orboosting do not provide
representative samples that are visually meaningful. For example, in the case of SVM,
the support vectors correspond to samples that are close to the decision boundary. In the
case of activity recognition, the support vector will be theframes at the beginning and
at the end of the action because are the ones that are closer tothe decision boundary.
However, the support vectors do not provide an intuitive idea of representative samples
that makes easy visual interpretation of the dissimilaritybetween classes.

In this paper, we propose a convex discriminative cost function that selects the
most relevant samples for classi�cation, and uses them to discriminate between classes.
In particular, we combine the logistic loss with a combination of L 2 and L 2;1-type
regularizations that enforce within-group sparsity. Preliminary experimental results
in the context of horse recognition from images, facial action unit recognition from
video, and action classi�cation from movies, show improvement over other classical
regularization penalties.

The rest of the paper is as follows. Section2 provides the background of the prob-
lem. Section3 reviews some of the regularizations penalties. Section4 outlines the
algorithm design and describes its optimization. Section5 provides experimental re-
sults for real life applications in the context of structured instance selection. The paper
concludes with �nal remarks and future work.

2 Related Work

When performing object recognition, it is natural to think that not all of the parts of
the object are relevant for discrimination. Consider the extreme case where most of the
appearance of two objects is the same except for a small distinctive mark (e.g. Figure
1). To solve this, a standard approach is that of Bag of Words [25, 17], which extracts
a set of informative patches (usually sift descriptors) andthen computes histograms
of these descriptors to characterize each object. Althoughthis works well in practice,
there is no guarantee that these informative patches will capture the distinctive marks.
Other methods divide the image into smaller pieces using, for example, a uniform
grid or more complicated segmentation algorithms [19]. In this case, all of the pieces

1



receive the same importance and the most discriminative ones may be disguised by the
non relevant ones. A common example of non relevant data observations are outliers,
but we more generally de�ne them as instances that do not follow the representative
distribution of a particular class.

WallyLea

Figure 1: The most distinctive mark between the two dogs above is the nose.

Commonly used methods to detect outliers are dimensionality reduction (e.g. Prin-
cipal Component Analysis) or density estimation [11]. To discriminate between classes,
standard algorithms such as SVMs or logistic regression canbe used. The order in
which these two problems are addressed as well as the selected algorithms will have a
strong impact on the �nal result. In this work, we propose an algorithm to simultane-
ously address both problems while incorporating relationships between instances. The
concept of bags of instances is widely used in the �eld of Multiple Instance Learning
[6]. In this context, the closest work [4] shares similar optimization objective, selecting
instances to perform classi�cation, but it greatly differsin the approach that is taken.
While they create a new feature vector for each bag by using a similarity measure, this
work incorporates the prior knowledge of the bag-structurethrough theL 2;1, which
allows obtaining probabilistic predictions at an instanceand bag levels.

Some of the seminal work in instance selection is Generalized LASSO [21], that
allows selecting instances through the unstructured regularizationL 1 norm in the con-
text of regression. One of the major contributions in structured regularization was by
Ming et al. [24], in which Grouped LASSO was introduced to select groups of features
as a whole, instead of individual features in each group. While most of previous work
in structured regularizations are applied to multiple kernel learning (e.g. [23, 13]), we
propose to use them to perform instance selection. Moreover, they are usually com-
bined with the hinge loss, while we use the logistic loss instead. This provides several
well known bene�ts such as probabilistic interpretation ofthe predictions, and nat-
ural extension to multi-class classi�cation problems. While the instance selection is
enforced at the regularizer level, the loss function de�nesthe selection criteria.

Note that structured regularization penalties have been subject to intense research
for a speci�c unsupervised learning problem, in particulardictionary learning as in [16].
It would be worthwhile to consider structured regularization penalties for unsupervised
learning problems such as clustering or dictionary learning, but this is out of the scope
of the paper.
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3 An overview of regularization penalties

Throughout the paper, we shall focus on supervised learningproblems. For the sake of
generality, we shall consider both classi�cation and regression in the same setting. Let
(x1; y1); : : : ; (xn ; yn ) 2 X � Y be an i.i.d training sample, whereX may be a general
space such asRd or structured (strings, trees, graphs, etc.), as long as oneis able to
de�ne suitable basis functions such as reproducing kernelsacting on such space, and
Y = f� 1; +1g for binary classi�cation orY = R for regression.

Assume that for any new samplex prediction is performed through a function
f w (x) = wT x, wherew can bestructuredinto m groupsG1; : : : ; Gm as follows

w = [ w1;1; : : : ; w1;Card(G1 )
| {z }

groupG1

; : : : ; wm; 1; : : : ; w1;Card(Gm )
| {z }

groupGm

] (1)

We consider the learning problems that can be cast as the optimization problem of
the form

minimize
w


( w) +
1
�

nX

i =1

`(yi ; wT x i ) (2)

where`(y; f ) is a loss function measuring the mismatch between the prediction
f and the true labely, 
( w) is the regularization penalty in which we are mainly
interested here, and� is the regularization parameter that allows to trade off between
the previous two.

For any weight vectorw, let us the family of mixed-norm regularization penalty
de�ned as follows


( w) = L p;q (w) :=
mX

g=1

2

4
Card(Gg )X

j =1

jwg;j jq

3

5

p

(3)

Now, we say that a sub-vectorwg;: is sparseif the set supp(wg;:) := f j 2 f 1; : : : ; Ggg; wg;j 6=
0g, called thesupportof wg;:, is such that Card(supp(wg;:)) �

P m
g=1 Card(Gg). The

same de�nition carries over to the whole vectorw with obvious changes. Let us de�ne
now regular sparsity, between-group sparsity, and within-group sparsity.

Regular sparsity A regularization penalty enforcesregular sparsityL p;q (w) if p =
1, q � 1. This is the case for the popularlassopenalty which coincides with the
standardL 1-norm on the whole vector, regardless of the underlying group structure.
Such penalties do incorporate prior information about group structure.

Between-group sparsity A regularization penalty enforcesbetween-group sparsity
L p;q (w) if p = 1

2 , q = 2 . This is the case for the populargroup-lassopenalty as
considered e.g. [18], which enforcessparsityat the group-level on the sub-vectors
w1;:; : : : ; wm; :, and therefore leverages group structure to enforce abetween-group
sparsity.
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Figure 2: L 2 (ridge), L 1 (lasso; regular sparsity),L 1;2 (group-lasso; between-group
sparsity), andL 2;1 (within-group sparsity).

Within-group sparsity A regularization penalty enforceswithin-group sparsityL p;q (w)
if p = 2 , q = 1 [9]. This is the kind of penalty that we put forth in this paper for set-
tings where one wants to enforcesparsityinside the groups de�ned by the sub-vectors
w1;:; : : : ; wm; :, and therefore leverages group structure to enforce awithin-group spar-
sity.

Figure 2 illustrates the case wherew1 and w2 are grouped in one bag, andw3

corresponds to a different bag.

4 Within-group sparsity for instance selection

In practical situations samples belonging toC classes are organized in saym “bags
of instances”ff x1;1; : : : ; x1;n 1 g; : : : ; f xm; 1; : : : ; x1;n m gg, wherex i; � belong to the
same class,ng = Card(Gg), and only a few instances out of theng instances in
each bag are discriminative between the different classes (see exmaple in Figure3).
This could be thought as multi-class discriminative twist of multi-instance learning [6],
where relevant instances are usually spotted out in a one-versus-rest setting. For this
purpose, we propose to solve the following optimization problem

minimize
� 1 ;:::;� C

�
CX

c=1

L 2;1(� c) + (1 � � )
CX

c=1

� T
c K � c (4)

+
1
�

mX

g=1

`?

0

@yg;

8
<

:

n gX

j =1

f � 1 (xg;j ); : : : ;
n gX

j =1

f � C (xg;j )

9
=

;

1

A

where`?(y; f f 1; : : : ; f C g) is the standard multinomial logistic loss and for anyc =
1; : : : ; C we havef � c (x) =

P m
g=1

P n g
j =1 k(xg;j ; x)� c

g;j , with k(�; �) a reproducing
kernel acting on each instance, andK is the corresponding Gram matrix. Note that
the kernel-based regularization is necessary to make the overall regularization penalty
dependent on the kernel, and� trades-off the two regularizations. Basically, the loss
on a bag is measured through the average prediction on all theinstances of the bag.

Again, as displayed in Figure4, theL 1;2 regularization penalty allows to enforce
the kind of sparsity that is of interest in such situations,i.e. to assign a few non-zero
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Dataset

Class 1 Class 2lass 1 Class

Bag 1 Bag i+1Bag i Bag m

……

Figure 3: Instances grouped into bags (C = 1 ).

weights in each bag in order to seeminglessly select most predictive instances within
each bag.

Figure 4: Instance selection withL 1 (top) andL 1;2 (bottom).

Optimization We shall work in the same framework as [2], where a generalization
of �rst-order optimization algorithms are described for objective functions including
two parts: a smooth and a non-smooth part. Here, whereas for large-class of loss
functions one can assume that the right-hand term (2) is smooth, for theL 2;1-norm the
regularization penalty term is non-smooth. Let us rewrite (2) as


( w) + g(w) (5)

whereg(w) represents the loss function and theL 2 norm.
Proximal algorithms [2] proceed by iterative linearization ofg(�), and then solve a

sequence of smoothed objectives called proximal problems.Hence, ifwt is the esti-
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mated parameter at iterationt, thenwt +1 is found by solving

minimize
w


( w) + g(wt ) + r g(wt )(w � wt ) +
1
2�

kw � wt k2
2 (6)

where� is the learning rate.
At the crux of the algorithm is the computation of the so-calledproximal operator

associated with
( w), which can be simply thought as ageneralized thresholding op-
eratorassociated with the norm de�ned by
( w). Indeed, the proximal operator� 
 (�)
associated with
( �) is the function which maps anyu to av to the minimizer of

minimize
v

1
2

ku � vk2
2 + 
( v ) (7)

As shown in prior work [14], the projectionv of u by the proximal operator� 
 (�)
with 
( �) = �

2 k � k2;1 is given by

vg;j = sgn(ug;j )

�
�
�
� jug;j j �

�
P r g

k=1 eug;k

(1 + �r g)kug;� k

�
�
�
�
+

(8)

whereeu denotes the order statistics [3] enumerated in descend order tojug;1j; : : : ; jug;p j,
andr g is the larger integer such that

eug;r g +1 � �
r g +1X

k=1

(eug;k � eug;r g +1 ) : (9)

5 Experimental results

We now present some experimental analysis on real datasets where we used theL 2;1

regularization penalty and compared it to other unstructured regularization penalties.

5.1 Horse recognition

In this section we use the proposed method to perform horse identi�cation from images.
The dataset we use is composed by a set of lateral view images of several horses in the
wild that present the usual complications of lighting changes, pose variation and image
quality.

Preprocessing Images have been processed in two stages. First, all horses have been
interactively segmented using the GrabCut algorithm [22] allowing to avoid the dif�cult
problem of localization. Secondly, a more aggressive segmentation over the horse
is performed with a hierarchical segmentation algorithm based on Mean Shift [19],
which is expected to provide a rough segmentation of the mostrepresentative parts for
identi�cation. Figure5 shows an example of the two segmentations.

In this setting, all of the instances that come from one imageare associated in a
bag labeled with the name of the horse [20] and, therefore, selecting the most relevant
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Figure 5: (Left) Original image. (Middle) Segmented horse with GrabCut. (Right)
Over segmented horse with hierarchical segmentation.

L 1 L 2 L 2;1 L 2 + L 2;1

Error 0.25 0.20 0.30 0.20
% Parameters 51.33 100 42.18 79.65

Table 1: Results horse recognition

instances corresponds to �nding the most distinctive marksfor classi�cation of each
horse.

Two sets of features were extracted to represent the information from each horse.
RGB and HSV (Hue Saturation and Value) features were used to characterize skin
color, while Histogram of Oriented Gradients (HoG) [5] and Gabor features were ex-
tracted to capture both texture and shape of each one of the over segmented pieces.
Since all of these features are histograms, we use the� 2-kernel [25].

Results For experimental results, we have used a small subset of �ve horses with
four images each. We use 5-Fold Cross Validation to tune the parameters (including�
of the kernel function) over the training set, and 4-Fold Cross Validation to provide the
�nal predictions. Note that this dataset is very small to have statistical value, but we
decided to include it for illustrative and motivational purposes. For quantitative results
we refer to the later sections.

Table 1 shows the �nal results and the amount of parameters that the algorithm
used. WhileL 2 andL 2 + L 2;1 performed at the same level with0:20of testing error (16
correctly predicted images), the latter signi�cantly reduced the number of parameters
by 20% (1000 approximately). This is very bene�cial in large scaleproblems where
the computational complexity is a constraint.

Figure6 shows the selected instances for several regularizations.The regularL 2

norm does not enforce sparsity and, therefore, uses all of the image for classi�cation.
L 1 selects relevant instances from some of the bags, andL 2;1 �nds the most relevant
instances or distinctive marks of each horse. Note that bagsare not irrelevant when
using unstructured regularizations such asL 2 andL 1. Figure7 shows how we can use
our algorithm to enhance the interpretability of the predictions as well as to gain a better
understanding of the data. Along the regularization path, the algorithm ranks the most

7



distinctive marks for classi�cation. For a large value of� , the algorithm considered
that white patches are not representative of the �rst horse.

Figure 6: Selected instances forL 2 (top), L 1 (middle), andL 1;2 (bottom) regulariza-
tions.

5.2 Action Unit recognition

In this section we use our algorithm to automatically recognize the basic units of facial
expression, described by the Facial Action Coding System (FACS) as Action Units
(AU). Facial expression recognition is a complex problem aggravated by variability
between subjects, and variability in the dynamics of expression. Results are evaluated
on a subset of the RU-FACS database [1].
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Figure 7: Selected instances for two values of� .

Preprocessing Our dataset consists of video sequences that were tracked using a
person-speci�c AAM tracker, which yields, on a frame by frame basis, the position
of several points of interest on the face of the subject. The AU labels contain onset
(frame where each AU start), offset (frame where each AU ends) and peak (frame with
maximum AU intensity between onset and offset). In this setting the concept of bag
comes naturally when grouping consecutive frames containing the same AU. It seems
intuitive to identify the peaks (i.e. frame with maximum AU intensity) as the most
relevant instances for classi�cation and the boundaries (i.e. onset and offset) as the less
relevant instances.

Two complementary types of features were extracted from each frame. Angles be-
tween some of the facial landmarks were used to characterizeshape, and HoGs features
were extracted to capture some of the appearance information that is described in the
FACS manual [8] (e.g. the direction of wrinkles, the slope of the eyebrows). We reduce
the dimensionality of the feature vectors with Principal Component Analysis (retaining
95% of the energy), and use Radial Basis Function as the kernel.

Results To simplify the problem, we have restricted the experimentation to a small
subset of Action Units (see Figure8): AU 1 (associated to surprise), AU 2 (also asso-
ciated to surprise), AU 10 (associated with expressions of disgust), AU 17 , and AU
24. We use 5-Fold Cross Validation to tune the parameters (including the kernel width)

Figure 8: AU 1 (inner brow raiser), AU 2 (outer brow raiser), AU 10 (upper lip raiser),
AU 17 (chin raiser), and AU 24 (lip pressor).

9



AUs L 1 L 2 L 2;1 L 2 + L 2;1

17 vs 10 0.20 0.15 0.18 0.13
17 vs 10 vs 24 0.28 0.25 0.28 0.25
1 vs 2 0.19 0.19 0.16 0.16

Table 2: Results for AU recognition

over the training set, and 4-Fold Cross Validation to provide the �nal predictions.
Table2 shows the results obtained for each one of the algorithms. When compar-

ing AU 17 vs AU 10, the proposed method outperforms other regularizations which
indicates that the problem bene�ts from selecting relevantinstances. By introducing
AU 24 (second experiment),L 2 performs as well as our method indicating that AU 24
is not very structured. Finally, when comparing AU 1 vs AU 2,L 2 + L 2;1 yields the
same performance asL 2;1, but the latter enforces more sparsity.

5.3 Action Recognition

A challenging part of the action recognition task is to design learning algorithms able
to handle the large variation of human actions in real-worldsettings. Variations are
usually due to identity, pose, expression, posture, motionand clothing, not to mention
illumination and occlusions. A now popular approach to learn to recognize actions is
to use movies as empirical data of human actions. For severalcommon human actions,
such as opening door or sitting down, movies naturally span the full spectrum of varia-
tions and therefore yield a good and realistic benchmark forhuman action recognition.
We chose here to focus on the dataset of Duchenne et al. [7].

Figure 9: Actions: opening door (top), and sit down (bottom).

Preprocessing Local features are extracted individually for each sample frame of the
video. In our experiments, we sampled every fourth frame, which signi�cantly reduces
the complexity while still ensuring that the scene does not change too much between
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Reg. penalty L 2 L 1 L 2;1

Open door vs. Sit down 0.30 0.29 0.24
Sit down vs. Stand up 0.39 0.32 0.31
Stand up vs. Open door 0.31 0.27 0.27

Table 3: Results for action classi�cation

two sampled frames. Our static image representation is based on local invariant de-
scriptors [15] that have shown excellent performance in the object recognition commu-
nity and recently on the TRECVID 2008 copy detection task [12] for approaches based
on per-frame static representations of videos. We detect Hessian-Laplace (2D) interest
points which are invariant to several image transformations (scale change, image ro-
tation, noise), and makes it very robust to uncontrolled imaging conditions present in
real-world videos. To describe these regions of interest, we use center-symmetric lo-
cal binary patterns (CS-LBP) [10] computed on local image patches. They do not use
color, and are normalized to be invariant to af�ne illumination changes of the patches.
The description is, therefore, invariant to most photometric changes.

Results Table3 displays the experimental results obtained when comparingseveral
regularization penalties for classi�cation of actions from video temporal chunks. We
can notice that while theL 2;1 andL 1 yield comparable performance, we can also ob-
serve a substantial improvement in performance for the “Open the door” versus “Sit
down” pair, therefore con�rming the utility of a within-group sparsity enforcing regu-
larization penalty ofL 2;1-type in this context.

6 Conclusions

The main contribution of this work is the combination of a mixed regularization (L 2 +
L 2;1) with the logistic multinomial loss to perform simultaneous instance selection and
classi�cation. One of the principal bene�ts of this method is the possibility of using
the selected instances to better understand the problem andits underlying structure, as
shown in the context of horse identi�cation to visualize themost distinctive marks of
each horse. Moreover, the algorithm can solve large scale and complex problems where
data is non linearly separable. Although performance depends on the prior knowledge
of the data structure available, experimental results on real life problems showed im-
proved classi�cation errors over standard unstructured regularizations. Further exper-
imental analysis in the contexts of multiple instance learning and outlier detection are
the natural continuation of this work. Moreover, we plan to explore deployingL 2;1 reg-
ularization penalty with linear regularized least squaresregresion, where within-group
sparsity is enforced at thefeature levelinstead of theinstance level.

In this paper we have illustrated the bene�ts of instance selection in supervised
learning scenarios, however, this approach can be applied to other domains such as
video summarization and ranking where data structure is important.
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