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Abstract

We propose a new approach to perform classi cation in thesqmee of large
amounts of irrelevant or noisy instances. This is achieweddsigning a convex ob-
jective function whose optimization nds the most relevaamples for classi cation,
and uses them to discriminate between classes. In partieudtacombine the logis-
tic loss with a combination of , andL ,.1-type regularization penalties that enforce
within-group sparsity. We study the properties of the; regularization, compare it to
standard regularization penalties, and propose the mglrithm with its optimization.
Experimental results in real world applications show inveroent over unstructured
regularization penalties.
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1 Introduction

Automatic object detection and recognition from imagesadivity recognition from
video have been a long standing problem in computer visionstNdopular methods
pose the object and activity recognition as a binary clasdion problem using dif-
ferent features (e.g. appearance, shape) and classi grs lfeosting, support vector
machines). The classi ers are typically learned using nadlgliabeled data that, in the
case of object recognition, includes a bounding box wheeeottject is located and,
in the case of activity recognition, the start and the enchefdction. Critical to the
success of the classi cation problem is the choice of thdtjwessamples within the
labeled bounding box (e.g. object recognition) or segmelgt. (actions). Similarly, it
is important to carefully select the negative samples.

Typically, the labeling is not accurate and the positive aadative classes might
contain many irrelevant samples and outliers that can dieafly bias the classi er
parameters. Moreover, traditional classi er such as SVMboosting do not provide
representative samples that are visually meaningful. amele, in the case of SVM,
the support vectors correspond to samples that are close tietision boundary. In the
case of activity recognition, the support vector will be freenes at the beginning and
at the end of the action because are the ones that are cloher decision boundary.
However, the support vectors do not provide an intuitivaiderepresentative samples
that makes easy visual interpretation of the dissimildréjween classes.

In this paper, we propose a convex discriminative cost fancthat selects the
most relevant samples for classi cation, and uses themsttriihinate between classes.
In particular, we combine the logistic loss with a combioatof L, andL;.1-type
regularizations that enforce within-group sparsity. Pmglary experimental results
in the context of horse recognition from images, facial@ctiinit recognition from
video, and action classi cation from movies, show improesthover other classical
regularization penalties.

The rest of the paper is as follows. Sectiprovides the background of the prob-
lem. Section3 reviews some of the regularizations penalties. Sectiontlines the
algorithm design and describes its optimization. Secfigumovides experimental re-
sults for real life applications in the context of structliiestance selection. The paper
concludes with nal remarks and future work.

2 Related Work

When performing object recognition, it is natural to thinlatimot all of the parts of
the object are relevant for discrimination. Consider thieegre case where most of the
appearance of two objects is the same except for a smalhclise mark (e.g. Figure
1). To solve this, a standard approach is that of Bag of WordsI[7], which extracts
a set of informative patches (usually sift descriptors) #meh computes histograms
of these descriptors to characterize each object. Althabighwvorks well in practice,
there is no guarantee that these informative patches vgtlica the distinctive marks.
Other methods divide the image into smaller pieces usingefample, a uniform
grid or more complicated segmentation algorithrhd [ In this case, all of the pieces



receive the same importance and the most discriminative wrag be disguised by the
non relevant ones. A common example of non relevant datardigens are outliers,

but we more generally de ne them as instances that do natviothe representative
distribution of a particular class.

Figure 1: The most distinctive mark between the two dogs al®the nose.

Commonly used methods to detect outliers are dimensigmalituction (e.g. Prin-
cipal Component Analysis) or density estimatian]f To discriminate between classes,
standard algorithms such as SVMs or logistic regressionbeansed. The order in
which these two problems are addressed as well as the sklgtithms will have a
strong impact on the nal result. In this work, we propose &o&thm to simultane-
ously address both problems while incorporating relatiggsbetween instances. The
concept of bags of instances is widely used in the eld of Mt Instance Learning
[6]. In this context, the closest work][shares similar optimization objective, selecting
instances to perform classi cation, but it greatly diffénsthe approach that is taken.
While they create a new feature vector for each bag by usingitesity measure, this
work incorporates the prior knowledge of the bag-structareugh thel ,.;, which
allows obtaining probabilistic predictions at an instaaod bag levels.

Some of the seminal work in instance selection is GeneliZeéSSO [21], that
allows selecting instances through the unstructured aegalionL ; norm in the con-
text of regression. One of the major contributions in stited regularization was by
Ming et al. [24], in which Grouped LASSO was introduced to select groupgafires
as a whole, instead of individual features in each group. &\hibst of previous work
in structured regularizations are applied to multiple kétaarning (e.g. 13, 13]), we
propose to use them to perform instance selection. Moretivey are usually com-
bined with the hinge loss, while we use the logistic lossdadt This provides several
well known bene ts such as probabilistic interpretationtbé predictions, and nat-
ural extension to multi-class classi cation problems. \Ehihe instance selection is
enforced at the regularizer level, the loss function de tiesselection criteria.

Note that structured regularization penalties have bebjesuto intense research
for a speci c unsupervised learning problem, in particulationary learning as ini[5].

It would be worthwhile to consider structured regulariaatpenalties for unsupervised
learning problems such as clustering or dictionary leayniut this is out of the scope
of the paper.



3 An overview of regularization penalties

Throughout the paper, we shall focus on supervised leapriolglems. For the sake of
generality, we shall consider both classi cation and regien in the same setting. Let

space such aB? or structured (strings, trees, graphs, etc.), as long assoakle to
de ne suitable basis functions such as reproducing keraetisg on such space, and
Y = f 1;+1gfor binary classi cation ofyY = R for regression.

Assume that for any new sampke prediction is performed through a function

fw(x) = W' x, wherew can bestructuredinto m groupsG; :::; Gy, as follows
W= [Wias il WacardGys s Wi 155 Wi Card Gy ] (1)
| (P B z }
group Gy group Gm

We consider the learning problems that can be cast as thaiaption problem of
the form

. 1 X
minimize  ( w)+ = (yisw'x;) 2)
i=1
where™(y;f) is a loss function measuring the mismatch between the piedic
f and the true labey, ( w) is the regularization penalty in which we are mainly
interested here, andis the regularization parameter that allows to trade offvieen
the previous two.
For any weight vectow, let us the family of mixed-norm regularization penalty
de ned as follows
2 3p
X CalGy)
(W)= Lpg(w):= 4 jwg; j9o ()
g=1  j=1

Now, we say that a sub-vectey. is sparsef the set supfwg::) P fj2fl::;,Gowg 6
0Og, called thesupportof wy:, is such that Cafgupgwg::)) 31:1 CardG). The
same de nition carries over to the whole vect@mwith obvious changes. Let us de ne
now regular sparsity, between-group sparsity, and wighioup sparsity.

Regular sparsity A regularization penalty enforcesgular sparsityl p.q (W) if p =

1, g 1. This is the case for the popul&assopenalty which coincides with the
standard. ;-norm on the whole vector, regardless of the underlying grstucture.
Such penalties do incorporate prior information about gretucture.

Between-group sparsity A regularization penalty enforcdsetween-group sparsity
Lpg(w) if p = % g = 2. This is the case for the populgroup-lassopenalty as
considered e.g.1f], which enforcessparsityat the group-level on the sub-vectors

spérsity
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Figure 2: L, (ridge), L1 (lasso; regular sparsity),1.» (group-lasso; between-group
sparsity), and. ,.; (within-group sparsity).

Within-group sparsity A regularization penalty enforcegthin-group sparsity_ .q (w)
if p=2,g9=1[9]. This is the kind of penalty that we put forth in this paper $et-
tings where one wants to enforsparsityinside the groups de ned by the sub-vectors

sity.
Figure 2 illustrates the case whemg; andw, are grouped in one bag, ang;
corresponds to a different bag.

4  Within-group sparsity for instance selection

In practical situations samples belongingGoclasses are organized in say “bags
of instances™ff X1.1;:::;X1:n, 0000 FXm: 15710 X1n,, 99, Wherex;. belong to the
same classpng = CardG), and only a few instances out of tig instances in
each bag are discriminative between the different classss éxmaple in Figurd).
This could be thought as multi-class discriminative twigtailti-instance learningd],
where relevant instances are usually spotted out in a orsets«eest setting. For this
purpose, we propose to solve the following optimizatiorbpem

X x
minimize Laal )+ ) IK ¢ )
T 0 c:18 c=1 9 1
1)(n . < g Yo =
+ = 7@y f (xgg)iiin o (Xgy), A
g=1 = j=1 !

where ?(y;ff1;:::;fcQ) is 51;e sta}gdard multinomial logistic loss and for any
1;:::;C we havef _(x) = g‘:l J-”:gl K(Xg;j;X) gj, with k(; ) a reproducing
kernel acting on each instance, afddis the corresponding Gram matrix. Note that
the kernel-based regularization is necessary to make #m@lbvegularization penalty
dependent on the kernel, andrades-off the two regularizations. Basically, the loss
on a bag is measured through the average prediction on afistences of the bag.
Again, as displayed in Figuré, theL 1., regularization penalty allows to enforce

the kind of sparsity that is of interest in such situatidres, to assign a few non-zero
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Figure 3: Instances grouped into ba@s£ 1).

weights in each bag in order to seeminglessly select mosdiginee instances within
each bag.

Figure 4: Instance selection withy (top) andL 1., (bottom).

Optimization We shall work in the same framework &4,[where a generalization
of rst-order optimization algorithms are described forj@ttive functions including
two parts: a smooth and a non-smooth part. Here, whereaarfge-tlass of loss
functions one can assume that the right-hand té&)is(smooth, for theé.,.;-norm the
regularization penalty term is non-smooth. Let us rewi@)eas

(w)+ g(w) ®)

whereg(w) represents the loss function and thenorm.
Proximal algorithmsZ] proceed by iterative linearization of ), and then solve a
sequence of smoothed objectives called proximal probletence, ifw; is the esti-



mated parameter at iterationthenw,.; is found by solving
minimize  (W)+ gWO+ 1 oMW W)+ Skw wkE ()

where is the learning rate.

At the crux of the algorithm is the computation of the so-@afproximal operator
associated with( w), which can be simply thought asgeneralized thresholding op-
erator associated with the norm de ned by w). Indeed, the proximal operator ()
associated with( ) is the function which maps anyto av to the minimizer of

minimize %ku vk3+ (V) 7)

As shown in prior work 14], the projectionv of u by the proximal operator ()
with () = 5k kp;1 is given by

P, o
k=1 “9;
3+ 1 g)kug k ®

+

Vgj = sgn(Ug;j) jUg; ]

andry is the larger integer such that

I‘x+l
Bg:ry+1 (Bgk  Bgrg+1): 9
k=1

5 Experimental results

We now present some experimental analysis on real databet®we used the,.1
regularization penalty and compared it to other unstrectuegularization penalties.

5.1 Horse recognition

In this section we use the proposed method to perform hoesgiidation from images.
The dataset we use is composed by a set of lateral view imégesearal horses in the
wild that present the usual complications of lighting chesygpose variation and image
quality.

Preprocessing Images have been processed in two stages. First, all hcagedbben
interactively segmented using the GrabCut algorith) §llowing to avoid the dif cult
problem of localization. Secondly, a more aggressive seggtion over the horse
is performed with a hierarchical segmentation algorithredohon Mean Shift19],
which is expected to provide a rough segmentation of the nepsesentative parts for
identi cation. Figure5 shows an example of the two segmentations.

In this setting, all of the instances that come from one imageassociated in a
bag labeled with the name of the hor&é][and, therefore, selecting the most relevant



Figure 5: (Left) Original image. (Middle) Segmented horséghviGrabCut. (Right)
Over segmented horse with hierarchical segmentation.

’ \ L1 \ Lo \ Loa \ Lo+ Loa \
Error 0.25 | 0.20| 0.30 0.20
% Parameters 51.33| 100 | 42.18 79.65

Table 1: Results horse recognition

instances corresponds to nding the most distinctive mdoksclassi cation of each
horse.

Two sets of features were extracted to represent the intavmé&om each horse.
RGB and HSV (Hue Saturation and Value) features were usedhdoacterize skin
color, while Histogram of Oriented Gradients (HoG) ind Gabor features were ex-
tracted to capture both texture and shape of each one of #resegmented pieces.
Since all of these features are histograms, we use tHeernel pP5].

Results For experimental results, we have used a small subset of oreds with
four images each. We use 5-Fold Cross Validation to tune dinenpeters (including

of the kernel function) over the training set, and 4-Fold€3r¥alidation to provide the
nal predictions. Note that this dataset is very small to déatatistical value, but we
decided to include it for illustrative and motivational poses. For quantitative results
we refer to the later sections.

Table 1 shows the nal results and the amount of parameters that lf@ithm
used. WhildL, andL 2+ L ».1 performed at the same level wiik20 of testing error (16
correctly predicted images), the latter signi cantly redd the number of parameters
by 20% (1000 approximately). This is very bene cial in large scpl®blems where
the computational complexity is a constraint.

Figure 6 shows the selected instances for several regularizatibhs.regulai
norm does not enforce sparsity and, therefore, uses alkahtage for classi cation.
L1 selects relevant instances from some of the bagsl.andnds the most relevant
instances or distinctive marks of each horse. Note that begsot irrelevant when
using unstructured regularizations suchLasandL ;. Figure7 shows how we can use
our algorithm to enhance the interpretability of the prédits as well as to gain a better
understanding of the data. Along the regularization pait aigorithm ranks the most



distinctive marks for classi cation. For a large value ofthe algorithm considered
that white patches are not representative of the rst horse.

Figure 6: Selected instances fos (top), L1 (middle), andL ., (bottom) regulariza-
tions.

5.2 Action Unit recognition

In this section we use our algorithm to automatically reéagthe basic units of facial
expression, described by the Facial Action Coding SysteACE) as Action Units
(AU). Facial expression recognition is a complex problergragated by variability
between subjects, and variability in the dynamics of exgioes Results are evaluated
on a subset of the RU-FACS databask [



Figure 7: Selected instances for two values of

Preprocessing Our dataset consists of video sequences that were trackegl as
person-speci ¢ AAM tracker, which yields, on a frame by frarbasis, the position
of several points of interest on the face of the subject. Tbelabels contain onset
(frame where each AU start), offset (frame where each AU Jesuad peak (frame with
maximum AU intensity between onset and offset). In thisisgtthe concept of bag
comes naturally when grouping consecutive frames comigitiie same AU. It seems
intuitive to identify the peaks (i.e. frame with maximum Abténsity) as the most
relevant instances for classi cation and the boundaries (inset and offset) as the less
relevant instances.

Two complementary types of features were extracted frorh #ame. Angles be-
tween some of the facial landmarks were used to charactgrgee, and HoGs features
were extracted to capture some of the appearance infonmitét is described in the
FACS manual{] (e.g. the direction of wrinkles, the slope of the eyebrowsg reduce
the dimensionality of the feature vectors with Principah@mnent Analysis (retaining
95% of the energy), and use Radial Basis Function as thelkerne

Results To simplify the problem, we have restricted the experimiomato a small
subset of Action Units (see FiguB: AU 1 (associated to surprise), AU 2 (also asso-
ciated to surprise), AU 10 (associated with expressiongsgfust), AU 17 , and AU
24. We use 5-Fold Cross Validation to tune the parametecki@ing the kernel width)

Figure 8: AU 1 (inner brow raiser), AU 2 (outer brow raiser)) A0 (upper lip raiser),
AU 17 (chin raiser), and AU 24 (lip pressor).



[AUs [ Ly [ Ly [Laa [La+ Loy |

17vs 10 0.20| 0.15| 0.18 0.13
17vs10vs 24| 0.28 | 0.25| 0.28 0.25
lvs2 0.19| 0.19] 0.16 0.16

Table 2: Results for AU recognition

over the training set, and 4-Fold Cross Validation to previte nal predictions.

Table2 shows the results obtained for each one of the algorithms.nVtbmpar-
ing AU 17 vs AU 10, the proposed method outperforms otherleggations which
indicates that the problem bene ts from selecting relevastances. By introducing
AU 24 (second experimentl,, performs as well as our method indicating that AU 24
is not very structured. Finally, when comparing AU 1 vs AUL2, + L,.; yields the
same performance &s.;, but the latter enforces more sparsity.

5.3 Action Recognition

A challenging part of the action recognition task is to dad&arning algorithms able
to handle the large variation of human actions in real-wgdttings. Variations are
usually due to identity, pose, expression, posture, maiahclothing, not to mention
illumination and occlusions. A now popular approach totetarrecognize actions is
to use movies as empirical data of human actions. For ses@nmainon human actions,
such as opening door or sitting down, movies naturally spariull spectrum of varia-
tions and therefore yield a good and realistic benchmarkdionan action recognition.
We chose here to focus on the dataset of Duchenne eflal. [

Figure 9: Actions: opening door (top), and sit down (bottom)

Preprocessing Local features are extracted individually for each sam@me of the
video. In our experiments, we sampled every fourth framegkvkigni cantly reduces
the complexity while still ensuring that the scene does hainge too much between

10



[ Reg. penalty [L, [Li [Lai|
Open door vs. Sitdown 0.30| 0.29 | 0.24

Sitdown vs. Standup | 0.39| 0.32 | 0.31
Stand up vs. Open doar 0.31 | 0.27 | 0.27

Table 3: Results for action classi cation

two sampled frames. Our static image representation isdbasdocal invariant de-
scriptors [L5] that have shown excellent performance in the object reitiogrcommu-

nity and recently on the TRECVID 2008 copy detection tais| for approaches based
on per-frame static representations of videos. We detessible-Laplace (2D) interest
points which are invariant to several image transformati(atale change, image ro-
tation, noise), and makes it very robust to uncontrolledgima conditions present in
real-world videos. To describe these regions of interestuge center-symmetric lo-
cal binary patterns (CS-LBP).[] computed on local image patches. They do not use
color, and are normalized to be invariant to af ne illumiioat changes of the patches.
The description is, therefore, invariant to most photoinetnanges.

Results Table3 displays the experimental results obtained when compaengral
regularization penalties for classi cation of actionsrfrovideo temporal chunks. We
can notice that while the,.; andL; yield comparable performance, we can also ob-
serve a substantial improvement in performance for the fChe door” versus “Sit
down” pair, therefore con rming the utility of a within-grg sparsity enforcing regu-
larization penalty ot ;.1 -type in this context.

6 Conclusions

The main contribution of this work is the combination of a edxregularizationl(, +
L ».1) with the logistic multinomial loss to perform simultanednstance selection and
classi cation. One of the principal bene ts of this methalthe possibility of using
the selected instances to better understand the problertsamttierlying structure, as
shown in the context of horse identi cation to visualize thest distinctive marks of
each horse. Moreover, the algorithm can solve large scdle@mplex problems where
data is non linearly separable. Although performance dépen the prior knowledge
of the data structure available, experimental results ahlife problems showed im-
proved classi cation errors over standard unstructureglilieizations. Further exper-
imental analysis in the contexts of multiple instance lesgrand outlier detection are
the natural continuation of this work. Moreover, we planitplere deployind-».; reg-
ularization penalty with linear regularized least squaeggesion, where within-group
sparsity is enforced at tHeature levelinstead of thenstance level

In this paper we have illustrated the bene ts of instancea@n in supervised
learning scenarios, however, this approach can be apmiether domains such as
video summarization and ranking where data structure i@itapt.
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