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Abstract 

The focus of this thesis is the feature known in the games industry as rag 
doll behaviour. Rag doll is the feature that, in a computer game, lets a 
character be influenced by actual physical laws. This enables the computer 
game characters to move in a more realistic way. It also gives the 
characters an infinite amount of possible motion patterns in contrast to 
animated motion. The interaction with the environment also enables more 
realism and better feedback. 

Rag doll behaviour and the techniques necessary for implementation in 
real-time 3D simulation are investigated. Many different approaches have 
been used during the last few years to simulate physics in computer 
games. Some are more physically correct than others. 

We describe and discuss benefits and drawbacks of the most accepted and 
used techniques that are suitable for simulation in real time, i.e. a 
computer game. 

We will furthermore investigate how vertex blending can be used to mix 
standard animations with physical calculations to enhance computer 
games. 

 



 

Fysikbaserad figursimulering 

’Rag Doll’-beteende i dataspel 

Sammanfattning 

Detta examensarbete fokuserar på den egenskap som inom dataspels-
industrin är känd som rag doll-beteende. Rag doll-beteende är den 
egenskap som, i ett dataspel, låter fysiska lagar inverka på figurer. Detta 
ger dataspelsfigurer ett mer realistiskt rörelsemönster. Det ger också 
figurerna ett oändligt antal möjliga rörelsemönster till skillnad från 
animerade rörelsesekvenser. Figurens interaktion med omgivningen ger 
också större realism och bättre återkoppling. 

Rag doll-beteende och de tekniker som är nödvändiga vid implementering 
av en realtids 3D-simulering undersöks. Under de senaste åren har flera 
olika tillvägagångssätt prövats för att simulera fysiska lagar i dataspel. 
Vissa av dessa är mer fysiskt korrekta än andra. 

Vi beskriver och diskuterar för- och nackdelar med de mest accepterade 
och använda metoderna som är lämpliga för realtidssimuleringar, d.v.s. 
dataspel. 

Vidare undersöker vi hur vertex-blending, hörn sammansmältning, kan 
användas för att blanda standardanimationer med fysiska beräkningar för 
att förhöja dataspel. 
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Chapter 1  

Introduction 

In today’s computer games character motion is performed through a series 
of animations created in some form of three dimensional (3D) modelling 
program like Alias|Wavefront’s Maya or Discreet’s 3ds max. These 
animations can be produced with the help of motion capture [Steed, 2002]. 
These animations are then imported into the game. 

While this is an interesting technique in itself with many difficulties, the 
possibility of simulating realistic physical behaviour gives us a more 
realistic behaviour as well as an infinite amount of movement patterns. 

In the history of 3D computer graphics there has always been substantial 
differences between the approaches in the computer gaming industry and 
academic researchers doing physics simulation. While computer games 
have mainly been focused on achieving realistic character behaviour 
through pre-rendered animation, the academic community have been 
more interested in getting correct physical simulation. 

During the last few years we have seen this difference diminish and the 
two fields learn from each other. The gaming industry has made a great 
effort to use Newtonian physics and the academic world has started to use 
and appreciate the fast rendering techniques developed within the gaming 
industry for convincing visualization. 

So what has the gaming industry to gain from physics simulation and is it 
feasible to think that today’s computers can handle this type of 
computation in real time? The benefits are obvious if you look at a snooker 
or pinball game which is difficult, if at all possible, to make without 
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physics, particularly if there is to be any interaction. 

In 3D simulation the concept of rigid bodies is extensively used. Not only 
because of the simplification of physics but also the simplification of 
collision handling and rendering. 

Lately the games development community has started to look at the 
possibilities of using physics in character animations as well. This has 
resulted in something the game developers refer to as rag doll behaviour. 

Rag doll, as the name implies, is the ability to let the characters be 
influenced by the surrounding environment while apparently limp 
themselves, like rag dolls. This has resulted in the press using the 
oxymoron “Lifelike death animations” in their reviews [Jakobsen, 2001]. 

It is however important to emphasise that rag doll behaviour does not 
imply controlling the user controlled characters with physics, it merely 
concerns simulating physical effects on lifeless characters or lifeless limbs. 
These simulations can however be mixed with existing animations as 
discussed in chapter 2.2. 

There is however research treating the subject of shifting the character 
control from the animations system to the physics system and thus 
simulating ‘muscles’. This research area is called dynamic animation 
[Bruderlin & Calvert, 1989] or physics-based character animation control 
[Faloutsos et al., 2001]. 

What we have seen the last years is that a wide range of physics engines 
have emerged from third party companies and open source projects. 

Among the commercial physics engines can be mentioned MathEngine’s 
Karma (http://www.mathengine.com/) and Havok 
(http://www.havok.com/). Open source projects have emerged and 
disappeared a bit faster than their commercial counterparts, but Open 
Dynamics Engine (http://opende.sourceforge.net/) and Darwin2k 
(http://www.darwin2k.com/) are two projects that still keep evolving. 

Among the open source projects some are impelled and produced by 
robotics and computer science institutes while others are maintained by 
people solely interested in game development. 

At present the gap between the physics engines for games and academic 
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research is large. Physics engines for games have focused on vehicle and 
projectile physics while academic research projects lack stability and 
generality making them hard to use for anything other than the special 
purpose they where designed for. 

Experts predict a growing market of middleware for the computer game 
industry where game physics seems to be one of the most attractive areas 
after graphics engines. 

Rag Doll effects need the basic concept of Articulated Rigid Bodies. 
Articulated Rigid Bodies are based on constraining ordinary rigid bodies. 
These constraints are both a tricky and computationally demanding area.  

We will go through the most important areas to get the basic knowledge 
of 3D simulation and then concentrate on constraints, which make rag doll 
behaviour possible. The areas we will discuss are: animation, physics, 
collision handling, constraints and articulated rigid bodies. 

The possibilities that new techniques expose will be presented as well as 
the three most common ways to reinforce constraints. 
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Chapter 2  

Animation 

The largest contribution to the progress in graphic animations has come 
from the film industry with Pixar Animation Studio as one of the main 
contributors. For over a decade Pixar Animation Studio have produced 
short and feature films such as Toy Story and the early Luxo Jr both 
displaying amazing photorealistic graphics. 

Behind Pixar’s animated films you can find technical innovation in a 
graphics language known as Photorealistic RenderMan. 

According to [Engel, 2002] one key to RenderMan’s success is that the 
programmability of the rendering pipeline has allowed RenderMan to 
evolve as major new rendering techniques were invented. However, this 
programmability has limited RenderMan to software-only 
implementations, thus only working for off-line rendering. 

In the last few years we have seen the ability to program the rendering 
pipeline, as opposed to fixed functions, appear in graphics hardware for 
home computers with real-time performance. This technique is similar to 
RenderMan’s graphics language and is referred to as programmable 
shading and is dependent on the graphics card’s graphics-processing unit 
(gpu). 

The principal 3D graphic APIs (DirectX and OpenGL) have also evolved 
alongside the graphics hardware. One of the most important new features 
in DirectX Graphics is the addition of a programmable pipeline that 
provides an assembly language interface to the transformation and 
lighting hardware (vertex shader) and the pixel pipeline (pixel shader). 
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2.1 The Graphics Rendering Pipeline 
The basic rendering primitives used by most graphics hardware are 
points, lines and triangles. When grouped together these rendering 
primitives constitute objects. 

A scene is the collection of several objects and the environment needed to 
generate, or render, a visual presentation of the virtual model. A scene can 
also include material descriptions, lightning and viewing specifications. 

The graphics rendering pipeline renders a two dimensional image from an 
underlying 3D representation. The rendering pipeline conceptually 
consists of three stages: application, geometry and rasterizer, as illustrated 
in Figure 1. 

Vertex Data

Fixed Function
Transform

and Lighting

Tessellation Data

Vertex Shader

Clipping & Viewport Mapping

Texture Stages Pixel Shader

Fog

Alpha, Stencil, Depth Testing

Geometry
Stage

Rasterizer
Stage

From
Application
Stage

 

Figure 1 The graphics pipeline; with shaders. 

These stages are in turn divided into one or several pipeline stages 
depending on implementation and hardware. 

As the name implies, the application stage is implemented in software. 
The application stage may, for example, contain collision detection, 
collision response, acceleration algorithms and animations.  

The geometry stage, which can be implemented either in software or 
hardware, deals with transforms, projections, lighting, etc. 
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The rasterizer stage draws an image from the data generated from the 
previous stages that is possible to display, usually on a computer screen. 

In this thesis we are mainly concerned with the application stage. 
However we will briefly cover a concept known as vertex blending because 
of the possibilities it conveys to rag doll behaviour. 

2.2 Vertex Blending 
Characters in computer games used to consist of several rigid bodies 
linked together. This made the building and animation of characters 
tedious work. When characters moved one could often see fractures 
between the polygons and other unwanted behaviour.  

Vertex blending addresses this problem by making the character consist of 
a set of bones and having an elastic skin react to changes in the poses of 
the bones. 

The skin thus makes the character consist of only one part, the polygon 
mesh representing the skin of the character, see Figure 2. The vertices of 
the mesh are connected to one or more bones of the underlying skeleton 
with weights. This enables the mesh to appear soft and flexible in the 
joints, see Figure 3. It also makes the representation of the character more 
efficient. When moving it is actually only the skeleton being processed, the 
skin just follows the bones it is connected to. 

 

Figure 2 Skinning; how vertices are connected to the bones.  

Vertex blending is not a new concept, [Laperrière et al., 1988], and is also 
known as skinning, enveloping and skeleton-subspace deformation. 

This technique has made the use of skeletal animation widespread, 
therefore making the implementation of rag doll behaviour easier. We no 
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longer have to bother with a whole new framework. We only need to 
define how many and which of the bones from the graphic representation 
should be used in the physical description and add physical properties to 
them. 

 

Figure 3 Vertex blending: smoothes the joints by connecting vertices on the skin to two 
different bones. 

Vertex blending can also, and more importantly for the object of this 
thesis, be used to blend between multiple animations and/or physics.  

Analogously with the previous case we define weights to connect the 
vertices to several bones. The difference in this case is that the vertices are 
weighted between two copies of the same skeleton, or subpart of the 
skeleton, performing different movements rather than two connected 
bones. Whether the motion of the bones is predefined by an animation or 
real time computed by the physics system is irrelevant for the vertex 
blending. 

This makes it possible not only to reduce the amount of animations but 
also to produce an infinite amount of new moment patterns in real-time. 
Mixing rag doll effects with animations can for instance make recoil and 
hit animations redundant in first person shooter games. 

Vertex blending can be implemented in several different ways. Except 
implementation in software, today’s graphics hardware offer two different 
approaches, either fixed function or vertex shader. 

Fixed function vertex blending, referred to as indexed vertex blending, 
which is the older of the two techniques, has the disadvantage of being 
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restricted to the specific hardware implementation, that is the graphics 
card. 

The vertex shader on the other hand is a small assembly-language that is 
run on the gpu for each vertex replacing the transform and lightning 
computations of the fixed-function. This enables the developer greater 
control and the use of more advanced effects, see [Gosselin, 2002]. 

When using vertex blending to blend between different animations or 
physics response it might however not be desirable to use a hardware 
implementation because this is later in the pipeline than collision 
handling. This implies that the new ‘blended’ position is unknown to the 
collision handling system and thus will only be the graphical 
representation and no collision or response can be taken on this pose but 
only the ‘true’ pose. This can however be viewed as a feasible 
approximation to increase speed. 



 9

Chapter 3  

Physics 

During the last few years the interest in using physics in game 
development has increased significantly. Some say the physics engine 
now is more important than the graphics engine to produce a strong game 
title. This is mainly because the graphics, which used to be the focus of the 
game development community, has made such progress during the last 
years that realism and detail is more an issue of taste and game play than 
technology. Lately focus has been shifting to achieve realism through 
believable physics and correct response. 

This can be seen in the vast number of books, articles and conference talks 
that have emerged during the last half-decade. Among the most renowned 
are the popular seminars by David Baraff and Andrew Witkin, which they 
have held several times at SIGGRAPH since 1995 [Baraff & Witkin, 2001]. 
It is also interesting to note the merging of offline and online rendering 
techniques in animated Hollywood films and computer games. 

Physics is however a huge area and we are only concerned with the 
branch referred to as classical mechanics. 

Classical mechanics, often called “Newtonian mechanics” after 
Isaac Newton, who made major fundamental contributions to the theory, 
is the physics of forces acting on bodies. It is subdivided into statics, which 
deals with objects in equilibrium, and kinematics and dynamics, which deal 
with objects in motion. 

Classical mechanics produces very accurate results within the domain of 
everyday experience. But in the late 19th century inconsistencies in 
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classical mechanics were discovered and was thus in time superseded by 
relativistic mechanics for systems moving at velocities near the speed of 
light, quantum mechanics for systems at small distance scales, and 
relativistic quantum field theory for systems with both properties 
[Halliday et al., 1997]. 

Nevertheless, classical mechanics is still very useful, because it is much 
simpler and easier to apply than these other theories, and it has a very 
large range of approximate validity.  

3.1 Kinematics 
Kinematics is the branch of mechanics concerned with the motions of 
objects without being concerned with the forces that cause the motion.  

Often it is the case that kinematics is sufficient to produce plausible 
animations or interactions.  

Inverse kinematics is really no different from kinematics. The implication of 
“inverse” is that the system will ‘work backwards’ from the desired end 
position of one or more control points on a mechanical linkage, to infer the 
positions of other parts of the system so that the goal is achieved. 

Inverse kinematics is known to be computationally expensive and has 
been thoroughly researched in the robotics community. This has resulted 
in many open source projects, for example http://cal3d.sourceforge.net/ 
which is a skeletal based 3D character animation library that can be used 
in many different kinds of projects involving inverse kinematics. 

3.1.1 Position and Orientation 
The basis of classical mechanics is the motion of particles. A particle does 
not have any orientation and hence the only thing we need address is the 
location. The location is dependent on the velocity, and the derivative of 
the velocity - the acceleration - is in its turn dependent on the forces acting 
on the particle. 

To represent the location at time t we form the vector x(t), which describes 
the offset from the world origin, thus defining the translation from the 
body fixed reference frame to the world fixed reference frame, which we will 
describe in more depth shortly. 
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Bodies on the other hand also have an orientation. When simulating rigid 
body physics we therefore need to extend the simple particle physics with 
an orientation and an angular velocity. The angular velocity is in its turn 
dependent on the torque, the part of a force that produces rotation about 
an axis. 

The body fixed reference frame, often referred to as body space, is the local 
coordinate system fixed on the body. To go from the general world fixed 
reference frame, or world space, to a body’s body space coordinates we need 
to both translate and rotate the body, see Figure 4. Even though the body 
moves, i.e. translates and/or reorients, the body space stays intact. 

B

W

B

 

Figure 4 Translation and rotation from body space to world space. 

There are two commonly used ways to represent orientation. The first and 
simpler is a 3×3 matrix, R(t), consisting of three vectors spanning the body 
space of the body. The other is unit quaternions q(t), see [Shoemake, 1985] 
and [Eberly, 2002]. A quaternion is a four-dimensional representation of a 
three-dimensional rotation and consists of four parameters as 
q(t) = (r,i, j,k), where r is the real part and i,j,k represent the vector part. In 
three dimensions we should be able to represent a rotation uniquely with 
only three parameters. So why do we not simply represent a rotation with 
a three element vector? The problem is that this could be interpreted in 
two different ways due to the ambiguity of the vector, a positive and a 
negative direction. 
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A simple representation with a 3×3 matrix has many advantages such as 
easy to comprehend and fast transformation performance. But there are 
also drawbacks. Representing a rotation with a 3×3 matrix means we use 
nine parameters. This gives us a redundancy of 6 parameters representing 
the tree degrees of freedom of the rotation. Compared with quaternions 
only 134 =−  parameter overhead. Apart from the excess usage of 
memory, there is also a huge difference in numerical drift. Both the matrix 
and the quaternion need to be normalized to be consistent with 
representing only a rotation. However renormalizing a quaternion to 
adjust for floating point errors is cheaper than renormalizing a rotational 
matrix. 

Numerical drift of a rotational matrix can also convey in a more severe 
consequence, the applying of skewing. This is of course disastrous since it 
distorts the shape of a body, and can for example convert a football to a 
rugby ball.  

Apart from being more exact and resisting numerical drift, quaternions 
also perform composition of rotations much more efficiently [Eberly, 
2002]. Furthermore, because conversion between quaternion and 
rotational matrix representations is an inexpensive task, we can consider 
converting to rotational matrix representation only while performing the 
transformations. 

Thus it is recommendable to represent the bodies’ spatial variables as a 
vector x(t) representing position and a quaternion q(t) representing 
orientation. 

3.1.2 Velocity 
The velocity defines how our spatial variables change over time. Thus we 
need to define )(tx&  and )(tq& . The change of position over time is called 
linear velocity and denoted v(t). Linear velocity in world space is defined 
as )()( txtv &= , and is simple enough to comprehend. 

In addition to translating, a rigid body can also spin. If we fix the position 
of a point in the body, any movement of the body must be due to the body 
spinning about some axis that passes through the fixed point, otherwise 
the point would itself be moving. We can describe that spin as a 
vector )(tω . 
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The direction of )(tω  gives the direction of the axis about which the body 

is spinning and the magnitude )(tω  tells how fast the body is spinning. 

This quantity )(tω  is called the angular velocity. 

The change of orientation over time is a bit trickier to define than the 
linear counterpart, especially if quaternions represent the orientation. 

Therefore we only state for the quaternion case that )()(2
1)( tqttq ω=&  and 

refer to [Eberly, 2002] for the derivation. 

3.2 Dynamics 
If kinematics is the field describing movement over time then dynamics is 
what causes it. Thus dynamics is the study of forces and masses. 

3.2.1 Mass and Inertia Tensor 
The inertia tensor I describes the distribution of the mass in the body. This 
is what causes the spin of a body to vary depending on where the force is 
applied, even though the magnitude of the force is the same, see Figure 5. 

W

B

ωW

 

Figure 5 Distribution of mass over the body, inertia tensor. 

When treating bodies the intrinsic mass distribution of the body in body 
space is fixed, as is usually, but not necessarily, the total mass m of the 
body. To simplify calculations and minimize the amount of state 
parameters the origin of body space is usually chosen to coincide with the 
centre of mass. 
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If the centre of mass coincides with the origin of the body space the inertia 
tensor I does not change with time. Hence we only need to calculate the 
inertia tensor in world space as T

bs tRItRtI )()()( = . 

Since the inertia tensor I(t) is needed to transform between angular 
momentum and angular velocity w(t), as we will discuss in more depth 
shortly, it is important that this is easy and inexpensive to compute. 

Note that the inertia tensor is a 3×3 matrix and the mass only a scalar. 

The inertia tensors for the most common and simple geometrical shapes 
are easy to look up, while deriving them is another issue and will not be 
dealt with here, [Stejskal & Valásek, 1996]. Table 1 shows the inertia 
tensors for some of the simpler geometrical shapes that are of interest 
when modelling characters. 

Table 1 Inertia tensors for some common geometries 

Geometry Moment of Inertia 

Solid cylinder 2

2
1 mRI =  

Solid sphere 2

5
2 mRI =  

Rod 2

3
1 mRI =  

 

3.2.2 Force and Torque 
A force may be thought of as any influence that tends to change the motion 
of an object, such as gravity, drag or contact. In dynamics, a force is 
divided into one part that cause linear motion and one part that cause 
rotational motion. The latter is called torque, denoted τ. Newton’s second 
law describes the action of forces in causing motion as tmvF ∂∂= )( , 
where F is the net external force, m the mass and v the velocity. Typically, 
the mass m is constant in time, and Newton’s second law can be written in 
the simplified form maF = . 
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The torque, in contrast to the linear part of the force, is dependent on 
where on the body the force is applied. The torque is defined as Fp ×=τ , 
that is, the cross product between the force F and the position vector of the 
point p where the force is applied on the body relative to the body centre 
of mass. As can be seen in Figure 6, the torque is perpendicular both to the 
applied force and to the straight line between the centre of mass and the 
point of contact. 

xW

τi
W

Fi
W

xW

Fi
W

ρi
W ρi

W

W W

BB

 

Figure 6 Applied force, point of contact and resulting torque. 

In considering the effect of a force acting at a point on a body it sometimes 
seems that the force is being considered twice. That is, if a force F acts on a 
body at a point p (p + x(t) in world space), then we first consider F as 
accelerating the centre of mass, and then consider F as imparting a spin to 
the body. 

This gives rise to what at first seems as a paradox if comparing two 
situations with identical bodies and forces but with different points on the 
bodies where the force is applied. In one case the force acts at the centre of 
mass, and in one off-centre, see Figure 7. 

In both cases the bodies gain the same amount of linear acceleration, but 
the body where the force was applied off-centre also has picked up an 
angular acceleration and therefore a larger amount of energy from the 
same force. This is due to the fact that energy, or work, is the integral of 
force over distance. Hence the body where the force was applied off-centre 
gains more energy since the force was applied over a longer distance. 
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Figure 7 Force giving rise to both linear and angular acceleration.  
Image from [Baraff & Witkin, 2001]. 

3.2.3 Momentum 
Like all the other properties we have dealt with in this chapter, momentum 
can be divided into its position dependent and its orientation dependent 
parts. 

Linear momentum is the property that deals with position and is defined as 
)()( tmvtP = , where m is the mass of the body and v(t) the velocity of the 

centre of mass.  

Analogously angular momentum is defined as )()()( ttItL ω= , where I(t) is 
the inertia tensor and )(tω  the angular velocity. 
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There is a simple relation between linear momentum and force FP =&  and 
between angular momentum and torque τ=L& . 

Because the inertia tensor I(t) is dependent on the orientation, hence time, 
the angular velocity is not necessarily constant even if the angular 
momentum is constant. Therefore it is advisable to use the angular 
momentum as a state variable rather than the angular velocity, which is 

easily calculated as 1)()()( −= tItLtω . 

To be consistent with the angular case it is also desirable to use the linear 
momentum instead of the linear velocity as a state variable.  
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Chapter 4  

Collision Handling 

Collision handling is of very large importance in any 3D computer 
simulation. Without it no interaction between objects is possible.  

Collision handling can be divided into three major parts: collision detection, 
collision determination and collision response. These parts are all both 
intellectually and computationally demanding areas and what follows 
here is only a short introduction. A more thorough introduction to the vast 
theory of collision handling can be found in [Akenine-Möller & Haines, 
2002]. 

Collision detection and collision determination is closely coupled when 
considering actual implementation and when discussing collision 
detection one usually refer to them both when talking about collision 
detection. 

Collision response on the other hand is usually separate from both 
collision detection and collision determination thus making the geometric 
representation rather transparent. But we still need to be informed of 
occurring collisions (collision detection) and collision data (collision 
determination) before computing the action to be taken (collision 
response). 

4.1 Collision Detection 
During each time step the collision detection system scans the scene for 
collisions or interpenetrations and reports them. 

The distinction between interpenetration and collision is dependent on the 
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Euclidean distance between two body surfaces. If it is below zero the two 
bodies interpenetrate and if the Euclidean distance is equal to or within a 
positive threshold value and the bodies do not interpenetrate they are said 
to be colliding. 

The collision detection is usually divided into two phases, the broad phase 
and the narrow phase. The object of the broad phase is to exclude as many 
objects as possible from further collision detection checking. The narrow 
phase will then perform a more thorough collision detection with the 
objects that are left after the broad phase. During the narrow phase we 
usually want to use different collision detection algorithms depending on 
what kind of objects we are dealing with. 

Through out the collision handling the representation of objects is usually 
something simpler than the actual meshes representing the objects 
graphically, making the testing quicker. This simpler representation is 
referred to as bounding volumes. 

Some common bounding volume choices are; Bounding Sphere, Axis 
Aligned Bounding Boxes (AABB), Oriented Bounding Boxes (OBB), 
Discrete Orientation Polytope (k-dop) and Convex Hull, see Figure 8. 
These are then usually ordered in a tree structure for faster traversal. 
Binary Space Partitioning (BSP) trees are another commonly used 
technique.  

 

Figure 8 Different bounding boxes. 

Note that it is left to a collision response system to resolve the collision. 
The collision detection system only detects the collisions. 

A common problem with collision detection is tunnelling. Tunnelling is 
when an object penetrates another object, for instance a wall, and is able to 
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pass trough entirely during one time-step, thus making it hard to detect 
collisions. This is usually due to small objects moving at high velocities, 
[Moore & Wilhelms, 1988]. 

4.2 Collision Determination 
Once a collision has been identified the collision determination system 
steps in. The collision determination system’s main concern is to collect 
collision data. The needed collision data is time of collision, participating 
objects, point of contact on the objects, collision normal and the relative 
velocities of each object at the point of contact, see Figure 9. 
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Figure 9 Two colliding bodies. 

Depending on what kind of objects and how many different sorts we are 
dealing with this can be of varying difficulty, with many different 
complex objects the hardest to handle. This is why bounding volumes 
usually are used to approximate the objects during the collision 
determination as well to keep the complexity and number of geometries to 
a minimum. 

This of course affects the correctness of the collision data computed, and 
we thus have to balance speed and correctness. 

Because a collision does not necessarily occur at the end of a time step 
cycle another problem arises. When an interpenetration state has been 
found, thus the collision occurred sometime during the last time step, we 
have another choice between speed and correctness. Either the collision 
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detection system must backtrack to find the collision state prior to the 
interpenetration or we have to approximate the collision data. 

4.3 Collision Response 
The collision response system decides what action is to be taken when a 
collision has occurred. This involves computing and applying forces on 
the involved objects. 

It is the area of collision handling that has evolved most the last few years, 
from simple boolean expressions deciding the response to using the laws 
of physics. 

Some [Dingliana & O’Sullivan, 2001] argue that it is hard for humans to 
judge whether a collision response is more or less correct, especially in 
multiple dimensions, i.e. 3D, while others [Hecker, 1996] say that we 
underestimate the human perception capacity and that more correct 
response, even though not ‘visible’, gives a more believable response.  

It is in the light of this development that resting contact, friction and 
trajectories have conquered the gaming industry. 

Resting contact and friction are closely coupled and address the problem 
of objects sliding or standing on other objects, for instance a pile of boxes 
stacked on each other. 

At the heart of handling contacts we find constraints. This is also what we 
need for rag doll behaviour. 
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Chapter 5  

Constraints 

As we have seen in the previous chapter the issues concerning rigid body 
dynamics are both well documented and widely used. But how are we 
going to link these bodies together to form composite articulated rigid 
bodies? The answer is constraints. 

Constraints are today mainly used in 3D simulations to reinforce body 
solidness, to prevent interpenetration between bodies. These constraints 
are usually referred to as inequality constraints. For example the position 
of, for instance, a ball can be any as long as it is above ground, 
ball altitude > ground level. 

The other type of constraints is referred to as equality constraints and is 
for instance used to reinforce the geometric connection between bodies or 
to reduce the degrees of freedom, i.e. disabling motion along certain 
directions or axes. Consider for example a bead on a string, it can slide on 
the string but still has to follow the extent of the string, thus restricting the 
linear motion into one dimension. 

When modelling articulated rigid bodies we usually divide them into 
positional and angular constraints. The positional constraints keep the 
bodies from separating or interpenetrating, these are equality constraints. 
The angular constraints restrict the bodies from occupying forbidden 
angular poses relative to each other. These are inequality constraints. 

Both equality constraints and inequality constraints belong to the group of 
constrains called holonimic constraints. There is also another group of 
constraints called nonholonomic constraints. These constraints are related 
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to velocity rather than position as the former holonomic constraints are, 
see [Dankowicz, 1999]. These constraints make it possible to control 
relative velocities, useful when simulating for instance a gearbox. 

Rigid bodies, whether articulated or not, have six degrees of freedom in 
3D, see Figure 10. That is, they can move in six possible directions. Three 
linear degrees of freedom, consisting of the three spatial dimensions, and 
three angular degrees of freedom, consisting of roll, pitch and yaw. It is 
these degrees of freedom that the constraints will restrict. 

Z

X

Y

 

Figure 10 Illustration of the six degrees of freedoms in 3D. 

Typically, in a system describing characters the constraints are sparse: 
each constraint directly affects only one or two bodies (for example, 
geometric connection constraints) and there is not extensive branching. 
Thus, for a system with n bodies, there are only O(n) constraints. 

In particular, the simulation of articulated figures and mechanisms falls 
into this category. Sparse constraint systems are also either nearly or 
completely acyclic: for example, robot arms are usually open-loop 
structures, as are animation models for humans and other mammals. 
Considerable effort has been directed toward efficiently simulating these 
types of systems. 

Because of the complexity of constraints the need and choice of algorithm 
is important. However, without constraints we can only have simple 
single rigid bodies without interbody associations. This is why constraints 
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are of growing importance. 

When modelling constraints there are several ways to go about the 
problem, some more physically correct than others.  

Here follows a description of the three most well known implementations 
in real-time 3D rendering and a discussion of their advantages and 
disadvantages. 

5.1 Springs 
A spring is an elastic device, such as a coil of wire that regains its original 
shape after being compressed or extended. This concept is often used in 
3D simulation in various ways. It can be used to simulate things like 
dampers on vehicles. But it can also be used in particle systems in various 
ways and also to simulate constraints. 

There are however some problems with this approach. Even though 
springs are easy enough to implement the stability is far from acceptable 
as well as the problem with getting them to simulate hard constraints like 
angular stops in for instance an elbow. 

In [Jakobsen, 2001] the physics engine for the game Hitman – Codename 47 
is described. Here the basis of the whole physics engine is a particle 
system that, with the aid of springs, simulates both rigid bodies and the 
articulated rigid bodies to become one of the first games to achieve rag 
doll behaviour. 

In Hitman – Codename 47 constraints are handled by relaxation and 
stiffness of the springs. The stiffness of the springs goes to infinity when a 
connection is wanted. 

This is an instable way to simulate constraints and demands a big amount 
of tweaking and error correction as well. Apart from that it is not very 
physically correct. However, it is fast and, apart from the tweaking, simple 
to implement. 

Springs are, though maybe not preferable when simulating constraints, 
useful in conjunction with constraints to simulate inverse kinematics. 
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5.2 Reduced/Generalized Coordinates 
A more physically correct way to simulate constraints, and an approach 
thoroughly used and researched in the academic mechanics community, is 
to constrain the degrees of freedom by reducing the actual number of 
variables describing the body state. 

This approach is called Generalized coordinates, as opposed to maximal 
coordinates, which is the name for describing the system with its full set of 
state variables. It is also referred to as Reduced coordinates due to the fact 
that this describes how the technique works. 

In a 3D system consisting of n bodies, each with six degrees of freedom, a 
reduced coordinate formulation removes the c constraints from the system 
leaving a set of 6n − c = m  parameterised coordinates to define the system. 

Finding a generalized parameterisation for 6n maximal coordinates is 
however a tedious and arbitrarily hard work. If such a parameterisation 
can be found, O(n3) time is required to compute the acceleration of the m 
generalized coordinates at any instant. 

However, loop-free articulated rigid bodies are trivially parameterised, 
and methods for computing the m generalized coordinate accelerations in 
O(n) time are well known  and described in [Featherstone, 1987]. 

One big advantage with the generalized coordinate approach is the 
elimination of drift giving us a stable system. Furthermore this method is 
possibly faster than others because of the possibility for the integrator to 
take larger time steps. This is however not any general rule and depends 
on the implementation. 

The biggest problem with this approach however is that it assumes 
extensive analytical mathematical knowledge. This is needed not only 
during implementation of the system but also continuously while new sets 
of objects and constraints are introduced. This can to a certain extent be 
automated, but the amount of code grows very quickly, [Witkin et al., 
1990]. 

5.3 Lagrange Multipliers 
In the Lagrange multipliers approach the technique is to introduce 
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additional constraint forces to maintain the constraints rather than trying 
to eliminate degrees of freedom. 

Lagrange multipliers are good for arbitrary sets of combined constraints 
and render possible a modular framework. They also handle 
nonholonomic constraints, velocity dependent constraints, in a simple 
way. 

The standard Lagrange multiplier implementations have been seen to 
perform O(n3) but in [Baraff, 1996] is presented a Lagrange multiplier 
algorithm that performs in O(n) for a sparse, open loop system. With 
‘sparse’ is implied that constraints only affect two or fewer bodies, which 
is the case for a character. 

The heart of any Lagrange multiplier formula is solving the matrix 
equation: 

cJJM T =− λ1  

where the vector λ contains the multiplier elements we wish to solve for. 

J contains the constraint connectivity and M the mass properties of the 
bodies while the vector c contains the forces being applied to the bodies. 

5.3.1 A Sparse Solution Method 
Now, if we restrict the constraints to act only between pairs of bodies we 
will achieve a sparse matrix. Furthermore we need to ensure that the 
bodies are ordered correctly. 

Following the algorithm described in [Baraff, 1996] we start by stating that 
we follow the second-order law maF = , that is  

vmF &=  (1) 

as discussed in previous chapters. 

We also divide the total force into the external force Fext and the constraint 
force Fc like:  

extc FFF +=  (2) 

The constraint force Fc should be workless, that is, it should (almost, see 
[Barr & Barzel, 1988]) not add any energy to the system. To ensure this we 
need to add the condition λTc JF = . 
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Thus  
extTextc FJFFF +=+= λ  (3) 

and substituting F in (1) gives:  
extT FJvM += λ&  

solving for the acceleration gives: 
extT FMJMv 11 −− += λ&  (4) 

As discussed earlier the constraints can be expressed as a linear condition 
on the bodies’ accelerations. In matrix form this would look like: 

0=+ cvJ &  (5) 

Substituting (4) in (5) gives: 

0)( 11 =++ −− cFMJMJ extT λ  (6) 

If we define b as: )( 1 cFJMb ext +−= −  
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bJy −=−  

Solving row one for y and substituting this into row two gives: 

bJMJJy T == − )( 1 λ  

For convenience we define H as: 
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For four bodies connected like a tree H would look something like: 
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It is due to the fact that H is always sparse that we can find a linear 
solution method to the articulated system. 

However, to exploit this sparsity we need to permute H first. 

This is easily done using the O(n) sparsefactor procedure described in 
[Baraff, 1996], producing a permuted H as: 
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Solving this system is then done by using the O(n) sparsesolve procedure 
described in [Baraff, 1996]. 

Note that the sparsefactor procedure only needs to be called once for one 
specific configuration of bodies and constraints because H is not time 
dependent. 
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Chapter 6  

Design 

Following the results from previous chapters we are now ready to design 
a framework that enables rag doll behaviour. 

The foundation of any 3D simulation is rigid bodies. Even if soft bodies 
are under research, see [Barr et al., 2000] and [Barr & Platt, 1988], rigid 
bodies still hold the upper hand in high performance 3D simulations such 
as computer games. 

Articulated rigid bodies can be used to describe not only characters but also 
other forms of objects like an articulated tank in a computer game, 
enabling motion of for instance the canon turret separate from the body of 
the tank.  

As the name implies an articulated rigid body consists of two or more 
rigid bodies connected to each other through joints, thus forming one 
coherent body. 

The framework presented here is specialised on handling character 
simulation. This does however not prevent parts of the framework to be 
used to simulate other forms of articulated rigid bodies, like the tank 
described above. 

The building blocks, and also the data structure, that we compose the 
framework of are bones and joints. 
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6.1 Bones 
Bones is how we choose to represent the abstract physical bodies 
constituting the parts of an articulated rigid body. There are several 
reasons why choose bones for this representation.  

First this is the most contiguous approach compared to reality, i.e. the 
human body, which consist of bones. Secondly the way characters are 
constructed in 3D modelling programs, like Alias|Wavefront’s Maya or 
Discreet’s 3ds max, depend on skinning as described in Chapter 2. This 
technique depends on forming a skeleton covered with a skin. The bones 
of this skeleton generated in the modelling phase can easily be extended to 
contain the data needed for the framework. Thus using these bones will 
reduce the data redundancy as well as improve comprehension while this 
is consistent. 

Note that the shape of a rigid body is not a dynamical property (except 
insofar as it influences the various mass properties). It is only collision 
detection and visualization that is concerned with the detailed shape of 
the body. 

A rigid body has various properties from the point of view of the 
simulation. Some properties change over time:  

• Position vector of the body’s point of reference. 
• Linear velocity of the point of reference.  
• Orientation of a body, represented by a quaternion or a 3×3 rotation matrix.  
• Angular velocity vector, which describes how the orientation changes over 

time.  

Other body properties are usually constant over time:  

• Mass of the body.  
• Position of the centre of mass with respect to the point of reference. 
• Inertia matrix. 

Conceptually each body has an x-y-z coordinate frame embedded in it, 
which moves and rotates with the body, body space. The origin of this 
reference frame is the body’s point of reference. Some values in the system 
(vectors, matrices etc) are relative to the body coordinate frame, and 
others are relative to the global coordinate frame. 

We have now covered all the concepts we need to describe the state of a 
rigid body and also their differentials. In addition to this we have some 
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auxiliary quantities associated with our state variables. 

The state variables are position, orientation, linear momentum and 
angular momentum. The mass and the inertia tensor are body specific 
constants and because the latter’s inverse is frequently used to calculate 
the inertia tensor in world space, this is also stored as a body constant. 

The derivatives of the state variables are: 

)()( tvtx =&  

)()(
2
1)( tqttq ω=&  

)()( tFtP =&  

)()( ttL τ=&  

The auxiliary quantities we need are linear velocity, angular velocity and 
the inverse of the inertia tensor in world space and these are computed 
accordingly: 
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In addition to this we need to store the quantities that change the body 
state, force, and calculate its rotational influence, torque. 

These bones we define as a subclass of the bones that graphically 
constitutes the character. As we mentioned in Chapter 2, we import the 
characters from a 3D modelling program. What we actually import is the 
skeletons and the attached skin.  

We now need to conclude which of the bones that the framework needs to 
take into account. We are not interested in having the framework perform 
calculations on bones that do not move, for instance the bones in the hand. 



 32

The bones are constructed during modelling to generate a detailed 
character but during simulation including all the bones of the fingers 
would make the calculations much to heavy and not add much realism. 

Which of the bones to be excluded from the calculations is dependent on 
each title and what movement is desired for that character. This selection 
must, as I can see it, always be done by hand. It can however be indicated 
with a parameter by the graphics artist and then automated in the import 
phase. 

6.2 Joints 
Bones are connected to each other with joints. These joints handle all the 
constraints between a pair of bodies, i.e. bones. Every character, 
containing bones and joints, is separate from other characters. A character 
is thus a group of bodies that cannot be pulled apart and each bone is 
connected somehow to every other body in the character. Each character 
in the world is treated separately when a simulation step is taken. 

Joints need to be attached to a point in each of the two bones it connects 
making the bones inseparable. A joint can furthermore restrict the 
movement between the bones. There are two ways joints can restrict how 
the bones moves relative to each other. It can restrict the degrees of 
freedom, thus disabling rotation around certain axis, and it can restrict the 
permitted angles in certain directions, angular stops. 

To enforce the properties of the joints, connection and relative poses, we 
need constraints. The most favourable way to implement constraints for an 
application like this is the sparse solution method presented in [Baraff, 
1996]. As we have described in Chapter 5, this is due to the low 
complexity and modularity it conveys. 

In the design of this framework I prefer viewing joints as similar to human 
joints as possible while still as simple to simulate as possible. We therefore 
design three types of joints: hinge joints, ball-and-socket joints and pivot 
joints. There are other joint types in the human body, like condyloid joints, 
gliding joints and saddle joints, but the previous three are sufficient to 
simulate human motion. 

Hinge joints restrict the relative movement of the connected bones to only 



 33

one degree of freedom simulating an elbows or a knee. Ball-and-socket 
joints enable movement in all directions simulating fort instance the carpal 
joint. Pivot joints enable a twisting movement simulating the twisting 
motion in for instance the neck. 

We might also want to implement slider joints and contact joints for other 
parts of the simulation, for instance vehicles.  

The joints are composed of several different constraints. One constraint is 
needed to fix the connection points of the two connected bones. This 
connection point does not necessary lay within the graphical 
representation of the bones. Furthermore there are constraints restricting 
the relative movement thus forming the different joints presented. 

The joints also need to contain the constraints controlling angular stops. 
These, as well as contact constraints, are inequality constraint and cannot 
be solved using the sparse solutions method we use to solve the equality 
constraints.  

Thus we need to implement the ordinary Lagrange Multiplier solver as 
well. Because the higher complexity involved in this solver it is important 
to bear this in mind when defining the constrains and angular stops. 

6.3 Tree Structure 
When, as we are, considering a character skeleton the bones and joints are 
related to each other without loops. This makes it convenient to approach 
it as a tree structure. This tree structure is also necessary for the constraint 
solution method we wish to use. This order is an intuitive father-son 
relationship with any root node. The ordering does however not 
necessarily have to be specified by hand. This can rather be automated by 
a subroutine as shown in [Baraff, 1996]. The bones composing the 
characters need though be specified by hand as discussed in chapter 6.1. 
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Chapter 7  

Evaluation 

 

The design of a rag doll system is a fairly complicated task. It not only has 
to interact with many different systems it is also a computationally 
expensive task. 

7.1 Animation 
When using vertex blending to mix two or more key-frame animations it 
is clearly advantageous to make use of the new graphics hardware 
available on today’s graphics cards while this increase performance. 

In this thesis we have also developed the idea of using vertex blending to 
mix one or more existing animations with the output from a physics 
framework. We can thus achieve rag doll features such as recoil and 
impact effects, on parts or whole of moving characters. 

Using hardware rather then software when implementing vertex blending 
does however imply a short deviation from the true position of the 
character. 

When the visual movement and position do not coincide with the true 
position and movement the collision handling system, which is earlier in 
the graphics pipeline, will not be able to take action to these visual 
positions. This is however a feasible approximation as long as the 
movements still are fairly small.  

When choosing between the possible hardware implementations for 
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vertex blending it is preferable to use vertex shaders rather than fixed 
functions. Not only because of the greater freedom it gives but also 
because this is a newer technique that supports upgrade and is therefore 
probable to be supported for a longer time and thus making the 
framework less sensitive to hardware changes. 

7.2 Physics 
All physics merely try to describe the reality and are thus only 
approximations of it. As David Baraff writes in the opening paragraphs of 
his PhD thesis [Baraff, 1992], “we do not consider the dynamics models 
used in this thesis to be empirically correct. That is not to say our 
dynamics models are ad hoc or deliberately wrong ... our ‘simple’ 
dynamics models are incomplete descriptions of more ‘complicated’ 
dynamic models”. 

In a real time application like a computer game we need to find a balance 
between correctness and performance. We do however have some 
minimum criteria. The simulation is not allowed to crash and it also need 
to be consistent. That is, it should produce the same output given a certain 
input. 

Classical mechanics is a very good approximation of the reality that we 
are imitating in a computer game. It is also far more correct than the 
methods used in older computer games. 

In older ad hoc approximations, parameter tweaking is common. This 
parameter tweaking is undesirable since if N bodies each have M tuneable 
parameters, and if the stability is very sensitive to the values of the 
parameters, then finding a ‘stable’ configuration by tweaking parameters 
is essentially a search in NM dimensional space! 

Classical mechanics copes with our criteria and is feasible to use on a 
modern home computer. 

7.3 Collision Handling 
Collision detection and collision determination is not directly dependant 
on the rag doll system and can therefore be of any choice. The collision 
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response system on the other hand is where the resulting actions are 
calculated. The physics and rag doll system is a part of this general 
system. The rag doll system is concerned with resolving the collision 
response for the characters. 

The resulting forces are then feed back to the main system. 

7.4 Constraints 
When implementing constraints for a rag doll framework we are 
concerned with finding a solution method that can handle a varying 
number of joints. It is therefore desirable to have as low complexity as 
possible. 

There are two ways of achieving as low complexity as linear for 
constraints, reduced coordinates and Lagrange multipliers using the sparse 
solution method described in [Baraff, 1996]. It is possible to attain linear 
complexity with Lagrange multipliers because our characters all have a 
tree structure. 

The modularity that Lagrange multipliers offer is far easier to both 
implement and maintain then the complex reduced coordinates. 

 

7.5 Design 
The calculations that are needed for a rag doll framework is dependent on 
how many joints that are active at a certain instance. So how many joints 
are needed for a character and how many characters can we handle 
simultaneously? 

The amount of joints in a character is dependent on the number of bones 
they need to join. Furthermore the degrees of freedom of each joint affects 
the number of calculations. The more degrees of freedom the more 
calculations. 

A human body consists of about two hundred bones. This would be very 
demanding for one of today’s home computers. Most of the bones would 
not add any visual effect to the game either. To compose a human 
character of around twenty bones is more appropriate. Then one of 
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today’s home computers would be able to handle between ten and a 
hundred characters simultaneously depending on configuration. 

It is also not needed to have the characters active all the time, but only 
when they interact with the environment. For example a corpse lying still 
need not be considered until something hits it, then it is activated in the 
physics framework. 

Because skinning is already in use in virtually all computer game 
development nowadays the character skeleton is already a natural part in 
the production line. The structure of the characters does therefore not 
imply any additional work. Only defining the joints and the active bones 
is necessary. 
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Chapter 8  

Conclusion 

In this thesis we have unravelled the mystic around the much-discussed 
feature called rag doll. It has proven to require a physics framework of 
which we have described the necessary parts and equations. 

We have given a background and the building blocks necessary to 
complete this framework. We have also delved deeper into the different 
approaches to solve constraint, which is the computationally expensive 
part of implementing rag doll behaviour. 

This new technique that is emerging as an important part of game 
development has not previously been covered in literature. This is 
probable due to the different fields it covers. Not only do we need 
extensive knowledge of game development and physics, we also need to 
familiarize ourselves with complex mechanical simulation techniques to 
solve the constraints necessary for articulated rigid bodies. 

Except providing an easily comprehensive exposition of the comprising 
elements needed for a rag doll framework, we have also developed a new 
way of using our rag doll framework. With the help of this new idea of 
using vertex blending we can mix one or more existing animations with 
the output from our physics framework. We can thus achieve rag doll 
features such as recoil and impact effects, on parts or whole of moving 
characters, and not only on lifeless characters. 

The idea we have developed in this thesis to extend the rag doll 
framework to work in synergy with the existing animations to enhance 
them with recoil and impact effects on characters limbs through vertex 
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blending has also economic benefits, as well as the feature effects.  

8.1 Benefits 
So what are the benefits of using rag doll behaviour and is it worth the 
extra computational time? 

The most obvious benefit of using a physics framework and rag doll 
behaviour is the enhancement of the simulation. Making the use of rag 
doll behaviour produces much more realistic death scenes. This alone is a 
fair reason to use rag doll behaviour in a best-seller first person shooter 
game title. 

The idea we have developed in this thesis to extend the rag doll 
framework to work in synergy with the existing animations to enhance 
them with recoil and impact effects on characters limbs through vertex 
blending has also economic benefits, as well as the feature effects. 

Even though the threshold to complete the framework and to launch the 
first title is sure to be bigger than using standard techniques, i.e. offline 
animation rendering, it is sure to be economically beneficial in the long 
run.  

If using the rag doll framework to produce new movement patterns the 
need for special animations are drastically reduced, thus cutting 
development time and costs for consecutive titles. Using traditional 
techniques the anticipated time to complete a full character is between 
three and six months for a fulltime graphics modeller. 

The framework should though not be developed just for its own cause but 
only if there is need for it. A flight simulator has for example no real need 
for a rag doll framework when only using detached rigid bodies, except 
for maybe the ejecting scenes. 

There is also the choice of licensing one of the existing third party 
products. Among the third party producers of physics frameworks for 
computer games Havok seems to have the upper hand right now, but they 
are sure to meet hard competition within soon. 

The drawback with using a third party product is that you usually pay the 
license fee for each title. The possibility to make changes is also forfeited. 
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One could argue that using a third party product does not imply that you 
are locked to that product but can change framework for future titles. This 
should though be considered thoroughly since adapting the game 
development to a product usually requires some time while there still is 
no standard api’s. 

When developing a framework there is need for technically 
knowledgeable personnel. Right now the competence of both physics and 
3D computer game development are hard to come by. But the level of 
knowledge concerning physic equations among game developers is 
constantly rising. 

8.2 Future discussion 
In a future can physics simulation replace character animation in 
computer games? 

This is not so hard to imagine. In practice this would mean that the 
physics system also needs to handle virtual muscles. This is, as we 
mentioned in the introduction, something that is under research and 
usually referred to as dynamic animation. For dynamic animation a 
framework like the one we have discussed in this thesis is a necessity. 

It is however not likely that we will see this in commercial use for home 
computers, such as computer games, for another couple of decades. 

What we can expect in a near by future is the expanding use of physics 
simulation in home applications and computer games. 

Physics have been used for quite some time in computer games such as 
flight simulators and other games to calculate parabolas and such. What 
we have not seen in any great extent is a physics framework that can 
handle the whole scene rather than special features. 

During the last few moths Havok has been advertising that their new 
version of their third party physics engine will enable gamers to move and 
interact with virtually all the scene. They also say they will have a fully 
developed rag doll system for realistic death scenes. Further more they 
advertise that they will use vertex blending to simulate recoil and bullet 
impact forces into the character animations. 
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The first computer game to feature the new Havok2 physics system is the 
long awaited sequel Half Life 2, planned to be released later this year, 
October 2003. 
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