
Johan Gästrin

TRITA-NA-E04008

Physically Based Character Simulation
– Rag Doll Behaviour in Computer Games

NADA

Numerisk analys och datalogi Department of Numerical Analysis
KTH and Computer Science
100 44 Stockholm Royal Institute of Technology

SE-100 44 Stockholm, Sweden

Johan Gästrin

TRITA-NA-E04008

Master’s Thesis in Computer Science (20 credits)
at the School of Computer Science and Engineering,

Royal Institute of Technology year 2004
Supervisor at Nada was Kai-Mikael Jää-Aro

Examiner was Lars Kjelldahl

Physically Based Character Simulation
– Rag Doll Behaviour in Computer Games

Abstract

The focus of this thesis is the feature known in the games industry as rag
doll behaviour. Rag doll is the feature that, in a computer game, lets a
character be influenced by actual physical laws. This enables the computer
game characters to move in a more realistic way. It also gives the
characters an infinite amount of possible motion patterns in contrast to
animated motion. The interaction with the environment also enables more
realism and better feedback.

Rag doll behaviour and the techniques necessary for implementation in
real-time 3D simulation are investigated. Many different approaches have
been used during the last few years to simulate physics in computer
games. Some are more physically correct than others.

We describe and discuss benefits and drawbacks of the most accepted and
used techniques that are suitable for simulation in real time, i.e. a
computer game.

We will furthermore investigate how vertex blending can be used to mix
standard animations with physical calculations to enhance computer
games.

Fysikbaserad figursimulering

’Rag Doll’-beteende i dataspel

Sammanfattning

Detta examensarbete fokuserar på den egenskap som inom dataspels-
industrin är känd som rag doll-beteende. Rag doll-beteende är den
egenskap som, i ett dataspel, låter fysiska lagar inverka på figurer. Detta
ger dataspelsfigurer ett mer realistiskt rörelsemönster. Det ger också
figurerna ett oändligt antal möjliga rörelsemönster till skillnad från
animerade rörelsesekvenser. Figurens interaktion med omgivningen ger
också större realism och bättre återkoppling.

Rag doll-beteende och de tekniker som är nödvändiga vid implementering
av en realtids 3D-simulering undersöks. Under de senaste åren har flera
olika tillvägagångssätt prövats för att simulera fysiska lagar i dataspel.
Vissa av dessa är mer fysiskt korrekta än andra.

Vi beskriver och diskuterar för- och nackdelar med de mest accepterade
och använda metoderna som är lämpliga för realtidssimuleringar, d.v.s.
dataspel.

Vidare undersöker vi hur vertex-blending, hörn sammansmältning, kan
användas för att blanda standardanimationer med fysiska beräkningar för
att förhöja dataspel.

Table of Contents

Chapter 1 Introduction 1

Chapter 2 Animation 4

2.1 The Graphics Rendering Pipeline 5

2.2 Vertex Blending 6

Chapter 3 Physics 9

3.1 Kinematics 10
3.1.1 Position and Orientation 10
3.1.2 Velocity 12

3.2 Dynamics 13
3.2.1 Mass and Inertia Tensor 13
3.2.2 Force and Torque 14
3.2.3 Momentum 16

Chapter 4 Collision Handling 18

4.1 Collision Detection 18

4.2 Collision Determination 20

4.3 Collision Response 21

Chapter 5 Constraints 22

5.1 Springs 24

5.2 Reduced/Generalized Coordinates 25

5.3 Lagrange Multipliers 25
5.3.1 A Sparse Solution Method 26

Chapter 6 Design 29

6.1 Bones 30

6.2 Joints 32

6.3 Tree Structure 33

Chapter 7 Evaluation 34

7.1 Animation 34

7.2 Physics 35

7.3 Collision Handling 35

7.4 Constraints 36

7.5 Design 36

Chapter 8 Conclusion 38

8.1 Benefits 39

8.2 Future discussion 40

References 42

 1

Chapter 1

Introduction

In today’s computer games character motion is performed through a series
of animations created in some form of three dimensional (3D) modelling
program like Alias|Wavefront’s Maya or Discreet’s 3ds max. These
animations can be produced with the help of motion capture [Steed, 2002].
These animations are then imported into the game.

While this is an interesting technique in itself with many difficulties, the
possibility of simulating realistic physical behaviour gives us a more
realistic behaviour as well as an infinite amount of movement patterns.

In the history of 3D computer graphics there has always been substantial
differences between the approaches in the computer gaming industry and
academic researchers doing physics simulation. While computer games
have mainly been focused on achieving realistic character behaviour
through pre-rendered animation, the academic community have been
more interested in getting correct physical simulation.

During the last few years we have seen this difference diminish and the
two fields learn from each other. The gaming industry has made a great
effort to use Newtonian physics and the academic world has started to use
and appreciate the fast rendering techniques developed within the gaming
industry for convincing visualization.

So what has the gaming industry to gain from physics simulation and is it
feasible to think that today’s computers can handle this type of
computation in real time? The benefits are obvious if you look at a snooker
or pinball game which is difficult, if at all possible, to make without

 2

physics, particularly if there is to be any interaction.

In 3D simulation the concept of rigid bodies is extensively used. Not only
because of the simplification of physics but also the simplification of
collision handling and rendering.

Lately the games development community has started to look at the
possibilities of using physics in character animations as well. This has
resulted in something the game developers refer to as rag doll behaviour.

Rag doll, as the name implies, is the ability to let the characters be
influenced by the surrounding environment while apparently limp
themselves, like rag dolls. This has resulted in the press using the
oxymoron “Lifelike death animations” in their reviews [Jakobsen, 2001].

It is however important to emphasise that rag doll behaviour does not
imply controlling the user controlled characters with physics, it merely
concerns simulating physical effects on lifeless characters or lifeless limbs.
These simulations can however be mixed with existing animations as
discussed in chapter 2.2.

There is however research treating the subject of shifting the character
control from the animations system to the physics system and thus
simulating ‘muscles’. This research area is called dynamic animation
[Bruderlin & Calvert, 1989] or physics-based character animation control
[Faloutsos et al., 2001].

What we have seen the last years is that a wide range of physics engines
have emerged from third party companies and open source projects.

Among the commercial physics engines can be mentioned MathEngine’s
Karma (http://www.mathengine.com/) and Havok
(http://www.havok.com/). Open source projects have emerged and
disappeared a bit faster than their commercial counterparts, but Open
Dynamics Engine (http://opende.sourceforge.net/) and Darwin2k
(http://www.darwin2k.com/) are two projects that still keep evolving.

Among the open source projects some are impelled and produced by
robotics and computer science institutes while others are maintained by
people solely interested in game development.

At present the gap between the physics engines for games and academic

 3

research is large. Physics engines for games have focused on vehicle and
projectile physics while academic research projects lack stability and
generality making them hard to use for anything other than the special
purpose they where designed for.

Experts predict a growing market of middleware for the computer game
industry where game physics seems to be one of the most attractive areas
after graphics engines.

Rag Doll effects need the basic concept of Articulated Rigid Bodies.
Articulated Rigid Bodies are based on constraining ordinary rigid bodies.
These constraints are both a tricky and computationally demanding area.

We will go through the most important areas to get the basic knowledge
of 3D simulation and then concentrate on constraints, which make rag doll
behaviour possible. The areas we will discuss are: animation, physics,
collision handling, constraints and articulated rigid bodies.

The possibilities that new techniques expose will be presented as well as
the three most common ways to reinforce constraints.

 4

Chapter 2

Animation

The largest contribution to the progress in graphic animations has come
from the film industry with Pixar Animation Studio as one of the main
contributors. For over a decade Pixar Animation Studio have produced
short and feature films such as Toy Story and the early Luxo Jr both
displaying amazing photorealistic graphics.

Behind Pixar’s animated films you can find technical innovation in a
graphics language known as Photorealistic RenderMan.

According to [Engel, 2002] one key to RenderMan’s success is that the
programmability of the rendering pipeline has allowed RenderMan to
evolve as major new rendering techniques were invented. However, this
programmability has limited RenderMan to software-only
implementations, thus only working for off-line rendering.

In the last few years we have seen the ability to program the rendering
pipeline, as opposed to fixed functions, appear in graphics hardware for
home computers with real-time performance. This technique is similar to
RenderMan’s graphics language and is referred to as programmable
shading and is dependent on the graphics card’s graphics-processing unit
(gpu).

The principal 3D graphic APIs (DirectX and OpenGL) have also evolved
alongside the graphics hardware. One of the most important new features
in DirectX Graphics is the addition of a programmable pipeline that
provides an assembly language interface to the transformation and
lighting hardware (vertex shader) and the pixel pipeline (pixel shader).

 5

2.1 The Graphics Rendering Pipeline
The basic rendering primitives used by most graphics hardware are
points, lines and triangles. When grouped together these rendering
primitives constitute objects.

A scene is the collection of several objects and the environment needed to
generate, or render, a visual presentation of the virtual model. A scene can
also include material descriptions, lightning and viewing specifications.

The graphics rendering pipeline renders a two dimensional image from an
underlying 3D representation. The rendering pipeline conceptually
consists of three stages: application, geometry and rasterizer, as illustrated
in Figure 1.

Vertex Data

Fixed Function
Transform

and Lighting

Tessellation Data

Vertex Shader

Clipping & Viewport Mapping

Texture Stages Pixel Shader

Fog

Alpha, Stencil, Depth Testing

Geometry
Stage

Rasterizer
Stage

From
Application
Stage

Figure 1 The graphics pipeline; with shaders.

These stages are in turn divided into one or several pipeline stages
depending on implementation and hardware.

As the name implies, the application stage is implemented in software.
The application stage may, for example, contain collision detection,
collision response, acceleration algorithms and animations.

The geometry stage, which can be implemented either in software or
hardware, deals with transforms, projections, lighting, etc.

 6

The rasterizer stage draws an image from the data generated from the
previous stages that is possible to display, usually on a computer screen.

In this thesis we are mainly concerned with the application stage.
However we will briefly cover a concept known as vertex blending because
of the possibilities it conveys to rag doll behaviour.

2.2 Vertex Blending
Characters in computer games used to consist of several rigid bodies
linked together. This made the building and animation of characters
tedious work. When characters moved one could often see fractures
between the polygons and other unwanted behaviour.

Vertex blending addresses this problem by making the character consist of
a set of bones and having an elastic skin react to changes in the poses of
the bones.

The skin thus makes the character consist of only one part, the polygon
mesh representing the skin of the character, see Figure 2. The vertices of
the mesh are connected to one or more bones of the underlying skeleton
with weights. This enables the mesh to appear soft and flexible in the
joints, see Figure 3. It also makes the representation of the character more
efficient. When moving it is actually only the skeleton being processed, the
skin just follows the bones it is connected to.

Figure 2 Skinning; how vertices are connected to the bones.

Vertex blending is not a new concept, [Laperrière et al., 1988], and is also
known as skinning, enveloping and skeleton-subspace deformation.

This technique has made the use of skeletal animation widespread,
therefore making the implementation of rag doll behaviour easier. We no

 7

longer have to bother with a whole new framework. We only need to
define how many and which of the bones from the graphic representation
should be used in the physical description and add physical properties to
them.

Figure 3 Vertex blending: smoothes the joints by connecting vertices on the skin to two
different bones.

Vertex blending can also, and more importantly for the object of this
thesis, be used to blend between multiple animations and/or physics.

Analogously with the previous case we define weights to connect the
vertices to several bones. The difference in this case is that the vertices are
weighted between two copies of the same skeleton, or subpart of the
skeleton, performing different movements rather than two connected
bones. Whether the motion of the bones is predefined by an animation or
real time computed by the physics system is irrelevant for the vertex
blending.

This makes it possible not only to reduce the amount of animations but
also to produce an infinite amount of new moment patterns in real-time.
Mixing rag doll effects with animations can for instance make recoil and
hit animations redundant in first person shooter games.

Vertex blending can be implemented in several different ways. Except
implementation in software, today’s graphics hardware offer two different
approaches, either fixed function or vertex shader.

Fixed function vertex blending, referred to as indexed vertex blending,
which is the older of the two techniques, has the disadvantage of being

 8

restricted to the specific hardware implementation, that is the graphics
card.

The vertex shader on the other hand is a small assembly-language that is
run on the gpu for each vertex replacing the transform and lightning
computations of the fixed-function. This enables the developer greater
control and the use of more advanced effects, see [Gosselin, 2002].

When using vertex blending to blend between different animations or
physics response it might however not be desirable to use a hardware
implementation because this is later in the pipeline than collision
handling. This implies that the new ‘blended’ position is unknown to the
collision handling system and thus will only be the graphical
representation and no collision or response can be taken on this pose but
only the ‘true’ pose. This can however be viewed as a feasible
approximation to increase speed.

 9

Chapter 3

Physics

During the last few years the interest in using physics in game
development has increased significantly. Some say the physics engine
now is more important than the graphics engine to produce a strong game
title. This is mainly because the graphics, which used to be the focus of the
game development community, has made such progress during the last
years that realism and detail is more an issue of taste and game play than
technology. Lately focus has been shifting to achieve realism through
believable physics and correct response.

This can be seen in the vast number of books, articles and conference talks
that have emerged during the last half-decade. Among the most renowned
are the popular seminars by David Baraff and Andrew Witkin, which they
have held several times at SIGGRAPH since 1995 [Baraff & Witkin, 2001].
It is also interesting to note the merging of offline and online rendering
techniques in animated Hollywood films and computer games.

Physics is however a huge area and we are only concerned with the
branch referred to as classical mechanics.

Classical mechanics, often called “Newtonian mechanics” after
Isaac Newton, who made major fundamental contributions to the theory,
is the physics of forces acting on bodies. It is subdivided into statics, which
deals with objects in equilibrium, and kinematics and dynamics, which deal
with objects in motion.

Classical mechanics produces very accurate results within the domain of
everyday experience. But in the late 19th century inconsistencies in

 10

classical mechanics were discovered and was thus in time superseded by
relativistic mechanics for systems moving at velocities near the speed of
light, quantum mechanics for systems at small distance scales, and
relativistic quantum field theory for systems with both properties
[Halliday et al., 1997].

Nevertheless, classical mechanics is still very useful, because it is much
simpler and easier to apply than these other theories, and it has a very
large range of approximate validity.

3.1 Kinematics
Kinematics is the branch of mechanics concerned with the motions of
objects without being concerned with the forces that cause the motion.

Often it is the case that kinematics is sufficient to produce plausible
animations or interactions.

Inverse kinematics is really no different from kinematics. The implication of
“inverse” is that the system will ‘work backwards’ from the desired end
position of one or more control points on a mechanical linkage, to infer the
positions of other parts of the system so that the goal is achieved.

Inverse kinematics is known to be computationally expensive and has
been thoroughly researched in the robotics community. This has resulted
in many open source projects, for example http://cal3d.sourceforge.net/
which is a skeletal based 3D character animation library that can be used
in many different kinds of projects involving inverse kinematics.

3.1.1 Position and Orientation
The basis of classical mechanics is the motion of particles. A particle does
not have any orientation and hence the only thing we need address is the
location. The location is dependent on the velocity, and the derivative of
the velocity - the acceleration - is in its turn dependent on the forces acting
on the particle.

To represent the location at time t we form the vector x(t), which describes
the offset from the world origin, thus defining the translation from the
body fixed reference frame to the world fixed reference frame, which we will
describe in more depth shortly.

 11

Bodies on the other hand also have an orientation. When simulating rigid
body physics we therefore need to extend the simple particle physics with
an orientation and an angular velocity. The angular velocity is in its turn
dependent on the torque, the part of a force that produces rotation about
an axis.

The body fixed reference frame, often referred to as body space, is the local
coordinate system fixed on the body. To go from the general world fixed
reference frame, or world space, to a body’s body space coordinates we need
to both translate and rotate the body, see Figure 4. Even though the body
moves, i.e. translates and/or reorients, the body space stays intact.

B

W

B

Figure 4 Translation and rotation from body space to world space.

There are two commonly used ways to represent orientation. The first and
simpler is a 3×3 matrix, R(t), consisting of three vectors spanning the body
space of the body. The other is unit quaternions q(t), see [Shoemake, 1985]
and [Eberly, 2002]. A quaternion is a four-dimensional representation of a
three-dimensional rotation and consists of four parameters as
q(t) = (r,i, j,k), where r is the real part and i,j,k represent the vector part. In
three dimensions we should be able to represent a rotation uniquely with
only three parameters. So why do we not simply represent a rotation with
a three element vector? The problem is that this could be interpreted in
two different ways due to the ambiguity of the vector, a positive and a
negative direction.

 12

A simple representation with a 3×3 matrix has many advantages such as
easy to comprehend and fast transformation performance. But there are
also drawbacks. Representing a rotation with a 3×3 matrix means we use
nine parameters. This gives us a redundancy of 6 parameters representing
the tree degrees of freedom of the rotation. Compared with quaternions
only 134 =− parameter overhead. Apart from the excess usage of
memory, there is also a huge difference in numerical drift. Both the matrix
and the quaternion need to be normalized to be consistent with
representing only a rotation. However renormalizing a quaternion to
adjust for floating point errors is cheaper than renormalizing a rotational
matrix.

Numerical drift of a rotational matrix can also convey in a more severe
consequence, the applying of skewing. This is of course disastrous since it
distorts the shape of a body, and can for example convert a football to a
rugby ball.

Apart from being more exact and resisting numerical drift, quaternions
also perform composition of rotations much more efficiently [Eberly,
2002]. Furthermore, because conversion between quaternion and
rotational matrix representations is an inexpensive task, we can consider
converting to rotational matrix representation only while performing the
transformations.

Thus it is recommendable to represent the bodies’ spatial variables as a
vector x(t) representing position and a quaternion q(t) representing
orientation.

3.1.2 Velocity
The velocity defines how our spatial variables change over time. Thus we
need to define)(tx& and)(tq& . The change of position over time is called
linear velocity and denoted v(t). Linear velocity in world space is defined
as)()(txtv &= , and is simple enough to comprehend.

In addition to translating, a rigid body can also spin. If we fix the position
of a point in the body, any movement of the body must be due to the body
spinning about some axis that passes through the fixed point, otherwise
the point would itself be moving. We can describe that spin as a
vector)(tω .

 13

The direction of)(tω gives the direction of the axis about which the body

is spinning and the magnitude)(tω tells how fast the body is spinning.

This quantity)(tω is called the angular velocity.

The change of orientation over time is a bit trickier to define than the
linear counterpart, especially if quaternions represent the orientation.

Therefore we only state for the quaternion case that)()(2
1)(tqttq ω=& and

refer to [Eberly, 2002] for the derivation.

3.2 Dynamics
If kinematics is the field describing movement over time then dynamics is
what causes it. Thus dynamics is the study of forces and masses.

3.2.1 Mass and Inertia Tensor
The inertia tensor I describes the distribution of the mass in the body. This
is what causes the spin of a body to vary depending on where the force is
applied, even though the magnitude of the force is the same, see Figure 5.

W

B

ωW

Figure 5 Distribution of mass over the body, inertia tensor.

When treating bodies the intrinsic mass distribution of the body in body
space is fixed, as is usually, but not necessarily, the total mass m of the
body. To simplify calculations and minimize the amount of state
parameters the origin of body space is usually chosen to coincide with the
centre of mass.

 14

If the centre of mass coincides with the origin of the body space the inertia
tensor I does not change with time. Hence we only need to calculate the
inertia tensor in world space as T

bs tRItRtI)()()(= .

Since the inertia tensor I(t) is needed to transform between angular
momentum and angular velocity w(t), as we will discuss in more depth
shortly, it is important that this is easy and inexpensive to compute.

Note that the inertia tensor is a 3×3 matrix and the mass only a scalar.

The inertia tensors for the most common and simple geometrical shapes
are easy to look up, while deriving them is another issue and will not be
dealt with here, [Stejskal & Valásek, 1996]. Table 1 shows the inertia
tensors for some of the simpler geometrical shapes that are of interest
when modelling characters.

Table 1 Inertia tensors for some common geometries

Geometry Moment of Inertia

Solid cylinder 2

2
1 mRI =

Solid sphere 2

5
2 mRI =

Rod 2

3
1 mRI =

3.2.2 Force and Torque
A force may be thought of as any influence that tends to change the motion
of an object, such as gravity, drag or contact. In dynamics, a force is
divided into one part that cause linear motion and one part that cause
rotational motion. The latter is called torque, denoted τ. Newton’s second
law describes the action of forces in causing motion as tmvF ∂∂=)(,
where F is the net external force, m the mass and v the velocity. Typically,
the mass m is constant in time, and Newton’s second law can be written in
the simplified form maF = .

 15

The torque, in contrast to the linear part of the force, is dependent on
where on the body the force is applied. The torque is defined as Fp ×=τ ,
that is, the cross product between the force F and the position vector of the
point p where the force is applied on the body relative to the body centre
of mass. As can be seen in Figure 6, the torque is perpendicular both to the
applied force and to the straight line between the centre of mass and the
point of contact.

xW

τi
W

Fi
W

xW

Fi
W

ρi
W ρi

W

W W

BB

Figure 6 Applied force, point of contact and resulting torque.

In considering the effect of a force acting at a point on a body it sometimes
seems that the force is being considered twice. That is, if a force F acts on a
body at a point p (p + x(t) in world space), then we first consider F as
accelerating the centre of mass, and then consider F as imparting a spin to
the body.

This gives rise to what at first seems as a paradox if comparing two
situations with identical bodies and forces but with different points on the
bodies where the force is applied. In one case the force acts at the centre of
mass, and in one off-centre, see Figure 7.

In both cases the bodies gain the same amount of linear acceleration, but
the body where the force was applied off-centre also has picked up an
angular acceleration and therefore a larger amount of energy from the
same force. This is due to the fact that energy, or work, is the integral of
force over distance. Hence the body where the force was applied off-centre
gains more energy since the force was applied over a longer distance.

 16

Figure 7 Force giving rise to both linear and angular acceleration.
Image from [Baraff & Witkin, 2001].

3.2.3 Momentum
Like all the other properties we have dealt with in this chapter, momentum
can be divided into its position dependent and its orientation dependent
parts.

Linear momentum is the property that deals with position and is defined as
)()(tmvtP = , where m is the mass of the body and v(t) the velocity of the

centre of mass.

Analogously angular momentum is defined as)()()(ttItL ω= , where I(t) is
the inertia tensor and)(tω the angular velocity.

 17

There is a simple relation between linear momentum and force FP =& and
between angular momentum and torque τ=L& .

Because the inertia tensor I(t) is dependent on the orientation, hence time,
the angular velocity is not necessarily constant even if the angular
momentum is constant. Therefore it is advisable to use the angular
momentum as a state variable rather than the angular velocity, which is

easily calculated as 1)()()(−= tItLtω .

To be consistent with the angular case it is also desirable to use the linear
momentum instead of the linear velocity as a state variable.

 18

Chapter 4

Collision Handling

Collision handling is of very large importance in any 3D computer
simulation. Without it no interaction between objects is possible.

Collision handling can be divided into three major parts: collision detection,
collision determination and collision response. These parts are all both
intellectually and computationally demanding areas and what follows
here is only a short introduction. A more thorough introduction to the vast
theory of collision handling can be found in [Akenine-Möller & Haines,
2002].

Collision detection and collision determination is closely coupled when
considering actual implementation and when discussing collision
detection one usually refer to them both when talking about collision
detection.

Collision response on the other hand is usually separate from both
collision detection and collision determination thus making the geometric
representation rather transparent. But we still need to be informed of
occurring collisions (collision detection) and collision data (collision
determination) before computing the action to be taken (collision
response).

4.1 Collision Detection
During each time step the collision detection system scans the scene for
collisions or interpenetrations and reports them.

The distinction between interpenetration and collision is dependent on the

 19

Euclidean distance between two body surfaces. If it is below zero the two
bodies interpenetrate and if the Euclidean distance is equal to or within a
positive threshold value and the bodies do not interpenetrate they are said
to be colliding.

The collision detection is usually divided into two phases, the broad phase
and the narrow phase. The object of the broad phase is to exclude as many
objects as possible from further collision detection checking. The narrow
phase will then perform a more thorough collision detection with the
objects that are left after the broad phase. During the narrow phase we
usually want to use different collision detection algorithms depending on
what kind of objects we are dealing with.

Through out the collision handling the representation of objects is usually
something simpler than the actual meshes representing the objects
graphically, making the testing quicker. This simpler representation is
referred to as bounding volumes.

Some common bounding volume choices are; Bounding Sphere, Axis
Aligned Bounding Boxes (AABB), Oriented Bounding Boxes (OBB),
Discrete Orientation Polytope (k-dop) and Convex Hull, see Figure 8.
These are then usually ordered in a tree structure for faster traversal.
Binary Space Partitioning (BSP) trees are another commonly used
technique.

Figure 8 Different bounding boxes.

Note that it is left to a collision response system to resolve the collision.
The collision detection system only detects the collisions.

A common problem with collision detection is tunnelling. Tunnelling is
when an object penetrates another object, for instance a wall, and is able to

 20

pass trough entirely during one time-step, thus making it hard to detect
collisions. This is usually due to small objects moving at high velocities,
[Moore & Wilhelms, 1988].

4.2 Collision Determination
Once a collision has been identified the collision determination system
steps in. The collision determination system’s main concern is to collect
collision data. The needed collision data is time of collision, participating
objects, point of contact on the objects, collision normal and the relative
velocities of each object at the point of contact, see Figure 9.

rA

rB

n

xA

xB
ρB

ρA

n

xA

ρA

rB

ρB xB

at time tiat time t

BB

A
A

W W

Figure 9 Two colliding bodies.

Depending on what kind of objects and how many different sorts we are
dealing with this can be of varying difficulty, with many different
complex objects the hardest to handle. This is why bounding volumes
usually are used to approximate the objects during the collision
determination as well to keep the complexity and number of geometries to
a minimum.

This of course affects the correctness of the collision data computed, and
we thus have to balance speed and correctness.

Because a collision does not necessarily occur at the end of a time step
cycle another problem arises. When an interpenetration state has been
found, thus the collision occurred sometime during the last time step, we
have another choice between speed and correctness. Either the collision

 21

detection system must backtrack to find the collision state prior to the
interpenetration or we have to approximate the collision data.

4.3 Collision Response
The collision response system decides what action is to be taken when a
collision has occurred. This involves computing and applying forces on
the involved objects.

It is the area of collision handling that has evolved most the last few years,
from simple boolean expressions deciding the response to using the laws
of physics.

Some [Dingliana & O’Sullivan, 2001] argue that it is hard for humans to
judge whether a collision response is more or less correct, especially in
multiple dimensions, i.e. 3D, while others [Hecker, 1996] say that we
underestimate the human perception capacity and that more correct
response, even though not ‘visible’, gives a more believable response.

It is in the light of this development that resting contact, friction and
trajectories have conquered the gaming industry.

Resting contact and friction are closely coupled and address the problem
of objects sliding or standing on other objects, for instance a pile of boxes
stacked on each other.

At the heart of handling contacts we find constraints. This is also what we
need for rag doll behaviour.

 22

Chapter 5

Constraints

As we have seen in the previous chapter the issues concerning rigid body
dynamics are both well documented and widely used. But how are we
going to link these bodies together to form composite articulated rigid
bodies? The answer is constraints.

Constraints are today mainly used in 3D simulations to reinforce body
solidness, to prevent interpenetration between bodies. These constraints
are usually referred to as inequality constraints. For example the position
of, for instance, a ball can be any as long as it is above ground,
ball altitude > ground level.

The other type of constraints is referred to as equality constraints and is
for instance used to reinforce the geometric connection between bodies or
to reduce the degrees of freedom, i.e. disabling motion along certain
directions or axes. Consider for example a bead on a string, it can slide on
the string but still has to follow the extent of the string, thus restricting the
linear motion into one dimension.

When modelling articulated rigid bodies we usually divide them into
positional and angular constraints. The positional constraints keep the
bodies from separating or interpenetrating, these are equality constraints.
The angular constraints restrict the bodies from occupying forbidden
angular poses relative to each other. These are inequality constraints.

Both equality constraints and inequality constraints belong to the group of
constrains called holonimic constraints. There is also another group of
constraints called nonholonomic constraints. These constraints are related

 23

to velocity rather than position as the former holonomic constraints are,
see [Dankowicz, 1999]. These constraints make it possible to control
relative velocities, useful when simulating for instance a gearbox.

Rigid bodies, whether articulated or not, have six degrees of freedom in
3D, see Figure 10. That is, they can move in six possible directions. Three
linear degrees of freedom, consisting of the three spatial dimensions, and
three angular degrees of freedom, consisting of roll, pitch and yaw. It is
these degrees of freedom that the constraints will restrict.

Z

X

Y

Figure 10 Illustration of the six degrees of freedoms in 3D.

Typically, in a system describing characters the constraints are sparse:
each constraint directly affects only one or two bodies (for example,
geometric connection constraints) and there is not extensive branching.
Thus, for a system with n bodies, there are only O(n) constraints.

In particular, the simulation of articulated figures and mechanisms falls
into this category. Sparse constraint systems are also either nearly or
completely acyclic: for example, robot arms are usually open-loop
structures, as are animation models for humans and other mammals.
Considerable effort has been directed toward efficiently simulating these
types of systems.

Because of the complexity of constraints the need and choice of algorithm
is important. However, without constraints we can only have simple
single rigid bodies without interbody associations. This is why constraints

 24

are of growing importance.

When modelling constraints there are several ways to go about the
problem, some more physically correct than others.

Here follows a description of the three most well known implementations
in real-time 3D rendering and a discussion of their advantages and
disadvantages.

5.1 Springs
A spring is an elastic device, such as a coil of wire that regains its original
shape after being compressed or extended. This concept is often used in
3D simulation in various ways. It can be used to simulate things like
dampers on vehicles. But it can also be used in particle systems in various
ways and also to simulate constraints.

There are however some problems with this approach. Even though
springs are easy enough to implement the stability is far from acceptable
as well as the problem with getting them to simulate hard constraints like
angular stops in for instance an elbow.

In [Jakobsen, 2001] the physics engine for the game Hitman – Codename 47
is described. Here the basis of the whole physics engine is a particle
system that, with the aid of springs, simulates both rigid bodies and the
articulated rigid bodies to become one of the first games to achieve rag
doll behaviour.

In Hitman – Codename 47 constraints are handled by relaxation and
stiffness of the springs. The stiffness of the springs goes to infinity when a
connection is wanted.

This is an instable way to simulate constraints and demands a big amount
of tweaking and error correction as well. Apart from that it is not very
physically correct. However, it is fast and, apart from the tweaking, simple
to implement.

Springs are, though maybe not preferable when simulating constraints,
useful in conjunction with constraints to simulate inverse kinematics.

 25

5.2 Reduced/Generalized Coordinates
A more physically correct way to simulate constraints, and an approach
thoroughly used and researched in the academic mechanics community, is
to constrain the degrees of freedom by reducing the actual number of
variables describing the body state.

This approach is called Generalized coordinates, as opposed to maximal
coordinates, which is the name for describing the system with its full set of
state variables. It is also referred to as Reduced coordinates due to the fact
that this describes how the technique works.

In a 3D system consisting of n bodies, each with six degrees of freedom, a
reduced coordinate formulation removes the c constraints from the system
leaving a set of 6n − c = m parameterised coordinates to define the system.

Finding a generalized parameterisation for 6n maximal coordinates is
however a tedious and arbitrarily hard work. If such a parameterisation
can be found, O(n3) time is required to compute the acceleration of the m
generalized coordinates at any instant.

However, loop-free articulated rigid bodies are trivially parameterised,
and methods for computing the m generalized coordinate accelerations in
O(n) time are well known and described in [Featherstone, 1987].

One big advantage with the generalized coordinate approach is the
elimination of drift giving us a stable system. Furthermore this method is
possibly faster than others because of the possibility for the integrator to
take larger time steps. This is however not any general rule and depends
on the implementation.

The biggest problem with this approach however is that it assumes
extensive analytical mathematical knowledge. This is needed not only
during implementation of the system but also continuously while new sets
of objects and constraints are introduced. This can to a certain extent be
automated, but the amount of code grows very quickly, [Witkin et al.,
1990].

5.3 Lagrange Multipliers
In the Lagrange multipliers approach the technique is to introduce

 26

additional constraint forces to maintain the constraints rather than trying
to eliminate degrees of freedom.

Lagrange multipliers are good for arbitrary sets of combined constraints
and render possible a modular framework. They also handle
nonholonomic constraints, velocity dependent constraints, in a simple
way.

The standard Lagrange multiplier implementations have been seen to
perform O(n3) but in [Baraff, 1996] is presented a Lagrange multiplier
algorithm that performs in O(n) for a sparse, open loop system. With
‘sparse’ is implied that constraints only affect two or fewer bodies, which
is the case for a character.

The heart of any Lagrange multiplier formula is solving the matrix
equation:

cJJM T =− λ1

where the vector λ contains the multiplier elements we wish to solve for.

J contains the constraint connectivity and M the mass properties of the
bodies while the vector c contains the forces being applied to the bodies.

5.3.1 A Sparse Solution Method
Now, if we restrict the constraints to act only between pairs of bodies we
will achieve a sparse matrix. Furthermore we need to ensure that the
bodies are ordered correctly.

Following the algorithm described in [Baraff, 1996] we start by stating that
we follow the second-order law maF = , that is

vmF &= (1)

as discussed in previous chapters.

We also divide the total force into the external force Fext and the constraint
force Fc like:

extc FFF += (2)

The constraint force Fc should be workless, that is, it should (almost, see
[Barr & Barzel, 1988]) not add any energy to the system. To ensure this we
need to add the condition λTc JF = .

 27

Thus
extTextc FJFFF +=+= λ (3)

and substituting F in (1) gives:
extT FJvM += λ&

solving for the acceleration gives:
extT FMJMv 11 −− += λ& (4)

As discussed earlier the constraints can be expressed as a linear condition
on the bodies’ accelerations. In matrix form this would look like:

0=+ cvJ & (5)

Substituting (4) in (5) gives:

0)(11 =++ −− cFMJMJ extT λ (6)

If we define b as:)(1 cFJMb ext +−= −

M −JT

−J 0

⎛

⎝
⎜

⎞

⎠
⎟

y
λ

⎛

⎝
⎜

⎞

⎠
⎟ =

0
−b

⎛

⎝
⎜

⎞

⎠
⎟

λλ TT JMyJMy 10 −=⇒=−

bJy −=−

Solving row one for y and substituting this into row two gives:

bJMJJy T == −)(1 λ

For convenience we define H as:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
−

=
0J
JM

H
T

For four bodies connected like a tree H would look something like:

 28

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

00000
00000
00000

00000
00000

000
00000

3432

2322

1211

344

233

3222122

111

JJ
JJ

JJ
JM

JM
JJJM

JM

H T

T

TTT

T

It is due to the fact that H is always sparse that we can find a linear
solution method to the articulated system.

However, to exploit this sparsity we need to permute H first.

This is easily done using the O(n) sparsefactor procedure described in
[Baraff, 1996], producing a permuted H as:

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

111

1112

1223222

3234

344

2223

233

00000
00000

000
00000
00000
00000
00000

MJ
JJ

JMJJ
JJ

JM
JJ

JM

H

T

TTT

T

T

Solving this system is then done by using the O(n) sparsesolve procedure
described in [Baraff, 1996].

Note that the sparsefactor procedure only needs to be called once for one
specific configuration of bodies and constraints because H is not time
dependent.

 29

Chapter 6

Design

Following the results from previous chapters we are now ready to design
a framework that enables rag doll behaviour.

The foundation of any 3D simulation is rigid bodies. Even if soft bodies
are under research, see [Barr et al., 2000] and [Barr & Platt, 1988], rigid
bodies still hold the upper hand in high performance 3D simulations such
as computer games.

Articulated rigid bodies can be used to describe not only characters but also
other forms of objects like an articulated tank in a computer game,
enabling motion of for instance the canon turret separate from the body of
the tank.

As the name implies an articulated rigid body consists of two or more
rigid bodies connected to each other through joints, thus forming one
coherent body.

The framework presented here is specialised on handling character
simulation. This does however not prevent parts of the framework to be
used to simulate other forms of articulated rigid bodies, like the tank
described above.

The building blocks, and also the data structure, that we compose the
framework of are bones and joints.

 30

6.1 Bones
Bones is how we choose to represent the abstract physical bodies
constituting the parts of an articulated rigid body. There are several
reasons why choose bones for this representation.

First this is the most contiguous approach compared to reality, i.e. the
human body, which consist of bones. Secondly the way characters are
constructed in 3D modelling programs, like Alias|Wavefront’s Maya or
Discreet’s 3ds max, depend on skinning as described in Chapter 2. This
technique depends on forming a skeleton covered with a skin. The bones
of this skeleton generated in the modelling phase can easily be extended to
contain the data needed for the framework. Thus using these bones will
reduce the data redundancy as well as improve comprehension while this
is consistent.

Note that the shape of a rigid body is not a dynamical property (except
insofar as it influences the various mass properties). It is only collision
detection and visualization that is concerned with the detailed shape of
the body.

A rigid body has various properties from the point of view of the
simulation. Some properties change over time:

• Position vector of the body’s point of reference.
• Linear velocity of the point of reference.
• Orientation of a body, represented by a quaternion or a 3×3 rotation matrix.
• Angular velocity vector, which describes how the orientation changes over

time.

Other body properties are usually constant over time:

• Mass of the body.
• Position of the centre of mass with respect to the point of reference.
• Inertia matrix.

Conceptually each body has an x-y-z coordinate frame embedded in it,
which moves and rotates with the body, body space. The origin of this
reference frame is the body’s point of reference. Some values in the system
(vectors, matrices etc) are relative to the body coordinate frame, and
others are relative to the global coordinate frame.

We have now covered all the concepts we need to describe the state of a
rigid body and also their differentials. In addition to this we have some

 31

auxiliary quantities associated with our state variables.

The state variables are position, orientation, linear momentum and
angular momentum. The mass and the inertia tensor are body specific
constants and because the latter’s inverse is frequently used to calculate
the inertia tensor in world space, this is also stored as a body constant.

The derivatives of the state variables are:

)()(tvtx =&

)()(
2
1)(tqttq ω=&

)()(tFtP =&

)()(ttL τ=&

The auxiliary quantities we need are linear velocity, angular velocity and
the inverse of the inertia tensor in world space and these are computed
accordingly:

v(t) =
P(t)
m

ω(t) = I(t)−1L(t)

I(t)−1 = R(t)Ibs
−1R(t)T

R(t) =
1− 2 j 2 − 2k 2 2ij − 2rk 2ik + 2rj

2ij + 2rk 1− 2i2 − 2k 2 2 jk − 2ri
2ik − 2rj 2 jk + 2ri 1− 2i2 − 2 j 2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

In addition to this we need to store the quantities that change the body
state, force, and calculate its rotational influence, torque.

These bones we define as a subclass of the bones that graphically
constitutes the character. As we mentioned in Chapter 2, we import the
characters from a 3D modelling program. What we actually import is the
skeletons and the attached skin.

We now need to conclude which of the bones that the framework needs to
take into account. We are not interested in having the framework perform
calculations on bones that do not move, for instance the bones in the hand.

 32

The bones are constructed during modelling to generate a detailed
character but during simulation including all the bones of the fingers
would make the calculations much to heavy and not add much realism.

Which of the bones to be excluded from the calculations is dependent on
each title and what movement is desired for that character. This selection
must, as I can see it, always be done by hand. It can however be indicated
with a parameter by the graphics artist and then automated in the import
phase.

6.2 Joints
Bones are connected to each other with joints. These joints handle all the
constraints between a pair of bodies, i.e. bones. Every character,
containing bones and joints, is separate from other characters. A character
is thus a group of bodies that cannot be pulled apart and each bone is
connected somehow to every other body in the character. Each character
in the world is treated separately when a simulation step is taken.

Joints need to be attached to a point in each of the two bones it connects
making the bones inseparable. A joint can furthermore restrict the
movement between the bones. There are two ways joints can restrict how
the bones moves relative to each other. It can restrict the degrees of
freedom, thus disabling rotation around certain axis, and it can restrict the
permitted angles in certain directions, angular stops.

To enforce the properties of the joints, connection and relative poses, we
need constraints. The most favourable way to implement constraints for an
application like this is the sparse solution method presented in [Baraff,
1996]. As we have described in Chapter 5, this is due to the low
complexity and modularity it conveys.

In the design of this framework I prefer viewing joints as similar to human
joints as possible while still as simple to simulate as possible. We therefore
design three types of joints: hinge joints, ball-and-socket joints and pivot
joints. There are other joint types in the human body, like condyloid joints,
gliding joints and saddle joints, but the previous three are sufficient to
simulate human motion.

Hinge joints restrict the relative movement of the connected bones to only

 33

one degree of freedom simulating an elbows or a knee. Ball-and-socket
joints enable movement in all directions simulating fort instance the carpal
joint. Pivot joints enable a twisting movement simulating the twisting
motion in for instance the neck.

We might also want to implement slider joints and contact joints for other
parts of the simulation, for instance vehicles.

The joints are composed of several different constraints. One constraint is
needed to fix the connection points of the two connected bones. This
connection point does not necessary lay within the graphical
representation of the bones. Furthermore there are constraints restricting
the relative movement thus forming the different joints presented.

The joints also need to contain the constraints controlling angular stops.
These, as well as contact constraints, are inequality constraint and cannot
be solved using the sparse solutions method we use to solve the equality
constraints.

Thus we need to implement the ordinary Lagrange Multiplier solver as
well. Because the higher complexity involved in this solver it is important
to bear this in mind when defining the constrains and angular stops.

6.3 Tree Structure
When, as we are, considering a character skeleton the bones and joints are
related to each other without loops. This makes it convenient to approach
it as a tree structure. This tree structure is also necessary for the constraint
solution method we wish to use. This order is an intuitive father-son
relationship with any root node. The ordering does however not
necessarily have to be specified by hand. This can rather be automated by
a subroutine as shown in [Baraff, 1996]. The bones composing the
characters need though be specified by hand as discussed in chapter 6.1.

 34

Chapter 7

Evaluation

The design of a rag doll system is a fairly complicated task. It not only has
to interact with many different systems it is also a computationally
expensive task.

7.1 Animation
When using vertex blending to mix two or more key-frame animations it
is clearly advantageous to make use of the new graphics hardware
available on today’s graphics cards while this increase performance.

In this thesis we have also developed the idea of using vertex blending to
mix one or more existing animations with the output from a physics
framework. We can thus achieve rag doll features such as recoil and
impact effects, on parts or whole of moving characters.

Using hardware rather then software when implementing vertex blending
does however imply a short deviation from the true position of the
character.

When the visual movement and position do not coincide with the true
position and movement the collision handling system, which is earlier in
the graphics pipeline, will not be able to take action to these visual
positions. This is however a feasible approximation as long as the
movements still are fairly small.

When choosing between the possible hardware implementations for

 35

vertex blending it is preferable to use vertex shaders rather than fixed
functions. Not only because of the greater freedom it gives but also
because this is a newer technique that supports upgrade and is therefore
probable to be supported for a longer time and thus making the
framework less sensitive to hardware changes.

7.2 Physics
All physics merely try to describe the reality and are thus only
approximations of it. As David Baraff writes in the opening paragraphs of
his PhD thesis [Baraff, 1992], “we do not consider the dynamics models
used in this thesis to be empirically correct. That is not to say our
dynamics models are ad hoc or deliberately wrong ... our ‘simple’
dynamics models are incomplete descriptions of more ‘complicated’
dynamic models”.

In a real time application like a computer game we need to find a balance
between correctness and performance. We do however have some
minimum criteria. The simulation is not allowed to crash and it also need
to be consistent. That is, it should produce the same output given a certain
input.

Classical mechanics is a very good approximation of the reality that we
are imitating in a computer game. It is also far more correct than the
methods used in older computer games.

In older ad hoc approximations, parameter tweaking is common. This
parameter tweaking is undesirable since if N bodies each have M tuneable
parameters, and if the stability is very sensitive to the values of the
parameters, then finding a ‘stable’ configuration by tweaking parameters
is essentially a search in NM dimensional space!

Classical mechanics copes with our criteria and is feasible to use on a
modern home computer.

7.3 Collision Handling
Collision detection and collision determination is not directly dependant
on the rag doll system and can therefore be of any choice. The collision

 36

response system on the other hand is where the resulting actions are
calculated. The physics and rag doll system is a part of this general
system. The rag doll system is concerned with resolving the collision
response for the characters.

The resulting forces are then feed back to the main system.

7.4 Constraints
When implementing constraints for a rag doll framework we are
concerned with finding a solution method that can handle a varying
number of joints. It is therefore desirable to have as low complexity as
possible.

There are two ways of achieving as low complexity as linear for
constraints, reduced coordinates and Lagrange multipliers using the sparse
solution method described in [Baraff, 1996]. It is possible to attain linear
complexity with Lagrange multipliers because our characters all have a
tree structure.

The modularity that Lagrange multipliers offer is far easier to both
implement and maintain then the complex reduced coordinates.

7.5 Design
The calculations that are needed for a rag doll framework is dependent on
how many joints that are active at a certain instance. So how many joints
are needed for a character and how many characters can we handle
simultaneously?

The amount of joints in a character is dependent on the number of bones
they need to join. Furthermore the degrees of freedom of each joint affects
the number of calculations. The more degrees of freedom the more
calculations.

A human body consists of about two hundred bones. This would be very
demanding for one of today’s home computers. Most of the bones would
not add any visual effect to the game either. To compose a human
character of around twenty bones is more appropriate. Then one of

 37

today’s home computers would be able to handle between ten and a
hundred characters simultaneously depending on configuration.

It is also not needed to have the characters active all the time, but only
when they interact with the environment. For example a corpse lying still
need not be considered until something hits it, then it is activated in the
physics framework.

Because skinning is already in use in virtually all computer game
development nowadays the character skeleton is already a natural part in
the production line. The structure of the characters does therefore not
imply any additional work. Only defining the joints and the active bones
is necessary.

 38

Chapter 8

Conclusion

In this thesis we have unravelled the mystic around the much-discussed
feature called rag doll. It has proven to require a physics framework of
which we have described the necessary parts and equations.

We have given a background and the building blocks necessary to
complete this framework. We have also delved deeper into the different
approaches to solve constraint, which is the computationally expensive
part of implementing rag doll behaviour.

This new technique that is emerging as an important part of game
development has not previously been covered in literature. This is
probable due to the different fields it covers. Not only do we need
extensive knowledge of game development and physics, we also need to
familiarize ourselves with complex mechanical simulation techniques to
solve the constraints necessary for articulated rigid bodies.

Except providing an easily comprehensive exposition of the comprising
elements needed for a rag doll framework, we have also developed a new
way of using our rag doll framework. With the help of this new idea of
using vertex blending we can mix one or more existing animations with
the output from our physics framework. We can thus achieve rag doll
features such as recoil and impact effects, on parts or whole of moving
characters, and not only on lifeless characters.

The idea we have developed in this thesis to extend the rag doll
framework to work in synergy with the existing animations to enhance
them with recoil and impact effects on characters limbs through vertex

 39

blending has also economic benefits, as well as the feature effects.

8.1 Benefits
So what are the benefits of using rag doll behaviour and is it worth the
extra computational time?

The most obvious benefit of using a physics framework and rag doll
behaviour is the enhancement of the simulation. Making the use of rag
doll behaviour produces much more realistic death scenes. This alone is a
fair reason to use rag doll behaviour in a best-seller first person shooter
game title.

The idea we have developed in this thesis to extend the rag doll
framework to work in synergy with the existing animations to enhance
them with recoil and impact effects on characters limbs through vertex
blending has also economic benefits, as well as the feature effects.

Even though the threshold to complete the framework and to launch the
first title is sure to be bigger than using standard techniques, i.e. offline
animation rendering, it is sure to be economically beneficial in the long
run.

If using the rag doll framework to produce new movement patterns the
need for special animations are drastically reduced, thus cutting
development time and costs for consecutive titles. Using traditional
techniques the anticipated time to complete a full character is between
three and six months for a fulltime graphics modeller.

The framework should though not be developed just for its own cause but
only if there is need for it. A flight simulator has for example no real need
for a rag doll framework when only using detached rigid bodies, except
for maybe the ejecting scenes.

There is also the choice of licensing one of the existing third party
products. Among the third party producers of physics frameworks for
computer games Havok seems to have the upper hand right now, but they
are sure to meet hard competition within soon.

The drawback with using a third party product is that you usually pay the
license fee for each title. The possibility to make changes is also forfeited.

 40

One could argue that using a third party product does not imply that you
are locked to that product but can change framework for future titles. This
should though be considered thoroughly since adapting the game
development to a product usually requires some time while there still is
no standard api’s.

When developing a framework there is need for technically
knowledgeable personnel. Right now the competence of both physics and
3D computer game development are hard to come by. But the level of
knowledge concerning physic equations among game developers is
constantly rising.

8.2 Future discussion
In a future can physics simulation replace character animation in
computer games?

This is not so hard to imagine. In practice this would mean that the
physics system also needs to handle virtual muscles. This is, as we
mentioned in the introduction, something that is under research and
usually referred to as dynamic animation. For dynamic animation a
framework like the one we have discussed in this thesis is a necessity.

It is however not likely that we will see this in commercial use for home
computers, such as computer games, for another couple of decades.

What we can expect in a near by future is the expanding use of physics
simulation in home applications and computer games.

Physics have been used for quite some time in computer games such as
flight simulators and other games to calculate parabolas and such. What
we have not seen in any great extent is a physics framework that can
handle the whole scene rather than special features.

During the last few moths Havok has been advertising that their new
version of their third party physics engine will enable gamers to move and
interact with virtually all the scene. They also say they will have a fully
developed rag doll system for realistic death scenes. Further more they
advertise that they will use vertex blending to simulate recoil and bullet
impact forces into the character animations.

 41

The first computer game to feature the new Havok2 physics system is the
long awaited sequel Half Life 2, planned to be released later this year,
October 2003.

 42

References

[Akenine-Möller & Haines, 2002] Tomas Akenine-Möller, and Eric Haines.
Real-Time Rendering. 2nd ed. A.K. Peters Ltd., 2002.

[Baraff, 1992] David Baraff. Dynamic Simulation of Non-Penetrating Rigid
Bodies. Ph. D thesis, Technical Report 92-1275, Computer Science
Department, Cornell University, 1992.

[Baraff, 1994] David Baraff. Fast Contact Force Computation for
Nonpenetrating Rigid Bodies. In Proceedings of the 21st annual conference on
Computer graphics and interactive techniques, pages 23–34. ACM Press, 1994.
http://doi.acm.org/10.1145/192161.192168.

[Baraff, 1996] David Baraff. Linear-time dynamics using Lagrange
multipliers. In Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques, pages 137–146. ACM Press, 1996.
http://doi.acm.org/10.1145/237170.237226.

[Baraff & Witkin, 2001] David Baraff, and Andrew Witkin. Physically Based
Modeling. Online SIGGRAPH 2001 Course Notes, 2001
http://www.pixar.com/companyinfo/research/pbm2001/.

[Barr & Barzel, 1988] Alan Barr, and Ronen Barzel. A modeling system
based on dynamic constraints. In Proceedings of the 15th annual conference on
Computer graphics and interactive techniques, pages 179–188. ACM Press,
1988. http://doi.acm.org/10.1145/54852.378509

[Barr & Platt, 1988] Alan Barr, and John Platt. Constraint methods for
flexible models. In Proceedings of the 15th annual conference on Computer
graphics and interactive techniques, pages 279–288. ACM Press, 1988.
http://doi.acm.org/10.1145/54852.378524.

 43

[Barr et al., 2000] Alan Barr, Marie-Paule Cani, Gilles Debunne, and
Mathieu Desbrun. Adaptive Simulation of Soft Bodies in Real-Time.
Computer Animation 2000, pages 133144. http://www-
artis.imag.fr/Publications/2000/DDCB00.

[Bruderlin & Calvert, 1989] Armin Bruderlin, and Tom Calvert. Goal-
directed, dynamic animation of human walking. In Proceedings of the 16th
annual conference on Computer graphics and interactive techniques, pages 233–
242. ACM Press, 1989. http://doi.acm.org/10.1145/74333.74357.

[Dankowicz, 1999] Harry Dankowicz. Mechanics for Computer Scientists.
KTH, Stockholm, 1999.

[Dingliana & O’Sullivan, 2001] John Dingliana, and Carol O’Sullivan.
Collisions and Perception. ACM Transactions on Graphics, Vol. 20, No. 3,
pages 151–168, 2001. http://doi.acm.org/10.1145/501786.501788

[Eberly, 2002] David Eberly. Rotation Representations and Performance Issues.
January 2002. http://www.magic-software.com.

[Engel, 2002] Wolfgang Engel. Introduction to Shader Programming,
Direct3D 8.1 Tutorials. June 2002. http://www.shaderx.com/direct3d.net.

[Faloutsos et al., 2001] Petros Faloutsos, Michiel van de Panne, and
Demetri Terzopoulos. Composable controllers for physics-based character
animation. In Proceedings of the 28th annual conference on Computer graphics
and interactive techniques, pages 251–260. ACM Press, 2001.
http://doi.acm.org/10.1145/383259.383287

[Featherstone, 1987] Roy Featherstone. Robot Dynamics Algorithms. Kluwer
Academic Publishers, Boston/Dordrecht/Lancaster, 1987.

[Gosselin, 2002] David Gosselin. Character Animation with Direct3D
Vertex Shaders, ShaderX, Wordware Inc., pages 196-208, June 2002.

[Halliday et al., 1997] David Halliday, Robert Resnick, and Jearl Walker.
Fundamentals of physics. 5th ed. John Wiley & Sons, 1997.

[Hecker, 1996] Chris Hecker. Behind the Screen. Game Developer Magazine.
Oct 1996 – Jul 1997. http://www.d6.com/users/checker/dynamics.htm

 44

[Jakobsen, 2001] Thomas Jakobsen. Advanced Character Physics.
Proceedings, Game Developers Conference 2001, San Jose, 2001.
http://www.ioi.dk/Homepages/thomasj/publications/gdc2001.htm

[Laperrière et al., 1988] Richard Laperrière, Nadia Magnenat-Thalmann,
and Daniel Thalmann. Joint-Dependent Local Deformations for Hand
Animation and Object Grasping. Graphics Interface '88, pages 26-33, June
1988.

[Moore & Wilhelms, 1988] Matthew Moore, and Jane Wilhelms. Collision
Detection and Response for Computer Animation. In Proceedings of the 15th
annual conference on Computer graphics and interactive techniques, pages 289–
298. ACM Press, 1988. http://doi.acm.org/10.1145/54852.378528.

[Shoemake, 1985] Ken Shoemake. Animating rotation with quaternion
curves. In Proceedings of the 12th annual conference on Computer graphics and
interactive techniques, pages 245–254. ACM Press, 1985.
http://doi.acm.org/10.1145/325334.325242.

[Steed, 2002] Paul Steed. Animating Real-Time Game Characters (Game
Development Series). Charles River Media, 2002.

[Stejskal & Valásek, 1996] Vladimír Stejskal, and Michael Valásek.
Kinematics and dynamics of machinery. Marcel Dekker, New York, 1996.

[Witkin et al., 1990] Andrew Witkin, Michael Gleicher, and William
Welch. Interactive Dynamics. In Proceedings of the 1990 symposium on
Interactive 3D graphics, pages 11–21. ACM Press, 1990.
http://doi.acm.org/10.1145/91385.91400.

