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Self-assembling RNA molecules present compelling substrates for
the rational interrogation and control of living systems. However,
imperfect in silico models—even at the secondary structure level—
hinder the design of new RNAs that function properly when syn-
thesized. Here, we present a unique and potentially general ap-
proach to such empirical problems: the Massive Open Laboratory.
The EteRNA project connects 37,000 enthusiasts to RNA design
puzzles through an online interface. Uniquely, EteRNA participants
not only manipulate simulated molecules but also control a re-
mote experimental pipeline for high-throughput RNA synthesis
and structure mapping. We show herein that the EteRNA commu-
nity leveraged dozens of cycles of continuous wet laboratory feed-
back to learn strategies for solving in vitro RNA design problems
on which automated methods fail. The top strategies—including
several previously unrecognized negative design rules—were dis-
tilled by machine learning into an algorithm, EteRNABot. Over
a rigorous 1-y testing phase, both the EteRNA community and
EteRNABot significantly outperformed prior algorithms in a dozen
RNA secondary structure design tests, including the creation of
dendrimer-like structures and scaffolds for small molecule sensors.
These results show that an online community can carry out large-
scale experiments, hypothesis generation, and algorithm design to
create practical advances in empirical science.

RNA folding | citizen science | high-throughput experiments |
crowdsourcing

Structured RNA molecules play critical roles in biological
processes from genetic regulation to viral replication; the

characterization, detection, and reengineering of these RNAs
are major goals of modern molecular biology and bioengineering
(1–7). Recent years have witnessed the emergence of elegant
RNA folding models that accurately capture secondary structure
formation of loops and simple helices (8–12). However, more
complex motifs, such as multiloops, remain challenging to model
(1), and thus, algorithmically designed RNAs frequently misfold
in vitro. Practitioners must often fall back on trial-and-error
refinement or problem-specific selection methods (1–7).
High-throughput synthesis and biochemical interrogation offer

the prospect of developing better folding models. Nevertheless,
a small group of professional scientists must interpret this torrent
of empirical data, a challenging task even with modern machine
learning and visualization tools. The results of such big data sci-
ence often lack the parsimony, elegance, and predictive power of
handcrafted models. This paper presents an alternative approach,
a Massive Open Laboratory, that combines the parallelism of
high-throughput experimental biochemistry with the advantages
of detailed human-guided experimental design and analysis.
The 37,000-member EteRNA project has now generated many

hundreds of designs probed at single nucleotide resolution, result-
ing in a database of nearly 100,000 data points. Instead of outpacing
human curation, this unprecedented dataset of designs has been
created concomitantly with detailed handcrafted hypotheses ad-
vanced by the community, most of which were previously un-
explored in the RNA modeling literature. Sifting and automating
these hypotheses by machine learning has resulted in an automated
algorithm, EteRNABot, which parsimoniously describes a unique
optimization function for RNA design. A gauntlet of additional

design targets tested this algorithm, including previously un-
seen RNA secondary structures as well as complex scaffolds
for small molecule sensors, with binding that provided indepen-
dent readouts of folding accuracy. These tests confirmed that
both EteRNABot-designed RNAs and handcrafted RNAs by
the community outperform existing state of the art algorithms.
Although previous internet-scale communities have solved dif-
ficult problems in silico (13–16), the results herein are unique
in showing that such a community can collectively generate and
test hypotheses through actual experiments, which are required
for advancing empirical science.

Results
EteRNA combines an interactive interface for modeling bio-
molecules with a remote wet laboratory experimental pipeline
(Materials and Methods and Fig. 1). A web-based interface
challenges participants to design and rank sequences that will
fold into a target structure when synthesized in vitro (SI Ap-
pendix, Fig. S1 and Table S1 give all design targets) and develop
design rules that explain the community’s experimental results.
High-throughput synthesis and structure mapping measurements
[selective 2′-hydroxyl acylation with primer extension (SHAPE)]
(17) (Materials and Methods and Fig. 1C) assess nucleotide
pairing of eight community-selected designs per week. EteRNA
returns these experimental results to participants through visu-
alization of the data at single nucleotide resolution (Fig. 1D) as
well as an overall structure mapping score on a scale of 0–100
(Materials and Methods), indicating the percentage of nucleotides
giving reactivities consistent with the target structure (experimental
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error ±5) (SI Appendix, Fig. S2). As participants intuit features of
experimentally successful designs, they can submit heuristics to a
design rule collection (Fig. 1E). Additional descriptions of the
platform design (SI Appendix, Fig. S3), training of participants,
reward structure, visualization, participant distributions (SI Ap-
pendix, Fig. S4), and experimental reproducibility (SI Appendix,
Fig. S2) are given in Materials and Methods and SI Appendix.
The initial 6-mo training period, called phase I, saw the

EteRNA community engaging in six RNA design problems
containing increasing numbers of nonhelical elements (bulges
and multihelix junctions) and more complex topologies (Fig. 2),
mimicking components of known functional RNAs (1, 5, 6,
18); 189 community-chosen sequences were synthesized along
with 65 sequences from RNAInverse (11) and NUPACK (12)
algorithms for comparison. Initially, the community was inexpe-
rienced, and their designs depended solely on computational
folding models (11). These designs fared poorly: during the first
laboratory competition (the three-helix finger) (Fig. 2A), many
participants’ designs gave structure mapping scores lower than
70 (compared with greater than 90 for all NUPACK designs) (SI
Appendix, Table S2). However, as the community gained expe-
rience with empirical RNA design cycles, performance improved,
and community submissions converged to successful designs (above
90) in two to three rounds for all targets (Fig. 2).
Beyond this target-specific learning, structure mapping scores

from the first round of each new target increased over time,
suggesting that the participants were developing generalizable
design rules (blue symbols in Fig. 2). Over all six targets, these
first round scores increased continuously. By the third target
(Fig. 2C), participants outperformed both RNAInverse and
NUPACK in their first round maximum score. By the fifth and
sixth targets (Fig. 2 E and F), first round median participant
scores exceeded the algorithms’ maximum scores, with top

participant designs achieving scores indistinguishable from per-
fect designs given experimental error (>95). In contrast, the in-
creasing structural complexity (measured in stems and junctions)
led to declining performances for RNAInverse and NUPACK
(Fig. 2). First round designs from EteRNA participants were
significantly better than designs from RNAInverse and NUPACK
in the last three puzzles, with P values of 2.9 × 10−4 against both
algorithms (Fig. 2, structure mapping data and SI Appendix, Table
S3B). We independently confirmed these results from the
EteRNA training period by additional tests based on several
additional design challenges (SI Appendix, Fig. S5), automated
SHAPE-directed secondary structure inference (SI Appendix,
Fig. S6), a different chemical mapping method based on di-
methyl sulfate alkylation (19) (SI Appendix, Fig. S7), 2D chem-
ical mapping with the more information-rich mutate-and-map
technique (20) (which suggests structural heterogeneity in
failed designs; SI Appendix, Supporting Results and Fig. S8),
and replicates by separate experimenters and with alternative
techniques (next generation sequencing) (SI Appendix, Fig.
S2). SI Appendix, Supporting Results gives a complete de-
scription of these results and structure models.
During the training challenges, the community-submitted col-

lection of design rules grew to 40 contributions (Fig. 3 and SI
Appendix, Table S4), most of which encoded unique insights into
successful RNA design. On one hand, some of these rules in-
volved features previously discussed in the RNA design literature
[e.g., G-C content (SI Appendix, Table S4, A Basic Test), the
ensemble defect (8, 12) (SI Appendix, Supporting Results and
Table S4, Clean Dot Plot), and sequence symmetry minimization
(21) (SI Appendix, Table S4, Repetition)]. Some features were
similar to patterns highlighted in bioinformatic analyses of nat-
ural structured RNAs, such as the prevalence of G-C closing
pairs at multiloop junctions (SI Appendix, Table S4, GC Pairs in
Junctions) or the general prevalence of adenosines outside stems
(SI Appendix, Table S4, Only As in the Loops) (18). On the other
hand, to our knowledge, most of the EteRNA design rules were
unique in the RNA folding and design field, including prescriptions
for the identities of unpaired nucleotides adjacent to stems (SI
Appendix, Table S4, No Blue Nucleotides in Hook Area), C-G vs.
G-C edge base pairs in different contexts (SI Appendix, Table S4,
Direction of GC Pairs in Multiloops + Neck Area), and place-
ment of Gs within loops (SI Appendix, Table S4, Gs in Place of
the Last As on the Righthand Side of Any End Loop).
Few of these rules have been previously encoded into energetic

models or automated RNA design methods, much less confirmed
experimentally, and it remained unclear if the participants’ pro-
posed rules accounted for their outperformance of prior design
methods. We, therefore, sought to evaluate the rules indepen-
dently from EteRNA participants through their integration into
a single score function. Sparse machine learning regression (22)
with cross-validation selected five rules (Fig. 3), which we tested
by incorporation into a unique automatedMonte Carlo algorithm
called EteRNABot and rigorous experimental tests.Materials and
Methods and SI Appendix, Supporting Results provide additional
discussion on this algorithm, a less parsimonious algorithm
EteRNABot-alt reweighting all 40 rules, and a variant algorithm
using only features preexisting in the project interface.
In the subsequent testing period, called phase II, nine unique

targets challenged EteRNA participants, the EteRNABot method,
and prior algorithms (Fig. 4 and SI Appendix, Fig. S9). The first
five targets (Fig. 4 A–E) were multijunction structures distinct
from each other and the phase I structures in topology. We eval-
uated only one round of participant designs per target, thus
testing whether community knowledge was generalizable across
target structures. We again observed superior performance of
the participant designs compared with RNAInverse and NUPACK
(P = 1.5 × 10−4 and 2.9 × 10−4, respectively) (SI Appendix, Table
S3C). Furthermore, in three of five cases (Fig. 4 B, D, and E),
automated designs from the unique EteRNABot algorithm
achieved maximum scores within ±1.5 of the participant designs
and median scores within ±5.5. In the two remaining cases

Position in capillary electropherogram0 1
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Results viewerD C Synthesis results
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Fig. 1. EteRNA workflow. Each week, participants (A) design sequences that
can fold into a target RNA structure in the sequence design interface and (B)
review and vote for the best designs with the voting interface. (C) At the end of
the round, the eight top-voted sequences are synthesized and verified by single
nucleotide resolution chemical reactivity measurements. (D) The experimental
results are published online and available for review in the results viewer. Par-
ticipants then create new hypotheses and (A) start the next experimental cycle or
(E) submit design rules learned from the results (text) that are codified and
automatically ranked based on scores obtained to date (numbers).
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(Fig. 4 A and C), EteRNABot modestly underperformed partic-
ipants, a gap that may close as more experimental data and de-
sign rules are collected. Importantly, EteRNABot outperformed
RNAInverse and NUPACK (P = 3.0 × 10−4 and 1.2 × 10−3,
respectively) (SI Appendix, Table S3C), with higher maximum scores
in all cases (Fig. 4 and SI Appendix, Table S2A) as well as better
ability to rank top designs (SI Appendix, Fig. S10).
The last four puzzles (Fig. 4 F–I) of phase II presented chal-

lenges that arise in the engineering of RNA-based switches: the
inclusion of sensor domains [in this case, a 13-nt internal loop
that binds the small molecule flavin mononucleotide (FMN)
whose sequence was held fixed] (23, 24). Consistent with previous

results, EteRNA participants and the EteRNABot algorithm
outperformed NUPACK and RNAInverse in terms of their
structure mapping scores in FMN-free conditions (P < 0.06 in all
comparisons) (Fig. 4 F–I and SI Appendix, Table S3D). Further-
more, these designs’ association constants for FMN binding
offered stringent tests of folding accuracy that were fully in-
dependent of the structure mapping scores (Fig. 4 K–N and SI
Appendix, Supporting Results and Fig. S11). Here again, both
EteRNA participants and EteRNABot outperformed RNAIn-
verse and NUPACK in both best and median association con-
stants (P < 0.05 in all pairwise comparisons) (Fig. 4N and SI
Appendix, Table S3E). These small molecule binding measurements
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Fig. 2. Phase I puzzles and results in order of puzzle posting date. Top shows a target structure and title for each puzzle (A–F). Nucleotide coloring in target
structures indicates the ideal SHAPE reactivity (gold for high reactivity and blue for low reactivity). Middle gives the single nucleotide resolution reactivity
data measured for all designs. Yellow stripes indicate bases that should show high reactivity if the target secondary structure (Top) is formed. Bottom shows
a summary of structure mapping scores for designs from the RNAInverse (black) and NUPACK (gray) algorithms compared with EteRNA participants (colored
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independently confirmed the SHAPE results above: rules de-
veloped by the EteRNA community permit more accurate au-
tomated design of RNA secondary structures than has been
previously possible. The resulting EteRNABot algorithm should
be of immediate practical use.

Discussion
The EteRNA project has discovered unique RNA design rules by
giving an internet-scale community of citizen scientists access to
high-throughput wet laboratory experimentation, totaling nearly
100,000 single nucleotide resolution data points. The commun-
ity’s design rules have been empirically and rigorously validated
through design tests involving nine target structures distinct from
six structures of the training period and independent flavin
mononucleotide binding titrations on four scaffold structures.
Outperformance of prior in silico metrics in these tests (SI Ap-
pendix, Figs. S10 and S12) confirms the importance of experi-
ments in inspiring the rules. Mechanistic work will be required to
give atomic-level explanations for the rules’ predictive power. In
this sense, the EteRNA rules are analogous to energetic models,
such as the nearest neighbor rules (25), which are also empiri-
cally derived but not yet derivable from first principles (26, 27) or
other design heuristics (28). From a mechanistic perspective, one
interesting feature shared across many of the EteRNA design
rules collected so far is the use of negative design rules. For ex-
ample, penalties on repeated n-mers (repetition), the disallowance
of mixtures of strong and weak tetraloops (tetraloop similarity),
and penalties for similarity between neighboring base pairs (twisted
base pairs) are potentially strategies that would prevent misfolding
in any reasonable energetic model. Such features may not be
captured in prior RNA design algorithms, which may uncover
designs that stabilize the target structure compared with misfolds by
overoptimizing idiosyncrasies of a particular energetic model. The
emergence of energy function-independent negative design rules in
the EteRNA project underscores the importance of actual experi-
mental falsification/validation in developing RNA design methods.
Beyond its implications for RNA engineering, our method

represents a successful attempt to generate and experimentally
test hypotheses through crowdsourcing. As the data throughput
of experimental approaches continues to grow, this approach
offers several benefits. Currently, small sets of professional scien-
tists attempt to resolve the complexity of designing and analyzing
high-throughput experiments and enumerate a space of folding
hypotheses for computational analysis of these data. Instead, the
approach herein enables a vastly larger number of participants to
design and execute remote experiments in parallel, while machine
learning algorithms sift through the community’s catalog of
hypotheses. This Massive Open Laboratory template could be
generalized to a broad class of biomolecule design problems,
including mechanistic dissection of current design rules (26),

modeling of pseudoknots, engineering of RNA switches for
cellular control (5, 6), and 3D modeling and design, all assessed
by high-throughput mapping (1, 7, 16, 20, 29, 30). Other fields,
such as taxonomy (31), astronomy (13), and neural mapping (32),
are making pioneering efforts in internet-scale scientific discovery
games. Our Massive Open Laboratory results suggest that in-
tegrating timely player-proposed experiments as part of the stan-
dard game play will be worthwhile challenges for such projects.

Materials and Methods
Online Interface. EteRNA is an online Flash (Adobe Systems Inc.) application
that can be accessed within any web browser. EteRNA presents the RNA
design problem as a set of puzzles; participants use an interactive sequence
design interface to design RNA sequences that fold into target secondary
structures. The interface visualizes each nucleotidewith yellow, blue, red, and
green circular symbols representing adenine, uracil, guanine, and cytosine,
respectively. Symbols are laid out using the NAView drawing algorithm (33).
The secondary structure display updates in real time with the minimum free
energy pseudoknot-free solution predicted by the ViennaRNA package (11)
(compiled into Flash). The interface also gives access to predicted melting
curves and dot plots of alternative base pairings (11). Additional descriptions
of the individual components of the EteRNA online interface are presented
in SI Appendix, Supporting Methods and Fig. S3.

Design Rule Selection Method and EteRNABot. EteRNABot is a unique algorithm
for design of pseudoknot-free secondary structures that optimize a function to
predict structure mapping scores (see below) generated from participant-sub-
mitted design rules. To create the score predictor, each participant-submitted
rule was coded into a scoring function. When a rule contained nondiscrete nu-
meric parameters (given as numbers in brackets in Fig. 3B and SI Appendix, Table
S4), its scoring function was optimized over the parameters using the downhill
simplex algorithm (34) to minimize the average squared error between the
predicted and actual structure mapping scores for the training set (results from
phase I and the four follow-up puzzles before phase II). SI Appendix, Table S4
lists all design rules and corresponding scoring functions; SI Appendix, Table S5
gives a glossary of frequently used terms in design rules. The EteRNABot
score is a linear combination of five scoring functions selected from 40
submitted rules using least angle regression (22) and cross-validation from
analyses leaving out data for each target shape (Fig. 3). SI Appendix,
Supporting Results and Fig. S10 report the predictive power of EteRNABot
scores for structure mapping scores. To design a unique secondary structure,
EteRNABot runs a loop of randomized nucleotide mutations to find a se-
quence that accepts a mutation if it increases the sequence’s predicted score
or decreases a base pair distance between the predicted minimum free en-
ergy structure [calculated with ViennaRNA (11)] and the target structure; its
speed is nearly the same as RNAInverse. The search ends when the sequence’s
predicted score is over 90 and the base pair distance is less than 0.1 times the
sequence length. The EteRNABot algorithm and its training data are freely
available as a server at http://eternabot.org. We also report experimental
results of an alternate EteRNABot that uses all 40 submitted rules in SI Ap-
pendix, Supporting Results, Fig. S10, and Tables S2 and S3.

Fig. 3. RNA design rules proposed by EteRNA participants. (A) The best designs from each design agent (EteRNA participants, NUPACK, and RNAInverse) for
the last target shape of phase I (Fig. 2F); the nucleotide coloring gives experimental chemical reactivity and is identical to the coloring used in Fig. 2. The
designs are annotated with violations of the top 5 rules of 40 rules proposed by participants, which were assessed by sparse linear regression. (B) The five rule
statements used for EteRNABot. The numerical parameters in brackets were optimized to best explain the results from a training set based on starting values
proposed by participants (Materials and Methods).
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RNA Synthesis and Structure Mapping. RNA sequences were prepared by in
vitro transcription with T7 RNA polymerase from DNA templates encoding
the sequence designs and probed with structure mapping based on N-
methylisatoic anhydride [SHAPE chemistry (17)] using 96-well protocols de-
scribed previously (35). All RNAs contained a shared primer binding site
(AAAGAAACAACAACAACAAC) at their 3′ end, which was included as a fixed
sequence in EteRNA puzzles. Measurements included SHAPE reactions [final
concentration of N-methyl isatoic anhydride of 6 mg/mL with 20% DMSO
(vol/vol)] or dimethyl sulfate reactions (final concentration of 0.2%) at 24 °C
with 60 nM RNA in two solution conditions (10 mM MgCl2 and 1 M NaCl)
with 50 mM Na-Hepes (pH 8.0), control measurements without SHAPE re-
agent, and control measurements using 2′-3′-dideoxythymidine triphosphate
in primer extension to generate reference ladders at adenosine residues. All
data were aligned and quantified with the HiTRACE software (36), corrected
for attenuation of long reverse transcription products, and background-
subtracted as described in ref. 35. SHAPE-directed secondary structure models
and confidence estimates were obtained with data-derived pseudoenergy
terms and nonparametric bootstrapping (35). Binding titrations to FMN were
monitored with dimethyl sulfate alkylation (19), which gave a strong pro-
tection signal on FMN binding to the aptamer (SI Appendix, Fig. S11 A–C).
Titrations were analyzed with likelihood-based fits and error estimation (SI
Appendix, Fig. S11 C and D) (37). Finally, for 30 sequences, we also carried
out the SHAPE-seq method read out by Illumina sequencing, which is de-
scribed in ref. 38, although this protocol’s systematic errors (in PCR and ligation
bias) precluded its general use for EteRNA scoring. Detailed protocols are in
refs. 39 and 40.

Structure Mapping Scores. In addition to returning nucleotide by nucleotide
SHAPE data, the quality of each synthesized design was summarized and
reported to participants as a structure mapping score, which was analogous
to the L1 norm scores used in prior work (41). A nucleotide was assigned
a point if its reactivity exceeded 0.25 (if designed to be unpaired) or was less

than 0.50 (if designed to be paired). The threshold for unpaired nucleotides
was less stringent to allow for the possibility that the nucleotide could have
reduced reactivity from non-Watson–Crick or other interactions and set
based on calibration data on natural structured RNAs (35). The baseline and
normalization of each dataset were determined using linear programming
to optimize the total score. Scores were given as the percentage of
nucleotides with points (0–100). An additional scoring system based on the
ratio of likelihoods for the data given the target secondary structure and the
best possible unpaired/paired status at each nucleotide was also tested using
likelihood distributions derived from a benchmark of natural RNAs (35). The
likelihood-based scheme gave rankings consistent with the point-based
scheme and took into account experimental error; we chose to use the point-
based scheme to calculate the EteRNA structure mapping score because
of its simplicity.

Availability
EteRNA platform and all synthesis data used in this paper are
available at http://eternagame.org. EteRNABot and its training
data are available at http://eternabot.org. Please see Dataset S1
for a complete listing of the EteRNA participants.
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