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The Internet and social media has enabled the mobilization of
large crowds to achieve time-critical feats, ranging from map-
ping crises in real-time, to organizing mass rallies, to conducting
search-and-rescue operations over large geographies. Despite
significant success, selection bias may lead to inflated expecta-
tions of the efficacy of social mobilization for these tasks. What
are the limits of social mobilization, and how reliable is it to op-
erate at these limits? We build on recent results on the spatio-
temporal structure of social and information networks, to eluci-
date the constraints they pose on social mobilization. We use
the DARPA Network Challenge as our working scenario, in which
social media was used to locate 10 balloons across the United
States. We conduct high-resolution simulations for referral-based
crowdsourcing and obtain a statistical characterization of the pop-
ulation recruited, geography covered, and time to completion.
Our results demonstrate that the outcome is plausible without
the presence of mass media, but lies at the limit of what time-
critical social mobilization is capable of. Success relies critically
on highly connected individuals willing to mobilize people in dis-
tant locations, overcoming the local trapping of diffusion in highly
dense areas. Yet, even under these highly favorable conditions,
the risk of unsuccessful search remains significant. These find-
ings have implications on the design of better incentive schemes
for social mobilization. They also call for caution in estimating the
reliability of this capability.
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The Internet and online social media are now credited with the
unprecedented ability to coordinate the mobilization of large masses
of people to achieve incredible feats that require coverage of large ge-
ographical and informational landscapes in very limited time. Social
media has been used to mobilize volunteers to map natural disasters
in real-time [1], and to conduct large-scale search-and-rescue mis-
sions [2]. Online social networks have also been an important tool in
the coordination of mass political rallies [3, 4].

Endeavors like the DARPA Network Challenge [5] aimed to test
the power of the Internet and social media in time-critical social mo-
bilization to its absolute limits. The Network Challenge required
competing teams to locate and submit the coordinates of 10 tethered
weather balloons dispersed at random locations all over the continen-
tal United States. The winning team, based at MIT, won the challenge
by locating all balloons in less than 9 hours. The MIT team used an
incentive scheme to kick start an information and recruitment cas-
cade that resulted in 4,400 sign-ups to the team’s Web site within 48
hours. Analysis of the diffusion revealed that the recursive incentive
scheme may have played an important role in maximizing the speed
and branching of the diffusion to limits above what is normally ob-
served in viral propagation schemes [6–8].

More recently, the State Department’s Tag Challenge required
competing teams to locate and photograph 5 target “thieves” (ac-
tors) in 5 different cities in the US and Europe, based only on a mug
shot released at 8:00am local time [9]. The targets were only vis-
ible for 12 hours, and followed normal itineraries around the cities
of Stockholm, London, Bratislava, New York City and Washington
D.C. Our winning team located 3 of the five suspects using social
media, without any of the team members being based in any of the

target cities [10], demonstrating yet another example of time-critical
social mobilization in tasks that require covering large geographies.

Despite these numerous successes, we still have limited under-
standing of the limits of technology-mediated mobilization. If we
are to rely on social media to react to time-critical emergencies, it is
important to understand the conditions under which they can be suc-
cessful, and the risks of failure associated with them. A particular
case, of highly practical importance, is to understand the extent to
which we can expect to cover a certain geographical area in a given
amount of time. For this, we must understand the complete statistical
characterization of the population recruited, geographical area cov-
ered, and completion time it takes for social mobilization to succeed
in a particular task, as well as to quantify the likelihood of failure.

This lack of understanding is especially prone to selection bias
over few successful social mobilization strategies and may lead to
inflated expectations of the reliability and efficacy of of these tech-
niques [11, 12]. Yet it is beyond experimental capabilities to per-
form randomized experimentation with large crowdsourcing chal-
lenges (with notable exceptions emerging recently [13, 14]).

Modeling efforts in the wake of the H1N1 and other global pan-
demics have also provided a valuable insight into time sensitive hu-
man dynamics on a large scale, via spatial simulation [15] or net-
work based diffusion [16, 17]. In common with these efforts we
model the interaction and connection of large numbers of agents,
however we consider the propagation of a message which may be
transmitted without direct physical proximity and generally shorter
‘incubation’ times leading to faster spreading. Thus the mechanism
of ‘infection’ (recruitment) is independent of human mobility pat-
terns [18–21], which in our case contribute only to the area searched.

In this work, we build on recent results on social network struc-
ture, information diffusion and urban economics, to elucidate the
constraints that they pose on social mobilization. In particular, we
conduct high-resolution simulations of the DARPA Network Chal-
lenge. We obtain statistical characterizations of the population re-
cruited, geography covered, and time to locate the 10 balloons, to-
gether with their dependencies on the instrumental variables.

Our results demonstrate, surprisingly, that the DARPA Network
Challenge outcome is plausible, and thus it is not simply a fluke that
can only be explained by the role of mass media. Having said that, the
challenge lies at the limit of what time-critical social mobilization is
capable of. Mobilization requires highly connected, highly active in-
dividuals to be motivated to propagate the message to a large number
of friends, and to mobilize people in distant locations, overcoming
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the local trapping of diffusion in highly dense areas. Moreover, even
under highly favorable conditions, the risk of mobilization failure re-
mains significant. These findings have implications on the design of
better incentive schemes for social mobilization. They also call for
caution in estimating the reliability of this capability.

Simulation Model
In seeking to understand social mobilization we must consider the
many different dynamics that underpin such a process; in particu-
lar the branching dynamics of recruitment, the temporal dynamics
of message propagation, the geographical spread of social networks,
and the scales and aspects of human mobility. A full accountability
of each process will render the simulation and its understanding im-
possible and thus we concentrate on the main ingredients that explain
the observed behavior in each of the processes.

Recruitment. Examination of the dynamics of the branching recruit-
ment process in empirical data from the challenge [6] suggests sev-
eral key features. After a large initial round of recruitment from the
seed node, the reproductive number is well below the tipping point
(see SI Appendix). Thus a large number of sub-trees are first created
spreading from the root node which then steadily die out. In order
to describe the typical branching recruitment process, we fit to the
observed branching data assuming an atypical burst of recruitment
when the search commences. We find a power law distribution with
a mean 〈Ro〉 = 0.89. (See Materials and Methods for details of fit).

Response Time. The importance of the heterogeneity in response
times in viral recruitment processes has been demonstrated [22]. In
a study of a viral email campaign, the time taken to forward a mes-
sage was found to be log-normally distributed as opposed to the com-
monly used Gaussian assumption, with a mean of 1.5 days with a
standard deviation of 5.5 days. This large heterogeneity has a deep
impact on the propagation of information: cascade dynamics may
be halted by the few individuals with very long response times and
thus recruitment events may continue up to the order of years after
the seed node starts the cascade. The waiting time distribution in a
time-critical campaign such as the DARPA Network Challenge might
differ fundamentally since it must necessarily end by a fixed deadline
regardless of whether the campaign is successful or not. However
we use the distribution of [22] as a reasonable approximation. We
do not apply a cut-off at large times, although the tail of the distribu-
tion may be effectively truncated since a search may terminate if all
balloons are found before recruits with waiting times drawn from the
tail of the distribution are able to act. The role of burstiness in diffu-
sion in temporal networks was investigated systematically in [23] by
characterising tie strength due to both topological and temporal char-
acteristics. Paradoxically, burstiness was found to promote efficient
diffusion at small scales but to hinder it on large scales.

Geography of Ties. Several studies have been made of geographi-
cal scaling laws for friendship [24–26]. Liben-Nowell et al analysed
a blogging network and the relationship between friendship and dis-
tance. They concluded that friendship correlates more strongly with a
person’s rank, a measure of the number of closer people, than simply
with the distance between people [27].

Pij ∝
1∑

k:rik<rij
pk

[1]

Where Pij is the probability of friendship between agents in two
distinct grid cells i and j, pk is the population in cell k and rik is
the distance from cell i to cell k. The quantity on the right hand side
is the rank of an agent in i with respect to agent in j, it is a measure
of the number of people located between i and j. Thus the spatial
distribution of a person’s friends is now strongly dependent on the

local population density; with the effect that two people separated by
a given large distance are more likely to be friends in a rural region
than a dense, urban environment. It was also noted that friends could
be classified into two distinct types; firstly rank-based friends chosen
due to geographical proximity (i.e. sharing a common workplace)
in accordance with rank scaling. They also observed a ‘background’
probability that an agent may be friends with any other randomly
chosen agent from across the country, in this case friendships are in-
dependent of geography. Further, these two types of friends were
found to exist in a ratio of 2.5 distance independent friendships to
5.5 rank-based friendships among the user average of 8 friends. In
our simulation, we apply this model of friendship to high-resolution
population density data derived from census data [28] (see Materials
and Methods).

Passive Recruitment. In addition to the branching, temporal and
friendship mechanisms above, we investigate the role of two other
mechanisms: passive recruitment, and mobility. We describe these in
turn below. The data collected during the DARPA network challenge
recorded each person who officially registered with the MIT team al-
lowing them to recruit others and to report findings. However this
is only a subset of all the people who became aware of the search;
the record of sign-ups gives a measure of the number of new recruits
which each individual successfully invites, but not the larger hidden
network of individuals who search but do not sign-up or recruit oth-
ers. We refer to this process as passive recruitment, quantified by
the number of passive recruits per individual npass. There was a
considerable number of single nodes reporting findings directly; sep-
arate from any recruitment tree (5 of the 10 balloons were reported in
this way). The reported traffic to the MIT team’s website of 100,000
individuals given only 4,400 signups is further evidence of an un-
reported, hidden network. This suggests that in addition to the ob-
servable chain of individuals which actively recruit others after be-
ing recruited themselves, there is a supplementary process whereby
individuals become aware of the search, and the associated incen-
tives and will report any balloons in their vicinity, yet are not suf-
ficiently motivated to recruit others. This may be due to low affin-
ity with the potential parent node from which they became aware of
the search [29–31]. The effect of mass media and possibly word of
mouth would also manifest itself in a similar way. By definition the
participation of these individuals is difficult to measure unless they
report a balloon, but given the large number of submissions attributed
to single nodes which were not part of a recruitment chain, we expect
that a sizable number of passive recruits were also participating in the
search. This process gives rise to an interesting multiplicative factor,
separate from the exponential growth of recruits due to branching.

While the number of passive recruits a person is able to mobi-
lize is intrinsically hard to quantify, a good measure of this number is
the number of friends of a user of a typical social networking service
such as Facebook. The average degree of the entire global network
is around 200 with a large range, but it is observed to be up to 400
amongst the most active users [32]. It is these users which have been
observed to drive such viral recruitment processes [22]. As discussed
in the SI Appendix, we study this parameter for a wide range of pas-
sive recruits: however, since we aim to test the behavior of successful
social mobilizations we set it to that upper limit of 400 friends. Note
also that maintaining a large social network requires a high level of
activity [32]. Thus, by selecting this level of passive recruitment we
ensure that those users are also the most “temporally active” popula-
tion.

Mobility. Census data provides a record of where individuals live, but
limiting an individual’s effective search area to their home ignores
their ability to search their vicinity due to their mobility. Due to the
high resolution of the simulations (1km2), it is fair to expect that re-
cruits will instantaneously find a balloon in their own cell. However
it is likely that agents will be mobile during the course of a search al-
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lowing them to locate balloons in nearby cells. We quantify this with
a radius of gyration (rmob). The realistic modeling of individual mo-
bility patterns on short timescales (≈ 101hours) is non-trivial. These
patterns have a proven seasonal nature due to commuting patterns,
Circadian rhythms [33] and friendship [34], but an exact individual
agent-scale model would require a complex probabilistic treatment
and to account for differences in mobility between rural and urban
areas [35] putting it beyond the scope of this model. Therefore we de-
fine a fixed mobility radius allowing agents to locate balloons within
a neighborhood of size rmob. The radius of gyration has been inves-
tigated extensively using mobile phone data, although typically these
studies have focused on the statistical properties of mobility over the
course of weeks and months. However a recent study found that on
timescales appropriate for time-critical social mobilization (i.e. up to
12 hours) radii of gyration reached 1-2km [36], with a large range.
Since a large spread in radii around the mean is expected on this
timescale, we also investigate radii in the range 0-5km in our sim-
ulations. This parameter also assimilates other mechanisms such as
recruited agents becoming aware of a balloon via face-to-face, word
of mouth communication.

In light of recent results which find a variability in mobility ra-
dius with respect to rank [37] and population density [38], we inves-
tigate a variable mobility radius in inverse proportion to local popu-
lation density (see SI Appendix). Despite the number of passive re-
cruits being unknown, it is likely that the number of passive recruits
would follow a distribution since the number of active recruits in the
branching recruitment process demonstrated a large range. Therefore
we also investigate the affect of a distribution of passive recruits. Our
findings are insensitive to the introduction of both a variable mobility
radius and a distribution of passive recruits, see SI Appendix.

Results
DARPA Balloon Challenge Feasibility. We conducted 500 searches
for the 10 DARPA network challenge balloon locations using pa-
rameters of rmob = 2km and npass = 400. We find a success
rate of 89%. A large variation is seen in completion times (Fig (1)
main plot), however the median completion time amongst successful
searches was 2.3 days demonstrating a remarkable agreement with
the observed time of 48 hours between beginning recruitment and
completion [6]. The combined effect of the heavy tailed distribution
for branching factor and large heterogeneity in response time gives
rise to a large spread in the time for the pure branching process to ter-
minate [22]. Successful searches terminate upon completion which
naturally leads to a completion time distribution which is truncated
with respect to the underlying distribution of termination times of
the pure branching process. It is against this ‘natural’ range of ter-
mination times of the branching (inset of Figure (1)) that the trun-
cated distribution of completion times for successful search must be
compared. The full range of parameters is investigated in the SI Ap-
pendix. We find that minimum values for mobility radius and passive
recruits of 2km and 200 respectively are required for a reasonable
level of success.

General Balloon Locations. We investigate the hypothesis that the
specific balloon locations chosen in the DARPA balloon challenge
contributed positively to the speed with which the balloons were
found. We randomly choose cells uniformly sampling a large range
of population. Further, we simulate the search for a single balloon in
each simulation in order to clearly isolate the effect of balloon loca-
tion on the number of recruits needed to locate it. Figure (2) shows a
plot of the number of recruits needed to locate a balloon as a function
of the population density of the balloon cell. While the plot contains
some noise, there is a clear trend both that balloons in sparsely pop-
ulated areas require significantly more people to find, and are less

likely to be found at all, compared to those in well populated areas.
This is due to a combination of effects, a cell containing fewer po-
tential recruits will more likely be searched at a later time. However
this is exacerbated by the fact that the population is far from homo-
geneously distributed, demonstrating strong spatial auto-correlation
(see SI Appendix). Rather a sparsely populated cell is likely to be
surrounded by other sparsely populated cells, thus there are consid-
erably less opportunities for recruitment into that cell from its neigh-
bors. Conversely, well populated cells in urban areas experience the
opposite effect. We have highlighted the extent to which a balloon
becomes more easily found as it is moved to a location with higher
density. In this context it can be seen that a few of the chosen bal-
loon locations were in challenging locations, but that overall success
is expected.

Searchabilty, Blendability, and Findability. In order to draw more
general conclusions about the probability of searching a location, we
move away from the specific balloon locations. We can now measure
the ease with which every single cell may be searched over the course
of many different search realisations. With this in mind, we map the
searchability (s) of each cell i as

si =
nsearched
i

N
, [2]

where nsearched
i is the number of instances in which someone is re-

cruited in cell i out of N searches (N = 10, 000 for the following
results). We see (Fig. (3)) that cells located in dense metropolitan ar-
eas are easily searchable as there are many more potential searchers
to recruit in those cells, whereas the opposite is true for sparsely pop-
ulated areas. Figure (3, black points) demonstrates this saturating
trend above cell population ≈ 104km−2. This is far from a linear
mapping, as some places are highly searchable despite having only
intermediate population. Adding more people to a cell located in a
small town increases the searchability a great deal, however the pay-
off for adding more people to a cell in a large city is negligible.

Intuitively, we could also expect an added difficulty in locating
a target in a region of high population density such as Manhattan,
despite its density-driven high searchability. We model this difficulty
to successfully locate a target at a given place by the blendability
bi of a cell i. There are (at least) two distinct sources for this dif-
ficulty. Firstly as a characteristic of the city itself: The increased
density leads to increased complexity of the physical urban environ-
ment [45–47] providing more possibilities for a target to be concealed
(e.g. an adobe house in Santa Fe, New Mexico vs. a skyscraper in
Manhattan). The other contributor to the degree of blendability of
a location comes from the individual perspective: sensory overload
in busy places, leading to inattentional blindness [39–41], dimin-
ished feelings of individual responsibility to report sightings in large
crowds [42, 43], and/or reduced cognitive processing ability due to
stress [44]. In all the above cases we can safely infer that the larger
the population of a cell pi, the larger its blendability bi. We assume
that bi ∼ pβi similar to how other urban indicators scale with popula-
tion [48, 49]; e.g. wages and crime with β = 1.25. We also consider
walking speed with β = 1 in SI Appendix.

Thus, if we define the blendability per person we obtain

b̂i =
pβi
pi

= pβ−1
i , [3]

and we rescale {b̂i} to lie in the range [0, 1].
The tension between the searchability and blendability of places

is modeled by the findability per cell i

fi =
si

b̂i
[4]

Again we scale {fi} to be in the range [0, 1], and plot equation [4]
as the red points in Figure (3) for β = 1.25 (we repeat the analysis
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using β = 1 in the SI). We isolate a regime of high findability defined
by a value greater than 0.8, which corresponds to the grey shaded re-
gion, with a population density in the range of [1,100 - 13,500km−2].
We emphasise that the exact findability threshold is not important as
the blendability is only defined up to a constant. Comparing Mid-
town Manhattan (population density 36,627km−2) with nearby As-
bury Park, New Jersey (population density 4,975km−2) we see (Fig-
ure 3) that, counterintuitively, it may be easier to hide in the former
than in the latter. The origin of this result is that if β ≥ 1, then for
a large pi the rate at which searchability increases with population is
insufficient to overcome the rate at which blendability increases with
population, and thus the findability is maximized in places of inter-
mediate density (this happens when b̂ is an increasing function of pi;
a detailed derivation of the condition for β to display this behavior
can be found in SI Appendix).

Finally in Figure (4) we visualise the variation of the searcha-
bility, blendability and findability in the vicinity of Manhattan and
Asbury Park (see SI Appendix for a full map of the continental US).
Manhattan has extremely high population density (strong red shad-
ing in upper circle), leading to high searchability. However this is
again counteracted by a very high blendability resulting in a rela-
tively lower findability than intuitively expected (medium shading in
findability map). In contrast the intermediate population density in
Asbury Park leads to a fairly high searchability (medium shading in
lower circle). But since the blendability is very low (blue shading of
blendability map) the findability is very high. In general it can be
seen that areas of intermediate population have high findabilities.

Discussion
Our goal is to understand the practical limits of time-critical social
mobilization, and to do so in light of contemporary wisdom about the
factors that may affect it: the structure and geographical distribution
of social ties, the branching and temporal dynamics of information
diffusion via social media, and urban economics. Where possible,
we used parameters measured from large-scale empirical results, in
order to create a realistic, high-resolution simulation of a mobiliza-
tion scenario akin to the DARPA Network Challenge.

The popular reaction to the DARPA Network Challenge was that
it would be impossible without mass media. Our main finding is that
success is actually expected with only social media and under real-
istic parameters. Assuming an initial burst of motivated individuals,
success takes place despite the branching factor being lower than the
critical point.

Having said that, we find two sobering and instructive qualifiers.
Firstly, despite the average completion time coinciding with the expe-
rience in the actual challenge, the long tail distribution of completion
time suggests that the risk of failing to locate the targets within a
short time-frame is also significant. The second important qualifier
is that the challenge lies at the limits of what social mobilization is
able to achieve. Success relies on all parameters being at their practi-
cal limits: you need highly connected individuals to be motivated to
propagate the message to a large number of friends, and to mobilize
people in distant locations, overcoming the local trapping of diffusion
in highly dense areas.

Our results have implications on the use of social mobilization to
achieve time-critical tasks, like mapping crises in real-time, or con-
ducting search-and-rescue operations over large geographies. Novel
mobilization mechanisms need to focus on incentivizing those ele-
ments of the network that are most conducive to successful mobiliza-
tion: highly-connected people, with distant friends, and rapid reac-
tion time. These characteristics can be exploited in a new measure
of influence. One can envisage variants of the winning team’s re-
cursive incentive strategy that provide network centrality, distance
and/or time-sensitive rewards to recruit such influentials.

We studied tension between the benefits and difficulties of
searching for physical objects in highly populated areas by defin-

ing measures of searchability, blendability, and findability. On one
hand, hiding in a sparsely populated town makes it less likely for
someone from that town to be recruited to find the target. But as
soon as someone gets recruited, identification becomes trivial. On the
other hand, in a city with high density, one might be able to “blend
into the crowd.” Our results show that, short of hiding in the mid-
dle of nowhere, one’s best bet is to hide in plain sight. The role
of human mobility in the context of blendability is not completely
clear, and certainly warrants further investigation using a more de-
tailed treatment. Models of geographical ties and mobility should
explicitly account for variations in density. In particular the deviation
from pure rank scaling [50], demonstrating the increased likelihood
of city-based users to have longer range ties.

It is worthwhile putting our work in the context of search in social
networks. Milgram’s landmark “small world” experiment showed
that people are, in principle, findable using 6 hops on the global social
network [51], a result that has been reaffirmed in the Internet age [52].
However, Milgram searchability relies on people’s ability to form a
reliable estimate of distance to the target, in order to exploit the large
jumps afforded by small world networks [53–55]. For example, if
the target is known to be a Professor residing in Kyoto, Japan, one
might send it to a friend who lives in Tokyo, Japan, as they are more
likely to know someone who lives in Kyoto, who in turn may know
someone in academia, and so on. But if information about a target is
scarce (e.g. searching for a person in an entire country based only on
a mug-shot), we cannot rely on distance estimates. In other words,
the problem becomes that of uninformed (a.k.a. blind) search [56],
and thus requires large-scale social mobilization. Having said that,
endeavors like the Tag Challenge [57], in which search may benefit
from partial knowledge of target location, require elements of both
uninformed and heuristic search, a topic that deserves further study
in the context of social mobilization.

Our work is not without limitations. First, we focused on mo-
bilization processes that are fully driven by social ties. In reality,
however, mobilization often also benefits from the use of mass media
(e.g. AMBER Alert distributed via radio stations and cable Televi-
sion) and social media hubs (e.g. highly followed blogs or Twitter
accounts). Surely, such media can accelerate social mobilization, as
they complement the social diffusion process and seed it over large
areas [58, 59]. Another limitation of our work is our use of a sim-
ple model of human mobility. For a task like the Network Chal-
lenge, this is unlikely to be a problem. However, for scenarios that
involve searching for mobile targets, as was the case in the Tag Chal-
lenge [57], more sophisticated models of human mobility should be
incorporated [33].

Materials and Methods

Materials. High resolution population data was taken from publicly available
sources [60] based on US census data [28]. This comprises 7,820,528 cells
each with an area of 1km2, of which 5,060,288 are populated (i.e. 2,760,240 are
empty). Empirical data from [6] was used to parameterise the branching factor
power law distribution as follows. We exclude the first generation of recruitment
directly from the MIT team, as this is anomalously high (164 child recruits) and
due to the team’s own unique personal association with the task, likely to be
atypical. We also exclude 611 single nodes which signed up directly and did
not recruit any child nodes, we assume that these are examples of passive re-
cruits which signed up independently. The distribution of the branching factor
among a subset of the remaining nodes is described by a power law with mean
〈Ro〉 = 0.89 (See SI Appendix).

Methods.

A set of seed nodes located at MIT is chosen; the number of which matches
those initially recruited by the MIT Media Lab team. All of these nodes are active
i.e. they continue to recruit themselves in contrast to passive recruits which do
not continue the recruitment tree. Each newly activated node looks around in its
vicinity (within a distance radius of rmob) and reports any balloon that it sees
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within that radius. Each newly activated node also chooses an outdegree (a con-
stant number npass of ‘passive’ recruits, and a power-law-distributed number
na of ‘active’ recruits, where npass is drawn from the distribution seen in the
MIT Red Balloon team’s recruitment data). Each chosen friend, passive or active,
is chosen to be rank-based with respect to geography, using 1km2 population
density data across the U.S.) with probability 5.5/8, and uniform over population
with probability 2.5/8. Each active new recruit selects a delay, chosen from a log-
normally distributed waiting time distribution with mean 1.5 days and standard

deviation 5.5 days [22] and becomes activated and completes its own recruitment
after that time delay.
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Fig. 1. Histogram of completion times for successful searches out of 500 instances with parameters npass =
400 and rmob = 2km (blue) and inset for the remaining unsuccessful searches which fail to locate all
10 balloons (red). Dashed vertical line shows completion time of DARPA Network Challenge after MIT
team recruitment commenced. The search continues until all agents have acted, due to the heavy tailed
waiting time distribution this can take as long as several years. However since the majority of recruits act
on much shorter timescales, the searches which succeed in locating all of the balloons drastically truncate
this distribution.
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Fig. 2. Scatter plot of number of recruits at completion in a search for a single randomly placed balloon as
a function of the population in the cell in which the balloon is placed for 5,000 randomly selected balloon
locations. Black dots represent only successful searches (top). Histogram represents the probability to
successfully find the balloon. Dashed black vertical lines indicate the populations of the locations used in
the DARPA balloon challenge. The red line represents the mean number of recuits for each histogram bin
(bottom).
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Fig. 3. Scatter plot of searchability (black), population-scaled blendability function (blue) and their ratio,
defined as findability (red), as a function of population for all 5060288 cells. The shaded region marks the
range of population density for which cells have a findability greater than 0.8. The vertical dashed lines
represent Midtown Manhattan, NY and Asbury Park, NJ. [The cells within 15km of the starting cell at MIT
have been removed since they are extraordinarily searchable due to their privileged position close to the
source of the search, see SI Appendix.]
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Fig. 4. Map of Manhattan and Asbury Park showing variation of population density, searchability, blend-
ability and findability as well as underlying satellite and road maps. Black circles indicate locations of
Manhattan, NY (upper) and Asbury Park, NJ (lower). Population density is on logarithmic scale, all others
on linear scale. Unpopulated cells are not shown.
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