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Gesture and speech combine to form a rich basis for human conversational interaction. To exploit
these modalities in HCI, we need to understand the interplay between them and the way in which
they support communication. We propose a framework for the gesture research done to date, and
present our work on the cross-modal cues for discourse segmentation in free-form gesticulation
accompanying speech in natural conversation as a new paradigm for such multimodal interaction.
The basis for this integration is the psycholinguistic concept of the coequal generation of gesture
and speech from the same semantic intent. We present a detailed case study of a gesture and speech
elicitation experiment in which a subject describes her living space to an interlocutor. We perform
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two independent sets of analyses on the video and audio data: video and audio analysis to extract
segmentation cues, and expert transcription of the speech and gesture data by microanalyzing the
videotape using a frame-accurate videoplayer to correlate the speech with the gestural entities. We
compare the results of both analyses to identify the cues accessible in the gestural and audio data
that correlate well with the expert psycholinguistic analysis. We show that “handedness” and the
kind of symmetry in two-handed gestures provide effective supersegmental discourse cues.

Categories and Subject Descriptors: H.5.2 [Information Interfaces and Presentation]: User
Interfaces—theory and methods; interaction styles

General Terms: Languages

Additional Key Words and Phrases: Multimodal interaction, conversational interaction, gesture,
speech, discourse, human interaction models, gesture analysis

1. INTRODUCTION

Natural human conversation is a rich interaction among multiple verbal and
nonverbal channels. Gestures are an important part of human conversational
interaction [McNeill 1992] and they have been studied extensively in recent
years in efforts to build computer-human interfaces that go beyond traditional
input devices such as keyboard and mouse manipulations. In a broader sense
“gesture” includes not only hand movements, but also facial expressions and
gaze shifts. For human-computer interaction to approach the level of trans-
parency of interhuman discourse, we need to understand the phenomenology
of conversational interaction and the kinds of extractable features that can aid
in its comprehension. In fact, we believe that we need new paradigms for look-
ing at this nexus of multimodal interaction before we can properly exploit the
human facility with this rich interplay of verbal and nonverbal behavior in an
instrumental fashion.

Although gesture may be extended to include head and eye gestures, facial
gestures, and body motion, we explore only the relationship of hand gestures
and speech in this article. In a case study of 32 seconds of video of a “living-
space description” discourse, we demonstrate the efficacy of handedness and
symmetry analyses in identifying the shifts in discourse topic. In the course
of our presentation we hope to motivate a view of this multimodal interaction
that gives us a glimpse into the construction of discourse itself.

1.1 Manipulation and Semaphores

There is a growing body of literature on the instrumental comprehension of hu-
man gestures. Predominantly, research efforts are clustered around two kinds
of gestures: manipulative and semaphoric. We define manipulative gestures as
those whose intended purpose is to control some entity by applying a tight re-
lationship between the actual movements of the gesturing hand/arm with the
entity being manipulated. Semaphores are systems of signaling using flags,
lights, or arms [Brittanica.com]. By extension, we define semaphoric gestures
to be any gesturing system that employs a stylized dictionary of static or dy-
namic hand or arm gestures.

Research employing the manipulative gesture paradigm may be thought
of as following the seminal “Put-That-There” work by Bolt [1980, 1982].
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Since then, there have been a plethora of systems that implement finger
tracking/pointing, a variety of “finger flying” style navigation in virtual spaces
or direct-manipulation interfaces, control of appliances, in computer games,
and robot control. In a sense the hand is the ultimate multipurpose tool, and
manipulation represents properly a large proportion of human hand use. We
have observed, however, that gestures used in communication/conversation dif-
fer from manipulative gestures in several significant ways [Quek 1995, 1996].
First, because the intent of the latter is for manipulation, there is no guar-
antee that the salient features of the hands are visible. Second, the dynamics
of hand movement in manipulative gestures differ significantly from conver-
sational gestures. Third, manipulative gestures may typically be aided by vi-
sual, tactile, or force-feedback from the object (virtual or real) being manipu-
lated, whereas conversational gestures are typically performed without such
constraints. Gesture and manipulation are clearly different entities sharing
between them possibly only the feature that both may utilize the same body
parts.

Semaphoric gestures are typified by the application of a recognition-based
approach to identify some gesture gi ∈ G where G is a set of predefined gestures.
Semaphoric approaches may be termed “communicative” in that gestures serve
as a universe of symbols to be communicated to the machine. A pragmatic
distinction between semaphoric gestures and manipulative ones is that the
semaphores typically do not require the feedback control (e.g., hand-eye, force-
feedback, or haptic) necessary for manipulation. Systems operating under this
paradigm typically define a set of stylized gesture and head movement symbols
that are then recognized by a variety of techniques, including graph labeling
[Triesch and von der Malsburg 1996], principal components analysis [Lanitis
et al. 1995], hidden Markov models [Yamato et al. 1992; Hofmann et al. 1997;
Schlenzig et al. 1994], and neural networks [Schlenzig et al. 1994; Edwards
1997]. Unfortunately such semaphoric handuse is a miniscule percentage of
typical handuse in communication.

Both manipulative and semaphoric gesture models suffer significant short-
comings. Although manipulation represents a significant proportion of hu-
man natural hand use, natural manipulation situations almost always involve
the handling of the artifact being manipulated. Free-hand manipulation in-
terfaces, however, lack such feedback and rely almost exclusively on visual
feedback.

Semaphores represent a miniscule portion of the use of the hands in natural
human communication. In reviewing the challenges to automatic gesture recog-
nition, Wexelblat [1997] emphasizes the need for development of systems able
to recognize natural, nonposed, and nondiscrete gestures. Wexelblat disquali-
fies systems recognizing artificial, posed, and discrete gestures as unnecessary
and superficial:

If users must make one fixed gesture to, for example, move forward in a
system then stop, then make another gesture to move backward, I find myself
wondering why the system designers bother with gesture in the first place.
Why not simply give the person keys to press: one for forward and one for
backward?
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He considers the natural gestural interaction to be the only one “real” and
useful mode of interfacing with computer systems:

. . . one of the major points of gesture modes of operation is their naturalness.
If you take away that advantage, it is hard to see why the user benefits from
a gestural interface at all.

He underscores the need for systems working with truly conversational ges-
tures, and also emphasizes the tight connection of gestures and speech (conver-
sational gestures cannot be analyzed without considering speech). He expresses
urgent need for standard datasets that could be used for testing of gesture
recognition algorithms. One of his conclusions, however, is that the need for
conversational gesture recognition still remains to be proven (by proving, e.g.,
that natural gesture recognition can improve speech recognition):

An even broader challenge in multimodal interaction is the question of
whether or not gesture serves any measurable useful function, particularly
in the presence of speech.

In their review of gesture recognition systems, Pavlović et al. [1997] conclude
that natural, conversational gesture interfaces are still in their infancy. They
state that most current works “address a very narrow group of applications:
mostly symbolic commands based on hand postures or 3D-mouse type of point-
ing,” and that “real-time interaction based on 3D hand model-based gesture
analysis is yet to be demonstrated.”

1.2 Gesture-Speech Approaches

Several researchers have looked at the speech-gesture nexus. Wexelblat [1995]
describes research whose goal is to “understand and encapsulate gestural in-
teraction in such a way that gesticulation can be treated as a datatype—like
graphics and speech—and incorporated into any computerized environment
where it is appropriate.” The author does not make any distinction between the
communicative aspect of gesture and the manipulative use of the hand, citing
the act of grasping a virtual doorknob and twisting as a natural gesture for
opening a door in a virtual environment. The paper describes a set of experi-
ments for determining the characteristics of human gesticulation accompany-
ing the description of video clips subjects have viewed. These experiments were
rather naive given the large body of literature on narration of video episodes
[McNeill 1992]. The author states that “in general we could not predict what
users would gesture about,” and that “there were things in common between
subjects that were not being seen at a full-gesture analysis level. Gesture com-
mand languages generally operate only at a whole gesture level, usually by
matching the user’s gesture to a pre-stored template. . . . [A]ttempting to do ges-
ture recognition solely by template matching would quickly lead to a prolifer-
ation of templates and would miss essential commonalities” [of real gestures].
As shown later, this affirms our assertion concerning the characteristics of hu-
man gesticulation accompanying speech. Proceeding from these observations,
the author describes a system that divides the gesture analysis process into
two phases: feature analysis and interpretation (“where meaning is assigned
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to the input”). The system uses CyberGloves,1 body position sensors and eye
trackers as inputs (the data are sampled at 20 Hz). The data are then seg-
mented by feature detectors and the features temporally integrated to form
“frames” representing phases of a gesture. Beside stating that the outputs of
these analyses would go to domain-dependent gesture interpreters that may be
built, the system makes no attempt to recognize the gestures. The architecture
of the system is similar to the architecture presented in Boehme et al. [1997]:
the signals are analyzed by layers of parallel detectors/analyzing units, and the
level of abstraction increases with each level of analysis.

Wilson et al. [1996] proposed a triphasic gesture segmenter that expects
all gestures to be a rest, transition, stroke, transition, rest sequence. They
use an image-difference approach along with a finite-state machine to detect
these motion sequences. Natural gestures are, however, seldom clearly triphasic
in the sense of this article. Speakers do not normally terminate each gesture
sequence with their hands in the rest positions. Instead, retractions from the
preceding gesture often merge with the preparation of the next.

Kahn et al. [1994] describe their Perseus architecture that recognizes a
standing human form pointing at various predefined artifacts (e.g., CokeTM

cans). They use an object-oriented representation scheme with a “feature map”
comprising intensity, edge, motion, disparity, and color features to describe ob-
jects (standing person and pointing targets) in the scene. Their system rea-
sons with these objects to determine the pointed-at object. Extending Perseus,
Franklin et al. [1996] describe an extension of this work to direct and interact
with a mobile robot.

There is a class of systems that applies a combination of semaphoric and
manipulative gestures within a single system. This class is typified by Pavlovic
et al. [1996] and combines HMM-based gesture semaphores (move forward,
backward), static hand poses (grasp, release, drop, etc.), and pointing gestures
(fingertip tracking using two orthogonally oriented cameras: top and side). The
system is used to manipulate graphical DNA models.

Sowa and Wachsmuth [2000, 1999] describe a study based on a system for
using coverbal iconic gestures for describing objects in the performance of an
assembly task in a virtual environment. They use a pair of CyberGloves for ges-
ture capture, three Ascension Flock of Birds electromagnetic trackers2 mounted
to the subject’s back for torso tracking and wrists, and a headphone-mounted
microphone for speech capture. In this work, subjects describe contents of a set
of five virtual parts (e.g., screws and bars) that are presented to them in wall-
size display. The gestures were annotated using the Hamburg Notation System
for sign languages [Prillwitz et al. 1989]. The authors found that “such gestures
convey geometric attributes by abstraction from the complete shape. Spatial ex-
tensions in different dimensions and roundness constitute the dominant ‘basic’
attributes in [their] corpus . . . geometrical attributes can be expressed in several
ways using combinations of movement trajectories, hand distances, hand aper-
tures, palm orientations, hand-shapes and index finger direction.” In essence,

1See www.virtex.com.
2See www.ascension-tech.com.
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Fig. 1. A continuum of gestures (reproduced from McNeill [1992]).

even with the limited scope of their experiment in which the imagery of the
subjects was guided by a wall-size visual display, a panoply of iconics relat-
ing to some (hard-to-predict) attributes of each of the five target objects were
produced by the subjects.

There is a class of gestures that sits between pure manipulation and natu-
ral gesticulation (see Section 2). This class of gestures, broadly termed deictics
or pointing gestures, has some of the flavor of manipulation in its capacity of
immediate spatial reference. Deictics also facilitate the “concretization” of ab-
stract or distant entities in discourse, and so are the subject of much study
in psychology and linguistics. Following Bolt [1980, 1982], work done in the
area of integrating direct manipulation with natural language and speech has
shown some promise in such combination. Earlier work by Cohen et al [1989,
1998] involved the combination of the use of a pointing device and typed natural
language to resolve anaphoric references. By constraining the space of possible
referents by menu enumeration, the deictic component of direct manipulation
was used to augment the natural language interpretation. Neal et al [1989,
1998] describe similar work employing mouse pointing for deixis and spoken
and typed speech in a system for querying geographical databases. Oviatt et al.
[Oviatt et al. 1999; Oviatt and Cohen 2000; Oviatt 1999] extended this research
direction by combining speech and natural language processing and pen-based
gestures. We have argued that pen-based gestures retain some of the temporal
coherence with speech as with natural gesticulation [Quek et al. 2000], and this
cotemporality was employed in Oviatt et al. [1999], Oviatt and Cohen [2000],
and Oviatt [1999] to support mutual disambiguation of the multimodal chan-
nels and the issuing of spatial commands to a map interface. Koons et al. [1993,
1998] describe a system for integrating deictic gestures, speech, and eye gaze
to manipulate spatial objects on a map. Employing a tracked glove, they ex-
tracted the gross motions of the hand to determine such elements as “attack”
(motion toward the gesture space over the map), “sweep” (side-to-side motion),
and “end reference space” (the terminal position of the hand motion). They re-
late these spatial gestural references to the gaze direction on the display, and to
speech to perform a series of “pick-and-place” operations. This body of research
differs from that reported in this article in that we address more free-flowing
gestures accompanying speech, and are not constrained to the two-dimensional
reference to screen or pen-tablet artifacts of pen or mouse gestures.

2. GESTURE AND SPEECH IN NATURAL CONVERSATION

When one considers a communicative channel, a key question is the degree of
formalism required. Kendon [Kendon 1986; McNeill 1992] describes a philol-
ogy of gesture summarized in Figure 1 which is useful in this consideration.
At one end of this continuum is gesticulation which describes the free-form
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gesturing which typically accompanies verbal discourse. At the other end of
this continuum are sign languages which are characterized by complete lexical
and grammatical specification. In between we have “language-like gestures”
in which the speaker inserts a gesture in the place of a syntactic unit during
speech; “pantomimes” in which the gesturer creates an iconic and motion fac-
simile of the referent, and “emblems” which are codified gestural expressions
that are not governed by any formal grammar. (The thumbs-up gesture to sig-
nify “all is well” is an example of such a gesture.) This article focuses on the
gesticulation end of this continuum.

In natural conversation between humans, gesture and speech function to-
gether as a coexpressive whole, providing one’s interlocutor access to semantic
content of the speech act. Psycholinguistic evidence has established the com-
plementary nature of the verbal and nonverbal aspects of human expression
[McNeill 1992]. Gesture and speech are not subservient to each other, as though
one were an afterthought to enrich or augment the other. Instead, they proceed
together from the same “idea units,” and at some point bifurcate to the differ-
ent motor systems that control movement and speech. For this reason, human
multimodal communication coheres topically at a level beyond the local syntax
structure.

This discourse structure is an expression of the idea units that proceed from
human thought. Although the visual form (the kinds of hand shapes, etc.), mag-
nitude (distance of hand excursions), and trajectories (paths along which hands
move) may change across cultures and individual styles, underlying governing
principles exist for the study of gesture and speech in discourse. Chief among
these is the temporal coherence between the modalities at the level of commu-
nicative intent. A football coach may say, “We have to throw the ball into the
end zone.” Depending on the intent of the expression, the speaker may place
the speech and gestural stresses on different parts on the expression. If the em-
phasis is on the act, the stresses may coincide on the verb THROW, and if the
emphasis is on the place of the act, the stresses accompany the utterance END
ZONE. This temporal coherence is governed by the constants of the underlying
neuronal processing that proceed from the nascent idea unit or growth point
[McNeill 2000b; McNeill and Duncan 2000]. Furthermore, the utterance in our
example makes little sense in isolation. The salience of the emphasis comes
into focus only when one considers the content of the preceding discourse. The
emphasis on the act THROW may be in contrast to some preceding discussion
of the futility of trying to run the ball earlier in the game. The discourse may
have been: “They are stacking up an eight-man front to stop the run . . .We have
to THROW the ball into the end zone.” The accompanying gesture might have
taken the form of the hand moving forward in a throwing motion coincident
with the prosodic emphasis on THROW. Alternatively, the emphasis on the
place specifier END ZONE may be in contrast to other destinations of passing
plays. In this case, the discourse may have been: “We have no more time-outs,
and there are only 14 seconds left in the game. . . .We have to throw the ball
into the END ZONE.” The accompanying gesture may be a pointing gesture
to some distal point from the speaker indicating the end zone. This will again
be cotemporal with the prosodically emphasized utterance END ZONE. Hence,
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gesture and speech prosody features may provide access to the management of
discourse at the level of its underlying threads of communicative intent.

We present the underlying psycholinguistic model by which gesture and
speech entities may be integrated, describe our research method that encom-
passes processing of the video data and psycholinguistic analysis of the under-
lying discourse, and present the results of our analysis. Our purpose, in this
article, is to motivate a perspective of conversational interaction, and to show
that the cues for such interaction are accessible in video data. In this study, our
data come from a single video camera, and we consider only gestural motions
in the camera’s image plane.

3. PSYCHOLINGUISTIC BASIS

Gesture and speech clearly belong to different modalities of expression but they
are linked on several levels and work together to present the same semantic idea
units. The two modalities are not redundant; they are coexpressive, meaning
that they arise from a shared semantic source but are able to express different
information, overlapping this source in their own ways. A simple example illus-
trates. In the living-space text we present below, the speaker describes at one
point entering a house with the clause, “when you open the doors.” At the same
time she performs a two-handed antisymmetric gesture in which her hands,
upright and palms facing forward, move left to right several times. Gesture
and speech arise from the same semantic source but are nonredundant; each
modality expresses its own part of the shared constellation. Speech describes an
action performed in relation to it, and gesture shows the shape and extent of the
doors and that there are two of them rather than one; thus speech and gesture
are coexpressive. Since gesture and speech proceed from the same semantic
source, one might expect the semantic structure of the resulting discourse to
be accessible through both the gestural and speech channels. Our catchment
concept provides a locus along which gestural entities may be viewed to provide
access to this semantic discourse structure.

The catchment is a unifying concept that associates various discourse com-
ponents [McNeill 2000b, 2000a; McNeil et al. 2001]. A catchment is recognized
when gesture features recur in two or more (not necessarily consecutive) ges-
tures. The logic is that the recurrence of imagery in a speaker’s thinking will
generate recurrent gesture features. Recurrent images suggest a common dis-
course theme. These gesture features can be detected and the recurring fea-
tures offer clues to the cohesive linkages in the text with which they co-occur.
A catchment is a kind of thread of visuospatial imagery that runs through the
discourse to reveal emergent larger discourse units even when the parts of the
catchment are separated in time by other thematic material. By discovering
the catchments created by a given speaker, we can see what this speaker is
combining into larger discourse units: what meanings are regarded as simi-
lar or related and grouped together, and what meanings are being put into
different catchments or are being isolated, and thus seen by the speaker as
having distinct or less-related meanings. By examining interactively shared
catchments, we can extend this thematic mapping to the social framework of
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Fig. 2. A frame of the video data collected in our gesture elicitation experiment.

the discourse. Gestural catchments have their own distinctive prosodic profiles
and gaze control in that gaze redirection is an accompaniment of catchment
(re)introduction.

By discovering a given speaker’s catchments, we can see what for this speaker
goes together into larger discourse units: what meanings are seen as similar or
related and grouped together, and what meanings are isolated and thus seen
by the speaker as having distinct or less-related meanings.

Consider one of the most basic gesture features, handedness. Gestures can
be made with one hand (1H) or two (2H); if 1H, they can be made with the
left hand (LH) or the right (RH); if 2H, the hands can move and/or be posi-
tioned in mirror images or with one hand taking an active role and the other
a more passive “platform” role. Noting groups of gestures that have the same
values of handedness can identify catchments. We can add other features such
as shape, location in space, and trajectory (curved, straight, spiral, etc.), and
consider all of these as also defining possible catchments. A given catchment
could, for example, be defined by the recurrent use of the same trajectory and
space with variations of hand shapes. This would suggest a larger discourse
unit within which meanings are contrasted. Individuals differ in how they link
up the world into related and unrelated components, and catchments give us a
way of detecting these individual characteristics or cognitive styles.

4. EXPERIMENTAL METHOD

Hand gestures are seen in abundance when humans try to communicate spa-
tial information. In our gesture and speech elicitation experiment, subjects are
asked to describe their living quarters to an interlocutor. This conversation is
recorded on a Hi-8 tape using a consumer-quality camcorder (a Sony TR-101
for the results presented here). Figure 2 is a frame from the experimental se-
quence that is presented here. Two independent sets of analyses are performed
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on the video and audio data. The first set of analyses entails the processing
of the video data to obtain the motion traces of both of the subject’s hands.
The synchronized audio data are also analyzed to extract the fundamental fre-
quency signal and speech power amplitude (in terms of the RMS value of the
audio signal). The second set of analyses entails the expert transcription of the
speech and gesture data. This transcription is done by microanalyzing the Hi-8
videotape using a frame-accurate videoplayer to correlate the speech with the
gestural entities. We also perform a higher-level analysis using the transcribed
text alone. Finally, the results of the psycholinguistic analyses are compared
against the features computed in the video and audio data. The purpose of this
comparison is to identify the cues accessible in the gestural and audio data that
correlate well with the expert psycholinguistic analysis. We discuss each step
in turn.

4.1 Extraction of Hand Motion Traces in Video

In the work described here our purpose is to see what cues are afforded by gross
hand motion for discourse structuring. Human hand gesture in standard video
data poses several processing challenges. First, one cannot assume contiguous
motion. A sweep of the hand across the body can span just 0.25 s to 0.5 s.
This means that the entire motion is captured in 7 to 15 frames. Depending on
camera field-of-view on the subject, interframe displacement can be quite large.
This means that dense optical flow methods cannot be used. Second, because
of the speed of motion, there is considerable motion blur. Third, the hands tend
to occlude each other.

We apply a parallelizable fuzzy image processing approach known as vector
coherence mapping (VCM) [Quek and Bryll 1998; Quek et al. 1999] to track the
hand motion. VCM is able to apply spatial coherence, momentum (temporal
coherence), motion, and skin color constraints in the vector field computation by
using a fuzzy-combination strategy, and produces good results for hand gesture
tracking. Figure 3 illustrates how VCM applies a spatial coherence constraint
(minimizing the directional variance) in vector field computation. Assume three
feature points pt

1 · · · pt
3 at time t (represented by the squares at the top of the

figure) move to their new locations (represented by circles) in the next frame.
If all three feature points correspond equally to one another, an application
of convolution to detect matches (e.g., by an absolute difference correlation,
ADC) from each pt

i would yield correlation maps with three hotspots (shown as
N t

1 · · ·N t
3 in the middle of Figure 3). If all three correlation maps are normalized

and summed, we obtain the vector coherence map (vcm) at the bottom of the
figure; the “correct” correlations would reinforce each other, and the chance
correlations would not. Hence a simple weighted summation of neighboring
correlation maps would yield a vector field that minimizes the local variance
in the computed vector field. We can adjust the degree of coherence enforced
by adjusting the contributing weights of the neighboring correlation maps as a
function of distance of these maps from the point of interest.

A normalized vcm computed for each feature point can be thought of as a
likelihood map for the spatial variance-minimizing vector at that point. This
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Fig. 3. Spatial coherence constraint in VCM.

may be used in a fuzzy image processing process where other constraints may
be fuzzy-ANDed with it. We use a temporal constraint based on momentum,
and a skin-color constraint to extract the required hand motion vector fields.
Figure 4 shows the effect of incorporating the skin-color constraint to clean up
the computed vector fields. This approach is derived in detail in Quek and Bryll
[1998] and Quek et al. [1999].

4.2 Audio Processing

Since our experiments require natural interaction between the subject and
interlocutor, we decided not to use intrusive head-mounted devices. In the
experiments here reported, the audio signal came directly from the built-in
microphones on the Sony TR-101 camcorders. Given the irregular distance
and orientation between the subject’s mouth and the microphone, and other
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Fig. 4. Hand and head movements tracked in the same sequence without (left) and with (right)
the skin color constraint applied.

environmental factors, our analysis has to handle a fair amount of noise. For
the experiment reported here, we make use of the speech fundamental fre-
quency F0 estimate for the speaker to extract voiced speech components, and
the amplitude of the speech (in terms of the RMS value of the audio signal). We
first obtain an estimate of both the F0 and RMS of the speech using Entropic’s
Xwaves+TM software. The resulting F0 signal contains two kinds of errors: false
F0s due to background interference, and F0 harmonics at half and a third of the
correct value. For the first kind of error, we apply a median filter to the com-
puted RMS signal, use knowledge about the speaker’s typical F0 to eliminate
signals that are too far from this expected value, and suppress low-amplitude
F0 signals if the corresponding signal power (RMS) falls below a threshold.
To address the second error component, we apply a running estimate on the
speaker’s F0 value. If the F0 computed by Xwaves+ changes abruptly by a fac-
tor of 0.5 or 0.33, it is frequency shifted while preserving the signal amplitude.
Finally, since the amplitude of spoken (American) English tends to decline over
the course of phrases and utterances [Ladd 1996], we apply a linear declination
estimator to group F0 signal intervals into such declination units.

We compute the pause durations within the F0 signal. The remaining F0
signal is mapped onto a parametric trend function to locate likely phrase units.
For further discussion of our audio processing algorithm, please see Ansari et al.
[1999].

4.3 Detailed Psycholinguistic Analysis

Perceptual analysis of video (analysis by unaided ear and eye) plays an impor-
tant role in such disciplines as psychology, psycholinguistics, linguistics, an-
thropology, and neurology. In psycholinguistic analysis of gesture and speech,
researchers microanalyze videos of subjects using a high-quality videocassette
recorder that has a digital freeze capability down to the specific frame. The
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Fig. 5. Sample first page of a psycholinguistic analysis transcript.

analysis typically proceeds in several iterations. First, the speech is carefully
transcribed by hand, and typed into a text document. The beginning of each
linguistic unit (typically a phrase) is marked by the timestamp of the begin-
ning of the unit on the videotape. Second, the researcher revisits the video and
annotates the text, marking co-occurrences of speech and gestural phases (rest-
holds, pre-stroke and post-stroke holds, gross hand shape, trajectory of motion,
gestural stroke characteristics, etc.). The researcher also inserts locations of
audible breath pauses, speech disfluencies, and other salient comments. Third,
all these data are formatted onto a final transcript for psycholinguistic analy-
sis. This is a painstaking process that takes a week to 10 days to analyze about
a minute of discourse.3

The outcome of the psycholinguistic analysis process is a set of detailed tran-
scripts. We have reproduced the first page of the transcript for our example
dataset in Figure 5. The gestural phases are annotated and correlated with the
text (by underlining, boldface, brackets, symbol insertion, etc.), F0 units (num-
bers above the text), and videotape timestamp (time signatures to the left).
Comments about gesture details are placed under each transcribed phrase.

In addition to this, we perform a second level-of-discourse analysis based on
the transcribed text alone without looking at the video (see Section 5.1.1).

4.4 Comparative Analysis

In our discovery experiments, we analyze the gestural and audio signals in
parallel with the perceptual psycholinguistic analysis to find cues for high-level

3Since the work reported here, our process is now using speech recognition technology to obtain
an approximate time alignment of the transcribed text, and using the Praat Phonetics annota-
tion system [Boersma and Weenik 1996] to obtain millisecond-accurate timestamps. We have also
developed a multimedia system to assist in this process [Quek and McNeill 2000; Quek et al. 2001].
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Fig. 6. Hand position, handedness analysis, and F0 graphs for the frames 1–480.

discourse segmentation that are accessible to computation. The voiced units in
the F0 plots are numbered and related manually to the text. These are plotted
together with the gesture traces computed using VCM. First, we perform a
perceptual analysis of the data to find features that correlate well between the
gesture signal and the high-level speech content. We call this the discovery
phase of the analysis. Next, we devise algorithms to extract these features. We
present the features and cues we have found in our data.

5. RESULTS

Figures 6 and 7 are summary plots of 32 seconds of experimental data plotted
with the videoframe number as the timescale (480 frames in each chart to
give a total of 960 frames at 30 fps). The x-axes of these graphs are the frame
numbers. The top two plots of each figure describe the horizontal (x) and vertical
( y) hand positions, respectively. The horizontal bars under the y-direction plot
are an analysis of hand motion features: LH hold, RH hold, 2H antisymmetric,
2H symmetric (mirror symmetry), 2H (no detected symmetry), single LH, and
single RH, respectively. Beneath this is the fundamental frequency F0 plot of the
audio signal. The voiced utterances in the F0 plot are numbered sequentially
to facilitate correlation with the speech transcript. We have reproduced the
synchronized speech transcript at the bottom of each chart, as it correlates
with the F0 units. The vertical shaded bars that run across the charts mark the
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Fig. 7. Hand position, handedness analysis, and F0 graphs for the frames 481–961.

durations in which both hands are determined to be stationary (holding). We
have annotated the hand motion plots with parenthesized markers and brief
descriptive labels. We use these labels along with the related frame-number
durations for our ensuing discussion.

5.1 Discourse Segments

5.1.1 Linguistic Segmentation. Barbara Grosz and colleagues [Nakatani
et al. 1995] have devised a systematic procedure for recovering the discourse
structure from a transcribed text. The method consists of a set of questions
with which to guide analysis and uncover the speaker’s goals in producing each
successive line of text.

Following this procedure with the text displayed in Figures 6 and 7 produces
a three-level discourse structure. This structure can be compared to the dis-
course segments inferred from the objective motion patterns shown in the ges-
tures. The gesture-based and text-based pictures of the discourse segmentation
are independently derived but the resulting correlation is remarkably strong,
implying that the gesture features were not generated haphazardly but arose
as part of a structured multilevel process of discourse building. Every gesture
feature corresponds to a text-based segment. Discrepancies arise where the
gesture structure suggests discourse segments that the text-based hierarchy
fails to reveal, implying that the gesture modality has captured additional dis-
course segments that did not find their way into the textual transcription. The
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uppermost level of the Grosz-type hierarchy can be labeled “Locating the Back
Staircase.” It is at this level that the discourse as a whole had its significance.
The middle level concerned the first staircase and its location, and the lowest
level the front of the house and the restarting of the house tour from there.

5.1.2 Gesture–Speech Discourse Correlations. Labels (A) through (E) mark
the discourse segments accessible from the gestural traces independently of the
speech data. These segments are determined solely from the hold and motion
patterns of the speaker’s hands. We summarize the correspondences of these
segments with the linguistic analysis following.

(A) Back-of-house discourse segment, 1 RH (Frames 1–140): These one-
handed gestures, all with the RH, accompany the references to the back of
the house that launch the discourse. This 1H catchment is replaced by a series
of 2H gestures in (B), marking the shift to a different discourse purpose, that of
describing the front of the house. Notice that this catchment feature of 1H–RH
gestures (i.e., the LH is holding) reprises itself in segment (D) when the subject
returns to describing the back of the house.

(B) Front-door discourse segment, 2 Synchronized Hands (Frames 188–455):
Two-handed gestures occur when the discourse theme is the front of the house,
but there are several variants and these mark subparts of the theme: the exis-
tence of the front door, opening it, and describing it. Each subtheme is initiated
by a gesture hold, marking off in gesture the internal divisions of the discourse
hierarchy. These subdivisions are not evident in the text and thus not picked up
by the text-only analysis that produced the purpose hierarchy and its segmen-
tation (described in Section 5.1.1). This finer-grained segmentation is confirmed
by psycholinguistic analysis of the original video.

(B.1) “Enter house from front” discourse segment 2H Antisymmetric (Frames
188–298): Antisymmetric two-handed movements iconically embody the image
of the two front doors; the antisymmetric movements themselves contrast with
the following mirror-image movements, and convey, not motion as such, but the
surface and orientation of the doors.

(B.2) “Open doors” discourse segment 2H Mirror Symmetry (Frames 299–338):
In contrast to the preceding two-handed segment, this gesture shows opening
the doors and the hands moving apart. This segment terminates in a non-rest
two-handed hold of sizeable duration of more than 0.75 s (all other pre-stroke
and post-stroke holds are less than 0.5 s in duration). This suggests that it
is itself a hold-stroke (i.e., an information-laden component). This corresponds
well with the text transcription. The thrusting open of the hands indicates the
action of opening the doors (coinciding with the words, “open the”), and the 2H
hold-stroke indicates the object of interest (coinciding with the word, “doors”).
This agrees with the discourse analysis that carries the thread of the “front
door” as the element of focus. Furthermore, the 2H mirror-symmetric motion
for opening the doors carries the added information that these are double doors
(information unavailable from the text transcription alone).

(B.3) Door description discourse segment 2H Antisymmetric (Frames
351–458): The form of the doors returns as a subtheme in its own right,
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and again the movement is antisymmetric, in the plane of the closed
doors.

(C) Front staircase discourse segment, 1 LH (Frames 491–704): The LH be-
comes active in a series of distinctive up–down movements coinciding exactly
with the discourse goal of introducing the front staircase. These are clearly
one-handed gestures with the RH at the rest position.

(D) Back staircase discourse segment 1 RH (Frames 754–929): The gestures
for the back staircase are again made with the RH, but now, in contrast to the
(A) catchment, the LH is at a non-rest hold, and still in play from (C). This
changes in the final segment of the discourse.

(E) “Upstairs” discourse segment 2H synchronized (Frames 930–): The LH
and RH join forces in a final gesture depicting ascent to the second floor via the
back staircase. This is another place where gesture reveals a discourse element
not recoverable from the text (no text accompanied the gesture).

5.2 Other Gestural Features

Beside the overall gesture hold analysis, this 32 seconds of discourse also con-
tains several examples of gestural features and cues. We have labeled these (F)
through (L). The following discussion summarizes the features we found under
these labels.

(F) Preparation for glass door description (Frames 340–359): In the middle
of the discourse segment on the front door (B), we have the interval marked (F)
which appears to break the symmetry. This break is actually the preparation
phase of the RH to the non-rest hold (for both hands) section that continues
into the strongly antisymmetric (B.3) “glass door” segment. This clarifies the
interpretation of the 2H holds preceding and following (F). The former is the
post-stroke hold for the “open doors” segment (B.2), and the latter is the pre-
stroke hold for segment (B.3). Furthermore, we can then extend segment (B.3)
backward to the beginning of (F). This would group F0 unit 23 (“with the”) with
(B.3). This matches the discourse segmentation “with the . . . <uumm> glass
in them.” It is significant to note that the subject has interrupted her speech
stream and is searching for the next words to describe what she wants to say.
The cohesion of the phrase would be lost in a pure speech pause analysis. We
introduce the rule for gesture segment extension to include the last movement
to the pre-stroke hold for the segment.

(G) RH retraction to rest (Frames 468–490 straddles both charts): The RH
movement labeled (G) spanning both plots terminates in the resting position
for the hand. We can therefore extend the starting point of the target rest
backward to the start of this retraction for discourse segmentation. Hence, we
might actually move the (C) front staircase discourse segment marked by the
1 LH feature backward from frame 491 to frame 470. This matches the discourse
analysis from F0 units 28–30: “. . . there’s the front- . . . .” This provides us with
the rule of rest-extension to the start of the last motion that results in the
rest. The pauseless voiced speech section from F0 units 28–35 would provide
complementary evidence for this segmentation. We have another example for
this rule in the LH motion preceding the hold labeled (I), effectively extending
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the “back staircase” discourse segment (D) backward to frame 705. Again this
corresponds well with the speech transcript.

(H) and (I) Non-Hold for (H) in (C) (Frames 643–704) and Hold for (I) in
(D) (Frames 740–811): The LH was judged by the expert coder to be not hold-
ing in (H) and it was judged to be holding in (I). An examination of the video
shows that in (H) the speaker was making a series of small oscillatory motions
(patting motion with her wrist to signify the floor of the “second floor”) with a
general downward trend. In segment (I), the LH was holding, but the entire
body was moving slightly because of the rapid and large movements of the RH.
This distinction cannot be made from the motion traces of the LH alone. Here,
we introduce a dominant motion rule for rest determination. We use the motion
energy differential of the movements of both hands to determine if small move-
ments in one hand are interpreted as holds. In segment (H), the RH is at rest,
hence any movement in the alternate LH becomes significant. In segment (I),
the RH exhibits strong motion, and the effects of the LH motion are attenuated.

(J.1) and (J.2) Back-Staircase Catchment 1 (Frames 86–132), and Back-
Staircase Catchment 2 (Frames 753–799): Figure 8 is a side-by-side comparison
of the motions of the right hand that constitute the back staircase description.
The subject described the spiral staircase with an upward twirling motion of
the RH. In the first case, the subject aborted the gesture and speech sequence
with an abrupt interruption and went on to describe the front of the house and
the front staircase. In the second case, the subject completed the gestural mo-
tion and the back staircase discourse. We can make several observations about
this pair of gestures that are separated by more than 22 seconds. First, both
are gestures of one hand (RH). Second, the general forms of both gestures are
similar. Third, up till the discourse repair break, both iterations had exactly
the same duration of 47 frames. Fourth, the speaker appears to have already
been planning a change in direction in her discourse, and the first motion is
muted with respect to the second.

(K.1) and (K.2) Discourse repair retraction (Frames 133–142), and discourse
repair pause (Frames 143–159): Segments (K.1) and (K.2) correspond to the
speech, “Oh I forgot to say,” and flag a repair in the discourse structure. The sub-
ject actually pulls her RH back toward herself rapidly and holds an emblematic
gesture with an index finger point. Although more data in experiments targeted
at discourse repair are needed for us to make a more definitive statement, it is
likely that abrupt gestural trajectory changes where the hand is retracted from
the gestural space suggest discourse repair. (We are in the process of performing
experiments, and building a video-audio-transcription corpus to answer such
questions.)

(L) Non-rest hold (Frames 740–929): An interesting phenomenon is seen in
the (L) non-rest hold. This is a lengthy hold spanning 190 frames or 6.33 sec-
onds. This means that it cannot be a pre-stroke or post-stroke hold. It could
be a hold gesture or a stationary reference hand in a 2H gesture sequence. In
the present discourse example it actually serves as an “idea hold.” The subject
just ended her description of the front staircase with a mention of the second
floor. While her LH is holding, she proceeds to describe the back staircase that
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Fig. 8. Side-by-side comparison of the back-staircase catchment.

takes her to the same location. At the end of this non-rest hold, she goes on
to a 2H gesture sequence (E) describing the second floor. This means that her
discourse plan to proceed to the second floor was already in place at the end
of the (C) discourse segment. The LH suspended above her shoulder could be
interpreted as holding the upstairs discourse segment in abeyance while she de-
scribes the back staircase (segment (D)). Such holds may thus be thought of as
supersegmental cues for the overall discourse structure. The non-rest hold (L),
in essence, allows us to connect the end of (C) with the (E) discourse segment.

6. DISCUSSION

Natural conversational interaction is a complex composition of multimodal vi-
sually and audibly accessible information. We believe that the key to such
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interaction is an understanding of the underlying psycholinguistic phenomenol-
ogy, along with a handle on the kinds of computable visual and audio features
that aid its interpretation.

We have shown that conversational discourse analysis using both speech
and gesture captured in video is possible. We overviewed our algorithms for
gesture tracking in video and showed our results for the extended tracking
across 960 video frames. The quality of this tracking permits us to perform the
psycholinguistic analysis presented.

In the example discourse analyzed, we have shown strong correlation be-
tween handedness and high-level semantic content of the discourse. Where both
hands are moving, the kind of synchrony (antisymmetry or mirror symmetry)
also provides cues for discourse segmentation. In some cases, the gestural cues
reinforce the phrase segmentation based on F0 pause analysis (segment bound-
aries coincide with such pauses in the voiced signal). In some other cases the
gestural analysis provides complementary information permitting segmenta-
tion where no pauses are evident, or grouping phrase units across pauses. The
gestural analysis corresponds well with the discourse analysis performed on
the text transcripts. In some cases, the gestural stream provides segmentation
cues for linguistic phenomena that are inaccessible from the text transcript
alone. The finer-grained segmentations in these cases were confirmed when
the linguists reviewed the original experimental videotapes.

We also presented other observations about the gestural signal that are use-
ful for discourse analysis. For some of these observations, we have derived
rules for extracting the associated gestural features. We have shown that the
final motion preceding a pre-stroke hold should be grouped with the discourse
unit of that hold. Likewise, the last movement preceding a rest-hold should be
grouped with the rest for that hand. When a hand movement is small, our dom-
inant motion rule permits us to distinguish if it constitutes a hold or gestural
hand motion. We have also made observations about repeated motion trajectory
catchments, discourse interruptions and repair, and non-rest holds.

Our data also show that although 2-D monocular video affords a fair amount
of analysis, more could be done with 3-D data from multiple cameras. In the
two discourse segments labeled (B.1) and (B.3) in Figure 6, a significant catch-
ment feature is that the hands move in a vertical plane iconic of the surface
of the doors. The twirling motion for the back staircase catchment would be
more reliably detected with 3-D data. The discourse repair retraction toward
the subject’s body (K.1) would be evident in 3-D. There is also a fair amount of
perspective effects that are difficult to remove from 2-D data. Because of the
camera angle (we use an oblique view because subjects are made uncomfort-
able sitting face-to-face with the interlocutor and directly facing the camera),
a horizontal motion appears to have a vertical trajectory component. This tra-
jectory is dependent on the distance of the hand from the subject’s body. In our
data, we corrected for this effect by assuming that the hand is moving in a
fixed plane in front of the subject. This produces some artifacts that are hard to
distinguish without access to the three-dimensional data. In the “open doors”
stroke in (B.2), for example, hands move in an arc centered around the subject’s
elbows and shoulders. Hence, there is a large displacement in the “z” direction
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(in and away from the body). The LH also appears to move upward and the
RH’s motion appears to be almost entirely in the x-dimension. Consequently,
the LH seems to move a shorter distance than the RH in the x-dimension. This
has directed us to move a good portion of our ongoing experiments to 3-D.

7. CONCLUSION

Gesticulation accompanying speech is an exquisite performance bearing imag-
istic and semantic content. This performance is unwitting, albeit not unin-
tended, by the speaker just as the orchestration of carefully timed exercise
of larynx, lips, tongue, lungs, jaw, and facial musculature are brought unwit-
tingly to bear on intended vocal utterances. The work reported here just barely
scratches the surface of a compelling scientific direction. This research is neces-
sarily crossdisciplinary, and involves a fair amount of collaboration between the
computation sciences and psycholinguistics. The computational requirements
for the video processing are significant. On a four-processor (4×R10000) Silicon
Graphics Onyx workstation, we could process 10 seconds of data in two hours.
We have since obtained National Science Foundation support for a supercom-
puter to handle this data and computationally intensive task. We are in the
process of testing the results obtained from the case study reported here on a
corpus of experimental video data we are assembling in new human subject dis-
course elicitations. We are also continuing to determine other cues for discourse
analysis in different conversational scenarios through detailed case studies like
the one reported here.

The bulk of prior research on gesture interaction has focused on manipu-
lative and semaphoric interfaces. Apart from the use of the hands in direct
manipulation, stylized semaphore recognition has dominated communicative
gesture research. We contend that far from being naturally communicative,
such stylized use of the hand(s) is in fact a rather unnatural means of commu-
nication that requires specialized training. Nonetheless, gesture and speech are
a potent medium for human-machine interfaces. To tap into the richness of this
multimodal interaction, it is essential that we have a better understanding of
the “natural” function of gesture and speech. This article introduces a paradigm
of analysis that may have applications such as in multimodal speech/discourse
recognition, detection of speech repairs in interactive speech systems, and mod-
eling of multimodal elements for distance communication (e.g., with avatar
control [Quek et al. 2000]). More information about our ongoing research is
available at http://vislab.cs.wright.edu/KDI.
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