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Abstract. Human speech provides a natural and intuitive interface for both communicating with humanoid robots
as well as for teaching them. In general, the acoustic pattern of speech contains three kinds of information: who the
speaker is, what the speaker said, and how the speaker said it. This paper focuses on the question of recognizing
affective communicative intent in robot-directed speech without looking into the linguistic content. We present an
approach for recognizing four distinct prosodic patterns that communicate praise, prohibition, attention, and comfort
to preverbal infants. These communicative intents are well matched to teaching a robot since praise, prohibition,
and directing the robot’s attention to relevant aspects of a task, could be used by a human instructor to intuitively
facilitate the robot’s learning process. We integrate this perceptual ability into our robot’s “emotion” system, thereby
allowing a human to directly manipulate the robot’s affective state. This has a powerful organizing influence on
the robot’s behavior, and will ultimately be used to socially communicate affective reinforcement. Communicative
efficacy has been tested with people very familiar with the robot as well as with naı̈ve subjects.

Keywords: affective computing, human computer interaction, humanoid robots, sociable robots, speech
recognition

1. Introduction

As robots take on an increasingly ubiquitous role in
society, they must be easy for the average citizen to
use and interact with. They must also appeal to per-
sons of different age, gender, income, education, and
so forth. This raises the important question of how to
properly interface untrained humans with these sophis-
ticated technologies in a manner that is intuitive, effi-
cient, and enjoyable to use.

From the large body of human-technology research,
we take as a working assumption that technological at-
tempts to foster human-technology relationships will
be accepted by a majority of people if the technolog-
ical gadget displays rich social behavior (Reeves and
Nass, 1996; Cassell et al., 1994). According to Reeves
and Nass (1996), a social interface may very well be a
universal interface because humans have evolved to be

experts in social interaction. Similarity of morphology
and sensing modalities makes humanoid robots one
form of technology particularly well suited to this.

If Reeves and Nass findings hold true for humanoid
robots, then those that participate in rich human-style
social exchange with their users offer a number of ad-
vantages. First, people would find working with them
more enjoyable and they would feel more competent.
Second, communicating with them would not require
any additional training since humans are already ex-
perts in social interaction. Third, if the robot could en-
gage in various forms of social learning (imitation, em-
ulation, tutelage, etc.), then it would be easier for the
user to teach new tasks. Ideally, the user could teach the
robot just as they would another person. Our group is
particularly interested in this socially situated form of
learning for humanoid robots, and we have argued for
the many advantages social cues and skills could offer
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robots that learn from people (Breazeal and Scassellati,
2000).

As one might imagine, a humanoid robot that could
actually interact with people in a human-like way and
be able to interpret, respond, and deliver human-style
social cues (even at the level of a human infant) is
quite a sophisticated machine. Over the past three years,
we have been building infant-level social competencies
into our robot, Kismet, so that we might explore social
development and socially-situated learning between a
robot and its human caregiver.

This paper explores one such competence: the ability
to recognize affective communicative intent in robot-
directed speech. Kismet has a fully integrated synthetic
nervous system (SNS) that encompasses perceptual, at-
tentional, motivational, behavioral, and motor capabil-
ities (Breazeal, 1998). Within the motivational system
are homeostatic regulation processes and emotional
processes (Breazeal, 1999). As a whole, the motiva-
tion system provides affective information to the rest
of the synthetic nervous system to influence behavior.
Previous work has demonstrated how such systems can
be used to bias learning both at goal-directed and af-
fective levels (Blumberg, 1996; Velasquez, 1998; Yoon
et al., 2000).

We are working towards implementing similar learn-
ing mechanisms on Kismet but with an added twist:
the ability of the human caregiver to directly mod-
ulate the robot’s affective state through verbal com-
munication. This provides the human caregiver with
natural and intuitive means for shaping the robot’s
behavior and for influencing what the robot learns.
Particularly salient forms of vocal feedback include
praise (positive reinforcement), prohibition (negative
reinforcement), attentional bids (to direct the robot’s
attention to the important aspects of the task), and en-
couragement (to keep the robot motivated to try differ-
ent things). Often these types of information are com-
municated affectively as well as linguistically in human
speech.

In the rest of this paper we discuss previous work
in recognizing emotion and affective intent in human
speech. We discuss Fernald’s work in depth to high-
light the important insights it provides in terms of
which cues are most useful for recognition of affec-
tive communicative intent as well as how it may be
used by human infants to organize their behavior. We
then outline a series of design issues particular to in-
tegrating this competence into our robot, Kismet. We
present a detailed description of our approach and how

we have integrated it into Kismet’s affective circuitry.
The performance of the system is evaluated with naı̈ve
subjects as well as the robot’s caregivers. We discuss
our results, suggest future work, and summarize our
findings.

2. Emotion Recognition in Speech

There has been an increasing amount of work in
identifying those acoustic features that vary with the
speaker’s affective state (Murray and Arnott, 1993).
Changes in the speaker’s autonomic nervous system
can account for some of the most significant changes
where the sympathetic and parasympathetic subsys-
tems regulate arousal in opposition. For instance, when
a subject is in a state of fear, anger, or joy, the sym-
pathetic nervous system is aroused. This induces an
increased heart rate, higher blood pressure, changes
in depth of respiratory movements, greater subglottal
pressure, dryness of the mouth, and occasional muscle
tremor. The resulting speech is faster, louder, and more
precisely enunciated with strong high frequency en-
ergy, a higher average pitch, and wider pitch range.
In contrast, when a subject is tired, bored, or sad,
the parasympathetic nervous system is more active.
This causes a decreased heart rate, lower blood pres-
sure, and increased salavation. The resulting speech
is typically slower, lower-pitched, more slurred, and
with little high frequency energy. Hence, the effects
of emotion in speech tend to alter the pitch, timing,
voice quality, and articulation of the speech signal
(Cahn, 1990). However, several of these features are
also modulated by the prosodic effects that the speaker
uses to communicate grammatical structure and lexi-
cal correlates. For recognition tasks, this makes isolat-
ing those feature characteristics modulated by emotion
challenging.

There have been a number of vocal emotion recog-
nition systems developed in the past few years that use
different variations and combinations of those acous-
tic features with different types of learning algorithms
(Dellaert et al., 1996; Nakatsu et al., 1999). To give a
rough sense of performance, a five-way classifier oper-
ating at approximately 80% is considered state of the
art. This is impressive considering that humans cannot
reliably discern a speaker’s emotional state from speech
alone. Some have attempted to use multimodal cues
(facial expression with expressive speech) to improve
recognition performance (Chen and Huang, 1998).
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3. Affective Speech and Communicative Intent

However, for the purposes of training a robot, the raw
emotional content of the speaker’s voice is only part
of the message. It tells us little about the intent of
the message. A few researchers have developed recog-
nition systems that can recognize speaker approval
versus speaker disapproval from child-directed speech
(Roy and Pentland, 1996), or recognize praise, prohi-
bition, and attentional bids from infant-directed speech
(Slaney and McRoberts, 1998).

However, developmental psycholinguists can tell us
quite a lot about how preverbal infants achieve this, and
how caregivers exploit it to regulate the infant’s behav-
ior. Infant-directed speech is typically quite exagger-
ated in the pitch and intensity (often called motherese
(Snow, 1972)). Moreover, mothers intuitively use se-
lective prosodic contours to express different commu-
nicative intentions. Based on a series of cross-linguistic
analyses, there appear to be at least four different
pitch contours (approval, prohibition, comfort, and at-
tentional bids), each associated with a different emo-
tional state (Grieser and Kuhl, 1988; Fernald, 1985;
Mc Roberts et al., in press) (see Fig. 1). Mothers
are more likely to use falling pitch contours than ris-
ing pitch contours when soothing a distressed infant
(Papousek et al., 1985), to use rising contours to elicit
attention and encourage a response (Ferrier, 1987), and
to use bell shaped contours to maintain attention once
it has been established (Stern et al., 1982). Expres-
sions of approval or praise, such as “Good girl!” are
often spoken with an exaggerated rise-fall pitch con-
tour with sustained intensity at the contour’s peak. Ex-
pressions of prohibitions or warnings such as “Don’t do
that!” are spoken with low pitch and high intensity in
staccato pitch contours. Fernald suggests that the pitch
contours observed have been designed to directly influ-
ence the infant’s emotive state, causing the child to re-
lax or become more vigilant in certain situations, and to
either avoid or approach objects that may be unfamiliar.

Figure 1. Fernald’s prototypical prosodic contours for approval, attentional bid, prohibition, and soothing.

4. Affective Intent in Robot-Directed Speech

Inspired by this work, we have implemented a five-way
recognizer that can distinguish Fernald’s prototypical
prosodic contours for praise, prohibition, comfort, at-
tentional bids, and neutral speech. There are several
design issues that must be addressed to successfully
integrate Fernald’s ideas into a robot like Kismet. As
we have argued previously, this could provide a human
caregiver with a natural and intuitive means for commu-
nicating with and training a robotic creature. The initial
communication is at an affective level, where the care-
giver socially manipulates the robot’s affective state.
For Kismet, the affective channel provides a powerful
means for modulating the robot’s behavior.

4.1. Robot Aesthetics

As discussed above, the perceptual task of recognizing
communicative intent is significantly easier in infant-
directed speech than in adult-directed speech. Even
human adults have a difficult time recognizing intent
from adult-directed speech without the linguistic infor-
mation. However, it is a ways off before robots have
natural language, but we can extract the affective con-
tent of the vocalization from prosody. This places a
constraint on how the robot appears physically, how it
moves, and how it expresses itself. If the robot looks
and behaves as a very young creature, people will be
more likely to treat it as such and naturally exaggerate
their prosody when addressing the robot. This man-
ner of robot-directed speech would be spontaneous and
seems quite appropriate.

4.2. Real-Time Performance

Another design constraint is that the robot must be able
to interpret the vocalization and respond to it at natural
interactive rates. The human can tolerate small delays
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(perhaps a second or so), but long delays will break the
natural flow of the interaction. Long delays also inter-
fere with the caregiver’s ability to use the vocalization
as a reinforcement signal. Given that the reinforcement
should be used to mark a specific event as good or bad,
long delays could cause the wrong action to be rein-
forced and confuse the training process.

4.3. Voice as Training Signal

People should be able to use their voice as a natural
and intuitive training signal for the robot. The human
voice is quite flexible and can be used to convey many
different meanings, affective or otherwise. The robot
should be able to recognize when it is being praised and
associate it with positive reinforcement. Similarly, the
robot should recognize scolding and associate it with
negative reinforcement. The caregiver should be able to
acquire and direct the robot’s attention with attentional
bids to the relevant aspects of the task. Comforting
speech should be soothing for the robot if it is in a
distressed state, and encouraging otherwise.

4.4. Voice as Saliency Marker

This raises a related issue, which is the caregiver’s abil-
ity to use their affective speech as a means of marking
a particular event as salient. This implies that the robot
should only recognize a vocalization as having affec-
tive content in the cases where the caregiver specifically
intends to praise, prohibit, soothe, or get the attention
of the robot. The robot should be able to recognize
neutral robot-directed speech, even if it is somewhat
tender or friendly in nature (as is often the case with
motherese).

4.5. Acceptable vs Unacceptable Misclassification

Given that humans are not perfect at recognizing the
affective content in speech, chances are the robot will
make mistakes as well. However, some failure modes
are more acceptable than others. For a teaching task,
confusing strongly valenced intent for neutrally va-
lenced intent is better than confusing oppositely va-
lenced intents. For instance, confusing approval for an
attentional bid, or prohibition for neutral speech, is bet-
ter than interpreting a prohibition for praise. Ideally, the
recognizer’s failure modes will minimize these sorts of
errors.

4.6. Expressive Feedback

Nonetheless, mistakes in communication will be made.
This motivates the need for feedback from the robot
back to the caregiver. Fundamentally, the caregiver is
trying to communicate his/her intent to the robot. The
caregiver has no idea whether or not the robot inter-
preted the intent correctly without some form of feed-
back. By interfacing the output of the recognizer to
Kismet’s emotional models, the robot’s ability to ex-
press itself through facial expression, voice quality, and
body posture will convey the robot’s affective interpre-
tation of the message to the caregiver. This enables peo-
ple to reiterate themselves until they believe they have
been properly understood. It also enables the caregiver
to reiterate the message until the intent is communi-
cated strongly enough (“What the robot just did was
very good, and I want the robot to be really happy
about it”).

4.7. Speaker Dependence vs Independence

An interesting question is whether the recognizer
should be speaker dependent or speaker independent.
There are obviously advantages and disadvantages to
both, and the appropriate choice depends on the appli-
cation. Typically, it is easier to get higher recognition
performance from a speaker dependent system than a
speaker independent system. In the case of a personal
robot, this is a good alternative since the robot should
be personalized to a particular human over time, and
should not be preferentially tuned to others. If the robot
must interact with a wide variety of people, then the
speaker independent system is preferable. The under-
lying question in both cases is what level of perfor-
mance is necessary for people to feel that the robot is
responsive and understands them well enough so that it
is not challenging or frustrating to communicate with
it and train it.

5. Robotic Physicality

Kismet is an expressive robotic creature with percep-
tual and motor modalities tailored to natural human
communication channels (see Fig. 2). Kismet has three
degrees of freedom to control gaze direction, three de-
grees of freedom to control its neck, and fifteen degrees
of freedom in other expressive components of the face
(such as ears, eyebrows, lips, and eyelids). Kismet is
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Figure 2. Kismet is an expressive robotic creature designed for natural social interaction with people.

able to display a wide assortment of facial expressions
which mirror its affective state, as well as produce nu-
merous facial displays for other communicative pur-
poses (Breazeal and Scassellati, 1999).

To perceive its caregiver, Kismet uses a unobtrusive
wireless microphone (worn by the human) and four
color CCD cameras. Two wide field of view (fov) cam-
eras are mounted centrally and move with respect to the
head. They are used to direct the robot’s attention to-
ward people or toys and to compute a distance estimate.
There is also a camera mounted within the pupil of each
eye. These foveal cameras are used for higher resolu-
tion post-attentional processing, such as eye detection.
The positions of the neck and eyes are important both
for expressive postures and for directing the cameras
towards behaviorally relevant stimuli. We have found
that the manner in which the robot moves eyes and di-
rects its gaze has profound social consequences when
engaging people, beyond just steering its cameras to
look at interesting things (Breazeal et al., 2000).

Aesthetically, Kismet is designed to have an infant-
like appearance of a fanciful robotic creature. The key
set of features that evoke nurturing responses of human
adults has been studied across many different cultures
(Eibl-Eibelsfeld, 1970), and these features have been
explicitly incorporated into Kismet’s design (Breazeal
and Foerst, 1999). As a result, people tend to intu-
itively treat Kismet as a very young creature, and mod-
ify their behavior in characteristic baby-directed ways

(Bullowa, 1979). One important implication of this
is the natural use of “motherese” in Kismet-directed
speech. Even the naı̈ve subjects (male and female) use
exaggerated prosody to address the robot. This allows
us to readily exploit Fernald’s affective communicative
intent contours that she found to exist in infant-directed
speech.

Our hardware and software control architectures
have been designed to meet the challenge of real-time
processing of visual signals (approaching 30 Hz) and
auditory signals (frame size of 10 ms) with minimal
latencies (<500 ms). Kismet’s vision system is imple-
mented on a network of nine 400 MHz commercial PCs
running the QNX real-time operating system. Kismet’s
emotion, behavior, and expressive systems run on a col-
lection of four Motorola 68332 processors. The affec-
tive speech recognition systems runs on Windows NT,
and the low level speech processing software1 runs on
Linux. Even more so than Kismet’s physical form, the
control network is rapidly evolving as new behaviors
and sensory modalities come on line.

6. The Algorithm

6.1. The Algorithmic Flow

As shown in Fig. 3, the affective speech recognizer re-
ceives robot directed speech as input. The speech signal
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Figure 3. The affective speech recognition system.

is analyzed by the low level speech processing system,
producing time-stamped pitch (Hz), percent periodicity
(a measure of how likely a frame is a voiced segment),
energy (dB), and phoneme values all in real time.2 The
next module performs filtering and pre-processing to
reduce the amount of noise in the data. The pitch value
of a frame is simply set to zero if the corresponding per-
cent periodicity indicates that the frame is more likely
to be unvoiced. The resulting pitch and energy data are
then passed through the feature extractor, which calcu-
lates a set of selected features (F1 to Fn). Finally, based
on the trained model, the classifier determines whether
the computed features are derived from an approval, an
attentional bid, a prohibition, a soothing, or a neutral
utterance.

6.2. Training the System

Data Collection. We made recordings of two female
adults who frequently interact with Kismet as care-
givers. The speakers were asked to express all five
communicative intents (approval, attentional bid, pro-
hibition, soothing, and neutral) during the interaction.
Recordings were made using a wireless microphone
whose output was sent to the speech processing sys-
tem running on Linux. For each utterance, this phase
produced a 16-bit single channel, 8 kHz signal (in a
.wav format) as well as its corresponding pitch, percent
periodicity, energy, and phoneme values. All record-
ings were performed in Kismet’s usual environment to
minimize variability in noise due to the environment.
We then eliminated samples containing extremely loud
noises and labeled the remaining data set according to
the speakers’ communicative intents during the inter-
action. There were a total of 726 samples in the final
data set.

Data Preprocessing. As mentioned above, the pitch
value of a frame was set to zero if the corresponding
percent periodicity was lower than a threshold value, in-
dicating that the frame was more likely to be unvoiced.

Even after this procedure, observation of the resulting
pitch contours still indicated a lot of noise. Specifically,
a significant number of errors were discovered in the
high pitch value region (above 500 Hz). Therefore, ad-
ditional preprocessing was performed to all pitch data.
For each pitch contour, a histogram of ten regions was
constructed. Using the heuristic that pitch contour was
relatively smooth, we determined that if only a few
pitch values were located in the high region while the
rest were much lower (and none resided in between),
then the high values were likely to be noise. Note that
this process did not eliminate a high but smooth pitch
contour since pitch values would be distributed evenly
across nearby regions.

Classification Method. In all training phases we
modeled each class of data using the Gaussian mix-
ture model, updated with the EM algorithm and a
Kurtosis-based approach for dynamically deciding the
appropriate number of kernels (Vlassis and Likas,
1999). The idea of the Gaussian mixture model is
to represent the distribution of a data vector by a
weighted mixture of component models, each one
parametrized on its own set of parameters. Formally,
the mixture density for the vector x assuming k com-
ponents is p(x) = ∑k

j=1 π j f (x; φ j ), where f (x; φ j )

is the j-th component model parametrized on φ j and
π j are the mixing weights satisfying

∑k
j=1 π j = 1,

π j ≥ 0. In this algorithm, kurtosis is viewed as mea-
sure of non-normality and used to decide on the num-
ber of components in the Gaussian mixture prob-
lem. For a random vector x with mean m and
covariance matrix S, the weighted kurtosis is de-
fined as β j = ∑n

i=1 P( j | xi )[(xi − m j )
T S−1

j (xi −
m j )]2/

∑n
i=1 P( j | xi ). Iteratively, EM steps are ap-

plied until convergence and a new component is added
dynamically until the test of normality B = [β−d(d +
2)]/

√
8d(d + 2)/n indicates that |B| < a predefined

threshold.
Due to the limited set of training data, we per-

formed cross-validation in all classification processes.
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Figure 4. Fernald’s prototypical prosodic contours found in the preprocessed data set.

Essentially, we held out a subset of data and built a
classifier using the remaining training data, which was
then tested on the held out test set. This process was
repeated 100 times per classifier. Mean and variance
of the percentage of correctly classified test data were
calculated to estimate the classifier’s performance.

Feature Selection. As shown in Fig. 4, the prepro-
cessed pitch contour in the labeled data resembles Fer-
nald’s prototypical prosodic contours for approval, at-
tention, prohibition, and comfort/soothing. In the first
pass of training, we attempted to recognize these pro-
posed patterns by using a set of global pitch and energy
related features (see Table 1). All pitch features were
measured using only non-zero pitch values. Using this
feature set, we applied a sequential forward feature se-
lection process to construct an optimal classifier. Each
possible feature pair’s classification performance was
measured and sorted from highest to lowest. Succes-
sively, a feature pair from the sorted list was added into

the selected feature set in order to determine the best
n features for an optimal classifier. Table 2 shows re-
sults of the classifiers constructed using the best eight
feature pairs. Classification performance increases as
more features are added, reaches maximum (78.77%)
with five features in the set, and levels off above 60%
with six or more features. The number of misclassified
samples in each class indicates that the global pitch and
energy features were useful for separating prohibition
from the other classes, but not sufficient for construct-
ing a high performance 5-way classifier.

In the second pass of training, instead of having one
optimal classifier that simultaneously classifies all five
classes, we implemented several mini classifiers exe-
cuting in stages. In the beginning stages, the classifier
would use global pitch and energy features to sepa-
rate some classes as well as they could. The remaining
clustered classes were then passed to additional clas-
sification stages. Obviously, we had to consider new
features in order to build these additional classifiers.
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Table 1. Features extracted in the
first pass.

Feature description

F1 Pitch mean

F2 Pitch variance

F3 Maximum pitch

F4 Minimum pitch

F5 Pitch range

F6 Delta pitch mean

F7 Absolute delta pitch mean

F8 Energy mean

F9 Energy variance

F10 Energy range

F11 Maximum energy

F12 Minimum energy

Utilizing prior information, we included a new set of
features encoding the shape of the pitch contour, which
turned out to be useful in separating the difficult classes.

In order to select the best features for the initial clas-
sification stage, we observed the classification results
of the best ten feature pairs obtained in the first pass
(see Table 3). It is clear that all feature pairs work bet-
ter in separating prohibition and soothing than other
classes. The F1–F9 pair generates the highest overall
performance and the least number of errors in classify-
ing prohibition. We then carefully looked at the feature
space of this classifier (see Fig. 5) and made several
additional observations. The prohibition samples are
clustered in the low pitch mean and high energy vari-
ance region. The approval and attention classes form
a cluster at the high pitch mean and high energy vari-
ance region. The soothing samples are clustered in the
low pitch mean and low energy variance region. The

Table 2. First pass classification results.

Performance Performance % error % error % error % error % error
Feature pair Feature set mean (%) variance approval attention prohibition soothing neutral

F1 F9 F1 F9 72.09 0.08 48.67 24.45 8.70 15.58 42.13

F1 F10 F1 F9 F10 75.17 0.12 41.67 25.67 9.65 13.15 33.98

F1 F11 F1 F9 F10 F11 78.13 0.08 29.85 27.20 8.80 10.63 32.90

F2 F9 F1 F2 F9 F10 F11 78.77 0.11 29.15 22.23 8.53 12.55 33.68

F1 F2

F3 F9 F1 F2 F3 F9 F10 F11 61.52 1.16 63.87 43.03 9.08 23.05 53.35

F1 F8 F1 F2 F3 F8 F9 F10 F11 62.27 1.81 60.58 39.60 16.40 24.18 47.90

F5 F9 F1 F2 F3 F5 F8 F9 F10 F11 65.93 0.72 57.03 32.15 12.13 19.73 49.35

neutral samples have low pitch mean and are divided
into two regions in terms of their energy variance val-
ues. The neutral samples with high energy variance are
clustered separately from the rest of the classes (in be-
tween prohibition and soothing), while the ones with
lower energy variance are clustered within the soothing
class. These findings are consistent with the proposed
prior knowledge. Approval, attention, and prohibition
are associated with high intensity while soothing ex-
hibits much lower intensity. Neutral samples span from
low to medium intensity, which makes sense because
the neutral class includes a wide variety of utterances.

Based on this observation, we concluded that in the
first classification stage, we would use energy-related
features to classify soothing and neutral with low inten-
sity from the other higher intensity classes (see Fig. 6).
In the second stage, if the utterance had a low intensity
level, we would execute another classifier to decide
whether it is soothing or neutral. If the utterance ex-
hibited high intensity, we would use the F1–F9 pair to
classify among prohibition, approval-attention cluster,
and high intensity neutral. An additional stage would
be required to classify between approval and attention
if the utterance happened to fall within the approval-
attention cluster.

Results

Stage 1: Soothing-Low Intensity Neutral vs Everything
Else. The first two columns in Table 4 show classifi-
cation performances of the top 4 feature pairs which are
sorted based on how well each pair classifies soothing
and low intensity neutral against other classes. The last
two columns illustrate the classification results as each
pair is added sequentially into the feature set. The fi-
nal classifier was constructed using the best feature set
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Table 3. Classification results of the best ten feature pairs.

Performance Performance % error % error % error % error % error
Feature pair mean (%) variance approval attention prohibition soothing neutral

F1 F9 72.09 0.08 48.675 24.45 8.7 15.575 42.125

F1 F10 70.96 0.08 41.95 26.625 15.1 15.15 46.4

F1 F11 70.03 0.08 29.525 29.275 19.05 14.75 57.275

F2 F9 68.79 0.096 45.675 33.75 13.75 13.85 49

F1 F2 65.47 0.1 41.625 18.275 24.075 25.875 62.8

F3 F9 64.04 0.2 68.75 37 13.775 18.325 41.925

F1 F8 63.6 0.13 44.55 27.2 21.675 27.15 61.425

F5 F9 63.49 0.11 38.575 57.075 20.625 18.375 47.9

F4 F9 63.42 0.11 52.125 45.275 25.675 17.15 42.675

F2 F11 63.28 0.09 35.325 39.525 20.05 17.625 71.075

(energy variance, maximum energy, and energy range),
with an average performance of 93.57%. The resulting
feature space is shown in Fig. 7.

Stage 2A: Soothing vs Low Intensity Neutral. Since
the global and energy features were not sufficient

Figure 5. Feature space of all five classes.

in separating these two classes, we had to introduce
new features into the classifier. Fernald’s prototypi-
cal prosodic patterns for soothing proposed smooth
pitch contours exhibiting a frequency downsweep. Vi-
sual observations of the neutral samples in the data
set indicated that neutral speech generated flatter and
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Figure 6. The classification stages.

coarse pitch contours as well as less modulated en-
ergy contours. Based on these postulations, we con-
structed a classifier using five features, i.e., number of
pitch segments, average length of pitch segments, min-
imum length of pitch segments, slope of pitch contour,
and energy range. The slope of pitch contour indicated
whether or not the contour contained a downsweep seg-
ment. It was calculated by performing a 1-degree poly-
nomial fitting on the remaining segment of the contour
after the maximum peak. This classifier’s average per-
formance is 80.29%.

Stage 2B: Approval-Attention vs Prohibition vs High
Intensity Neutral. We have discovered that a combi-
nation of pitch mean and energy variance works well
in this stage. The resulting classifier’s average per-
formance is 89.99%. Based on Fernald’s prototypi-
cal prosodic patterns and the feature space shown in
Fig. 8, we speculated that pitch variance would be a
useful feature for distinguishing between prohibition
and approval-attention cluster. Adding pitch variance
into the feature set increases classifier’s average per-
formance to 92.13%.

Table 4. Classification results in stage 1.

Feature pair Pair performance mean (%)

F9 F11 93.00

F10 F11 91.82

F2 F9 91.7

F7 F9 91.34

Feature set Performance mean (%)

F9 F11 93.00s

F9 F10 F11 93.57

F2 F9 F10 F11 93.28

F2 F7 F9 F10 F11 91.58

Stage 3: Approval vs Attention. Since approval and
attention classes span across the same region in the
global pitch and energy feature space, we utilized prior
knowledge provided by Fernald’s prototypical prosodic
contours to introduce a new feature. As mentioned
above, approvals are characterized by an exaggerated
rise-fall pitch contour. We hypothesized that the exis-
tence of this particular pitch pattern would be a useful
feature in distinguishing between the two classes. We
first performed a 3-degree polynomial fitting on each
pitch segment. We then analyzed each segment’s slope
sequence and looked for a positive slope followed by a
negative slope with magnitudes higher than a threshold
value. We recorded the maximum length of pitch seg-
ment contributing to the rise-fall pattern which was zero
if the pattern was non-existent. This feature, together
with pitch variance, was used in the final classifier and
generated an average performance of 70.5%. This clas-
sifier’s feature space is shown in Fig. 9. Approval and
attention are the most difficult to classify because both
classes exhibit high pitch and intensity. Although the
shape of the pitch contour helped to distinguish be-
tween the two classes, it is very difficult to achieve
high classification performance without looking at the
linguistic content of the utterance.

Overall Performance. The final classifier was eval-
uated using a new test set generated from the same
speakers, containing 371 utterances. Table 5 shows the
resulting classification performance and compares it
to an instance of the cross-validation results of the
best classifier obtained in the first pass. Both clas-
sifiers perform very well on prohibition utterances.
The second pass classifier performs significantly bet-
ter in classifying the difficult classes, i.e., approval
vs attention and soothing vs neutral, thereby verify-
ing that features encoding the shape of pitch con-
tours derived based on prior knowledge provided
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Figure 7. Feature space: Soothing vs neutral vs rest.

Figure 8. Feature space: Approval-attention vs prohibition.

by Fernald’s prototypical prosodic patterns are very
useful.

It is important to note that both classifiers produce
acceptable failure modes, i.e., strongly valenced intents
are misclassified as neutrally valenced intents and not
as oppositely valenced ones. All classes are sometimes

misclassified as neutral. Approval and attentional bids
are generally classified as one or the other. Approval
utterances are occasionally confused for soothing and
vice versa. Only one probihition utterance was misclas-
sified as an attentional bid, which is acceptable. The
first pass made one unacceptable error of confusing
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Figure 9. Feature space: Approval vs attentional bid.

a neutral as prohibition. In the second pass classifier,
some neutral utterances are classified as approval, at-
tention, and soothing. This makes sense because the
neutral class covers a wide variety of utterances.

Table 5. Overall classification performance.

Classification result

Class Test size Approval Attention Prohibition Soothing Neutral
% correctly
classified

First pass Approval 40 27 9 0 0 4 67.5

Attention 40 11 29 0 0 0 72.5

Prohibition 40 0 0 39 0 1 97.5

Soothing 40 1 0 0 30 9 75

Neutral 40 0 0 4 5 31 77.5

All 200 78

Second pass Approval 84 64 15 0 5 0 76.19

Attention 77 21 55 0 0 1 74.32

Prohibition 80 0 1 78 0 1 97.5

Soothing 68 0 0 0 55 13 80.88

Neutral 62 3 4 0 3 52 83.87

All 371 81.94

7. Integration with the Emotion System

The output of the recognizer is integrated into the
rest of Kismet’s synthetic nervous system as shown
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Figure 10. System architecture for Kismet.

in Fig. 10. Its entry point is at the auditory percep-
tual system, where it is fed into an associated releaser
process. In general, there are many different kinds of
releasers defined for Kismet, each combining different
contributions from a variety of perceptual and motiva-
tional systems. For the purposes here, we only discuss
those releasers related to the input from the vocal af-
fect classifier. The output of each vocal affect releaser
represents its perceptual contribution to the rest of the
SNS. Each releaser combines the incoming recognizer
signal with contextual information (such as the current
“emotional” state) and computes its level of activation
according to the magnitude of its inputs. If its activa-
tion passes above threshold, it passes its output onto
the affective assessment stage so that it may influence
emotional behavior.

Within this assessment phase, each releaser is evalu-
ated in affective terms by an associated somatic marker
(SM) process. This mechanism is inspired by the So-
matic Marker Hypothesis of Damasio (1994) where in-
coming perceptual information is “tagged” with affec-
tive information. Table 6 summarizes how each vocal
affect releaser is somatically tagged. We have applied
a slight twist to Fernald’s work in using approvals and

Table 6. Affective tags for the output of the affective intent recog-
nizer.

Typical
Arousal Valence Stance expression

Approval Medium High Approach Pleased
high positive

Prohibition Low High Withdraw Sad
negative

Comfort Low Medium Neutral Content
positive

Attention High Neutral Approach Interest

Neutral Neutral Neutral Neutral Calm

prohibitions to modulate the valence of Kismet’s affec-
tive state in addition to arousal (Fernald focuses on the
impact of these contours on arousal levels of infants).

There are three classes of tags the SM uses to af-
fectively characterize its perceptual (as well as motiva-
tional and behavioral) input. Each tag has an associated
intensity that scales its contribution to the overall af-
fective state. The arousal tag specifies how arousing
this percept is to the emotional system. Positive values
correspond to a high arousal stimulus whereas negative
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values correspond to a to low arousal stimulus. The va-
lence tag specifies how good or bad this percept is to
the emotional system. Positive values correspond to a
pleasant stimulus whereas negative values correspond
to an unpleasant stimulus. The stance tag specifies how
approachable the percept is. Positive values correspond
to advance whereas negative values correspond to
retreat.

Because there are potentially many different kinds
of factors that modulate the robot’s affective state (e.g.,
behaviors, motivations, perceptions), this tagging pro-
cess converts the myriad of factors into a common cur-
rency that can be combined to determine the net affec-
tive state. For Kismet, the [arousal, valence, stance]
trio is the currency the emotion system uses to deter-
mine which emotional response should be active. This
occurs in two phases.

First, all somatically marked inputs are passed to the
emotion elicitor stage. Each emotion process has an
elicitor associated with it that filters each of the incom-
ing [A, V, S] contributions. Only those contributions
that satisfy the [A, V, S] criteria for that emotion pro-
cess are allowed to contribute to its activation. This fil-
tering is done independently for each class of affective
tag. For instance, a valence contribution with a large
negative value will not only contribute to the sad emo-
tion process, but to the fear, anger, and distress
processes as well. Given all these factors, each elici-
tor computes its net [A, V, S] contribution and activa-
tion level, and passes them to the associated emotion
process.

In the second stage, the emotion processes compete
for activation based on their activation level. There is
an emotion process for each of Ekman’s six basic emo-
tions (Ekman, 1992). Ekman posits that these six emo-
tions are innate in humans, and all others are acquired
through experience. The “Ekman six” encompass joy,
anger, disgust, fear, sorrow, and surprise.

If the activation level of the winning emotion pro-
cess passes above threshold, it is allowed to influence
the behavior system and the motor expression system.
There are actually two threshold levels, one for ex-
pression and one for behavior. The expression thresh-
old is lower than the behavior threshold; this allows
the facial expression to lead the behavioral response.
This enhances the readability and interpretation of the
robot’s behavior for the human observer. For instance,
given that the caregiver makes an attentional bid, the
robot’s face will first exhibit an aroused and interested
expression, then the orienting response becomes active.

By staging the response in this manner, the caregiver
gets immediate expressive feedback that the robot un-
derstood his/her intent. For Kismet, this feedback can
come in a combination of facial expression, tone of
voice, or posture. The facial expression also sets up the
human’s expectation of what robot behavior will soon
follow. As a result, the human observing the robot not
only can see what the robot is doing, but has an under-
standing of why. Readability is an important issue for
social interaction with humans.

8. Use of Behavioral Context
to Improve Interpretation

Most affective speech recognizers are not integrated
into robots equipped with affect systems that are em-
bedded in a social environment. As a result, they have
to classify each utterance in isolation. However, for
Kismet, the surrounding social context can be exploited
to help reduce false categorizations; or at least to re-
duce the number of “bad” misclassifications (such as
mixing up prohibitions for approvals).

8.1. Transition Dynamics of the Emotion System

Some of this contextual filtering is performed by the
transition dynamics of the emotion processes. These
processes cannot instantaneously become active or in-
active. Decay rates and competition for activation with
other emotion processes give the currently active pro-
cess a base-level of persistence before it becomes in-
active. Hence, for a sequence of approvals where the
activation of the robot’s happy process is very high, an
isolated prohibition will not be sufficient to immedi-
ately switch the robot to a negatively valenced state.

However, if the caregiver in fact intended to commu-
nicate disapproval to the robot, reiteration of the pro-
hibition will continue to increase the contribution of
negative valence to the emotion system. This serves to
inhibit the positively valenced processes and to excite
the negatively valenced processes. Expressive feedback
from the robot is sufficient for the caregiver to rec-
ognize when the intent of the vocalization has been
communicated properly and has been communicated
strongly enough. The smooth transition dynamics of
the emotion system enhances the naturalness of the
robot’s behavior since a person would expect to have
to “build up” to a dramatic shift in affective state from
positive to negative, as opposed to being able to flip the
robot’s emotional state like a switch.
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8.2. Using Social Context to Disambiguate Intent

The affective state of the robot can also be used to help
disambiguate the intent behind utterances with very
similar prosodic contours. A good example of this is
the difference between utterances intended to soothe
versus utterances intended to encourage the robot. The
prosodic patterns of these vocalizations are quite sim-
ilar, but the intent varies with the social context. The
communicative function of soothing vocalizations are
to comfort a distressed robot—there is no point in com-
forting the robot if it is not in a distressed state. Hence,
the affective assessment phase somatically tags these
types of utterances as soothing when the robot is dis-
tressed, and as encouraging otherwise.

9. Experiments

9.1. Motivation

We have shown that the implemented classifier per-
forms well on the primary caregivers’ utterances. Es-
sentially, the classifier is trained to recognize the care-
givers’ different prosodic contours, which are shown to
coincide with Fernald’s prototypical patterns. In order
to extend the use of the affective intent recognizer, we
would like to evaluate the following issues:

– Will naı̈ve subjects speak to the robot in an exag-
gerated manner (in the same way as the caregivers)?
Will Kismet’s infant-like appearance urge the speak-
ers to use motherese?

– If so, will the classifier be able to recognize their
utterances, or will it be hindered by variations in
individual’s style of speaking or language?

– How will the speakers react to Kismet’s expressive
feedback, and will the cues encourage them to adjust
their speech in a way they think that Kismet will
understand?

9.2. Experimental Setup

Five female subjects, ranging from 23 to 54 years
old, were asked to interact with Kismet in differ-
ent languages (English, Russian, French, German, and
Indonesian). Subjects were instructed to express each
communicative intent (approval, attention, prohibition,
and soothing) and signal when they felt that they had
communicated it to the robot. We did not include the

neutral class because we expected that many neutral
utterances would be spoken during the experiment. All
sessions were recorded on video for further evaluations.

9.3. Results

A set of 266 utterances were collected from the exper-
iment sessions. Very long and empty utterances (those
containing no voiced segments) were not included. An
objective observer was asked to label these utterances
and to rate them based on the perceived strength of
their affective message (except for neutral). As shown
in the classification results (see Table 7), compared to
the caregiver test set, the classifier performs almost as
well on neutral, and performs decently well on all the
strong classes, except for soothing and attentional bids.
As expected, the performance reduces as the perceived
strength of the utterance decreases.

A closer look at the misclassified soothing utterances
showed that a high number of utterances were actually
soft approvals. The pitch contours contained a rise-
fall segment, but the energy level was low. A 1-degree
polynomial fitting on these contours will generate a
flat slope and thus classified as neutral. A few sooth-
ing utterances were confused for neutral despite having
the downsweep frequency characteristic because they
contained too many words and coarse pitch contours.
Attentional bids generated the worst classification per-
formance. A careful observation of the classification
errors revealed that many of the misclassified atten-
tional bids contained the word “kis-met” spoken with
a bell-shaped pitch contour. This was detected by the
classifier as the characteristic rise-fall pitch segment
found in approvals. We also found that many other
common words used in attentional bids, such as “hey”
and “hello”, also generated a bell-shaped pitch con-
tour. Interestingly, these attentional bids appear to carry
stronger affective message because they do not occur
as much in the medium strength utterances, which are
thus easier to classify. These are obviously very impor-
tant issues to be resolved in future efforts to improve
the system.

Based on these findings, we can draw several con-
clusions. Firstly, a high number of utterances are per-
ceived to carry strong affective message, which implies
the use of exaggerated prosody during the interaction
session that we hoped for. The remaining question is
whether or not the classifier will generalize to the naı̈ve
speakers’ exaggerated prosodic patterns. Except for the
two special cases discussed above, experimental results
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Table 7. Classification performance on naı̈ve speakers.

Classification result

Test set Strength Class Test size Approval Attention Prohibition Soothing Neutral
% correctly
classified

Care givers Approval 84 64 15 0 5 0 76.19

Attention 77 21 55 0 0 1 74.32

Prohibition 80 0 1 78 0 1 97.5

Soothing 68 0 0 0 55 13 80.88

Neutral 62 3 4 0 3 52 83.87

Naive speakers Strong Approval 18 14 4 0 0 0 72.2

Attention 20 10 8 1 0 1 40

Prohibition 23 0 1 20 0 2 86.96

Soothing 26 0 1 0 16 10 61.54

Medium Approval 20 8 6 0 1 5 40

Attention 24 10 14 0 0 0 58.33

Prohibition 36 0 5 12 0 18 33.33

Soothing 16 0 0 0 8 8 50

Weak Approval 14 1 3 0 0 10 7.14

Attention 16 7 7 0 0 2 43.75

Prohibition 20 0 4 6 0 10 30

Soothing 4 0 0 0 0 4 0

Neutral 29 0 1 0 4 24 82.76

indicate that the classifier performs very well in recog-
nizing the naı̈ve speakers’ prosodic contours although
it is trained only on the primary caregivers’ utterances.
Moreover, the same failure modes occur in the naı̈ve
speakers test set. No strongly valenced intents were
misclassified as oppositely valenced ones. It is very en-
couraging to discover that the classifier not only gener-
alizes to perform well on naı̈ve speakers using different
languages, but it also does not make any (or at least very
few) unacceptable misclassifications.

10. Discussion

Results from these initial studies and other informal ob-
servations suggest that people do naturally exaggerate
their prosody (characteristic of motherese) when ad-
dressing Kismet. People of different genders and ages
often comment that they find the robot to be “cute”,
which encourages this manner of address. Naı̈ve sub-
jects appear to enjoy interacting with Kismet and are
often impressed at how life-like it behaves. This also
promotes natural interactions with the robot, making it
easier for them to engage the robot as if it were a very
young child or adored pet.

All of our female subjects spoke to Kismet using
exaggerated prosody characteristic of infant-directed
speech. It is quite different from the manner in which
they spoke with the experimenters. We have informally
noticed the same tendency with children (approxi-
mately twelve years of age) and adult males. It is not
surprising that individual speaking styles vary. Both
children and women (especially those with young chil-
dren or pets) tend to be uninhibited, whereas adult
males are often more reserved. For those who are rel-
atively uninhibited, their styles for conveying affec-
tive communicative intent vary. However, Fernald’s
contours hold for the strongest affective statements in
all of the languages that were explored in this study.
This would account for the reasonable classifier per-
formance on vocalizations belonging to the strongest
affective category of each class. As argued previously,
this is the desired behavior for using affective speech
as an emotion-based saliency marker for training the
robot.

Tables 8 and 9 illustrate sample event sequences
that occured during experiment sessions of a caregiver
(S1) and naı̈ve speaker (S2) respectively. Each row rep-
resents a trial in which the subject attempts to commu-
nicate an affective intent to Kismet. For each trial, we
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Table 8. Sample experiment session of a caregiver.

No. of Subject’s Change in
Speaker Intent Trial utterances Robot’s cues Correct? response prosody Subject’s comment

S1—caregiver Approval 1 2 Smile Yes Laugh and
(English) acknowledge

2 2 Lean forward No Giggle

3 1 Smile Yes Acknowledge

4 2 Smile Yes Acknowledge

5 1 Smile Yes Acknowledge

6 2 Attending No Ignore

7 1 Smile Yes Acknowledge

8 1 Smile Yes Acknowledge

9 1 Smile Yes Acknowledge

10 1 Smile Yes Acknowledge “It liked that one”

11 1 Smile Yes Acknowledge

12 1 Smile Yes Acknowledge

13 1 Smile Yes Acknowledge

Attention 14 1 Smile No Ignore

15 Attending Yes Acknowledge

16 2 Attending Yes Acknowledge Louder

17 1 Attending Yes Acknowledge

18 1 Attending Yes Acknowledge

19 1 Smile No Ignore “It thinks I’m approving
it”

20 1 Attending Yes Acknowledge

21 1 Smile No Acknowledge

22 1 Attending Yes Acknowledge

23 2 Attending Yes Acknowledge

24 1 Attending Yes Acknowledge

25 2 Smile No Ignore

26 2 Attending Yes Acknowledge “There’s a lag here”

27 1 Attending Yes Acknowledge

28 1 Attending Yes Acknowledge “You know when it’s in
between, before it gets
excited, I’m all scared
that it’s going to get
sad”

29 1 Attending Yes Acknowledge

Prohibition 30 4 Look down No Ignore

31 Frown Yes Acknowledge “Oooh...”

32 2 Look down No Ignore Lower pitch

33 1 Still look down Yes Acknowledge “Sorry, are you okay now?
It’s just an experiment,
Kismet. I have to do
it”

34 3 Look down Yes Acknowledge Louder

35 Frown Yes Ignore

(continued on next page.)
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Table 8. (continued ).

No. of Subject’s Change in
Speaker Intent Trial utterances Robot’s cues Correct? response prosody Subject’s comment

36 4 Look down No Ignore
37 3 Frown Yes Acknowledge

38 4 Look down Yes Acknowledge
and frown

39 2 Look down Yes Acknowledge
and frown

Soothing 40 1 Look up and Yes Acknowledge
ears perk up

Prohibition 41 4 Look down Yes Acknowledge
and frown

Soothing 42 4 Look up and Yes Acknowledge
ears perk up

Prohibition 43 3 Look down Yes Acknowledge
and frown

Soothing 44 3 Look up and Yes Acknowledge
smile

Prohibition 45 4 Look down No Ignore

46 2 Frown Yes Acknowledge

(Indonesian) Approval 47 1 Smile Yes Smile and
acknowledge

48 1 Smile Yes Acknowledge

49 3 Smile Yes Acknowledge

50 2 Grin No Ignore

51 1 Smile Yes Acknowledge

Attention 52 3 Attending Yes Acknowledge

53 3 Attending Yes Acknowledge

Prohibition 54 4 Look down Yes Acknowledge
and frown

55 4 Look down Yes Acknowledge
and frown

56 3 Look down Yes Acknowledge
and frown

Soothing 57 2 Look up Yes Acknowledge

Prohibition 58 4 Look down Yes Acknowledge
and frown

Soothing 59 3 Look up Yes Acknowledge

recorded the number of utterances said, Kismet’s cues,
subject’s responses and comments, as well as changes
in prosody, if any. Recorded events show that subjects
in the study made ready use of Kismet’s expressive
feedback to assess when the robot “understood” them.
The robot’s expressive repertoire is quite rich, includ-
ing both facial expressions and shifts in body posture.
The subjects varied in their sensitivity to the robot’s ex-
pressive feedback, but all used facial expression, body

posture, or a combination of both to determine when
the utterance had been properly communicated to the
robot. All subjects would reiterate their vocalizations
with variations about a theme until they observed the
appropriate change in facial expression. If the wrong
facial expression appeared, they often used strongly
exaggerated prosody to “correct” the “misunderstand-
ing”. In trial 26 of subject S2’s experiment session, sub-
ject giggled when Kismet smiled despite her scolding,
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Table 9. Sample experiment session of a naı̈ve speaker.

No. of Change in Subject’s
Speaker Intent Trial utterances Robot’s cues Correct? Subject’s response prosody comment

S2—naive Approval 1 1 Ears perk up No Smile and acknowledge

2 1 Ears perk up, a little grin No Smile and acknowledge

3 2 Look down No Lean forward Higher pitch

4 2 Look up No Smile and acknowledge Higher pitch

5 1 Ears perk up, a little grin No Lean forward, smile, “I had it”
and acknowledge

6 Lean forward and smile Smile

7 2 Smile Yes Lean forward, smile, Higher pitch
and acknowledge

8 3 Smile Yes Lean forward, smile, Higher pitch
and acknowledge

9 4 Attending No Ignore

10 Smile Yes Lean forward, smile,
and acknowledge

Attention 11 3 Make eye contact No Smile and Higher pitch
acknowledge

12 1 Attending Yes Acknowledge

13 1 Attending Yes Acknowledge

14 1 Attending Yes Acknowledge

15 2 Lean forward and make No Acknowledge
eye contact

16 2 Lean back and make No Lean forward
eye contact and acknowledge

17 Look down and frown Ignore

18 4 Look up No Lean forward, smile, Higher pitch
and acknowledge

Prohibition 19 4 Look down No Lean forward, keep on
talking

20 4 Frown Yes Acknowledge Lower pitch

21 6 Look down No Lean forward, keep on
talking

Soothing 23 4 Look up and make Yes Pauses and acknowledge
eye contact

Prohibition 24 6 Frown Yes Acknowledge

Soothing 25 4 Look up and make Yes Pauses and acknowledge
eye contact

commented that volume would help, and thus spoke
louder in the next trial.

Kismet’s expression through face and body posture
becomes more intense as the activation level of the
corresponding emotion process increases. For instance,
small smiles verses large grins were often used to dis-
cern how “happy” the robot appeared. Small ear perks
verses widened eyes with elevated ears and craning the
neck forward were often used to discern growing lev-

els of “interest” and “attention”. The subjects could
discern these intensity differences and several modu-
lated their own speech to influence them. For example,
in trial 30, 32, and 36, Kismet responded to subject
S1’s scolding by dipping its head and subject contin-
ued prohibiting with lower voice until Kismet finally
frowned.

During course of the interaction, several interesting
dynamic social phenomena arose. Often these occurred
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in the context of prohibiting the robot. For instance,
several of the subjects reported experiencing a very
strong emotional response immediately after “success-
fully” prohibiting the robot. In these cases, the robot’s
saddened face and body posture was enough to arouse
a strong sense of empathy. The subject would often
immediately stop and look to the experimenter with
an anguished expression on her face, claiming to feel
“terrible” or “guilty”. Subject S1 was very apologetic
throughout her prohibition session. In this emotional
feedback cycle, the robot’s own affective response to
the subject’s vocalizations evoked a strong and similar
emotional response in the subject as well.

Another interesting social dynamic we observed in-
volved affective mirroring between robot and human.
In this situation, the subject might first issue a medium
strength prohibition to the robot, which causes it to
dip its head. The subject responds by lowering her own
head and reiterating the prohibition, this time a bit more
foreboding. This causes the robot to dip its head even
further and look more dejected. The cycle continues
to increase in intensity until it bottoms out with both
subject and robot having dramatic body postures and
facial expressions that mirror the other (trial 19–21 in
S2’s session). This technique was employed to mod-
ulate the degree to which the strength of the message
was “communicated” to the robot.

11. Limitations and Extensions

The ability of naı̈ve subjects to interact with Kismet
in this affective and dynamic manner suggests that its
response rate is of acceptable performance. However,
the timing delays in the system can and should be im-
proved. There is about a 500 ms delay from the time
speech ends to receiving an output from the classifier.
Much of this delay is due to the underlying speech
recognition system, where there is a trade-off between
shipping out the speech features to the NT machine
immediately after a pause in speech, or waiting long
enough during that pause to make sure that speech
has completed. There is another delay of one to two
seconds associated with interpreting the classifier in
affective terms and feeding it through an emotional re-
sponse. The subject will typically issue one to three
short utterances during this time (of a consistent af-
fective content). It is interesting that people seem to
rarely issue just one short utterance and wait for a
response. Instead, they prefer to communicate affec-
tive meanings in a sequence of a few closely related

utterances (“That’s right Kismet. Very good! Good
robot!”). In practice, people do not seem to be both-
ered by or notice the delay. The majority of delays
involve waiting for a sufficiently strong vocalization
to be spoken, since only these are recognized by the
system.

Given the motivation of being able to use natu-
ral speech as a training signal for Kismet, it remains
to be seen how the existing system needs to be im-
proved or changed to serve this purpose. Naturally oc-
curring robot-directed speech doesn’t come in nicely
packaged sound bites. Often there is clipping, multiple
prosodic contours of different types in long utterances,
and other background noise (door’s slamming, people
talking, etc.). Again, targeting infant-caregiver inter-
actions goes some ways in alleviating these issues, as
infant-directed speech is slower, shorter, and more ex-
aggerated. However, our collection of robot-directed
utterances demonstrates a need to address these issues
carefully.

The recognizer in its current implementation is spe-
cific to female speakers, and it is particularly tuned to
women who can use motherese effectively. Granted not
all people will want to use motherese to instruct their
robots. However, at this early state of research we are
willing to exploit naturally occurring simplifications
of robot-directed speech to explore human-style so-
cially situated learning scenarios. Given the classifier’s
strong performance for the caregivers (those who will
instruct the robot intensively), and decent performance
for other female speakers (especially for prohibition
and approval), we are quite encouraged at these early
results. Future improvements include either training a
male adult model, or making the current model more
gender neutral.

For instructional purposes, the question remains
“how good is good enough?”. Seventy to eighty per-
cent performance of five-way classifiers for recogniz-
ing emotional speech is regarded as state of the art. In
practice, within an instructional setting, this may be
an unacceptable number of misclassifications. As a re-
sult, we have taken care in our approach to minimize
the number of “bad” misclassifications, to exploit the
social context to reduce misclassifications further (such
as soothing verses neutral), and to provide expressive
feedback to the caregivers so they can make sure that the
robot properly “understood” their intent. By incorpo-
rating expressive feedback, we have already observed
some intriguing social dynamics that arise with naı̈ve
female subjects. We intend to investigate these social
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dynamics further so that we may use them to advantage
in instructional scenarios.

To provide the human instructor with greater preci-
sion in issuing vocal feedback, we will need to look
beyond how something is said to what is said. Since
the underlying speech recognition system (running on
the Linux machine) is speaker independent, this will
boost recognition performance for both males and fe-
males. It is also a fascinating question of how the robot
could learn the valence and arousal associated with
particular utterances by bootstrapping from the corre-
lation between those phonemic sequences that show
particular persistence during each of the four classes
of affective intents. Over time, Kismet could associate
the utterance “Good robot!” with positive valence, “No,
stop that!” with negative valence, “Look at this!” with
increased arousal, and “Oh, it’s ok.” with decreased
arousal by grounding it in an affective context and
Kismet’s emotional system. Developmental psycholin-
guists posit that human infants learn their first mean-
ings through this kind of affectively-grounded social
interaction with caregivers (Stern et al., 1982). Using
punctuated words in this manner gives greater precision
to the human caregiver’s ability to issue reinforcement,
thereby improving the quality of instructive feedback
to the robot.

12. Conclusions

Human speech provides a natural and intuitive inter-
face for both communicating with humanoid robots
as well as for teaching them. We have implemented
and demonstrated a fully integrated system whereby
a humanoid robot recognizes and affectively responds
to praise, prohibition, attention, and comfort in robot-
directed speech. These communicative intents are well
matched to human-style instruction scenarios since
praise, prohibition, and directing the robot’s attention
to relevant aspects of a task, could be intuitively used to
train a robot. Communicative efficacy has been tested
and demonstrated with the robot’s caregivers as well as
with naı̈ve subjects. We have argued how such an inte-
grated approach lends robustness to the overall classi-
fication performance. Importantly, we have discovered
some intriguing social dynamics that arise between
robot and human when expressive feedback is intro-
duced. This expressive feedback plays an important
role in facilitating natural and intuitive human-robot
communication.
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