21

Understanding Csound’s Spectral
Data Types

Barry Vercoe

Most of the signals in Csound are discrete-time sequences of floating-point values,
varying at a fixed audio rate or control rate, or at some nonperiodic rate determined
by score events, MIDI events and control sensing. They can often replace each other
as inputs to compound generators, so that an audio oscillator can take an amplitude
that is variously an i-time constant, a control signal, or an audio signal. Also, a
Csound instrument normally progresses from event constants to control signals to
audio signals and we spend most of our sound-design time making this progression
real.

Spectral data types are different. Although they represent audio and control signals
and likewise vary at some fixed rate over time, they cannot be plugged into normal
signal slots, nor can normal signals substitute for them. They create a separate net-
work of data communication, often with several simultaneously different refresh
rates, and generally maintain an orderly world of their own. Moreover, the entrance
and exit to this world is the reverse of the above: we begin with audio signals and
end with control signals. The goal of this chapter then is to make this progression
seem just as real.

The reason for this reverse is signal analysis, sensing and detection. Csound utili-
ties such as Ipanal and pvanal do analyze signals, producing output that can lead to
effective reconstruction under time or frequency modifications, but there is little real
sensing or detection in these processes and certainly none that squarely represents
what you and I would sense in a sound either acoustically or musically. While Ipanal
and pvanal exploit the elegance of all-pole filters and Fast Fourier Transforms (with
linearly spaced filter bins of equal bandwidth), the human cochlea has evolved hair-
cell collectors that are exponentially spaced with proportional bandwidths. Both sys-
tems have had their reasons. The problem with mathematically elegant analysis,
however, is that it appeals mostly to computers (and some people). What the rest of



438

Barry Vercoe

us really need for computer-assisted music performance are sound analysis and sens-
ing mechanisms that work just like our own.

The Csound spectral data types are based on perceptually relevant methods of
analysis and feature detection. From the initial massaging of audio input data to the
gradual mounting of evidence favoring a certain pitch, pulse or tempo, the methods
and opcodes I have devised are inspired by what we currently know about how hu-
mans “get” a musical signal. As a result, the opcodes enable one to build models
of human auditory perception and detection within a running Csound instrument.
This gives the resulting pitch and rhythm detectors both relevance and strength. In
describing the nature and use of these opcodes below I will occasionally allude to
their physiological and perceptual roots. For a more detailed account, however, see
my chapter “Computational auditory pathways to music understanding” in (Vercoe
1997).

Opcodes

A feature-detecting sequence that uses spectral data types is formed from a small set
of opcodes that can be grouped as shown in figure 21.1.

The connecting data object wsig contains not only spectral magnitudes, but also a
battery of other information that makes it self-defining. In a chain of processing
opcodes, each will modify its input spectral data, but the output object will retain the
self-defining parts to pass on to the next opcode. This opcode will in turn “know”
things, such as which spectrum opcode is periodically refreshing the first link in the
chain, the time of last refresh, how often refreshes occur, how many spectral points
there are per octave, whether they are magnitude or dB, the frequency range, etc. All
of this means that an ending operator like specdisp or specptrk can tell from its

ENTERING : wsig spectrum xsig,

PROCESSING AND VIEWING: wsig specaddm wsig
wsig specdiff wsigin
wsig specscal wsigin,
wsig spechist wsigin
wsig specfilt wsigin,

specdisp wsig,

LEAVING: koct, kamp specptrk wsigin,
ksum specsum wsig,

Figure 21.1 Csound’s spectral data type opcodes.



439

Understanding Csound’s Spectral Data Types

input how often it must do work and how detailed this must be. It can also opt to
ignore some changes and work at a slower pace.
The originating spectral analysis of audio is done by:

wsig spectrum xsig, iprd, iocts, ifrga, igl, ihann, idbout,
idisprd, idsinrs]

The analysis is done every iprd by a set of exponentially spaced Fourier match-
ings, wherein a windowed segment of the audio signal is multiplied by sinusoids
with specific frequencies. The process is first performed for the top octave, for ifrgs
different frequencies exponentially spaced. The window size is determined by ig, the
ratio of Fourier center frequency to bandwidth. For efficiency, the data are not actu-
ally windowed at all, but the sinusoids are and these can be viewed by making idsines
nonzero. Next, the audio data are downsampled and the process repeated for the next
octave and so on, for as many octaves as requested. To fill the window of the lowest
bin in the lowest octave, the downsampled data must be kept around for some time.
The stored down-samples (dynamically changing) can be periodically displayed by
giving idisprd a nonzero value.

Keeping downsampled audio to fill a slow-moving low-frequency window brings
us to a problem we will encounter later. Both the Hanning and Hamming-shaped
windows are symmetric (bell-shaped sinusoidal) and designed to focus analytic at-
tention on their temporal center. To make the centers of all frequency-analysis win-

"~ dows coincide at the exact same time-point, the higher frequency windows are

delayed until the low frequency window is complete. This introduces an input-output
time delay across the spectrum opcode. The amount of delay depends on both the
window size (indirectly ig) and the number of octaves (iocts). While this delaying
strategy might at first seem unnecessarily fussy, the coincident windows turn out to
make a big difference for some spectral operations like specptrk, as we will see
shortly.

Once we have reliable spectral data, the other opcodes can then proceed with their
work. The unit specaddm does a weighted add of two incoming wsigs, while
specdiff calculates the difference between consecutive frames of a single varying
spectrum. This latter can be seen as a delta analyzer, operating independently on
each “channel” of the spectrum to produce a differential spectrum as output. In fact,
it reports only the positive differences to produce a positive difference spectrum and
is thus useful as an energy onset detector. The units spechist and specfilt are similar
to each other, the first accumulating the values in each frequency channel to provide
a running histogram of spectral distribution, while the second injects each new value
into a first-order lowpass filter attached to each channel. We will see this used in one
of the examples below.



440

Barry Vercoe

The units specptrk and specsum have only control signal output and provide a
way back into standard Csound instrument processing. The first is a pitch detector,
which reports the frequency and amplitude as control signals.

koct, kamp specptrk wsig, kvar, ilo, ihi, istrt, idbthresh,
inptls, irolloff [, iodd, iconfs,
interp, ifprd, iwtflg]

The detection method involves matching the spectral data of wsig with a template of
harmonic partials (optionally odd, with some roll-off per octave). Matching is done
by cross-correlation to produce an internal spectrum of candidate pitches over a lim-
ited pitch range (ilo to ihi). The internal spectrum is then scanned for the strongest
candidate, which, if confirmed over iconfs consecutive wsigs, is declared the winner.
The output is then modified accordingly.

The combination of suitably scaled spectrum and specptrk units creates a robust
pitch detector, capable of extracting the most prominent component of a mixed
source signal (e.g., a sitar against a background drone). We can observe some of this
at work: we can display the original spectrum via a specdisp and we can display the
cross-correlation spectrum of the present unit by giving ifprd a nonzero value. When
an incoming signal has almost no energy at the fundamental (e.g., a high bassoon-
like nasal sound), this tracker will still report the human-perceived fundamental
pitch. And whereas traditional pitch detectors have difficulty with fast-moving tones
like octave scoops, this tracker will stay with the signal, largely because we have
time-aligned all the windows of octave down-samples (as described above). Lastly,
the pitch resolution of any tone is not restricted to the frequency bins-per-octave
of the originating spectrum, but employs parabolic interpolation to obtain much
higher resolution.

With an understanding of the above we are now in a position to consider some
applications.

A Beat Tracker and Tempo Follower

Energy assessment in the human auditory system is a complex affair. It is not mea-
sured immediately but is integrated over time, and we cannot gauge the full intensity
of a single impact for about 300 milliseconds. If another impact should occur within
that period, the integration of the first is incomplete and the second impact becomes
the beneficiary of the remainder (Povel and Okkerman 1981). Consequently, when a
stream of impacts arrives grouped in pairs, the first of each pair will seem softer than
the second, even when both have the same physical intensity. This leads us to the



Understanding Csound’s Spectral Data Types

perception of a “lilting” rhythm, and the same phenomenon is at the base of all
human rhythmic perception.

A machine will not see it that way. An instrumentation-quality intensity detector
will report something much closer to the truth. And if it is digital, even its own
integration time (in the low nanoseconds) will be thwarted by the sample-and-hold
process.

So how do we get a computer to hear rthythms the way we do? We could program
a set of rules that would reinterpret the intensity patterns along human perceptual
lines; for a complex score, this could be time consuming. Or we could model the
above energy integration in the data gathering itself. This latter is the strategy imple-
mented in Csound’s spectral data processing, and an instrument that would track
audible beats and follow a changing tempo in human-like fashion would look as
shown in figure 21.2.

Every .01 seconds we form a new spectrum, 8 octaves, 12 frequencies per octave,
with a bandwidth Q of 8. We use a Hamming window, request magnitudes in dB and
skip the display of downsampled data. We next apply Fletcher-Munson scaling, us-
ing stored function tables f 3 and f 4, to simulate the frequency-favoring effect of the
auditory canal.

For the inner ear, calculation of a positive difference spectrum is relevant for the
following reason: when the human cochlea receives a sudden increase in energy at a
hair cell, the neural firing rates on its attached auditory nerve fibers register a sudden
increase, then a rapid adaptation to more normal behavior. By contrast, when it re-
ceives a sudden decrease in energy, the hair cell almost ignores the event. Clearly
our hearing has evolved to be highly sensitive to new onsets (life-threatening?) and
almost oblivious to endings, and our music reflects this with event-oriented struc-
tures flavored with percussive sounds. We give our machine a similar predilection on
each frequency channel with specdiff.

The energy integration phenomenon, however, is not visible on the auditory nerve
fibers. Apparently this must be happening at a later stage of processing and we can
measure it only by psychoacoustic experiment (Povel and Okkerman 1981). It is not
yet clear how this actually works. We simply presume in the above model to inject
the positive difference data directly into integrating filters (specfilt), whose time con-
stants are frequency dependent and are conveyed via stored f-table f 5. Finally, we
sum the energy sensation across all frequency bins to produce a running composite,
in ksum4. This is a simple sum, purposely disregarding the effects of simultaneous
masking on loudness perception (Zwicker and Scharf 1965), since our real goal is to
compare the energies across time.

To the extent that ksum4 adequately represents the fluctuation in our own sensa-
tions, we can now perform pulse and tempo estimation on a single channel of k-rate



442 Barry Vercoe

4
1
SPECSCAL
ﬁ”ﬂgﬂl
SPECDIFF
(wsig3) 5
1
SPECFIO
(wsig4) 1
1
SPECSUM
sum:
TEMPEST
(ktempo) 60
|
TEMPO

Figure 21.2 Block diagram of instr 2101, a beat tracker and tempo follower.

instr 2101 ; BEAT TRACKER, TEMPO FOLLOWER
asig in ; GET MICROPHONE INPUT
; FORM A SPECTRAL DATA TYPE
wsigl spectrum asig, .01, 8, 12, 8, 0, 1, 0

wsig2 specscal wsigl, 3, 4 ; FLETCHER-MUNSON SCALING
wsig3 specdiff wsig2 ; POSITIVE DIFFERENCE SPECTRUM
wsigd specfilt wsig3, 5 ; INJECT INTO INTEGRATING FILTERS
ksum4d specsum wsigd, 1
; GET TEMPO...
ktempo tempest ksum4, .01, .1, 3, 1, 30, .005, 90, 2, .04, 1
tempo ktempo, 60 ; ... AND CONTROL THE PERFORMANCE

endin

Figure 21.3 Orchestra code for instr 2101, an instrument for taking microphone input and
controlling the tempo of the performance based on beat tracking.



443

Understanding Csound’s Spectral Data Types

data. The tempest unit does not traffic in spectral data types, so it will not be de-
scribed here beyond what is already covered in the Csound manual and further in
(Vercoe 1997). It does however afford some good graphic display of the short-term
(echoic) memory modeling from which the beat structure and tempo are derived,
along with its development of rhythmic expectations that are an essential part of
human beat and tempo tracking, and the reader is advised to try running the unit with
the input values given above so as to observe them.

The final tempo opcode takes us beyond analysis and observation. Although it
does nothing for the beat-tracking instrument itself, the tempo opcode takes the
machine-estimated running ktempo and passes it to the Csound scheduler, which
controls the timing of every new event. Therefor if the above instrument is inserted
into another working orchestra and score, and the command-line flag -t 60 is invoked,
you can control that orchestra’s performance by simply tapping into the microphone.
A live demonstration of this was intially given at the 1990 ICMC (Vercoe and Ellis
1990), when Dan Ellis controlled the tempo of a Bach performance by tapping arbi-
trary drum rhythms on a table near a microphone.

A Pitch Tracker and Harmonizer

Since the same human ear that detects rhythms is also responsible for sensations of
pitch, we can build a model of this new phenomenon using many of the same initial
principles. The two paths of course eventually diverge, and we will be forced to
consider some of the special needs of pitch acuity as we get deeper into the search.
Given a good sense of pitch, it is not hard to build automatic harmonizers and pitch-
to-MIDI converters. We will look briefly at both of these before forming some
conclusions.

The two examples we will use, however, employ opcodes that are not part of the
normal Csound distribution. These are from my Extended Csound, a version I have
developed that can run complex instruments in real-time using the Analog Devices
21060 floating-point DSP accelerator (Vercoe 1996). In that system, some number
of DSPs (1-6) on a plug-in audio card can dynamically share the computational load
of a large Csound orchestra, which often contains new opcodes that extend both its
repertoire and its real-time performance capacity. Although my personal exploration
into these real-time complexities is currently dependent on such accelerators, I fully
expect the experience gained will eventually migrate to more generally accessible
platforms. The interested reader will also find additional presaging examples of Ex-
tended Csound on the CD-ROM that accompanies this volume.



444

Barry Vercoe

A Csound instrument that can pitch-track an incoming audio signal and turn that
into a five-part harmony would look as shown in figures 21.4 and 21.5.

First, we take one channel from our stereo microphone and give it some simple
equalization (EQ) to heighten the voice partials. Our spectral analysis is similar to
the above, with the following new considerations: we will form a new spectrum only
every .02 seconds, since percussive rhythm is not the likely input. We request 6 oc-
taves of downsampling, 24 frequencies per octave, with a bandwidth Q of 12. We also
request a Hanning window and root magnitude spectral data.

The choice of 24 frequency bins of Q 12 merits some discussion. Both are
weighted toward pitch-tracking rather than intensity measurement as was the case
above, yet they still fall short of an ideal model of the ear. The human cochlea has
about 400 hair-cell detectors per octave in this frequency region. On the other hand
those detectors are broad-band, with a Q of 4 (1/3 octave). Broad-band implies fast
energy collection, where things like binaural sensing of direction depend on accurate
measurement of interaural time differences. This is not our goal here, and we opt for
slower, more narrowly focused filters, one quarter-tone apart. The parabolic interpo-
lation in specptrk will do the rest.

We are now sending specptrk some favorable data. The range restriction of 6.5 to
8.9 (in decimal octaves) is sufficient to cover my voice range even on a good day and
we give it an initial hint of 7.5. So that it will not try to pitch-track just microphone
noise, we set a minimum threshold of 10 dB, below which it will output zeroes for
both pitch and amplitude. Since I may decide to sing some strange vocal sounds
(e.g., with missing fundamentals), we ask for an internal template of 7 harmonic
partials, with a rolloff of .7 per octave. We request just 3 confirmations of any octave
leap (proportionally less for smaller intervals) and ask that the pitch and amplitude
outputs be k-rate interpolated between consecutive analyses. Finally, we ask it to
display the running cross-correlation spectrum so that we can observe the various
pitch candidates in dynamic competition.

There was a price to pay for all this, it may be recalled. So that the tracker would
stay locked onto fast-moving voice “scoops,” we carefully delayed all channels of
analysis until the low-frequency window was full and the other windows could be
centrally aligned. The amount of delay incurred by spectrum is reported on the user
console at i-time. For a sampling rate of 16K, a Q of 12 and 6 octaves of downsam-
pling, that value is 66 milliseconds. Having now emerged from the spectral data type
world with a running pitch value, we now delay the audio signal by this amount so
that the audio and its pitch estimate are synchronized.

We are now ready for the harmonizer. The harmon4 unit is not part of regular
Csound, but an addition that exists in Extended Csound (Vercoe 1996). It is simi-
lar to Csound’s harmeon unit, but depends on other processing modules (such as-



445 ’ Understanding Csound’s Spectral Data Types

INS

(at

0 3000 1
L

RESON

HARMON4
(as)g
o)

Figure 21.4 Block diagram of instr 2102, a pitch tracker and harmonizer.

instr 2102 ; PITCH TRACKING HARMONIZER
al, a0 ins ; GET MICROPHONE INPUT
al reson al, 0, 3000, 1 ; AND APPLY SOME EQ
wl spectrum al, .02, 6, 24, 12, 1, 3 ; FORM A SPECTRAL DATA TYPE

; FIND THE PITCH
koct, kamp specptrk w1, 1, 6.5, 8.9, 7.5, 10, 7, .7, 0, 3, 1, .1

a2 delay al, .066 ; TIME ALIGN PITCH AND AUDIO
; ADD 4 NEW PARTS
a3 harmon4 a2, koct, 1.25, .75, 1.5, 1.875, 0, 6.5
outs a2, a3 ; AND SEND ALL 5 TO OUTPUT
endin

Figure 21.5 Orchestra code for instr 2102, a pitch tracking harmonizer instrument shown
in figure 21.4.



446

Barry Vercoe

specptrk) to provide a reliable pitch estimate. Like harmon, harmon4 will pitch-
shift the original audio stream while preserving the vocal formants and vowel quality.
Also, like harmon, the pitch-shifts can be specified either as frequency ratios (with
the source) or as specific cps values. Its main advantage is better sound quality and
the ability to generate up to four vocal transpositions at once.

If you have an Extended Csound accelerator card you can run the harmon4 instru-
ment as shown above. The four transpositions are given as ratios from the source:
.75, 1.25, 1.5 and 1.875, outlining a major triad in 6—4 position with an added major
seventh at the top. This is basically the instrument that I demonstrated live at the 1996
International Computer Music Conference (Vercoe 1996), and the voice transposing
quality is quite good. If you have only the standard Csound distribution, you should
replace the harmon4 line with the following:

a3 harmon a2, cpsoct(koct), .2, 1.25, .75, 0, 110, .1

The transposed voice quality will not be as good, and there are only two added voices
instead of four, but the example will serve to demonstrate the effect.

One can imagine many variants of the above. A simple one is to replace the fixed-
ratio harmonies with independently derived pitches, as from an external MIDI key-
board, or from some algorithm cognizant, say, of the “changes” in a jazz standard.
Another is to replace harmon4 with a different generator, either a Csound looping
sample oscillator reading a different sound (a voice-controlled trombone is fun), or
a pitch-to-MIDI converter that would let you take your voice control outside the
system to another device:

midiout kamp, koct, iampsens, ibendrng, ichan

The possibilities for experimentation and development here are quite unbounded and
the reader is encouraged to develop his or her own instruments or opcodes that would
take advantage of the feature detection that spectral data types provide.

Conclusion

Csound’s spectral data types, based on perceptual methods of gathering and storing
auditory relevant data, provide a fresh look at how to enable computer instruments
to extract musically important information from audio signals. They offer a new
future of computer-assisted ensemble performance connected by sound, not merely
by electrical signals. While we do not yet have a full understanding of how humans
do the feature extraction that informs both their own performance and their listening,
we have shown that imbedding what we do know within a computer instrument can



447

Understanding Csound’s Spectral Data Types

give it an ensemble relevance that normally only live performers achieve. This is
why listening to a live performance is still so exciting and this is where computer
music eventually must go.

References

Povel, D., and H. Okkerman. 1981. “Accents in equitonal sequences.” Perception and Psycho-
physics 30: 565-572.

Vercoe, B. 1996. “Extended Csound.” Proceedings of the International Computer Music Con-
ference, pp. 141-142.

Vercoe, B. 1997. “Computational Auditory Pathways to Music Understanding.” In Deliege, 1.
and J. Sloboda (eds). Perception and Cognition of Music (pp. 307-326). East Sussex: Psychol-
ogy Press.

Vercoe, B., and D. Ellis. 1990. “Real time Csound: software synthesis with sensing and con-
trol.” Proceedings of the International Computer Music Conference, pp. 209-211.

Zwicker, E., and B, Scharf. 1965. “A model of loudness summation.” Psychological Review
72: 3-26.



