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ABSTRACT

Although the human brain accomplishes multisource audio signal

l separation with apparent ease, there has been little progress in giving

machines access to such information. This is due in part to the con-

ceptual limits of traditional signal processing, but also to our not

] knowing the physical cues by which the brain separates the com-

ponents of different audio sources. We describe a machine method

that resembles how the ear and brain appear to process musical sig-

nals. Using a computer that employs massive parallelism, networks of

AM and FM detectors enable correlation and grouping of sinusoidal

components into separated spectra. The method smoothly combines

classical signal processing and neural network processing, offering a

form of acoustic intelligence that could enlighten a machine approach
to audio processing tasks in general.

1. Introduction

Expressive information in music is contained both in the notes that are played
and in the nuances of their acoustic performance. For a system to capture this
from acoustic signals alone it must do fast, accurate detection of pitch and envelope.
This is especially difficult when the signal is polyphonic.

Multivoice audio tracking is seemingly trivial for the human ear and brain.
Because of the low effort required in perception, most human music cultures have
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developed complex polyphonic or polyrhythmic traditions. If machine access to
polyphonic acoustic data were so easy, research could focus on its semantic interpre-
tation. However, this first level of understanding has eluded machines despite the
best tools of classical signal processing.

We have encountered the problem previously in several forms. In early work
in 1983 (with the late flutist Larry Beauregard of IRCAM) we developed robust
methods for tracking, score matching and automatic accompaniment [Vercoe 1984].
The accompaniment proved to be highly responsive to subtle shifts in tempo and
phrasing. However, pitch estimates were heavily dependent on optical sensing of
the keys, and on the presence of a single acoustic fundamental. When the flute
used special effects like multiphonics the tracking became impossible.

A subsequent phase of this project involved tracking violin from acoustic-only
information [Vercoe & Puckette, 1985]. The goal was to understand extreme musi-
cal behavior, such as occurs in highly expressive or individualistic interpretation.
As with the flute, the automatic accompaniment was predictive, making informed
guesses to achieve simultaneity with the soloist. In addition, this system could also
learn from rehearsals, gathering enough information about the interpretation that it
could anticipate habitual idiosyncrasies. The essential violin tracking worked well
provided the signal was monophonic. But when it was not (as with double-stops),
~ acoustic-only tracking in realtime was rendered impossible.

2. Polyphonic Approaches

Multisource signal separation has been approached as spectral separation in
work on additive co-channel speech. The techniques usually rely on the strict har-
monic nature of voiced excitation, gaining separation or improvement either by har-
monic magnitude (HM) selection [Parsons| or suppression [Hanson & Wong]; they
are ineffective on unvoiced segments. [Naylor & Boll] used maximum likelihood
estimation of the louder signal to determine its mode (voiced/unvoiced) and thus its
best suppressor. [Childers and Lee] start with a theoretical estimate of each spec-
trum, then systematically improve it using minimum-cross-entropy between frames.
None of these approaches would separate non-harmonic sources, such as whispered
speech with a telephone ringing in the background.

Separation by simultaneous pitch estimate has been employed by [Amuedo], in
which each peak in the spectrum asserts a hypothesis for each frequency that could
be its fundamental, and the assertions are sorted to prescribe different sources.
[Moorer] employed multiple levels of processing and grouping, such as
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autocorrelation of the composite signal, time segmentation and filtering, and a
heuristic method to determine the tones present. More recent approaches have
employed the Bounded-Q transform [Schwede] and the Short Time Fourier
Transform. The latter has been used effectively in talker interference suppression
[Danisewicz & Quatieri], although the system still presumes harmonic partials.

A more general technique may be possible due to recent work by [McAdams].
He showed that if the harmonic partials of three vowels are summed with no
vibrato or amplitude motion it is impossible to sepa.rai;e or recognize them; yet if
any vowel’s partials are given some coherent frequency motion, those partials will
fuse into a separate recognizable vowel sound. The effect is especially strong if the
motion also causes amplitude change, as when partials are being modified by steeply
shaped resonances. This suggests that the important agents of signal separation are
amplitude and frequency motion detectors. These must be neuronal groups (or
agents [Minsky]) skilled at pattern matching amongst changes, in turn enabling oth-
ers to group the partials responsible into likely distinct sources. Some neuronal
groups apparently identify parallel random amplitude and pitch perturbations, while
perhaps others sense secondary patterns (amplitude behavior due to formants) evi-
dent over time.

A computational method to investigate these issues would 1) divide the signal
into component sinusoids, and develop histories of the amplitudes and frequencies of
the most important components; 2) cross-correlate the histories to group those with
parallel random micro-perturbations and parallel slower-moving frequency or ampli-
tude motion; 3) auto-correlate the remainder to group those whose attribute
changes have equal periods; 4) perform pitch estimation for each group. The stages
represented here range from peripheral auditory processing, representable by classi-
cal SP models, to higher-level grouping that is perhaps best approached through
neural analogies. To accommodate both, we have employed a processor whose
architecture is inspired by the parallelism of neural processing.

3. The Connection Machine

The CM is a highly parallel computer of up to 65,536 processors, whose archi-
tecture resembles that of the brain more closely than other existing multiprocessors.
Each processor has 4 kilobits of local memory, and its instructions operate on vari-
ables formed from bit fields in this memory. The simplicity of each node is in keep-
ing with neuronal simplicity, and the inter-processor connection strategy is analo-
gous to a real neural net, having greater local density and some global ability.
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The CM is a single-instruction multiple-data (SIMD) machine, in which all
processors operate from a common instruction stream. For one add instruction,
65536 actual additions can be performed in parallel. However, each processor is also
controlled by a context flag. A processor whose context flag is set will execute all
instructions, but when the flag is cleared certain operations will have no effect. For
example, the absolute value of a parallel variable (pvar) is found by setting each
context flag if its local pvar is negative, then sending a conditional negate; the vari-
able is then non-negative in all processors.

The CM receives its instruction stream and new data from a host processor.
Within the CM, data is transferred between processors by two main methods: a
news network (of adjacent processors), and a general routing network. The news
network views the processors in a square grid and allows each to send data effi-
ciently to its four neighbors to the east, west, north and south. The routing net-
work is a multistaged hypercube message passing system that allows any processor
to send a message to any other processor. This takes an amount of time depending
on the number of messages sent and the number of message collisions; it is slower
than the news network.

4. Audio Processing on the CM

Although the power of CM computation resides in its parallel computation,
most audio applications cannot use identical operations on arrays of say 16384 ele-
ments, and might instead call for several smaller tasks to be done in succession.
These tasks could each be allocated a different group of CM processors and be
resident simultaneously, but they would each need a different sequence of host-
supplied instructions. Such serialization would underutilize the CM by keeping
most processors idle. A solution (proposed by M.S.Puckette) is to organize the cal-
culations so that each stage uses the same basic operations, i.e. design a basic cell in
terms of which different algorithms can be described. The primitives of LTI signal
processing (multiplication by a constant, signal addition, and unit delays) suggested
the Universal Processing Element (UPE) of Carver Mead [Warwrzynek & Mead],
and this was modified for use on the CM.

Figure 1 shows three processors and the operations of one basic cell during its
*software cycle”. Each UPE consists of three inputs (A,X,W) and an output (Y).
In each processor’s software cycle, A and W are multiplied and added to X to form
the new output Y. Y can then be sent via the news or routing network to another
non-local processor. Figure 2 shows a 4th order filter implemented with 9 UPE’s.
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The 3 extra news network W to W transfers (a total of 4) were added to the

- software cycle to implement the 4th order recurrence relation and spread the last

output value to the other processors.
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Figure 1. UPE operations avaslable on each Software Cycle snclude three kinds of
data transfer.
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Figure 2. A four-pole IIR filter smplemented with nine processors. It has a
throughput of one sample per software cycle.
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5. Signal Separation

We can now return to our strategy for polyphonic signal separation, outlined
at the close of Section 2. We have completed the initial stages of this on the CM.
The approach divides a complex mixed signal into sinusoidal components, and then
identifies those whose similar micro-structure suggest-s a common source.

The signal is first analyzed using the Short Time Discrete Fourier Transform
(STDFT), given by the equation,

N-1 .
S(w)=yx z(n)w(n)e " ,
n=0

where z(n) is the sampled sound, and w(n) is a window function. The purpose
here is to separate the signal into sums of slowly varying partials,

s(t)= g (An+Byt)sin(wat+én)
n=1

As can be seen, this model of sampled sound is different from the usual, adding an
amplitude growth term and presuming no relationship between the frequencies of
the partials. The sound is modeled as a sum of N sinusoids with constant fre-
quency, phase offset, and a linearly varying amplitude over the analysis window.
The growth term B greatly reduces the error of estimating signals, and allows sig-
nals to be better separated. For components whose peaks overlapped in the spec-
trum, an iterative subtraction technique was also developed that further aided
separation [Cumming].

The idea is to compile a list of the frequency, amplitude, phase, and rate of
amplitude change for each sinusoid in the frame. By comparing sequential frames
of data, and noting the trends in magnitude, frequency-shift and phase, we can form
consistent hsstories of the sinusoids over time. On the basis of common fluctuations
in amplitude and frequency, the sinusoids can then be grouped into distinct sound
sources.

As a check on the methods under developmént the combined sounds of a cello
and flute were analyzed by researcher David Cumming during work on his thesis
[Cumming]. Figure 3 shows the spectrum and waveform of the instruments playing
an octave and a sixth apart. The flute (intentionally louder) has peaks visible at
multiples of 550Hz, but there are several instances of interfering harmonics. Figure
4 shows the result of semi-automatic subtracting out of the flute, leaving the much
quieter sound of the cello alone.
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Figure 3. Spectrum and waveform of cello and flute an octave and sizth apart.
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Figure 4. Spectrum and waveform of the cello alone after the flute has been
subtracted out.

The information necessary for a fully automated version of this can vary.
Common onset times are a strong grouping factor, as are constant frequency ratios,
common phase jitter, or common amplitude modulation or periodicity (vibrato).
Once the components have been grouped in this way, we can always test the group-
ing procedures by artificially reconstructing each source. However, the real objec-
tive of this separation—pitch and envelope estimation for each separated source—
does not imply reconstruction, but further recognition. We next consider an
approach to that based on even more parallelism.
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6. A Neuronal Speculation

Although UPE’s have enabled efficient modelling of auditory peripheral pro-
cessing, the later stages described above have been less natural for the CM.
Because the brain manages the grouping so effortlessly, a neural network approach
to post-peripheral processing has seemed promising. There has been a recent resur-
gence in this field [Rumelhart & McClelland]. There has been notable progress in
speech generation trained through error back-propagation [Sejnowski & Rosenberg],
and these algorithms have also been implemented on a CM [Blelloch & Rosenberg].
Our interest here, however, lies in those processes immediately following spectral
analysis by which the brain does grouping and signal separation.

We suspect that a key to this is early activation of motion detectors in both
pitch and amplitude. The existence of neuron groups sensitive to motion is well
established in vision [Hubel & Wiesel]. More recently, the auditory cortex of a cat
was found to contain neurons sensitive to frequency modulated pitch, but not to the
same pitch unmodulated [Whitfield & Evans]. Due to [McAdams] we can infer that
these are critical to the perception and parsing of audio. We can also reason that
output from the peripheral auditory system is sent to neural layers that implement
difference detectors and difference matchers, and that these in turn will group the
components into distinct percepts (separate spectra) ready for selective attention
and recognition. How might such computation be accomplished simply? From the
above we could postulate that the auditory cortex consists largely of AM and FM
detectors, with interconnections that sense cross-correlations over time.

We have speculated on how such processing might be organized. In the
schematic of figure 5, an auditory filter bank is followed by a layer of sum-and-
difference nodes across local filter pairs. We can think of the difference units as
primitive FM detectors, and the sums (integrated over time) as weighted amplitude
sensors. Using the sum as gain control, the difference values can represent
equivalent signed velocities of motion across the pairs. The velocities are then fed
into a matrix of comparators. These are thresholding difference units, whose activa-
tion states (one-bit on/off output) are sensors of a brief moment of parallel motion.

The states are next preserved in a stack of delay planes (a bank of clocked
shift registers?) whose current states are integrated over time in a separate sum-
ming plane. The sums represent the degree of cross-correlation, and the summing
plane would control the routing of frequency-magnitude pairs to different perceptual
spaces. We can speculate on the delay constants and the number of delay planes as
follows: since auditory onsets are resolved by humans only to within 5 milliseconds,
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Figure 5. A network for grouping correlated motion. G nodes pass magnitude
difference / average magnitude to a matriz of thresholding comparators, whose
states are summed over time to determine grouping. Shaded on-states will send
magnitudes of m,n,p,q,r to a single spectrum space; other transfers will be inhsbited.

the planes are about 5 milliseconds apart; and since we can perceive no more than
15 sequential events per second (about 60 ms per), it apparently takes about 12
consecutive planes of correlated motion to register an integral event.

7. Implementation on the CM

The computation structure best suited to the above is an artificial neural net.
Its primitive operations can be described as fan-out, weighting, fan-in, and an
activation function, and these are organized into layers of processing. The imple-
mentation of such a layer on the CM is shown in figure 6. To propagate an output
value with various weightings we use the segmented copy-scan operation, which
replicates any value onto a string of contiguous processors. These processors hold
the weights and target addresses defining a pattern of connectivity. All fan-out
weights are now applied in parallel and the results sent to a structured
destination—a set of contiguous receiving processors from which a high-speed plus-
scan can sum all the inputs belonging to each single target. Each target then deter-
mines its state of activation as a nonlinear function of its input; connection weights
are also modified.
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Figure 6. A layer of neuron-like communication (shown in part). Values G, H, ..
are fqnncd out to adjoining processors; connection weights are applied and the
results distributed to a staging area; fan-in then sums these for each target.

8. Conclusions and Prospects

This research has aimed to implement auditory parsing of music by porting
classical signal processing (CSP) into the domain of massive parallelism, and
smoothly linking it with artificial neural networks (ANN). The approach enables
SIMD data-level parallelism ‘to host a range of SP procedures and feature-detecting
repertoires that are essential components of music perception and cognition. The
polyphonic pitch detection problem is well served by massive parallelism: the peri-
pheral auditory functions we already understand can be represented by CSP, and
the less understood processes of perceptual grouping can be experimented on with
ANN processing.

We sense that approaches which are cognizant of how biologfcal systems solve
audio problems are the best hope for machine understanding of music. For
instance, we can look at how auditory pa.rsing skills are developed during post-natal
experience as a lesson on developing musically intelligent machines. We eventually
hope to experiment with self-defing systems in which specific signal exposures would
create a machine competence biased towards a specific skill, such as sonar, music, or
speech separation, as a means of providing more robust tools for the recognition of
semantic and expressive content.
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