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When we listen to the radio we can easily distinguish the music from the talking.
But could a machine? Music and speech are both structured audio, and our
telling them apart stems from interpreting the audio signals at some stage of
representation. If we could fully describe the interpreted representation to some
other human, we could possibly describe it to a machine. Conversely, if we could
instruct a machine to tell music and speech apart, and did so using only those
elementary processes we believe operate in humans, we would be close to
accounting for how humans apparently do it.

Telling music apart from speech is not a very high-level goal, and we might
like to imbue a machine with more sophisticated musical power. We might want
it to “name that tune”, or identify some rhythmic style given only the acoustic
signal as input. We could go further by insisting that it do this in realtime, that it
take only microphone input (for ears) and need no internal audio storage (like
us). If it can pitch-track and follow a score, and its response is itself a musical
signal (it sings or plays), then we would have a surrogate performer, able to
participate in chamber ensembles with some degree of musicianship. It might
even be able to improve its performance by learning from rehearsals.

Lest the above ideas sound like fantasy, we should point out that each has
already been demonstrated to varying degrees in various contexts (Large &
Kolen, 1994; Richard, 1994; Todd & Lee, 1994; Vercoe & Puckette, 1985). The
computational methods that made them work have taught us something about
how human music cognition appears to operate, but they are all based on
different abstractions of what music is (some are scores, some are just points in
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time). The purpose of this chapter is to suggest how to bring many different
methodologies into a single environment, to start from an original acoustic
signal and proceed to the many elements of music processing in a sequence of
stages. Some stages concern auditory-peripheral information processing, where
the acoustic signal finds its first multiple representations and its first pre-
attentive interpretations. Others concern mental representations and associated
processes that are often highly attentive and prone to being driven by emotion,
and affect.

The approach we will use is two-fold. We will first look at the problem from
the standpoint of the Auditory Experience, surveying what: we know about
neural representation of music data and associated information processing, with
occasional forays into computational representations of both. We will then
examine Computational Representations in practice using a realtime software
environment for modelling acoustic and music data processing, one that will
enable us to implement our existing knowledge in realtime and then use it as a
substrate for constructing and testing new theories about how music cognition
appears to work.

THE AUDITORY EXPERIENCE

It takes only a few moments contemplating any music to realise that there are so
many shapes and gestures in simultaneous motion that they must keep a large set
of sensors and interpretors in continuous parallel work. We can see
physiological evidence of this in the cochlea, in the mass of auditory nerve fibres
going from it to one way-station after another. A first reaction might be one of
disbelief: surely the brain cannot be coping with all that data! What we first need
to understand is the nature of the parallelism, the degree to which the parallel
information is sifted and simplified, and how the complex acoustic surface is
reduced to a few parallel strands of semi-interpreted information. We will begin
by taking a closer look at the what the cochlea apparently does.

SPECTRAL SENSORS

The human ear probes the external world with some 2,000 hair-cell sensors, each
sending different firing patterns along its 20 or so attached nerve fibres. The
distribution of hair cells is roughly logarithmic with frequency, save for
clustering in the middle-high registers that leads to increased frequency
sensitivity. It was once believed that each hair cell acted independently, sending
its own report for the brain to arbitrate and sort out as best it could. Recent
research has shown that much of the simplification happens right in the cochlea,
and that the information passed on is already reduced to a few elements.

An example is seen in some data analysis reported by Secker-Walker and
Searle (1990). When a simple speech sound was sent to the ear of a cat, and about
200 of its auditory nerve fibres were monitored for their response, a time-domain
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analysis revealed the patterns shown in Fig. 13.1. (The case for humans would be
similar.) In the diagram the nerve fibres are aligned by their characteristic
frequency (CF, shown left in KHz), which is the frequency to which each fibre is
individually most responsive. Time proceeds from left to right, and is measured
in milliseconds. In response to the stimulus, the neural firing rate for each fibre
(summed over dozens of repetitions) is seen to exhibit periodic bursts of activity.
The period for the low fibres (CF around 250Hz) is about 8.3 milliseconds,
corresponding to a speech fundamental of 120Hz. Medium-low fibres
(around 700Hz) peak collectively about every 2 milliseconds (500Hz), and
medium fibres (around 1600Hz) peak collectively about every 0.7 milliseconds
(1400Hz). There is also collective peaking every 0.4 milliseconds (2500Hz) as
well as every 8.3 milliseconds (120 Hz) in the high CF fibres. _ -

We can interpret this data for some facts relevant to our musical needs. F irst, it
is apparent that auditory nerve fibres do not restrict their concerns to just their
CF ratings. Most of them are willing to “vote as a block” if it concerns something
in their vicinity, and some blocks collectively send two or more reports when
these will not be confused. The latter is interesting: the 120Hz period sent by the
high CF fibres is identical to the fundamental period reported by the low CF
fibres. The high CF report is due to the “beating” that occurs when two or more
harmonics of the fundamental fit within a single critical band (about 1/3 octave
for most filters in this region), and this will be the case for all harmonics above
the sixth. What Fig. 13.1 tells us is that if we are listening to an instrument with
almost no energy at the fundamental (such as the bassoon), that will be just fine
since, even though the low CF fibres will have nothing to report, the high CF
fibres will send a loud and clear pitch message anyway.

Of most relevance, and perhaps most surprising, is the “block voting” effect.
It appears that the natural harmonics of the glottal speech stimulus have almost
no representation in the cochlea reports. Instead of 120Hz being supported by
240, 360, 480, etc. we see only 500, 1400 and 2500. What are these? They are the
frequencies of the speech formants (resonances), here being encoded temporally
for transmission and later processing. Not only are they not coincident with the
simple harmonics, but on closer inspection the three formants are slowly
changing their periods in two different directions while the fundamental remains
stationary. Far from sending a mass of Fourier transformed audio data for the
brain to worry about, the 40,000 fibres are sending just 4 pieces of information:
the perceptual fundamental (whether or not present), and the three resonant
frequencies that characterise a particular vowel quality (this one being the
short a). '

The lesson learned here is that the essence of both pitch and musical timbre is
already determined in this early processing, and we would be safe in basing our
computer pitch detectors and timbral recognisers on processing of this form. The
key lies in the method used to process the data, for the information sent on by the
cochlea does not take the form of Fig. 13.2a, but that of Fig. 13.2b. Figure 13.2a
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FIG. 13.1. Auditory nerve fibre response to a stopped vowel, showing broad-band synchrony across groups of fibres. Secker-Walker and Searle

(1990). Used by permission.




FIG. 13.2a. FFT linear-frequency spectrogram of the phrase “away in Southampton”.
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FIG. 13.2b. Constant Q log-frequency spectrogram of the same phrase.
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is a mathematically convenient view of the utterance “away in Southampton”™. It
is a computer representation, obtained via a Fast Fourier Transform (FFT) which -
has computational elegance and gets the job done in record time. This kind of
“spectrogram” is often still seen in texts and in legal proceedings, yet it does not
represent what the cochlea reports: it has linearly spaced filter bins (y-axis) with
the same bandwidth at all frequencies, while the cochlea has near logarithmic
spacing of hair cell frequencies with roughly proportional bandwidths (constant
ratio to the CF). The FFT gives poor frequency resolution in the lower octaves,”
and too much in the upper, and since its bandwidths are constant it entirely
misses the “beating” that can make up for a missing fundamental.

Figure 13.2b is a logarithmic analysis of the same speech phrase. The filters
are log spaced in frequency (see the KHz on the left) and constant Q (bandwidths
have constant ratio to the CF). This means that medium- to high-frequency filters
are broad-band, which makes them quick to respond to changes; they will also
exhibit “beating” above the sixth harmonic, which accounts for the vertical
striations visible in the figure. A closer view is seen in Fig. 13.2c, which shows a
similar analysis of the word “spoil”. The constant Q filters give separate
resolution to the lower six harmonics, above which the “oi” formant motion is
being pulse-modulated by the vertical striations of the broadband higher filters.
(Comparison with Fig. 13.1, though upside down in frequency, is informative
here.) Mammals have an abundance of broad-band filters; the fast response is
ideal for sensing data where precision timing is critical. In mid-range this helps a
binaural system sense the direction of a sound. At higher frequencies the pulse-
time perturbations would help collect all the harmonics emanating from a soft,
life-theatening footstep into a single percept. In music we have learned to
capitalise on fast acting filters. An effective time-marking percussion instrument
is one with a predominance of high frequencies. And the violin is successful
because its broad spectral nuances are gathered aurally into a single meaningful
_ note-event. A computer with broad-band high-frequency filters would have full
access to this timing and integrating information.

SPECTRAL SEPARATORS

In addition to sensing the musical structure of a single line, humans also
experience the extra dimension of polyphonic music. Because of the low
conscious effort seemingly required to do multivoice audio tracking, most
human musical cultures have developed complex polyphonic or polyrhythmic
traditions. They have developed instruments (like the piano). whose appre-
hension depends on skillful signal separation, and composers and orchestrators
have felt free to punctuate their melodic lines with rhythmic chords and
percussive effects. Yet we know very little about how the auditory system does
multi-source signal separation. From where amongst the mass of mixed partials
does it find the grouping cues? One clue stems from the work of McAdams



13. AUDITORY PATHWAYS 319

(1984), who showed that if the harmonic partials of three synthetic vowel sounds
are summed with no vibrato or amplitude motion, it is impossible for the human
ear to separate and recognise them; yet if those of any group are given some
coherent frequency motion, they will fuse into a separate recognisable vowel
sound. The effect is especially strong if the motion also causes amplitude .
change, as when partials are being independently modified by steeply shaped
resonances.

It seems that sound from a natural vibrating system conveys a signature in the
form of micro-perturbations—amplitude and frequency modulations that
distinguish its partials from those of other sources. We. observe with
characteristic hindsight that when instrument makers of the mid-1500’s
experimented on the early viol with motion-inducing enhancements (removal of
frets to permit vibrato; an ornate body for steeper resonances) they “invented”
the modern violin (aurally more separable, the future vehicle of the concerto).
We also note that when two strings are driven by the same bow, the coupling is
still loose enough to impart two distinct perturbation patterns to the mix.

Signal separation is a complex problem, and the challenge of emulating what
the human ear does so well (both in and out of the concert hall) has been squarely
confronted by researchers in the emerging field of Computational Auditory
Scene Analysis. The most effective techniques first divide the signal into energy
strands (using roughly constant Q filters), find the local energy peaks amongst
neighbouring frequencies (block voting), then group the energy tracks into
clusters which likely stem from a single source (exhibit common onset time,
integer frequency ratios, and co-modulation of frequency, amplitude and phase)
(Ellis, 1994). These techniques are showing much progress, and will eventually
allow computers to do things like polyphonic pitch tracking and multi-timbral
identification with the confidence of skilled musicians.

In the meantime, we cannot simply ignore the polyphonic problem. Although
music in some cultures is primarily melodic (e.g. Native-American chant with
slow drum accompaniment), that of most cultures incorporates multi-source
strands in which the interpretation of one strand (either rhythmic or harmonic) is
informed by its relation to events in another. Such powerful influences need
some kind of representation and this remains one of our goals, even though
machine separation of a polyphonic web is still inferior to that of the average
music listener. We can see this most easily in the rhythmic domain.

EVENTS AND EVENT PATTERNS

What is a musical event, how is it encoded, and what induces the hierarchy of
events that we describe as musical rhythm? We can look to neurophysiology for
some initial assistance. While investigating auditory-nerve firing rates due to
simple tone-bursts at different energy levels, Delgutte (1980) found a two-stage
encoding process that appeared to treat event onsets and their steady-state
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continuation in quite different ways. During event onsets the neural firing rate at .
first exhibits a very rapid increase, then a rapid adaptation, after which it
eventually settles on a steady state acknowledgement of the event’s continued
presence. Significantly, the energy level (note intensity) was encoded almost
entirely in the onset flash (lasting about 10 milliseconds); a second adaptation
(50 milliseconds) and the steady state continuation gave only mild recognition
to the intensity of the event. In subsequent research (Smith, Brachman &
Goodman, 1983) it was found that an event with a slow onset receives a
compromise encoding; the peak firing rate depends on the slope of the envelope
and its target intensity. .

What do these two neurophysiological results suggest for computational
music cognition? The first can be taken almost literally. We have always known
that note attacks are important: if one builds an electronic ‘pipe’ organ with no
simulated acoustic chiff at éach onset it simply fails to support the literature; and
we see that composers annotate the important with fortepiano (fp) markings and
percussive doublings. Consequently, a simple event detector and rhythm
interpreter might encode Delgutte-like onset-only pulses (the louder the
stronger), then look for patterns. But the second result above (slow onsets)
suggests that something else is going on. To investigate that we turn to
perceptual psychology.

Any perceived event tends to have a persistence in the perceiver. Persistence
(impulse response) can model phenomena as distinct as two-tone forward
masking and the perception of accents in equitone sequences. This latter was
studied by Povel and Okkerman (1981), who presented subjects with equitone
sequences (same frequency, intensity, timbre) with slightly different inter-onset
intervals. When the inter-onset intervals (alternating long and short) differed
from each other by less than 8%, the first of each adjacent note-pair seemed
louder. Yet when the difference was increased beyond 8%, the accent seemed to
move from the first of the pair to the second (as in a 6/8 lilt). In no case was any
physical accent actually present.

So what is happening here? Presumably at least two things. The first effect can
be attributed to incomplete recovery from adaptation, making the second note of
each group appear softer. But what of the second effect? Given its shorter inter-
onset interval, the effect is apparently due to the time we initialy need to estimate
the energy in a tonal stimulus. The energy of a single pulse is integrated over
some 200-300 milliseconds, and when the integration is interrupted by the
arrival of another pulse the tail of the first integration is lost. The amount of loss
depends on the inter-onset interval, and its significance here apparently exceeds
that of incomplete recovery going into the second note. In related research by
Zwislocki and Sokolich (1974), when the tones are of different frequency but in
the same critical band, the tail of the first actually enhances the integration of the
second, suggesting that integrators are perhaps “warmed up” by a nearby
preceding tone. But either way the effect is the same: our perception of a lilting
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sequence is that the first of the adjacent pair is at a lower intensity than the
second. .

This seemingly simple effect is one of the prime generators of human-
perceived rhythm and meter. For within the window of our preferred beat size
(about 600 milliseconds), there is a perceptual mechanism that artificially
weights the sub-events so that the longer ones seem louder than the shorter ones.
Of course, performers know about this: if asked to impart a dotted rhythm so the
audience will perceive the beat on the short note, they know they must reverse
this effect by giving the short note extra stress (about 4dB according to Povel
and Okkerman). The energy integration curve is not a simple. one. To a first
approximation it is roughly exponential. A multiple time-constant has been
advocated (Todd, 1994), although this possibly involves perceptual/motor
constructs. Moreover, in preliminary experiments conducted by the present
author the time constant differs widely amongst individuals; it is also frequency
dependent, but has not yet been adequately mapped over this domain. About all
we can safely say about energy integration is that it is widespread, and has a very
large influence on how we hear musical patterns. And it does not occur naturally

" in machines.

So how can a machine possibly hear musical rhythms the way we hear them?
Somehow we need to build the above effect into the collecting mechanism of our
musical machine. We could elect to develop a “rule system” that would
recognise the condition that causes loudness weighting, then apply some
algorithmic modification of the physical signal measurement to simulate the
human auditory bias. Imagine the overload, however, when the rule set is applied
to a large mass of polyphonic music: would the computer have time to find the
beat? A less belaboured way would be to build this auditory bias into the way
spectral analysis filters encode intensity. We have examined two effects above,
one in which sudden intensity is encoded in a short-lived firing-rate flash
(Delgutte), the other in which slow-rising intensity and successive pulses
demonstrate persistence in the ensuing central auditory system (Povel &
Okkerman and Smith et al.). In all cases the important thing seems to be positive
change; note releases and decays do not disturb this system in any significant
way. Moreover, short-term adaptation and response to an increasing stimulus
each appear to be additive, wherein the increased response is independent of the
state of adaptation (Smith & Zwislocki, 1975), and several computational
models have been assessed for adherence to this empirical data and for
suitability as front-ends to speech recognisers (Hewitt & Meddis, 1991).

However, these can get to be computationally expensive. In order that. we
might have enough computational power remaining for higher-level realtime
polyphonic processing on affordable machines, we might prefer to identify only
the most salient causes of the above effects (although one must be vigilant of
approximation errors that are amplified by later stages). We could look for a
simple representation that combined positive change with impulse response
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sr = 32000
kr = 1000
ksmps = 32

instr 1
asig in
wsigl spectrum asig, .01, 8, 12, 8, 0, 1, O
wsig2 specscal wsigl, 3, 4
wsig3 specdiff wsig2
wsig4 specfilt wsig3, 5
specdisp wsigl, .04, 0
specdisp wsig3, .04, 0
specdisp wsig4, .04, O
ksum4 specsum wsig4, 1
ktempo tempest ksum4,.01,.1,3,1,30,.005,.5,90,2,.04,1
koct,ka specptrk wsigl, 1.3, 7.4, 8.9, 8.1, 25, 3, .5

koct - (koct > 7.4 ? koct-7.4 : 0)
display koct, .04, 72
out asig

endin

FIG. 13.4. Csound program to perform auditory-based analyis of rhythmic acoustic input.

(persistence) in each frequency channel to capture the essence of these auditory
effects in a single step. We will use the notion of a Positive Difference Spectrum
convolved with an Impulse Response in the representation developed below.
Meanwhile, there has been effective research into computer methods of
assessing rhythmic pattern, meter, tempo and place, some using acoustic input
and others using MIDI keyboard data. In an early example of realtime acoustic
sensing (Vercoe, 1984) a flute was tracked using a combination of optical key
sensors and realtime acoustic analysis, and the resulting event sequence
compared to a predefined score. The comparison was then used to direct a
realtime accompaniment to remain in sync with the soloist, who could speed up
or slow down the duo performance at will. The beat tracking used both pitch and
timing data, including phase locking onto the metre at two hierarchical levels,
and the results were sufficiently stable to be used in public concert performances.
Auditory input is also the stimulus for a beat induction model using sensory-
motor filters (Todd & Lee, 1994). Two separate filters are tuned to the most
natural periods for beats (600ms) and body sway (about 5 seconds), within which
events are grouped by temporal proximity, and relative accent is derived from
the relative and absolute distance between events. S
MIDI keyboard performance data is the source for a connectnomst analys:s
using formal models of entrainment (Large & Kolen, 1994). The event onsets
serve to perturb the phase and period of a nonlinear oscillator, variably open to
disturbance at certain times during its cycle. This produces a robust beat given
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FIG. 13.5. a) Constant Q spectral snapshot of the F3/D4 dyad of the Bach excerpt (piano).
b) Positive difference spectrum (PDS) reflecting the spectral changes currently occuring in
a). c) Spectral output of persistence filters following the injection of all PDS data up to the
moment of b).

complex metrically structured input, but the single oscillator model experiences
difficulty when the input is highly expressive and contains heavy rubato.

Extracting expressive content involves a multiple task of identifying a metric
grid and tempo, while also discerning the temporal warping of that grid (and
oftentimes of polyphonic deviations from it) as parallel channels of
communicative information. These channels are charged with expressive power,
and true artists are skilled at their manipulation. In a detailed analysis of the
renowned Cuban percussion ensemble Los Munequitos de Matanzas (Bilmes,
1993), it was shown that the minute deviations that constitute expressive
content are themselves built from tiny temporal atoms (which the author called a
Tatum), and that a computer could systematically remove and reinsert these
various layers for reinterpreted performance. This line of research shows that
computer analysis and representation can go beyond that for which we have
either a written notation or even a fully conscious listening sense. ,

It will be some time before we have computer encoding of the full auditory
musical experience. The point of present-day representations is two-fold: to help
systematise that which we already know, and to form a basis for more exploratory
research. The most demanding test of how well we are doing is de-representation
(music performance based on the encoding), and some of the above techniques
are happily being developed in this demanding forum. We will next examine an
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encoding method that is embedded in a system designed for realtime audio
signal analysis and synthesis, one in which the critical performance check is
always available.

COMPUTER REPRESENTATIONS

We now describe a comprehensive environment for realtime audio processing in .
which the concepts introduced above can be embodied as processes operating
on data. Csound is a software audio processing system with a rich array of
processing modalities and the capacity to do its work in realtime (Vercoe & Ellis,
1990). It is widely distributed as freeware to research communities, is well
documented, and has a large community of users who lend mutual assistance
through various networks. The examples given below can be run on the standard
distribution. They are not intended to prove a theory, but rather to demonstrate a
unified system for modelling music perception and cognition using acoustic-
only input. The reader is invited to test these and develop them further (see
Appendix 7: Adding your own Cmodules to Csound, in (Vercoe, 1995)).

Now
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FIG. 13.6. a) Time-magnitude representation of the perceptual importance of events
emerging from the summed persistence filters. The 3-second windows on either side of the
central “now” represent the immediate past (left) and the expected future (right). b) Pitch
analysis of the events of 13.6a. c) Score fragment of Bach Fugue used as acoustic input for the

_ spectral, rhythmic and pitch analysis of Figures 13.5 and 13.6. '
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Using acoustic input, we will first develop a model for encoding auditory -
processes that exhibits human-like response to rhythmic structure—the
phenomenon resulting from the interaction of perceptual grouping and higher-
level preference rules. We will then use the structure to extract a tempo which can
drive other parts of this realtime system. As a convenient guide to where we are, ~
we will also include a pitch tracker. The overall plan is outlined in Fig. 13.3, and
the program that implements it is shown in Fig. 13.4. The program syntax is a
simple one: the central column describes a sequence of operations on data; the
input data (if any) is on its right and the results of an operation are assigned to its

‘left. Results appearing on the left of an operation are then available as input to
any subsequent operation. There are three types of results, distinguishable by
name: those beginning with “a” are audio signals, names beginning with “w" are
spectral data types, and names beginning with “k” are control signals. Audio
signal rates are set to carry-high-fidelity audio, and control signal rates are set to
convey data at roughly the speed of neural communication (about 1KHz).

Given acoustic input (a segment of Keith Jarret’s performance of Bach’s G
minor Fugue from Book I of the WTC), accessing the signal is programmed by
the monaural input operator ‘in’, which places audio data into ‘asig’. To get a
spectral representation we pass ‘asig’ to a spectrum analyser ‘spectrum’, which
divides the signal into 96 bands (8 octaves, 12 bands per octave) to simulate
nerve fibre transmission (each “fibre” corresponds to one semitone on a piano).
The filters are constant Q with a Q of 8 (CF/bandwidth), and their output in
decibels is reported as a new spectrum ‘wsigl’ every 0.01 seconds. Since it is
known that the human auditory periphery biases its loudness assessment along
Fletcher-Munson curves (due to the outer-middle ear transfer function and the
non-linear spread of response along the basilar membrane), we employ the
‘specscal’ unit to reshape our spectral data in similar fashion. We could have
done this prior to spectral filtering, but prefer to do it here because the data is
now in decibels and we can use a log frequency mapping across the spectral data.

The program of Fig. 13.4 is also seen to contain three spectral display requests
(‘specdisp’), which are projected in this case using X11 windows on an SGI
monitor. The output of these are shown in Fig. 13.5a, b, and c, but to interpret
them we must first understand something of the way time is handled in this
realtime program. As stated above, the ‘spectrum’ opcode derives a new spectral
cross-section every 0.01 seconds, which is thus the rate at which the ‘wsig’ cells
are refreshed with new information. Each unit receiving a refreshed ‘wsig’ cell
then has work to do. The ‘specdisp’ units, however, are asked to display only
every 0.04 seconds (or 25 times a second), and the screen images are therefore
downsampled snapshots of the 0.01 spectral cross-sections. The three spectra of
Fig. 13.5 are thus snapshots of momentary spectra at a specific point in the
acoustic signal, that point being made clear in Fig. 13.6a, b, and c, all three of
which are time displays. In Fig. 13.6a the point is labelled “now”, and in Fig.
13.6¢ the point is the onset of the final D4 of the treble fugal entry.
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Returning to the spectral processing, Fig. 13.5a is a snapshot of the
momentary decibel values emanating from the 96 filters. The output is visibly
smooth, due to the broad-band filters used. This would have been even smoother
had we used strict 1/3-octave filters (Q of 4), but our choice of 1/6 octave (Q of 8)
for our sparse, symmetric filters is to acknowledge the very steep cutoff of human
auditory filters (the cochlea has about 400 overlapping bands/octave in this
region, and its filters are asymetric with a cutoff on one side of hundreds of db per
octave). As implied above, the spectrum of Fig. 13.5a will be Fletcher-Munson
scaled before being passed to the next unit.

The task of onset detection is performed by ‘specdiff’. As shown earlier,
neural firing rates become intensely active during event onsets, and we have
theorised. that representing the onset slope by a sequence of positive changes
(and ignoring the negatives) might capture this sensitivity. ‘Specdiff’ creates a
new spectrum, comprised of just the positive changes seen in each filter channel
from one spectral cross-section to the next (every 0.01 seconds). The resuiting
positive difference spectrum (PDS) can be seen in Fig. 13.5b. Also evident in
this figure is the energy just being received from the pitches of the newest notes
F3/D4.

We now inject the PDS into a set of persistence filters using ‘specfilt’. These
are simple recursive filters, one per spectral channel, with individual rates of
sustaining new input specified in half-life values (the period for which any new
input is reduced to one-half the original). The values are kept in a table (no. 5),
and were set by running experiments in the style of Povel and Okkerman,
extended to include frequency dependence. The effect of injecting PDS
impulses into the filters is to accumulate and prolong the perceptual life of
events. The result of this step can be seen in Fig. 13.5c, where the latest PDS of
Fig. 13.5b has just been added to the persistence mix.

The energy in the total spectrum is now estimated by summing across the
frequency bins of ‘wsigd’ using ‘specsum’. This approximates the summation
that occurs when humans assess the loudness of complex tones; there has been
much work done on this (Zwicker & Fastl, 1990), and we could develop more
+ accurate methods that incorporate frequency-related suppression. However, the

" real goal of our summing is to compare energies across time, so we will accept the
approximation. Next, the sequence of energy estimates in ‘ksum’ is examined
over small time-intervals using ‘tempest’. We use a window size of three seconds
to loosely relate it to echoic memory, but the real point of “tempest” is to detect
the presence of regular patterns and to estimate the tempo of their recurrence.

The display generated by ‘tempest’ (Fig. 13.6a) gives the best view of its
operation. Unlike the above, this display is time-based, and information is seen
moving across the entire window as time passes. The display is in two parts,
separated by a vertical line that represents ‘now’. The data to its left is the three-
second echoic memory, and information that begins at the ‘now’ (coincident
with what you hear) moves increasingly left over this period, gradually decaying
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to zero as it leaves the screen. The data on the right is a prediction of the future; -
information beginning small at its right will gather strength as it moves left
towards the “now”. There is interaction between the perceptual past and the
anticipated future: as each expected event hits the “now” some portion of it is
rolled into what becomes “perceived”. Conversely, the pattern of already
perceived events contributes via a feed-forward network to the growth of
expectations. .

The feed-forward network within ‘tempest’ is a variant of the Narrowed Auto-
Correlation (NAC) algorithm developed by Brown and Puckette (1989). Thereis
growing evidence that the auditory system uses autocorrelation in post-
peripheral processing (Hartman, 1989), but the once-popular method lost favour
because it did not account for the high resolutions and small JND’s evident in
practice. Narrowed auto-correlations do not have this problem. The general
function is defined by:

sy =< L/(z)+f(z-t)+f(z-2:)....+f(:-N-lti]’

and the peaks have a width of 2T/N, where T is the period (2Pl/w), and N the
‘number of terms used. The NAC method has recently been used to sharpen the
analysis of auditory-nerve firing patterns (de Cheveigne, 1989). Our use of it
here for echoic memory pattern recognition is of course on a very different time
scale, but the technique appears useful and extendable.

The problem with auto-correlations is that the resulting function is zero-
phase. In order that our thythmic analysis can preserve its placement in time, and
can develop expectations about the future, we have developed a Phase-
Preserving Narrowed Autocorrelation (PPNAC). The result is not only a
sharpened account of past rhythmic activity, but a gradual formation of expected
events (Fig. 13.6a). As the expectations move into current time, they are
confirmed by the arrival of new peaks in the auditory analysis; if the acoustic
source fails to inject new energy, the expectations will atrophy over the same
short-term memory interval. Implementation of this as chain of cognitive
processes devoted to temporal event patterns is not hard to imagine.

A musically interesting feature falls out as a simple property of PPNAC
analysis: the additive combination of multiple terms will also tender reports at
frequencies that are the harmonics of the actual stimuli. That is to say, a regular
pulse of quarter-notes will induce a weak prediction of eighth-note activity, and
a weaker expectation of triplet-eighths, sixteenths, and so on. The listener per-
ceiving a quarter-note phrase is thus already prepared for its natural sub-
divisions. It is important to realise that this listener need not be experienced, nor
even paying much attention. But the grid for thythmic hierarchy is already there.

Finally, the acoustic input is scanned for identifiable pitches by the unit
“specptrk”, and a scaled version of its output is.displayed in Fig. 13.6b. As seen
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in the program, the pitch tracker uses the same spectral data as the event and
tempo detectors, and its response is reasonably accurate. On close examination,
. the treble B-flat is at first accurately estimated then quit in favour of the G below.
In fact the performer had articulated this phrase with a very short B-flat; the Gis
an octave error of the lower sounding G (which the tracker does get when the
performer also releases the next D). .

All the elements of Fig. 13.5a, b, c and Fig.13.6a, b were generated and
displayed in realtime by the program of Fig. 13.4, with acoustic input direct from
aCD. )

CONCLUSION

We have shown that acoustic input can be the stimulus for computational
models of an entire range of processes involved in the perception and cognition
of music, and the prospect of how to organise this is now receiving serious
thought (Leman, 1994). Parsing an acoustic signal for hierarchical rhythmic
content is a case of determining the relative auditory importance of the acoustic
events. A computer representation of the auditory processes involved can lead to
confirmation of theories; it can also lead to systems for automatic sensing and
interactive performance. It is clear that the auditory system has evolved some
elegant solutions to the various problems, and a big challenge in computer
representation is to match that elegance. The example of spectral formants
quickly inducing wholesale synchrony across large groups of auditory fibres
(Secker-Walker & Searle, 1990) is a model for that cause.
~ The questions we would like to pose are of the form “how do pitch and
rhythmic hierarchies arise, how do they operate, how do they achieve flexibility
and robustness, and how much computation do they take?” The above model is
computationally efficient (it runs in realtime), but does not readily
accommodate things like tempo modulation. When the metrical stimulus
changes pace, both the PPNAC and expectations become time-smeared.
Although this permits adequate tracking of slow tempo changes, it does not
handle the extreme changes in tempo rubato that we have successfully modelled
elsewhere (Vercoe & Puckette, 1985). If focussed listening begins from the
model we have outlined above, it must also be paying attention to short-time
transforms, from which it can construct other representations that are strongly
tempo-variable. This can be investigated using other facets of the Csound
processing language, but that work still remains to be done. S
The purpose of representing musical processes by computer should however
be clear. The approach is one that permits theories of music cognitive processes
to be posed, tested, and incrementally explored. The goal is to find how complex
musical data is represented and processed by the human auditory-cognitive
system. Only then will we understand why the music that exploits this capacity
has the structure it does.
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