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Abstract

Information theoretic quantities calculated from a sampled multinomial distribution
deviate from the true quantity as a function of the number of samples. In this report,
bounds on the expected entropy and KL-divergence for a sampled distribution are
derived. These bounds can be helpful in understanding the error between the empirical
quantity and the true quantity for a distribution.

1 Expected entropy lower bound

Consider a multinomial distribution p with B bins, and estimates of p obtained by sam-
pling. Let pn be the distribution obtained by taking n samples from p. What is the expected
entropy of pn as a function of n?

We should expect that for n = 1 samples, all the probability mass will be in one particu-
lar bin of pn and the entropy should be 0. As n→∞ we expect pn → p and H(pn)→ H(p).
This derivation explores this relationship.

We want to know the expected value of the entropy of pn,

E [H(pn)] = −E

[
B∑
i=1

pn,i log pn,i

]

= −
B∑
i=1

E [pn,i log pn,i] (1)

We now consider only the expected value term in (1). The maximum likelihood estimate
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of p from n samples is pn,i = xi
n for all i = 1 . . . B. Thus, for a particular bin i we have

E [pn,i log pn,i] = E
[xi
n

log
xi
n

]
=

n∑
k=0

Pr(xi = k)
k

n
log

k

n
(2)

Assuming the samples are iid p, then the expected number of samples in bin i can be
calculated as

=

n∑
k=0

(
n

k

)
pki (1− pi)

n−k k

n
log

k

n

=
1

n

n∑
k=0

n!

(n− k)!k!
pki (1− pi)

n−k k log
k

n

=
1

n

n∑
k=1

n!

(n− k)!k!
pki (1− pi)

n−k k log
k

n

Note that in this equation, pi is the true probability of bin i in p rather than the estimated
value. Also note that the last line above results from the fact that when k = 0, the
summand is zero. Next we simplify k

k! , pull an n out of n!, and pull a pi into the front of
the sum obtaining

= pi

n∑
k=1

(n− 1)!

(n− k)!(k − 1)!
pk−1
i (1− pi)

n−k log
k

n
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Now, let j = k − 1, m = n− 1 and apply Jensen’s inequality for the following derivation:

= pi

m∑
j=0

m!

(m− j)!j!
pji (1− pi)

m−j log
j + 1

m + 1

= pi

m∑
j=0

Pr(xi = j) log
j + 1

m + 1
(3)

≤ pi log

m∑
j=0

Pr(xi = j)
j + 1

m + 1
(4)

= pi log
mpi + 1

m + 1
(5)

= pi log
(n− 1)pi + 1

n
(6)

= pi log

(
pi +

1− pi
n

)
(7)

We obtain (4) from (3) using Jensen’s inequality for the concave function log(·). Equation
(5) is just the expected value of the function j+1 for the binomial distribution. Substituting
n back in for m + 1 yields (6) which simplifies to (7).

Putting all this back together, we have

E [pn,i log pn,i] ≤ pi log

(
pi +

1− pi
n

)
(8)

−E [pn,i log pn,i] ≥ −pi log

(
pi +

1− pi
n

)
(9)

Recalling equation (1), and replacing the expectation with our lower bound we have

E [H(pn)] =
B∑
i=1

−E [pn,i log pn,i] (10)

≥ −
B∑
i=1

pi log

(
pi +

1− pi
n

)
(11)

Note that intuitively, as n→∞, log
(
pi + 1−pi

n

)
→ log pi in equation (11) yielding the

true entropy. When n = 1, log
(
pi + 1−pi

n

)
= log(1) = 0 implying H(p1) = 0 as expected.

Moreover, for each i, − log
(
pi + 1−pi

n

)
< − log pi and therefore contributes a smaller factor

to the total entropy, implying that for small n the expected entropy is smaller.
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Equation (11) can also be written as

≥ −
B∑
i=1

pi log

(
pi

(
1 +

1− pi
npi

))

= −
B∑
i=1

pi log pi −
B∑
i=1

pi log

(
1 +

1− pi
npi

)

= H(p)−
B∑
i=1

pi log

(
1 +

1− pi
npi

)
(12)

Equation (12) is useful because it isolates the component that varies with n. If ci = 1−pi
pi
≤

n then xi = ci/n ≤ 1 and the Taylor expansion to log (1 + x) can be applied. The Taylor

series of log(1 + x) for −1 < x ≤ 1 is log(1 + x) = x− x2

2 + x3

3 −
x4

4 + . . . and so applying
for x = ci/n we have

log(1 + ci/n) =
ci
n
− c2i

2n2
+

c3i
3n3
− c4i

4n4
+ . . .

Plugging this into the summation in (12) yields the first line below, and in the second line
we apply the fact that pic

k
i = (1− pi)c

k−1
i to get

= −
B∑
i=1

pi

(
ci
n
− c2i

2n2
+

c3i
3n3
− c4i

4n4
+ . . .

)

= −
B∑
i=1

1− pi
n

+
B∑
i=1

(1− pi)ci
2n2

−
B∑
i=1

(1− pi)c
2
i

3n3
. . .

≈ −B − 1

n
(13)

with the approximation improving as n increases. Also note that this preserves the bound,
since including the first odd number of terms of the Taylor series (ie. 1,3,5,... terms) is
always greater than the whole series. Therefore, we can write an alternative bound on the
expected entropy as

E [H(pn)] ≥ H(p)− B − 1

n
(14)

This shows that the lower bound approaches the true entropy with 1
n , a property that

will come into play later for the KL-divergence.
We performed some simulations to obtain the expected entropy as a function of n and

compared this to the lower bound obtained using this derivation. Interestingly, this lower
bound seems to be a good approximation to H(pn), and for n = 1 and n → ∞ it seems
that equality holds. These simulations are shown in figure 1.
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Figure 1: Simulations of the expected entropy for various sample sizes n and the lower
bound.
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1.1 Expected entropy upper bound

The lower bound of the expected entropy converges to the true entropy of the distribution
as n → ∞. This is not surprising, as pn → p. Nevertheless, we can also find an upper
bound on the expected entropy to better understand how it varies with n.

Starting with equation (2), we have

E [pn,i log pn,i] =
n∑

k=0

Pr(xi = k)
k

n
log

k

n

=
n∑

k=0

Pr(xi = k)
k

n
log

k · Pr(xi = k)

n · Pr(xi = k)

Let ak = Pr(x = k) kn and bk = Pr(x = k). Then rewriting, and applying the log-sum
inequality yields

=
n∑

k=0

ak log
ak
bk

≥

(
n∑

k=0

ak

)∑n
k=0 ak∑n
k=0 bk

= pi log pi

since
∑n

k=0 ak = p and
∑n

k=0 bk = 1. Therefore, E [pn,i log pn,i] ≥ pi log pi or equivalently,
−E [pn,i log pn,i] ≤ −pi log pi. Putting this bound on equation (2) back in for equation (1)
gives

E [H(pn)] ≤ −
B∑
i=1

pi log pi

= H(p)

In other words, the expected entropy of the sampled distribution obtained after n samples
is upper bounded by the entropy of the true distribution.

It would be nice to find a tighter upper bound on the expected entropy, namely, one
that varies with n. One crude way to show that the upper bound increases with n is to
find the maximum entropy pn for each n. The maximum entropy pn would be one where
each sample lands in a new bin, and for n ≤ B we have pi = log 1/n. However, this is not
a very satisfying upper bound. It may be more fruitful to focus on probabilistic bounds,
that may instead take the variance into account.
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2 Expected cross entropy

The cross entropy between q and p, here denoted as H(q, p) = −
∑

i qi log pi, can be thought
of as the cost in bits of encoding q using a code for p. Suppose we have qn – the distribution
obtained by taking n samples from q. Then what is the expected cross entropy H(qn, p)?

Similar to the expected entropy calculation, we seek

E [H(qn, p)] = −E

[
B∑
i=1

qn,i log pi

]

= −
B∑
i=1

E [qn,i log pi]

= −
B∑
i=1

E
[xi
n

log pi

]
The expected value E [xi] above is just the expected count for bin i under the true

probability distribution q. Thus, E [xi] = nqi and

−
B∑
i=1

1

n
log pi E [xi] = −

B∑
i=1

qi log pi

= H(q, p) (15)

So the expected cross entropy E [H(qn, p)] is just the true cross entropy H(q, p). Note
that H(p, p) = H(p), and in the special case where qn = pn we have that E [H(pn, p)] =
H(p).

3 Expected KL-divergence upper bound

The KL-divergence between distributions q and p is written as D(q||p) =
∑

i qi log qi
pi

. This
can be rewritten as

D(q||p) =
∑
i

qi log qi −
∑
i

qi log pi (16)

= H(q, p)−H(q) (17)

For all q and p of the same dimension, D(q||p) ≥ 0 with equality iff q = p. The KL-
divergence can be thought of as the additional bits required to encode q using a code for p
rather than the code for q. What is the expected KL-divergence of a sampled distribution
pn to the true distribution p? Using the results from the previous sections, we have
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E [D(pn||p)] = E [H(pn, p)−H(pn)]

= E [H(pn, p)]− E [H(pn)]

= H(p)− E [H(pn)]

≤ H(p) +
B∑
i=1

pi log

(
pi +

1− pi
n

)
(18)

If we instead write the KL-divergence bound using equation (14) we have

E [D(pn||p)] ≤ H(p)−H(p) +
B − 1

n

=
B − 1

n
(19)

For comparing a sampled distribution qn against p, we have

E [D(qn||p)] ≤ H(q, p)−H(q) +
B − 1

n

= D(q||p) +
B − 1

n

In other words, for a given number of samples n, we expect the sampled KL-divergence to
be within a certain range of the true KL-divergence, depending on n.

We tested this upper bound by taking n samples of p to obtain pn, computing D(pn||p),
and repeating this many times for each n. The average of D(pn||p) is an estimate of the
expected KL-divergence for n. We then computed the upper bound using equation (18)
and plotted this as well. The simulation results are shown in figure 2.
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Figure 2: KL-divergence for pn sampled from p for various n, and the upper bound on the
expected value.
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