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ABSTRACT

Deep neural network based audio embeddings (d-vectors) have
demonstrated superior performance in audio-only speaker diariza-
tion compared to traditional acoustic features such as mel-frequency
cepstral coefficients (MFCCs) and i-vectors. However, there has
been little work on multimodal diarization systems that combine d-
vectors with additional sources of information. In this paper, we
present a novel approach to multimodal speaker diarization that com-
bines d-vectors with spatial information derived from performing
beamforming given a multi-channel microphone array. Our sys-
tem performs spectral clustering on a combination of speaker em-
beddings and spatial features that are computed using the Steered-
Response Power Phase Transform (SRP-PHAT) algorithm. We eval-
uate our system on the AMI Meeting Corpus and an internal dataset
of real-world conversations. By using both acoustic and spatial fea-
tures for diarization, we achieve significant improvements over a d-
vector only baseline and show potential to achieve comparable re-
sults with other state-of-the-art multimodal diarization systems.

Index Terms— Speaker diarization, d-vector, beamforming,
sound source localization, spectral clustering

1. INTRODUCTION

Speaker diarization is the process of partitioning an audio stream
into speaker segments and labeling them with the speakers’ identi-
ties [1]. Informally, it can be summarized as the problem of deter-
mining “who spoke when”. With recent advances in speech process-
ing technologies such as automatic speech recognition and speaker
identification, diarization has emerged as an important task in order
to give the outputs of these systems greater meaning and context.

Speaker diarization has traditionally been addressed as a single-
modality problem, in which a single channel of audio is used to
extract feature embeddings such as mel-frequency cepstral coeffi-
cients (MFCCs) [2] or i-vectors [3, 4] from segmented speech, af-
ter which these embeddings are clustered using algorithms such as
k-means, agglomerative hierarchical clustering, or spectral cluster-
ing. The speaker boundaries from clustering can then be further re-
fined through a resegmentation step such as Variational Bayes [5, 6].
In recent years, deep neural network audio embeddings for speaker
recognition (d-vectors, x-vectors) [7, 8] have been successfully used
in diarization systems, often showing significantly improved perfor-
mance over previously popular i-vector based approaches [9, 10, 11].

However, there are many settings in which additional modalities
can be leveraged to improve speaker diarization performance. No-
tably, in the conference meeting domain, specialized hardware such
as microphone arrays and cameras often allow for the collection of
multiple audio channels and video. This information can be used for
techniques such as sound source localization (SSL) or audio-visual

correspondence. Previous works have sought to utilize spatial in-
formation by using acoustic beamforming to compute inter-channel
delay features, which were combined with MFCCs at the weighted
log-likelihood level [12, 13]. Other approaches have utilized visual
information, such as by clustering MFCCs fused with video features
[14] or combining visual analysis of motion and mouth movements
with SSL [15]. However, none of these works used the currently
state-of-the-art deep learning approaches for acoustic speaker mod-
eling. Recently, [16] proposed a multimodal diarization system that
uses a deep audio-visual synchronization network to enroll speaker
models, then uses a combination of audio-visual correlation, deep
speaker embeddings, and SSL to predict the speaker. However, de-
spite achieving high diarization performance, this method requires
significantly more hardware and processing for the video data, which
may not be feasible for many types of meeting rooms in practice.

In this paper, we propose a novel approach to speaker diariza-
tion when a multi-channel microphone array is available by supple-
menting d-vectors with acoustic beamforming. Our key contribution
is the use of steered-response powers from the Steered-Response
Power Phase Transform (SRP-PHAT) algorithm [17] as spatial fea-
tures that can be incorporated into the clustering step. In our ap-
proach, we build off of the methodology introduced in [10], which
combines long short-term memory (LSTM) based d-vectors with
spectral clustering; however, the spatial features can more generally
be combined with other types of speaker modeling and clustering.
We present two ways of utilizing the spatial information: an “early
fusion” method, in which the spatial features are directly stacked
with the speaker embedding before clustering, and a “late fusion”
method, in which each set of features is combined by a weighted
sum at the similarity matrix level. We evaluate our approach on the
publicly available AMI Meeting Corpus [18] and an internal dataset
of real-world conversations, and find that it achieves significantly
improved performance compared to a d-vector only baseline. In ad-
dition, it demonstrates the potential to yield competitive results with
state-of-the-art audio-visual approaches that also use sound source
localization, despite not utilizing video information.

2. BASELINE AUDIO-ONLY SYSTEM

2.1. D-vector model

Our baseline audio-only system is based on the work in [10], which
adapted the text-independent speaker verification d-vector model
from [8] for speaker diarization. The speaker embedding network is
trained using generalized end-to-end (GE2E) loss [8], and consists
of three LSTM layers of 768 nodes each and a projection layer of
256 nodes. In this system, audio signals are first transformed into
frames of width 25ms and step 10ms, and log-mel-filterbank ener-
gies of dimension 40 are extracted from each frame. These frames
are used to build sliding windows of a fixed length, which are fed
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Fig. 1. The baseline d-vector system pipeline. Individual d-vectors
are aggregated to form a single speaker embedding per segment.

into the LSTM as inputs. The last-frame output of the LSTM is used
as the d-vector representation for a given sliding window. For each
speech segment that is to be labeled, the d-vectors corresponding
to the sliding windows ending in that segment are `2-normalized
and averaged to form a single embedding for that segment. The key
elements of the system pipeline are shown in Figure 1.

Our model was trained from scratch on the development sets of
the VoxCeleb [19] and VoxCeleb2 [20] datasets, which amount to ap-
proximately 7K speakers and 1.2M utterances. We note that this dif-
fers from the model used in [10], which was trained on a collection
of voice search data with around 18K speakers and 36M utterances.
Based on empirical testing, we also used slightly different parame-
ters from [10] for our experiments. Specifically, our speaker embed-
ding network is trained on windows of fixed size 360ms, compared to
1600ms [10] or a uniform distribution within [240ms, 1600ms] [21].
Instead of sliding windows of size 240ms and 120ms overlap, we
use 360ms (matching the model training) and 180ms, respectively.
In addition, we use a maximal segment-length limit of 1000ms in-
stead of 400ms.

2.2. Spectral clustering

We use the spectral clustering algorithm proposed in [10]. We note
that this algorithm is different from “standard” spectral clustering, as
it performs eigendecomposition directly on the similarity matrix and
not on a Laplacian matrix. However, we will continue to refer to it as
spectral clustering for consistency. We largely follow the same steps
as described in [10] to construct the similarity matrix A, including
refinement operations: Gaussian blur, row-wise soft thresholding,
symmetrization, diffusion, and row-wise max normalization.

Following eigendecomposition of A, we estimate the number of
speakers K̂ by using the heuristic introduced in [22]. It was seen
experimentally that the n sorted eigenvalues of A (λ1 > λ2 > ... >
λn) exhibit exponential decay, and that the number of speakers in a
conversation consistently corresponds to the point at which the gra-
dient of these eigenvalues exceeds a threshold θ. Therefore, to deter-
mine the number of clusters, we fit a smooth exponential e−αk to the
eigenvalues, where k = 1, ..., n. We then take K̂ to be the smallest
value of k for which the derivative of the exponential exceeds θ:

K̂ = arg min
k∈{1,...,n}

[
− αe−αk ≥ θ

]
(1)

3. MULTIMODAL DIARIZATION SYSTEM

Our complete diarization system is as follows. First, all audio chan-
nels are processed by a speech enhancement system, which is based
on the one described in [23]; it is an LSTM-based speech denoising
model trained to predict clean log-power spectra features given noisy
log-power spectra features with acoustic context. We use WebRTC
[24] to perform voice activity detection (VAD) on a single reference
channel of the denoised audio and determine sections of speech,
which are then divided into shorter non-overlapping segments that
determine the temporal resolution of the diarization. For each seg-
ment, our system computes a speaker embedding from the reference
channel and a vector of steered-response powers on the surrounding
space. The two sets of features are then fused to construct a simi-
larity matrix A, which is used to perform spectral clustering on all
segments.

3.1. Acoustic beamforming

We use the Steered-Response Power Phase Transform (SRP-PHAT)
algorithm for acoustic beamforming. SRP-PHAT can be interpreted
as a grid-search procedure that attempts to maximize the steered-
response power P (x) from a set of candidate source locations using
a steered delay-and-sum beamformer. It can be summarized by the
following expressions:

P (x) ,
∑
n∈N

∣∣∣∣ M∑
m=1

sm(n− τm(x))

∣∣∣∣2 (2)

x̂s = argmax
x∈G

P (x) (3)

where N denotes all sample indices within the beamforming win-
dow, sm(n) is the discrete-time output signal from the m-th mi-
crophone, and τm(x) is the time-lag due to the propagation from a
source located at x to the m-th microphone. x̂s is the estimated spa-
tial location of the true sound source xs, and G is the set of candidate
source locations to be considered.

This formulation provides the single most likely direction of ar-
rival. However, it has a disadvantage in that it requires a large num-
ber of computations. To accurately obtain the location of the source,
the spatial resolution of G must be relatively high, which requires
that P (x) be computed for a large number of points; if the spa-
tial resolution is reduced, x̂s may differ significantly from xs. In
addition, we found during our experiments that even with a high-
resolution grid, it is difficult to incorporate scalar directional values
with d-vector embeddings in a meaningful and significant way.

To this end, we use the values of P (x) slightly differently. In-
stead of selecting the single global maximum from a high-resolution
grid, we flatten all steered-response powers computed from a coarser
grid into a vector of these values for the entire space surrounding the
microphone array. Concretely, we compute the following vector:

st = [Pt(x1), Pt(x2), ..., Pt(xn)]
>, ∀xi ∈ G (4)

where t denotes the time of the beamforming and n determines the
spatial resolution of G. In our experiments, s is computed with a
beam window length of 600ms and shift of 150ms, with n = 90 (i.e.
P (x) is computed every 4 degrees in the 360 degree space). These
spatial vectors are then aggregated using the same logic as for the
d-vectors. For each speech segment, all s corresponding to beam-
forming windows that end in that segment are `2-normalized and
averaged to form a single vector for that segment. Figure 2 shows
the main elements of our pipeline for computing spatial features.
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Fig. 2. A diagram of our pipeline for computing spatial features.
Each vector can be seen as a flattening of the steered response powers
computed on the radial space surrounding the microphone array.

3.2. Multimodal fusion

The aforementioned processes convert multi-channel audio inputs of
arbitrary length into two sets of fixed-length vectors: speaker embed-
dings and spatial steered-response power vectors. These features are
then combined to construct a similarity matrix for spectral cluster-
ing. Here, we present two ways of doing so.

3.2.1. Early fusion

In our early fusion method, the speaker embeddings and spatial vec-
tors are individually `2-normalized, and then directly combined by
stacking them together. This results in a set of vectors whose di-
mensions are the sum of the dimensions of the two sets of features.
These concatenated vectors are used to construct a similarity matrix
A, where Aij is defined as the cosine similarity between the ith and
jth segment vectors if i 6= j, and the diagonal elements are set to the
maximum value of each row: Aii = maxj 6=iAij .

3.2.2. Late fusion

In our late fusion method, each set of features is used to construct a
separate similarity matrix (denoted below by Ad and As for the d-
vector and spatial features, respectively) by the same methodology
as described above, using cosine similarity as the affinity measure.
Then, the two matrices are combined by a weighted sum to yield the
final similarity matrix that will be used for spectral clustering:

A = αAd + (1− α)As (5)

3.2.3. Link between early and late fusion

For clarity, we derive a link between the early and late fusion meth-
ods. In early fusion, the similarity matrix A has entries Aij =
cos (xi, xj) where xi = (di, si), the concatenation of the i-th `2-
normalized d-vector (di) and spatial vector (si). As a result, ‖xi‖ =√
2, ∀i and we have:

Aij =
1

2
x>i xj (6)

The inner product of x may be expanded into the inner products of
its constituents, yielding

Aij =
1

2
[d>i dj + s>i sj ] (7)

This is equivalent to the corresponding entry of the similarity ma-
trix for late fusion when α = 1

2
, and we see that early fusion is a

special case of late fusion (when not taking any matrix refinement
operations into account). Thus, late fusion involves an additional
hyperparameter that provides an opportunity to further optimize per-
formance.

4. EXPERIMENTS

4.1. Datasets

4.1.1. AMI corpus

The AMI Meeting Corpus [18] consists of 100 hours of meeting
recordings and contains a range of signals, including close-talking
and far-field microphones, individual and room-view video cameras,
and outputs from a slide projector and an electronic whiteboard. The
audio is recorded from an 8-element uniformly spaced circular mi-
crophone array with a radius of 10cm, sampled at 16kHz.

All meetings are recorded in English in three locations with dif-
ferent acoustic properties, and include mostly non-native speakers.
It has been previously used to evaluate many audio-only and audio-
visual speaker diarization systems. We perform evaluations on meet-
ings in the ES (Edinburgh) and IS (IDIAP) categories, which contain
approximately 30 and 17 hours of data, respectively. Of the IS meet-
ing files, IS1002a, IS1003b, IS1005d, and IS1007d were not
used because of missing data.

4.1.2. Internal conversation dataset

Our internal conversation dataset was collected as part of the Local
Voices Network (LVN) project [25] developed by Cortico, and con-
sists of conversations amongst 3 to 6 people that are between 60 to
90 minutes in length. Each conversation focuses on topics of concern
to the partipants’ local community, and are held in natural settings in
which no particular instructions are given to the participants regard-
ing the recording of the audio. The lengths of speaker turns vary
widely, from short bursts of frequent changes to long stretches of
several minutes with just one speaker.

The audio is recorded using an 8-element uniformly spaced cir-
cular microphone array with a radius of 8.55cm, sampled at 16 kHz.
The recording device is portable and conversations may be held in
a wide variety of settings. As a result, the acoustic environments
of the conversations tend to vary widely, with differing sources and
amounts of background noise. Our evaluation dataset consists of 8
files containing approximately 10 hours of audio, carefully annotated
by hand. In the case of overlapped speech, only the identity of the
loudest speaker was annotated.

4.2. Evaluation protocols

We evaluated our system using Diarization Error Rate (DER), which
consists of three components: missed detection, false alarm, and
speaker confusion. We used the tool developed for the Rich Tran-
scription 2009 evaluations by NIST (NIST RT-09) [26]. Following
common convention in the literature, we exclude overlapped speech
(multiple individuals speaking at the same time) from evaluation and
tolerate errors less than 250ms in locating segment boundaries.



Table 1. Diarization Error Rate results on the ES and IS subsets of the AMI corpus and our internal dataset. Note that all experiments use the
same VAD system, so the missed detection and false alarm rates are identical across different methods for each dataset. x-vector results are
reported from Table 1 in [16].

Dataset Method Unknown Speaker Count Oracle Speaker Count
Missed FA Confusion DER Missed FA Confusion DER

AMI ES

d-vector only
7.95 3.44

18.63 30.02
7.95 3.44

17.03 28.42
Early Fusion 8.76 20.15 8.86 20.25
Late Fusion 8.06 19.45 10.44 21.83
x-vector [16] - - 12.8 - - - - -

Chung et al. [16] - - 2.8 - - - - -

AMI IS

d-vector only
8.25 1.72

17.16 27.13
8.25 1.72

16.87 26.84
Early Fusion 11.47 21.44 11.51 21.48
Late Fusion 12.13 22.1 13.81 23.78
x-vector [16] - - 10.2 - - - - -

Chung et al. [16] - - 4.9 - - - - -

Internal
d-vector only

7.31 1.84
19.02 28.17

7.31 1.84
13.79 22.94

Early Fusion 13.98 23.13 14.66 23.81
Late Fusion 14.54 23.69 7.78 16.93

4.3. Results

Table 1 summarizes the diarization performance results on the ES
and IS subsets of the AMI corpus and our internal dataset, given both
unknown and oracle speaker counts for clustering. Missed detec-
tion and false alarm rates are identical across the different methods
for each dataset because we use the same VAD system; therefore,
speaker confusion is the only metric that is affected by the different
input features and fusion methods. We also include results for an
audio-only x-vector [7] system (results reported from [16]) and the
best audio-visual correspondence model from [16]. Since we use
slightly different systems for VAD, we only list scores for speaker
confusion in order to provide a fair comparison.

Despite being trained on the same data (VoxCeleb1 and Vox-
Celeb2), our d-vector only system does not perform as well as the
x-vector model reported in [16] in terms of speaker confusion. This
may be due to differences in the amount of training data needed
to optimize performance given the model architectures. Although
[10] reports comparable results between their d-vector model and
x-vectors on the NIST SRE 2000 CALLHOME dataset, their model
was trained on substantially more data than ours. It is unclear
whether this difference accounts for the discrepancy in performance
shown here, or whether x-vectors simply generalize better to speech
recorded under different acoustic conditions.

After incorporating spatial information, our system achieves
comparable or better performance than the x-vector model. On the
ES subset of the AMI corpus, early and late fusion result in 53%
and 57% relative improvement on speaker confusion, respectively;
on the IS subset, they result in 33% and 29% relative improve-
ment, respectively. Our multimodal system yet lags behind the best
audio-visual model from [16]. However, the relative performance
differences between the baseline audio-only models, along with the
magnitude of the improvements from incorporating spatial informa-
tion, suggest that our methods could potentially provide competitive
results when combined with a better speaker embedding model, even
without the use of video information.

The overall effectiveness of early fusion compared with late fu-
sion is unclear, as neither method outperforms the other on all sub-
sets of the evaluation data. However, given that early fusion can be
seen as a special case of late fusion with a fixed value of α, there ap-

pears to be potential to further optimize late fusion by implementing
tunable or adaptive α values for individual audio files.

On our internal dataset of conversations, early and late fusion
result in 26% and 24% relative improvement, respectively. The
slightly smaller relative improvement compared to the AMI corpus
may have been due to the noisier and more inconsistent environ-
ments in which the audio was recorded. Interestingly, assigning the
number of clusters based on the oracle speaker count did not seem
to significantly improve performance, and even degraded it in many
cases. However, providing the oracle speaker count resulted in the
largest relative performance improvement on our internal dataset for
our late fusion method (44%). These results suggest that, despite
the many heuristics that have been suggested in the literature, find-
ing the optimal number of clusters for spectral clustering is still a
difficult task that can have a significant effect on DER.

5. CONCLUSION

In this work, we proposed a novel approach to multimodal speaker
diarization by supplementing d-vector speaker embeddings with spa-
tial features obtained using the SRP-PHAT algorithm. We presented
two methods of combining these features before performing spec-
tral clustering: early fusion, in which the two sets of features are
stacked together before forming the similarity matrix, and late fu-
sion, in which the features are combined by a weighted sum at the
similarity matrix level. Our approach achieves significant improve-
ments over a d-vector only baseline on the AMI Meeting Corpus
and an internal dataset of conversations. In addition, it demonstrates
the potential to yield competitive results with state-of-the-art audio-
visual approaches that also use sound source localization, despite
not using any video information. An interesting direction for future
work is to consider adaptive weights for our late fusion method that
could be tuned based on characteristics of individual audio files.
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