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•Analysis: study the relationship between structure and toxicity 
of conversations, after the conversations are over


•Prediction: predict future toxicity based on the structure of the 
conversation, as the conversation unfolds

Data
•News: 510K+ conversations, 32M+ tweets, 5 outlets, 1 year

•Midterms: 676K+ conversations, 25M+ tweets, 1,430 

candidates, 5 months

Representing A Twitter Conversation

Analyses Prediction
Individual-level Analysis

•Toxicity is spread across many low to moderately toxic users

Dyad-level Analysis

•Toxic replies are more likely to come from other users who:  

(i) do not have any social relationship with the poster,(ii) have 
fewer followers, and (iii) do not have many common friends
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Reply Tree Structure

•Toxic conversations tend to have larger, deeper, and wider 

reply trees
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Follow Graph Structure

•Toxic conversations tend to have follow graphs that are 

denser, have more CCs, and higher modularity
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Future Toxicity Predictions

•Task: Given the conversation so far, predict whether the 

conversation will become more toxic than expected

•Using stratification to control for prefix toxicity
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Next Reply Toxicity Predictions

•Task: User i is about to join the conversation, will they post a 

toxic reply?

•Paired prediction task to control for the root content
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