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Abstract

The recent rapid popularization of digital cameras allows people to capture a large number

of digital photographs easily, and this situation makes automatic avoidance and correction

of “failure” photographs important. While exposure and color issues have been mostly

resolved by the improvement in automatic corrective functions of cameras, defocus, mo-

tion, and camera shake blur can be handled only in a limited fashion by current cameras.

Camera shake blur can be alleviated by an anti-camera shake mechanism installed in

most cameras; but for focus, although a particular scene depth can be focused with an

auto-focus function, objects at different depths cannot be captured sharply at the same

time. Moreover, defocused images can often result due to the failure of auto-focusing. In

addition, blur caused by object motion, i.e., motion blur, is only avoided by increasing the

shutter speed and sensor sensitivity when a camera detects motion in a scene.

This dissertation proposes a method for removing defocus and motion blur for digital

cameras. Since deblurring is generally an ill-posed problem, and hence an image pro-

cessing approach alone has limitations, the proposed method includes modifications of

camera optics. In this regard, this dissertation pursues low cost and compact implementa-

tion, aiming at applications to consumer products. That is, small modifications to existing

cameras or mechanisms that can be directly derived from existing ones will be adopted.

In order to set a baseline performance achievable without modifying camera optics,

this dissertation first proposes an image deblurring method that is purely based on an

image processing approach, which consists of fast image deconvolution for efficient de-

blurring, and local blur estimation for handling spatially-varying blur. Additionally, a set

of intuitive user interfaces are provided with which the user can interactively change the

focus settings of photographs after they are captured, so that she/he can not only obtain

an all-in-focus image but also create images focused to different depths.

For removal of defocus blur, a method is proposed for estimating the defocus blur size

in each image region by placing red, green, and blue color filters in a camera lens aper-

ture. As captured image will have depth-dependent color misalignment, the scene depth

can be estimated by solving a stereo correspondence problem between images recorded

with different wavelengths. Since the depth is directly related to the defocus blur size,

deblurred images can be produced by deconvolving each region with the estimated blur

size. The modification requires only inexpensive color filters.

For motion blur removal, this dissertation proposes to move the camera image sen-

sor circularly about the optical axis during exposure, so that the attenuation of high fre-

quency image content due to motion blur can be prevented, facilitating deconvolution.
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The frequency domain analysis of the circular sensor motion trajectory in space-time

shows that the degradation of image quality is equally reduced for all objects moving in

arbitrary directions with constant velocities up to some predetermined maximum speed.

The proposed method may be implemented using an existing sensor-shift system of an

anti-camera shake mechanism.

3



要旨 
 

近年のデジタルカメラの普及により、誰もが容易かつ大量にデジタル写真を撮影すること

ができるようになったことを受けて、「失敗」写真の自動回避・修正が重要な課題になって

いる。露出や色味の問題はカメラの自動補正機能の充実により解決されてきている一方で、

焦点ボケ、被写体の動きによるブレ、手ブレを含むボケは、現在のカメラでは対策に限界

がある。手ブレについては手ブレ補正機構のカメラ搭載が標準的になり問題は軽減された

が、焦点ボケについては、オートフォーカス機能を用いてある奥行きに焦点を合わせるこ

とはできても、異なる奥行きを持つ物体を同時に鮮明に捉えることはできない。また、オ

ートフォーカスが失敗してピンボケ写真が撮れることも多い。さらに、被写体の動きによ

るブレすなわちモーションブラーに対するデジタルカメラの対策は、動きを検知してシャ

ッター速度と感度を上げるという回避策にとどまっている。 

 

本論文はデジタルカメラのための焦点ボケとモーションブラーの除去法を提案する。ボ

ケの除去は一般に不良設定問題であり、画像処理だけでの解決には限界があるため、提案

法はカメラ光学系の加工を伴う。ただし、民生品への応用を視野に、低コストかつ小規模

な実装を目指す。すなわち、既存カメラに対する軽微な変更か、既存のカメラ機構の直接

的な応用にとどめるものとする。 

 

カメラ光学系の加工をせずに達成可能な基準性能を定めるために、本論文はまず純粋に

画像処理のみに基づく画像のボケ除去法を提案する。これにはボケ除去を効率的に行うた

めの高速な逆畳み込み法と、画像中で一様でないボケを扱うための局所ボケ推定法が含ま

れる。加えて、撮影後に写真の焦点設定を対話的に変更することのできる一連の直観的な

ユーザインタフェースを提供する。これによりユーザは全焦点画像だけでなく、異なる奥

行きに焦点を合わせた画像を作成することができる。 

 

焦点ボケの除去については、カメラのレンズ開口部に赤緑青の色フィルタを挿入するこ

とにより画像の領域ごとの焦点ボケの量を推定する方法を提案する。撮影される画像には

シーンの奥行きに応じた色ズレが生じるため、異なる波長で記録された画像間のステレオ

マッチングとして奥行きを求めることができる。奥行きは直接ボケ量に対応しており、推

定値に基づいて各領域を逆畳み込みすることでボケを除去した画像を生成することができ

る。加工は色フィルタの追加だけでよいため安価に実現可能である。 

 

モーションブラーの除去については、本論文は露光中にカメラの撮像センサを光軸に垂

直に円運動させることにより、モーションブラーによる画像の高周波成分の減衰を低減し、

4 
 



5 
 

逆畳み込みによるボケの除去を容易化する手法を提案する。センサの円運動の時空間中の

軌跡を周波数解析することで、ある既定の上限速度までは、任意の方向に等速運動する全

ての物体の劣化を同程度に低減できることが示せる。本手法は手ブレ補正機構の１つであ

る撮像センサシフト方式の応用により実現できると考えられる。 
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Chapter 1

Introduction

This chapter first describes the motivation for this work, then the background and prelim-

inary information on image deblurring, followed by a review of the related work. Finally,

the contributions and organization of this dissertation are presented.

1.1 Motivation

The recent rapid popularization of digital cameras allows people to capture a large num-

ber of digital photographs easily. As the number of casual photographers increases, so

does the number of “failure” photographs including over/under-exposed, noisy, blurred,

and unnaturally-colored images. This situation makes automatic avoidance and correction

of failure photographs important. In fact, automatic corrective functions of digital cam-

eras including auto-exposure, automatic white balance, and noise reduction capabilities

steadily improve to resolve exposure, color, and noise issues.

On the other hand, current digital cameras appear to handle image blur only in a lim-

ited fashion; they only directly address camera shake blur, but not defocus and motion

blur. For camera shake blur, most of the recent cameras are equipped with an anti-camera

shake mechanism that moves either the lens or the image sensor to compensate for camera

motion obtained from an accelerometer. For defocus blur, however, although a particular

scene depth can be focused with an auto-focus function, objects at different depths cannot

be captured sharply at the same time (depth-of-field effects, see Fig. 1.1(a)). Moreover,

defocused images can be commonly seen in personal photo collections due to the fail-

ure of auto-focusing. In addition, blur caused by object motion, i.e., motion blur (see

Fig. 1.1(b)), can only be avoided by increasing the shutter speed and sensor sensitivity

when a camera detects motions in a scene, at the expense of an increased noise level.
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(a) (b)

Figure 1.1: Examples of blurred photographs. (a) Photograph with a shallow depth-of-

field, in which only the faces at the focused depth are sharply captured, and the others are

subject to defocus blur. (b) Photograph containing motion-blurred fish.

To overcome the above-described situation, this dissertation proposes methods for

removing defocus and motion blurs in photographs. Since deblurring is generally an ill-

posed problem as will be explained in Sec 1.2, image processing techniques alone can

often suffer from noise amplification and ringing artifacts in deblurred images, which

result from attenuation of high frequency image content at capture time and also from

misidentification of blur kernels during image processing. Therefore, in addition to im-

age processing techniques for deblurring, the proposed method includes modifications

of camera optics that alter the image capture process of traditional cameras in order to

achieve high frequency preservation and to facilitate blur kernel identification. In this re-

gard, this dissertation pursues low cost and compact hardware implementation, aiming at

applications to consumer digital cameras. That is, small modifications to existing cameras

or mechanisms that can be directly derived from existing ones will be adopted.

This dissertation focuses on a single-shot approach. That is, we try to recover an

unseen sharp image given a single blurred image, and do not resort to taking multiple

photographs. Although one could benefit from an increased amount of information from

multiple images, images must be registered in some way, and dynamic scenes and/or

hand-held image capture without a tripod can introduce additional sources of errors. Of

course, one could use multiple synchronized cameras to alleviate this issue, but that is not

only expensive but also an unrealistic usage scenario for casual photographers. Another

option might be to use a high-speed camera to minimize motion between frames to facili-

tate registration, but each frame will have an increased noise level due to reduced exposure

time, and the memory bandwidth required to transfer image data from the sensor to the

storage device will become large, making the obtainable image resolution small. More-

over, we would like to note that a single-shot approach and a multi-shot approach can

complement each other; multi-shot approaches could benefit from improved deblurring

results of the proposed single-shot methods, and vice versa.
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Prior to proposing camera hardware-assisted deblurring methods, we would like to

set a baseline performance achievable without modifying camera optics. To this end, we

first explore an image deblurring method that is purely based on an image processing

approach. After that, we propose defocus and motion deblurring methods with modified

camera optics.

1.2 Image Deblurring

Image deblurring can be formulated as the process of inverting image blurring. This sec-

tion first introduces a model of image degradation, and then presents problem definitions

of image deblurring with their basic solution strategies and associated difficulties.

1.2.1 Image Degradation Model

Image degradation due to blur can be locally modeled as convolution [43]:

g(x,y) = h(x,y)∗ f (x,y)+n(x,y), (1.1)

where g is an observed degraded image, h is a blur kernel or a point-spread function

(PSF), f is an unknown (latent) original sharp image, n is a noise term, and ∗ denotes a

convolution operator. A defocus blur kernel can be often modeled as a pillbox function

(see Fig. 1.2(b) top):

h(x,y) =

{

1/πr2 for
√

x2 + y2 ≤ r

0 otherwise
, (1.2)

where r is the radius of a circle of confusion. A motion blur kernel for a horizontally

moving object can be modeled as a box function (see Fig. 1.2(b) bottom):

h(x,y) =

{

δ (y)/2L for |x| ≤ L

0 otherwise
, (1.3)

where 2L is the length by which the object travels during exposure, and δ (·) is a Dirac

delta function.

Fig. 1.2 shows examples of this image degradation process, where the blur is assumed

to be uniform for the entire image.

1.2.2 Image Deconvolution

Image deconvolution is a problem of estimating the latent image f given an observation

g and a blur kernel h. This is known to be already an ill-posed problem, because high

13
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(a) (b) (c)

Figure 1.2: Image degradation process (the noise term is omitted). (a) Original sharp

image f . (b) Blur kernel h. The top row corresponds to defocus blur Eq. 1.2, and the

bottom row to motion blur Eq. 1.3. (c) Blurred image g.

frequency information in the original image f is attenuated by blur. This is apparent if we

consider Eq. 1.1 in the frequency domain:

ĝ(ωx,ωy) = ĥ(ωx,ωy) f̂ (ωx,ωy)+ n̂(ωx,ωy), (1.4)

where the hat notation f̂ denotes the Fourier transform of f , and (ωx,ωy) denotes spa-

tial frequencies. Note that convolution in the spatial domain becomes multiplication in

the frequency domain. Fig. 1.3 shows frequency domain representation of Fig. 1.2. As

can be seen, the high frequency content (corresponding to the values in the outer region

of each frequency domain image in Fig. 1.3) of the original image is significantly atten-

uated after multiplication by the blur kernel, because the blur kernel decays rapidly for

higher frequencies. In addition, the shown blur kernels have periodic zeros that make

the corresponding frequency content completely lost. Therefore, image deconvolution is

a process of recovering weakened or lost signals and essentially involves signal amplifi-

cation. This is apparent in the following equation that implements naive deconvolution,

known as pseudo-inverse deconvolution.

f̂ ′(ωx,ωy) =
ĥ∗(ωx,ωy)

|ĥ(ωx,ωy)|2 + ε
ĝ(ωx,ωy), (1.5)

where f̂ ′ denotes a deblurred image (in the frequency domain), ĥ∗ the complex conjugate

of ĥ, and ε is a small number to avoid zero division. The fraction of the right-hand side of

14



the equation is essentially division by ĥ, meaning that weakened signals will be amplified

back accordingly. As a result, naive deconvolution also amplifies noise in a blurred image,

which leads to ringing artifacts as shown in Fig. 1.4.

× =

× =

(a) (b) (c)

Figure 1.3: Image degradation process viewed in the frequency domain. (a) Log magni-

tude of the Fourier transform f̂ of an original sharp image f . (b) Log magnitude of the

Fourier transform ĥ of a blur kernel h. (c) Log magnitude of the Fourier transform ĝ of a

blurred image g.

(a) (b)

Figure 1.4: Results of pseudo-inverse deconvolution for the blurred images shown in

Fig. 1.2. (a) Result for the defocus blurred image. (b) Result for the motion blurred

image.

1.2.3 Blind Image Deconvolution

Blind image deconvolution is a problem of estimating the latent image f given only an

observation g [43]. As we must also estimate a blur kernel h from the blurred image g, the

15



problem becomes under-constrained since the number of unknowns (the number of pixels

in f plus the number of values in h) exceeds the number of observations (the number of

pixels in g, which is equal to that of f ). The problem is solved either by first estimating

the blur kernel h and then applying (non-blind) image deconvolution to obtain f , or by

iteratively improving the estimates of h and f until convergence.

Frequency attenuation can even more adversely affect recovered image quality than

for non-blind deconvolution, since errors in the estimated kernel can excessively amplify

the frequency content that is not significantly attenuated by the true blur kernel. Fig. 1.5

shows examples of pseudo-inverse deconvolution results with blur kernels having slightly

different sizes from the true ones.

(a) (b)

Figure 1.5: Results of pseudo-inverse deconvolution with wrong blur kernels for the

blurred images shown in Fig. 1.2. (a) Result for the defocus blurred image. (b) Result for

the motion blurred image.

1.2.4 Target Problem

This dissertation addresses an image deblurring problem in which each local image region

can be treated as being subject to the blind image deconvolution problem. That is, blur

kernels can vary across the image region but can be assumed to be piecewise uniform.

While we assume a parametric form of blur as in Eqs. 1.2 and 1.3, blur kernels are not

assumed to be a priori known (i.e., blind).

1.3 Previous Work

Researches on image deblurring and restoration have a long history [14, 43, 11], and

they have mainly focused on an image processing approach. We first review some of the

traditional methods and also explain recent advances in this field in Sec. 1.3.1.
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While image processing approaches handle images in a post-capture manner, recent

years have seen an emergence of techniques called computational photography [76] that

change the image capture process of cameras to acquire scene information unobservable

with traditional cameras, and/or to facilitate post-capture image processing. The methods

involving camera optics modifications proposed in this dissertation belong to this field

of research. Sec. 1.3.2 introduces computational photography methods for image deblur-

ring, and also some work that is not directly related to deblurring but is relevant to this

dissertation.

Finally, the relation of the previous work to ours is summarized in Sec. 1.3.3.

1.3.1 Image Processing Approach

Image Deconvolution

Solving an image deconvolution problem all comes down to coping with its ill-posedness

described in Sec.1.2.2, which, in one aspect, manifests itself as zero division in the fre-

quency domain. While the simplest remedy is to add a fixed small number to the denomi-

nator as in Eq. 1.5, a more theoretically meaningful way is to add |n̂(ωx,ωy)|
2/| f̂ (ωx,ωy)|

2

to the denominator, known as Wiener deconvolution [14]. Of course the power spectra of

the noise |n̂|2 and original image | f̂ |2 are not known, estimated values are used instead.

Apart from such relatively simple regularization (i.e., to make ill-posed problems

well-posed ones), one can use some prior knowledge of natural images. The difficulty

inherent in ill-posed problems is that the space of possible solutions is large; a blurring

process can produce similar images from different images by losing the signals that make

the original images differ from each other. Therefore, if we enforce some a priori proper-

ties on deblurred images, the solution space can be confined to a smaller one. A simple but

effective piece of prior knowledge of natural images is that their pixel values are bounded;

they cannot take negative or unlimitedly large values. Richardson-Lucy deconvolution it-

eratively updates the estimated deblurred image such that its pixel values are always kept

positive [79, 58].

Another form of such regularization is to minimize |c(x,y)∗ f ′(x,y)|2, which is known

as Tikhonov regularization [88]. A regularizing operator c is often set as a high-pass filter

to rule out images with a large high frequency content, so that ringing-free images are

favored. However, it may also rule out sharp images by its nature. Minimizing a squared

norm of high-pass filtered images can be viewed as enforcing Gaussian smoothness pri-

ors to the filtered signal distributions, but recent researches on natural image statistics
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show that they obey so-called heavy-tailed distributions [29], which have a narrower peak

and a broader foot than Gaussians (also known as sparseness priors). Therefore, recent

methods exploit heavy-tailed priors to allow occasional discontinuities (such as edges) in

restored images [30, 68, 10, 15]. These methods use discrete wavelet transform (DWT) as

band-pass filters, but since restored images suffer from blocky artifacts arising from the

dyadic image partitioning in DWT, they use translation-invariant DWT (TI-DWT) [24],

also known as stationary DWT, to reduce such artifacts at the cost of significant increase

in computational complexity.

Blind Image Deconvolution

Blind image deconvolution techniques restore the original sharp image from an observed

degraded image without precise knowledge of a point-spread function (PSF) [43]. There

are two main approaches to this: 1) first estimate the PSF, and then apply a non-blind

deconvolution method with that PSF; 2) iteratively estimate the PSF and the original sharp

image.

For the approach that estimates the PSF first, some traditional methods payed attention

to the frequency zero patterns in a blur kernel [20]. For example, the Fourier transform

of a box function as shown in Eq. 1.3 is given as ĥ(ωx,ωy) = sinc(Lωx), meaning that it

has periodic zeros at ωx = kπ/L for a non-zero integer k. From Eq. 1.4, we can expect

that the Fourier transform ĝ of the observed image has the same zero pattern if we can

ignore noise. However, such methods are not practical in the presence of noise. Another

approach is to take a set of candidate PSFs, and to choose the one that best explains the

observed image. The selection criteria differ from method to method, such as residual

spectral matching [80] and generalized cross validation [78].

For the approach that iteratively estimates the PSF and the sharp image, Ayers and

Dainty proposed to iterate the process of updating the PSF from the estimated sharp im-

age in the Fourier domain, imposing image space constraints on the PSF (non-negativity,

for example), updating the sharp image from the PSF in the Fourier domain, and im-

posing constraints on the sharp image [9]. More recent methods took a conceptually

similar approach and estimated a camera shake PSF from a single image by incorporat-

ing natural image statistics. Fergus et al. imposed a sparseness prior for image derivative

distributions, and used an ensemble learning approach to solve the otherwise intractable

optimization problem [28]. Shan et al. introduced a more sophisticated noise model and

a local smoothness prior [81].

Some researchers used multiple images. Rav-Acha and Peleg [77] showed that using
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two motion blurred images can produce better deconvolution results; Yuan et al. [101]

used a long-exposure blurred image and a short-exposure noisy image, so that PSF esti-

mation can benefit from the short-exposure image which is not subject to blur.

Handling Spatially-Variant Blur

The methods described above all assume a PSF to be spatially-invariant (uniform). A

spatially-variant PSF is usually estimated by sectioning the image and by assuming it to

be approximately spatially-invariant within each section [89, 72, 44]. This means that the

blur is assumed to be only slowly varying across the image, as each section should be

large enough to make reliable estimation. This is also true for non-blind spatially-variant

deconvolution methods [66, 46, 96].

A few methods exist that can estimate a spatially-variant PSF with abrupt changes

across the image. Levin identified spatially-variant motion blur by examining the differ-

ence between the image derivative distribution along the motion direction and that along

its perpendicular direction for the case of 1D linear motion [47]. You and Kaveh [100]

also addressed the problem of removing spatially-variant motion blur, but only a synthetic

horizontal motion blur example was presented.

Depth-from-focus/defocus techniques generate a depth map of a scene by estimating

the amount of defocus blurs in images. Hence they can be viewed as spatially-variant PSF

estimation methods. Existing methods either use multiple images [73, 99, 67], or make

an estimate at edges in a single image by assuming that a blurred ramp edge is originally

a sharp step edge [73, 85, 45].

Depth-of-field Synthesis

Some methods are designed to create and alter the depth-of-field effects from images,

rather than to remove blurs from them. Burt and Kolczynski fused multiple images with

different focus to generate images with an extended depth-of-field [19]. Kubota and

Aizawa used two images, and generated arbitrarily focused images by assuming that a

scene consisted of two depth layers, each of which was in focus in either image [42]. The

“Lens Blur” filter of Adobe Photoshop CS [2] creates depth-of-field effects from a single

sharp photograph with a user-provided depth map.
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Matting

In image editing, matting is an important technique for extracting foreground objects in an

image so that they can be composited over other images [22]. In addition to image editing

purposes, matting is also important in the context of image deblurring, for separating

image regions so that each region can be deconvolved independently.

The traditional approach to matting is to use a blue or green screen as a background

[91, 82]. Extracting a matte from a single natural image (i.e., an image with general un-

known background colors) requires user intervention, a typical form of which is a trimap

that segments an image into “strictly foreground,” “strictly background,” and “unknown”

regions. Fractional alpha values are computed in the “unknown” region based on the

information from the other two regions [23, 86, 92, 49, 50, 93]. To automate matting,

previous approaches used multiple images. Smith and Blinn [82] captured images of a

foreground object with two different known background colors. Alternatively, Wexler et

al. [97] used a sequence of images of a translating/rotating object. Xiong and Jia [98]

captured images from two viewpoints, and computed their stereo correspondences taking

into account alpha values of a foreground object. Several methods used synchronized

cameras to capture multiple images of an object [60, 61, 39, 59, 104].

1.3.2 Hardware-Assisted Approach

Defocus Blur Removal

For defocus blur removal, a wavefront coding method [27] incorporates a cubic phase

plate in the imaging system, so that the defocus blur is independent of the scene depth.

The defocus blur can be removed with a single known PSF, but this technique requires a

custom optical system that can be expensive. Several researchers have introduced coded

aperture techniques [48, 90] which places a patterned mask in the camera lens aperture to

change the frequency characteristics of defocus blur in order to facilitate blur estimation

and removal. These methods offer portable imaging systems with minimal modifications

to the conventional camera, but as the blur estimation solely relies on defocus cues, some

manual intervention may be required, and there is ambiguity between depths farther and

nearer than the focused depth.

Several camera designs have been proposed to estimate scene depth using defocus

cues, which can also be viewed as defocus PSF estimation methods. Hiura and Mat-

suyama used a modified camera with multiple pinholes [36] to capture images in which

duplicated scene textures are displaced and superimposed in a depth-dependent manner.
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Two research groups used color filters in the lens aperture to capture the displaced images

in separate color channels [6, 21]. Moreno-Noguer et al. used a projector and estimated

depth from projector defocus [64].

If multi-view images are available, not only scene depth can be estimated, but also

synthesis of depth-of-field effects, or refocusing, can be performed. There are several

camera designs to do multi-view image capture through a single main lens. Adelson and

Wang [1] showed that light rays entering a camera can be captured separately depend-

ing on their incident angle by placing a microlens array on the image sensor, and they

estimated depth from multi-view images captured through the main lens. Ng et al. [70]

realized this idea in a hand-held camera, and proposed a post-exposure refocusing method

by noting that the captured multi-view images correspond to the light field inside the cam-

era [69]. Multi-view images can also be captured by placing an attenuation mask on the

image sensor [90], or by splitting light rays at the aperture [35, 55, 54] or outside the main

lens [31].

Motion Blur Removal

For motion blur removal, Raskar et al. [75] developed a coded exposure technique to

prevent attenuation of high frequencies due to motion blur at capture time by opening and

closing the shutter during exposure according to a pseudo-random binary code. Agrawal

and Xu [4] presented another type of code that enables PSF estimation in addition to

high frequency preservation. Levin et al. [51] proposed to move the camera image sensor

with a constant 1D acceleration during exposure, and showed that this sensor motion can

render motion blur invariant to 1D linear object motion (e.g., horizontal motion), and

that it evenly distributes the fixed frequency “budget” to different object speeds. That is,

objects moving at different speeds can be deblurred equally well.

Some researchers proposed to move sensors for different purposes. Ben-Ezra et al.

[13] moved the sensor by a fraction of a pixel size between exposures for video super-

resolution. Mohan et al. [63] moved the lens and sensor to deliberately introduce motion

blur that acts like defocus blur. Nagahara et al. [65] moved the sensor along the optical

axis to make defocus blur depth-invariant.

Camera Shake Removal

For camera shake removal, Ben-Ezra and Nayar [12] attached a low resolution video cam-

era to a main camera, and estimated a camera shake PSF from video frames to remove blur
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from a main camera image. Recent cameras typically have an anti-camera shake mech-

anism that moves either the lens or the image sensor to compensate for camera motion

obtained from an accelerometer.

1.3.3 Relation to the Proposed Method

Fig. 1.6 shows four stages in a generic processing flow of image deblurring. We first

capture an image, and then segment the image into regions each of which can be assumed

to have a uniform blur. After that, for each local region, we estimate the blur kernel and

finally use it to deconvolve the image. Some methods may perform segmentation and blur

estimation simultaneously. Some may iterate blur estimation and deconvolution.

Image
capture

Segmen-
tation

Blur
estimation

Deconvo-
lution

Figure 1.6: Processing flow of image deblurring.

Table 1.1 summarizes the relationship between the proposed method and some of the

previous work for three of the above four stages and for the three blur types, namely

defocus, motion, and camera shake blur. We set aside the image capture stage because

it is trivial for methods purely based on an image processing approach, and for methods

involving optics modifications, the (modified) image capture stage can facilitate one, two,

or all of the succeeding three stages depending on the methods. Therefore, the table has

two rows for each blur type, one for methods involving optics modifications, and the other

for pure image processing methods.

Image Processing Approach to Image Deblurring

Chapter 2 proposes a method for defocus blur removal purely based on an image process-

ing approach. For image segmentation and blur estimation, we propose a method that can

handle abrupt blur changes across images, while previous methods such as [72] assume

slowly varying blur. For deconvolution, we speed up the computation involving heavy-

tailed priors by building upon one of the state-of-the-art methods called WaveGSM [15]

and make it 10 times faster. The deconvolution method can be used for removing motion

and camera shake blur as well. Additionally, we provide users with a set of intuitive in-

terfaces with which the user can interactively change the focus settings of photographs
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Table 1.1: Summary of the relationship between the proposed method and some of the

previous work. Only a few representative methods that use single images are cited for

brevity.

(common to the 

above field *)

Fergus et al. 2006 

[28]

Image

processing

Image processing

alone will suffice

Ben-Ezra and Nayar

2004 [12]

Not required

Modified

opticsCamera

shake

blur

(common to the 

above field *)

Image

processing

Modified

opticsMotion

blur

WaveGSM [15] *
Image

processing

Modified

opticsDefocus

blur

DeconvolutionBlur estimationSegmentation

Wavefront coding [27]       

Coded aperture [48, 90]         

Motion-invariant photography [51]

Coded exposure photography [75, 4]

Chapter 3

Chapter 2

Chapter 4

Levin 2006 [47]

Ozkan et al. 1991 [72]

after they are captured, so that she/he can not only obtain an all-in-focus image but also

create images focused to different depths. To our knowledge, techniques that synthesize

refocused images from a single conventional photograph have not been reported in the

literature.

Defocus Blur Removal using a Color-Filtered Aperture

As will be shown in Chapter 2, image processing alone does not necessarily produce

satisfactory results, and we propose to modify camera optics. In Chapter 3, we present a

method for simultaneously performing segmentation and defocus blur estimation by plac-

ing red, green, and blue color filters in a camera lens aperture. Although wavefront coding

[27] can cover all the latter three stages for image deblurring, it requires special lenses that

can be expensive, whereas the modification of the proposed method requires only inex-

pensive color filters. The coded aperture methods [48, 90] also cover the three stages,

but some issues remain for the segmentation and blur estimation stages as described in

Sec. 1.3.2. As deconvolution quality can be considerably improved by the coded aperture,

this dissertation focuses on facilitating the segmentation and blur estimation stages, and

we use a color-filtered aperture to exploit parallax cues rather than to directly use defocus

cues, which addresses the above-mentioned issues.
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The idea of using color filters in the aperture itself has been proposed previously. For

a stereo correspondence measure between the color planes, Amari and Adelson [6] used

a squared intensity difference with high-pass filtering. As they discussed in their paper,

however, this measure was insufficient to compensate for intensity differences between

the color planes. Their prototype was not portable, and only a single result for a textured

planar surface was shown. Chang et al. [21] normalized the intensities within a local

window in each color plane before taking the sum of absolute differences between them.

But as their camera was equipped with a flashbulb for projecting a speckle pattern onto

the scene in order to generate strong edges in all the color planes, the performance of

their correspondence measure in the absence of flash was not shown. They also had to

capture another image without flash to obtain a “normal” image. We propose a better

correspondence measure between the color planes.

As compared to the existing camera designs for single-lens multi-view image capture,

our method splits light rays at the aperture similarly to [35, 55, 54], but uses only color

filters as additional optical elements to the lens without requiring multiple exposures.

Although this comes with a price of a reduced number of views (only three) each having

only a single color plane, we can still obtain useful information for defocus deblurring

and post-exposure image editing.

As for matting, our method can automatically extract alpha mattes with a single hand-

held camera in a single exposure, and to the best of our knowledge, such capability has

not been reported previously.

Motion Blur Removal using Circular Sensor Motion

While a method for segmenting and identifying 1D motion blur (e.g., horizontal motions)

in a single image is reported in the literature [47], it still seems difficult to handle general

2D (i.e., in-plane) motions in a pure image processing framework. Chapter 4 proposes

to move the camera image sensor circularly about the optical axis during exposure, so

that the attenuation of high frequency image content due to motion blur can be prevented,

facilitating deconvolution. This is an extension of motion-invariant photography [51] so

that it can handle 2D linear object motion, although that leaves the segmentation stage an

open problem.

The most closely related work to the proposed approach includes coded exposure pho-

tography [75, 4] and motion-invariant photography [51]. Table 1.2 summarizes qualitative

comparisons among these methods and ours. Refer also to [3] for detailed comparison be-

tween the coded exposure and motion-invariant strategies.
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The motion-invariant strategy best preserves high frequencies for target object motion

range, but it does not generalize to motion directions other than the one it assumes. The

coded exposure strategy can handle any direction, and its performance only gradually

decreases for faster object motion. Our circular motion strategy can treat any direction

and speed up to some assumed limit, and it achieves better high frequency preservation

for target object speed than the coded exposure strategy in terms of deconvolution noise.

Similar to the motion-invariant strategy, the circular motion strategy degrades static scene

parts due to sensor motion, but it can partially track moving objects so that they are

recognizable even before deconvolution. Unlike the other strategies, the circular motion

strategy has no 180◦ motion ambiguity in PSF estimation; it can distinguish rightward

object motion from leftward one.

Table 1.2: Summary of the trade-offs among various image capture strategies for motion

deblurring.

Static camera Coded exp. [75, 4] Motion-inv. [51] Circular (ours)

High frequency

preservation∗
Bad Good Good Good

Direction gener-

alization
– Yes No Yes

Speed general-

ization
– Yes Yes† Yes†

Static scene parts

unblurred
Yes Yes No No

Image recogniz-

able w/o deconv.
No No Yes† Yes†

180◦ motion

discrimination
No No‡ No Yes

∗ For target object motion, Motion-invariant > Circular > Coded exposure.

† Within some assumed motion range. ‡ As in [4].
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1.4 Contributions

The major contributions of this dissertation are threefold.

1. Image Processing Approach to Image Deblurring (Chapter 2): In order to set a

baseline performance achievable without modifying camera optics, this dissertation

first proposes a set of methods for image deblurring that is purely based on an image

processing approach.

We propose a method for speeding up deconvolution computation for efficient de-

blurring. Deconvolution quality is known to be improved by taking into account

derivative distributions of natural images. While existing methods take time to re-

peat derivative and convolution operations, the proposed method achieves similar

image quality with 1/10 computation time by taking derivatives beforehand and by

working in the gradient domain.

We also present a method for estimating defocus blur that can handle spatially-

variant blur having abrupt changes across the image. We propose to use color im-

age segmentation rather than the traditional rectangular segmentation in order to

divide the image into regions each having a similar defocus blur size. A criterion is

elaborated to choose the best blur size from a set of candidates for each region, and

means are also provided to correct the estimated blur size in a user-assisted manner.

Moreover, besides producing all-in-focus images as the result of defocus removal,

we provide users with means to interactively control the focus settings of pho-

tographs after they are captured, since defocus blur can serve to enhance artistic

impression of photographs.

2. Defocus Blur Removal using a Color-Filtered Aperture (Chapter 3): We propose

a method for estimating defocus blur sizes in each image region by placing red,

green, and blue color filters in a camera lens aperture in order to facilitate defocus

blur removal. The camera modification requires only inexpensive color filters.

As a captured image will have depth-dependent color misalignment, the scene

depth can be estimated by solving a stereo correspondence problem between im-

ages recorded with different wavelengths. We devise a novel stereo correspondence

measure that can robustly identify disparities between the RGB color channels. The

disparities are directly related to the defocus blur sizes, and deblurred images can

be produced by deconvolving each region with the estimated blur size.

We also present a matting method for extracting an in-focus foreground object so

that the unblurred part of the scene can remain unaffected by the deconvolution

26



process. Color misalignment cues introduced by the filters serve to constrain the

space of possible mattes that would otherwise contain erroneous mattes when fore-

ground and background colors are similar. We propose a novel matting algorithm

exploiting the color misalignment cues to obtain better mattes than ones that can be

produced by the previous matting methods.

3. Motion Blur Removal using Circular Sensor Motion (Chapter 4): We propose

to move the camera image sensor circularly about the optical axis during exposure,

so that the attenuation of high frequency image content due to motion blur can be

prevented, facilitating motion blur removal. That is, although no object may be

photographed sharply at capture time, differently moving objects can be decon-

volved with similar quality. The proposed method may be implemented using a

sensor-shift system of an anti-camera shake mechanism.

We analyze the frequency characteristics of circular sensor motion in relation to

linear object motion, and show that this sensor motion nearly evenly distributes the

fixed frequency “budget” to different object speeds, meaning that the degradation

of image quality is equally reduced for all objects moving in arbitrary directions

with constant velocities up to some predetermined speed.

We also present a method for estimating motion blur based on the fact that, for a set

of PSFs resulting from circular sensor motion, deconvolution by wrong PSFs causes

ringing artifacts, which is not always the case for other image capture strategies.

This allows us to take a simple hypothesis testing approach for PSF estimation, and

we propose to detect such ringing based on image sparseness priors.

1.5 Organization

As listed in Sec. 1.4, Chapter 2 describes an image deblurring method that is purely based

on an image processing approach, and Chapters 3 and 4 present methods that exploit

camera optics modifications for defocus blur and motion blur removal. Finally, conclusion

and future work are presented in Chapter 5.
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Chapter 2

Image Processing Approach to Image

Deblurring

This chapter explores a method for removing blur in images that is purely based on an

image processing approach. Although the goal of this dissertation is to facilitate the

deblurring process by modifying the capture process of traditional cameras, we would

first like to know the achievable performance without modifications of camera optics. To

this end, this chapter deals with defocus deblurring in the context of digital refocusing,

in which images are not only deblurred, but also refocused as if they were focused to

different depths.

2.1 Introduction

Digital refocusing, a technique that generates photographs focused to different depths

(distances from a camera) after a single camera shot as shown in Fig. 2.1, is attracting

the attention of the computer graphics community and others in view of its interesting

and useful effects. The technique is originally based on the light field rendering [52, 32],

and exploits the fact that a photograph is a 2D integral projection of a 4D light field [69],

as was simulated by Isaksen et al. [37]. Ng et al. made this technique practical with

their hand-held plenoptic camera [70], eliminating the need for large and often expensive

apparatus such as a camera array or a moving camera that was traditionally required to

capture light fields. Since then, other novel camera designs have been emerging in order to

improve the resolution of images and/or to reduce the cost of optical equipment attached

to a camera [31, 48, 54].

In an attempt to perform digital refocusing without modifying camera optics, in this

chapter we are interested in developing an image processing method for synthesizing
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(a) (b) (c)

Figure 2.1: From a single input photograph, images focused to different depths can be

obtained. (a) A single input photograph, focused on the person in the left. (b) Created

image, refocused on the person in the middle. (c) Created image, refocused on the person

in the right.

refocused images from a single photograph taken with a conventional camera. If we had a

sharp, all-in-focus photograph with a depth map of the scene, it would be straightforward

to create depth-of-field effects by blurring the input photograph according to the depth,

as some of the existing image-editing software do (e.g., the Lens Blur filter of Adobe

Photoshop CS [2]). Therefore, we must first estimate “a sharp image with a depth map”

from an input photograph. In other words, we must first estimate and remove defocus blur

in a photograph.

To achieve this goal, we assume that spatially-variant defocus blur in an input photo-

graph can be locally approximated by a uniform blur, and we restore a sharp image by

stitching multiple deconvolved versions of an input photograph. And we also propose a

local blur estimation method applicable to irregularly-shaped image segments in order to

handle abrupt blur changes at depth discontinuities due to object boundaries. To create

desired refocusing effects, we present several means of determining the amount of blur

to be added to a restored sharp image based on the estimated blur, by which users can

change focus and depth-of-field interactively and intuitively.

2.2 Image Processing Flow

Fig. 2.2 shows a block diagram of our method. From an input defocused photograph

g(x,y), we first restore a latent image l(x,y), which would have been observed if defocus

blur had not been introduced by the camera lens system (i.e., deblurred sharp image). We

use the standard pillbox PSF parameterized by radius r of the circle of confusion, referred

to as blur radius, as a defocus blur model [11]:

h(x,y;r) =

{

1/πr2 for
√

x2 + y2 ≤ r

0 otherwise
, (2.1)
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and we generate multiple differently deblurred images f j(x,y) by deconvolving an input

photograph with each of the predetermined M +1 blur radii {r j| j = 0,1, · · · ,M}. That is,

we remove uniform defocus blur with blur radius r j from g(x,y) to obtain f j(x,y). This

amounts to solving the image deconvolution problem

g(x,y) = h(x,y;r j)∗ f j(x,y)+n(x,y), (2.2)

whose solution is given in Sec. 2.3. The M +1 blur radii are arranged in ascending order

as r0 < r1 < r2 < · · ·< rM, and r0 = 0 so that f0(x,y)≡ g(x,y). We typically use r j = 0.5 j,

and rM = 10.0 (in pixels).

From the deblurred images f j(x,y), we locally select the “best” image and stitch them

together to obtain the latent image l(x,y), the approach known as sectional method [89].

More precisely, we first estimate a blur radius field rorg(x,y) which describes with what

blur radius the input photograph is originally blurred around each pixel location (x,y), as

described in Sec. 2.4. We then linearly blend the deblurred images as

l(x,y) =
r j+1 − rorg(x,y)

r j+1 − r j
f j(x,y)+

rorg(x,y)− r j

r j+1 − r j
f j+1(x,y), (2.3)

where j is appropriately chosen for each pixel (x,y) such that r j ≤ rorg(x,y) ≤ r j+1.

Now that we obtained the latent image l(x,y), we create an output refocused image

o(x,y) by blurring the latent image. The reason for first obtaining the latent image is that,

as convolution of two disc PSFs does not result in another disc PSF, refocused images

cannot be obtained by directly convolving/deconvolving an input photograph. Sec. 2.5

presents a method for determining a new blur radius field rnew(x,y) to be added to the

latent image based on rorg(x,y) in order to meet desired refocusing effects. To perform

the synthesis in real-time, we again employ the sectional method, and we prepare multi-

ple differently blurred images as b j(x,y) = h(x,y;r j) ∗ l(x,y) in the preprocessing stage.

Again, b0(x,y) ≡ l(x,y). In the interactive refocusing stage, we perform linear interpola-

tion similar to Eq. 2.3 for a new blur radius field rnew(x,y) and the blurred images b j(x,y)

and b j+1(x,y) as:

o(x,y) =
r j+1 − rnew(x,y)

r j+1 − r j
b j(x,y)+

rnew(x,y)− r j

r j+1 − r j
b j+1(x,y), (2.4)

where j satisfies r j ≤ rorg(x,y) ≤ r j+1 for each pixel (x,y).
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Figure 2.2: Block diagram of our defocus deblurring and digital refocusing process.
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2.3 Image Deconvolution

In Sec. 1.2.2 we briefly reviewed the difficulties lying in the image deconvolution prob-

lem. Here we take a closer look. For notational convenience, this chapter uses a matrix-

vector version of Eq. 2.2 as follows [11].

g = Hf+n, (2.5)

where g, f, and n are P-vectors representing g(x,y), f j(x,y), and n(x,y), respectively,

with lexicographic ordering of P discretized pixel locations, and H is a P × P matrix

representing convolution by a PSF h(x,y;r j). Dependence on j is omitted for brevity.

Since solving Eq. 2.5 for f as a least squares problem of minimizing ‖g−Hf‖2 is

known to be ill-posed due to ill-conditioned matrix H, one needs prior knowledge about

which images are more likely to occur in nature. However, frequently-used Gaussian

smoothness priors are not suitable for restoring sharp (hence not necessarily smooth) im-

ages, even though they are computationally tractable. Therefore, recent methods exploit

so-called heavy-tailed priors, according to which the distributions of band-pass filter out-

puts of (sharp) natural images have a narrower peak and a broader foot than Gaussians as

shown in Fig. 2.3, allowing occasional discontinuities (such as edges) in restored images

[30, 15]. These methods use discrete wavelet transform (DWT) as band-pass filters, but

since restored images suffer from blocky artifacts arising from the dyadic image parti-

tioning in DWT, they use translation-invariant DWT (TI-DWT) [24], also known as sta-

tionary DWT, to reduce such artifacts at the cost of significant increase in computational

complexity.

We avoid this problem by using derivative filters instead of DWT, since they are

translation-invariant and do not involve dyadic image partitioning. Specifically, we bring

Bioucas-Dias’s wavelet domain method (WaveGSM) [15] into the gradient domain, be-

cause the Gaussian scale mixture (GSM) representation of heavy-tailed priors used in

WaveGSM is also applicable to speeding up the non-linear optimization involving heavy-

tailed priors in the gradient domain.

Following Tappen et al. [87], we use a generalized Laplacian distribution as a heavy-

tailed prior model for image gradients:

p(fx[i]) ∝ exp(−|fx[i]|
α/β ) , (2.6)

where fx[i] denotes the i-th element of the derivative of f with respect to x, and p(·) denotes

a probability density function of an argument variable. We set α = 0.3 and β = 0.085 with

pixel values in range [0, 1], so that Eq. 2.6 approximates sample gradient distributions as

shown in Fig. 2.3. We use the same prior for y derivatives, fy[i].
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Figure 2.3: (a) Sample sharp images. (b) Gradient distributions of the top image (red) and

of the bottom image (green), and the generalized Laplacian distribution we use (blue).

For visibility, these plots are horizontally displaced. They all actually peak at zero.

Taking derivatives of Eq. 2.5 leads to the following two gradient domain deconvolu-

tion equations:

gx = Hfx +nx, gy = Hfy +ny. (2.7)

For brevity, we will only deal with the x component in what follows. Assuming that

the noise nx in the gradient domain can be modeled as a Gaussian with variance w and

that the prior is independently applicable to each pixel location i, the posterior distribution

of a latent gradient fx given an observation gx is given as

p(fx|gx) ∝ p(gx|fx)p(fx) ∝ exp

(

−
‖gx −Hfx‖

2

2w

)

P

∏
i=1

p(fx[i]). (2.8)

The latent gradient is estimated as the maximizer of (the logarithm of) Eq. 2.8 as

f ′x = argmax
fx

{

−
‖gx −Hfx‖

2

2w
+

P

∑
i=1

ln p(fx[i])

}

, (2.9)

leading to non-linear optimization because the prior term is not quadratic: ln p(fx[i]) =

−|fx[i]|
α/β with α = 0.3 (see Eq. 2.6).

In order to solve Eq. 2.9 efficiently, we follow the WaveGSM approach, and we rep-

resent the heavy-tailed prior as a Gaussian scale mixture (GSM) as

p(fx[i]) =
∫ ∞

0
p(fx[i]|s)p(s)ds, (2.10)

where p(fx[i]|s) is a zero-mean Gaussian with scale (or variance) s, weighted by p(s).

Regarding s as a “missing variable,” Eq. 2.9 is turned into an expectation maximization

(EM) iteration as

fm+1
x = argmax

fx

{

−
‖gx −Hfx‖

2

2w
+

P

∑
i=1

E m
i [ln p(fx[i]|s)]

}

, (2.11)
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where m is an iteration count, and E m
i [·] denotes the expectation with respect to p(s|fm

x [i]),

the probability density of scale s given the current (m-th) estimate fm
x [i] of the latent gra-

dient. Since p(fx[i]|s) is a Gaussian, the prior term in Eq. 2.11 now becomes

E m
i [ln p(fx[i]|s)] = E m

i

[

−
(fx[i])

2

2s

]

= −
(fx[i])

2

2
E m

i

[

1

s

]

, (2.12)

which is quadratic with respect to fx[i] since E m
i [s−1] is fixed during m-th EM iteration

(see [15] for more details):

E m
i

[

1

s

]

=
α

β |fm
x [i]|2−α . (2.13)

Now that the objective function to be maximized in Eq. 2.11 is quadratic, taking its

derivative with respect to fx and setting it to zero leads to the following system of linear

equations:

(HT H+wSm)fx = HT gx, (2.14)

where HT is the transpose of H, Sm is a diagonal matrix representing the prior term

whose i-th element is given by Eq. 2.13, and w serves as a weighting coefficient for it,

which we treat as a user-specified value (typically around 10−3). The solution to Eq. 2.14

for fx becomes the next estimate fm+1
x , from which Sm+1 is computed, and this process is

iterated. Eq. 2.14 can be solved rapidly by the second-order stationary iterative method

[8], with the use of fast Fourier transform (FFT) for matrix multiplication by H and HT .

We set the observation as an initial estimate: f0
x = gx. Following Welk et al. [95], for

better noise suppression in the early stage of deconvolution, we first run a few (around 3)

EM iterations with w being twice the user-specified value, and then we run another few

EM iterations with the original value. The y part of Eq. 2.7 is solved similarly. After

obtaining estimated latent gradients f ′x and f ′y, we reconstruct the deblurred image f ′ by

solving a Poisson equation [74] with a multigrid solver. As we use FFT, periodic boundary

conditions are assumed. Edge tapering is performed to reduce boundary effects, and the

DC component lost by the derivative filters is restored from the input photograph. As with

WaveGSM, positivity of pixel values is not enforced so far. We clamp any negative pixel

values to a small positive value (1/255), and run additional (around 10) Richardson-Lucy

iterations [58, 79] in the image domain.

The time complexity of our method is O(P logP) in the number P of pixels owing

to the use of FFT convolution for matrix multiplication, which remains the same as that

of WaveGSM. However, the amount of computation is significantly reduced in two re-

spects as illustrated in the flowcharts shown in Fig. 2.4. First, we have only O(P) deriva-

tive coefficients to be updated, in contrast to O(P logP) TI-DWT coefficients. Second,

WaveGSM performs O(P logP) TI-DWT and its inverse for each iteration, whereas our

method performs derivative and its inverse (i.e., integral) operations only at the beginning
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(by deriving Eq. 2.7 from Eq. 2.5) and at the end (by solving a Poisson equation) of the

whole deconvolution process.
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Figure 2.4: Processing flows of deconvolution algorithms. (a) WaveGSM [15]. (b) Pro-

posed method.

2.4 Local Blur Estimation

Similar to the existing spatially-variant PSF estimation techniques, we divide an image

into segments, and we assume the blur to be uniform within each segment. However,

rectangular segmentation as in [72, 44] can produce segments that violate this uniformity

assumption, as the blur radius can change abruptly due to depth discontinuities at object

boundaries. Therefore, we perform color image segmentation [25] so that segments con-

form to the scene content. In what follows, we present a blur radius estimation method

that is applicable to non-rectangular segments.

Our approach is to select the blur radius from the predetermined M +1 candidate blur

radii {r j} that gives the “best” deblurred image for each segment. Unfortunately, focus

measures [84, 40] are not suitable for this selection criterion, because digitally decon-

volved images with wrong blur radii have different image statistics from optically mis-

focused images. Instead, we measure the amplitude of oscillatory artifacts in deblurred

images due to overcompensation of blur (examples can be seen in Fig. 2.11). For simplic-

ity, we explain this phenomenon using the 1D version of Eq. 2.2:

g(x) = h(x;r)∗ f (x)+n(x), (2.15)
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where the PSF is given by the following box function:

h(x;r) =

{

1/2r for |x| ≤ r

0 otherwise
. (2.16)

In the frequency domain, Eq. 2.15 is rewritten as

ĝ(ω) = sinc(rω) f̂ (ω)+ n̂(ω), (2.17)

where the hat notation (such as ĝ) denotes the Fourier transform of a given signal, and

ω denotes frequency. The Fourier transform of h(x;r) is sinc(rω) [20]. Neglecting the

noise, an approximate solution to Eq. 2.17 can be given by the following equation, known

as pseudo-inverse filtering:

f̂ ′(ω) =
sinc(rω)

sinc2(rω)+ ε
ĝ(ω), (2.18)

where ε is a small number (around 10−3) to avoid zero division at ω = kπ/r (k =

±1,±2, · · ·). If ĝ(ω) is non-zero at these frequencies, it is overly amplified (scaled by

1/ε), which results in oscillation in the deblurred image. As it is often the case that

|ĝ(ω)| is a decreasing function with respect to |ω|, major oscillation occurs at ω =±π/r,

which emerges as striped artifacts with an interval of 2r pixels.

Suppose we deblur a signal that has been blurred with radius r by a pseudo-inverse

filter with radius R. Then at the major oscillation frequency ω = π/R, we obtain the

following equation from Eqs. 2.17 and 2.18 (similar for ω = −π/R):

f̂ ′(π/R) =
1

ε

(

sinc(πr/R) f̂ (π/R)+ n̂(π/R)
)

. (2.19)

Fig. 2.10(a) shows a plot of | f̂ ′(π/R)| as a function of R, assuming that | f̂ (ω)| is also

a decreasing function and that |n̂(ω)| is constant (white noise) and is small compared

to | f̂ (ω)| except for high frequencies. From this plot we can expect to observe large

oscillation in deblurred images for R > r. Therefore, the maximum radius with which

pseudo-inverse filtering does not produce large oscillation is estimated to be the true blur

radius. The above discussion is also applicable to the 2D case, as the Fourier transform

of Eq. 2.1 has a similar shape to circular sinc functions [20].

For each candidate radius r j, we apply pseudo-inverse filtering to an input photograph

with that radius, and we measure the amplitude of oscillation by the ratio of the number

of pixels within each segment whose values are out of range [θc,min−δ ,θc,max +δ ], where

[θc,min,θc,max] is the original range of pixel values within that segment of an input pho-

tograph for each color channel c, and δ is a small number around 0.1. This oscillation

measure can be easily computed for arbitrarily-shaped segments. For reliability, however,
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we exclude too small or thin segments (e.g., under 100 pixels). From a set of blur radii

{r j}, we identify the maximum radius having the oscillation measure below a certain

threshold as the true blur radius. If this measure never exceeds the threshold, which typ-

ically occurs for segments with minimal color variance, we do not make an estimate for

those segments.

A blur radius field rorg(x,y) is obtained by stitching the estimated blur radii. Values

in segments where no estimate was made as described above are interpolated from sur-

rounding segments. We apply some smoothing to rorg(x,y) in order to suppress occasional

spurious estimates, and also to reduce step transitions that could lead to discontinuities in

refocused images.

From a blur radius field rorg(x,y) and deblurred images f j(x,y), we can reconstruct a

latent image l(x,y) by Eq. 2.3. As we cannot guarantee the blur estimation to be perfect,

we provide users with a simple drawing interface in which pixel intensity corresponds to

the size of a blur radius as shown in Fig. 2.5, so that users can interactively modify the

estimated blur radius field. Modification to the blur radius field is immediately reflected

in the latent image.

Figure 2.5: Screenshot of the blur field editing interface. The user draws on the grayscale

image on the right which represents a blur radius field. In this example, the user is increas-

ing the values around the upper right corner of the image, which are immediately reflected

in the deblurred image on the left. The blur radius to be specified and the magnitude with

which the specified radius influences the blur field can be adjusted by the sliders on the

left.
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2.5 Interactive Refocusing

Since defocus blur can serve to enhance artistic impression of photographs, in this section

we aim to provide users with means to interactively control the focus settings of pho-

tographs after they are captured, based on the deblurred image and estimated blur radius

field. Fig. 2.6 shows our example implementation of the proposed user interface. By the

sliders on the left, users can make the depth-of-field of an input photograph wider or nar-

rower, and the focused depth nearer or farther. They can also click on the image to bring

the specified point in focus, in analogy with auto-focusing of a real camera. The three

refocus modes on the top left will be explained later.

Figure 2.6: Screenshot of the interactive refocusing interface. The focused depth is im-

mediately adjusted to the point specified by a mouse click.

To determine a new blur radius field rnew(x,y) to be applied to the latent image in order

to create desired refocusing effects, we associate a depth map z(x,y) of the scene with the

original blur radius field rorg(x,y) through the ideal thin lens model [73] (see Fig. 2.7):

z(x,y) =
F0v0

v0 −F0 −qorg(x,y) f0
, (2.20)

F0, f0, and v0 are the original camera parameters, which represent the focal length, the f-

number, and the distance between the lens and the image plane, respectively, and qorg(x,y)

is the original signed blur radius field, such that rorg(x,y) = |qorg(x,y)|. The sign of
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qorg(x,y) is related to the original focused depth z0 = F0v0/(v0 −F0) as: q(x,y) < 0 for

z(x,y) < z0, and q(x,y) > 0 for z(x,y) > z0.

v0z(x, y)

qorg(x, y)

(x, y)

image plane

lens

scene

Figure 2.7: Thin lens defocus model.

As we can only estimate rorg(x,y), we let users draw binary masks to specify the

sign as shown in Fig. 2.8. Rough masks seem sufficient. If the scene depth is greater or

smaller than the focused depth everywhere, users have only to declare so. For other cases,

our drawing interface shown in Fig. 2.9 provides users with graph-cut image segmentation

capability [17], so that the user has only to draw strokes sparsely on the image.

Figure 2.8: Binary masks specifying the sign of blur radius field qorg(x,y). Top row: Input

photographs. Bottom row: Corresponding masks. White indicates negative (nearer than

the original focused depth), and black positive (farther).

Suppose that we change the camera parameters to F, f , and v, then a new signed blur

radius field qnew(x,y) is derived by using Eq. 2.20 as

F0v0

v0 −F0 −qorg(x,y) f0
=

Fv

v−F −qnew(x,y) f
, (2.21)

where we eliminated z(x,y) to directly associate qnew(x,y) with qorg(x,y). Solving Eq. 2.21

for qnew(x,y) leads to

qnew(x,y) =
f0vF

f v0F0
qorg(x,y)+

v0F0(v−F)− vF(v0 −F0)

f v0F0
, (2.22)
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(a) (b)

Figure 2.9: Screenshot of the signed mask specification interface. Only the portion of

the panel enclosed by the red rectangle is used for this purpose. (a) The user drew some

strokes to roughly specify the regions nearer than the focused depth (blue) and those

farther (red). (b) The system automatically fill in the other regions using graph-cut image

segmentation [17].

from which a new (unsigned) blur radius field to be added to the latent image is obtained

as rnew(x,y) = |qnew(x,y)|.

The original camera parameters F0, f0, and v0 may be obtained from EXIF data [38]

embedded in JPEG files created by most of the recent digital cameras. However, some pa-

rameters are often unavailable, and EXIF data itself may not be available from converted

or edited image files. In addition, it is not necessarily intuitive to manipulate the actual

values when handling an image, not a camera. Therefore, we present three simplified

versions of Eq. 2.22, in which relative camera parameters are used.

Constant Focal Length assumes the focal length to be constant: F = F0. Then Eq. 2.22

simplifies to

qnew(x,y) =
1

fr
(vr qorg(x,y)+A0(vr −1)) , (2.23)

where fr ≡ f / f0 is a relative f-number, vr ≡ v/v0 is a relative image plane distance, and

A0 ≡ F0/ f0 is the original aperture. This equation has a good analogy to changing focus

using a real camera.

Simple Offset assumes vF = v0F0. Eq. 2.22 becomes

qnew(x,y) =
1

fr
(qorg(x,y)+qo f s), (2.24)

where qo f s ≡ ((v−F)− (v0 −F0))/ f0 is a blur radius offset. Though it is not realistic to

change the parameters in this manner when handling a real camera, this equation provides

40



users with a simple and intuitive way of manipulating blur.

Fixed Max Blur assumes v−F = v0 −F0. Then,

qnew(x,y) =
1

fr
(ur qorg(x,y)+qmax(1−ur)) , (2.25)

where ur ≡ vF/v0F0, and qmax ≡ (v0−F0)/ f0 is the maximum blur radius, corresponding

to z = ∞ in Eq. 2.20. This equation is useful for refocusing among near objects while

keeping far objects from becoming too sharp or blurry.

Using any one of the above three refocusing modes, users can interactively do the

following three types of refocusing operations.

Changing depth-of-field. This operation can be done by changing relative f-number fr.

Increasing fr extends the depth-of-field, whereas decreasing fr makes it shallower.

Changing focus. This can be done by changing vr, qo f s, or ur depending on the refocusing

mode in use. The other parameters A0 and qmax can also be adjusted, which we typically

set to max{rorg(x,y)} for good refocusing effects.

Auto-focusing. Users can simply specify a point in a photograph which they want to be in

focus. An appropriate value is automatically computed for the parameter of the selected

refocusing mode so that qnew(x,y) = 0 at the specified point (xs,ys) as:

vr = A0/(A0 +qorg(xs,ys)),

qo f s = −qorg(xs,ys), (2.26)

ur = qmax/(qmax −qorg(xs,ys)).

In summary, from the user’s point of view, the user will take the following steps to

perform refocusing.

1. The user inputs a photograph. The system automatically produces a blur radius

field and a set of deblurred images. This takes about 20 minutes for an image size

of 512×512.

2. The user edits the blur radius field if it has noticeable errors, using the interface

shown in Fig. 2.5. This typically takes a few to ten minutes.

3. The user draws a signed mask via the interface shown in Fig. 2.9. This takes less

than a minute.

4. The user can now interactively refocus the photograph using the interface shown in

Fig. 2.6.
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2.6 Results

All of the input photographs shown in this paper were taken with a Canon EOS-1D Mark

II camera and a Canon EF 28-70mm wide aperture (F2.8) lens. The image format was

JPEG with sRGB color space (gamma-corrected with γ = 2.2). We inverted this gamma-

correction during deconvolution and blur estimation.

2.6.1 Estimation and Removal of Uniform Blur

We first demonstrate the performance of our blur estimation and deconvolution methods

for uniform defocus blur. For the images shown in Figs. 2.12(a)(f), in which the scenes

have approximately uniform depths, we plotted their oscillation measure in Fig. 2.10(b),

treating the whole image as one segment. The arrows show the estimated blur radii with a

threshold of 0.01, which are 11 pixels for Fig. 2.12(a) and 7 pixels for Fig. 2.12(f). These

results conform to visual inspection as shown in Fig. 2.11. Fig. 2.11 also shows that the

number of out-of-range pixels (see Sec. 2.4) begins to increase as the pseudo-inverse filter

radius exceeds the true blur radius.

am
p

li
tu

d
e 

o
f 

o
sc

il
la

ti
o

n

pseudo-inverse filter radius    

O r r r

R

2 3
 0

 0.1

 0.2

 0.3

 0.4

 0  5  10  15  20

o
sc

il
la

ti
o

n
 m

ea
su

re

pseudo-inverse filter radius

(a) (b)

Figure 2.10: (a) Plot of the amplitude of oscillation | f̂ ′(π/R)| as a function of pseudo-

inverse filter radius R. (b) Plots of the oscillation measure for Fig. 2.12(a) (red) and

Fig. 2.12(f) (green), treating the whole image as one segment. The arrows show the

estimated blur radii with a threshold of 0.01.

Based on the estimated blur radii, we applied our deconvolution method, along with

other methods including Richardson-Lucy [58, 79], WaveGSM with ordinary DWT, and

that with TI-DWT. Fig. 2.12 shows the results. Since Richardson-Lucy does not exploit

explicit image priors, it produced less sharp images with noise (between the alphabets

in Fig. 2.12(b)) and halo artifacts (around the hair and face in Fig. 2.12(g)). WaveGSM

with DWT resulted in blocky images as expected (see Sec. 2.3). Our method produced
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Figure 2.11: Results of pseudo-inverse filtering for Figs. 2.12(a)(f) with different blur

radii. The out-of-range pixels are shown in red in the right half of each image.

better (for the alphabet image) or comparable (for the face image) results as compared to

WaveGSM with TI-DWT, running about 10 times faster.

Since our deconvolution method does not assume a specific form of a PSF, we also ap-

plied it to the removal of camera shake from a photograph. Fergus et al. used Richardson-

Lucy deconvolution to remove the camera shake PSF estimated by their method [28], and

we replaced Richardson-Lucy by our deconvolution algorithm. Our method appears to

produce less noisy results as shown in Fig. 2.13. In this example, we estimated the PSF

by extracting the trajectory of a bright small object in the input photograph (not shown in

the figure).

2.6.2 Estimation of Spatially-Variant Blur

Next, we show several local blur estimation results in Fig. 2.14. The input photographs are

shown in Figs. 2.1(a), 2.16(a), 2.17(a), 2.18(a), and 2.19(a). We performed relatively fine

segmentation to ensure estimation locality. The estimated radii approximately correspond

to the scene depths. For comparison, we applied the spatially-variant blur estimation

method by Özkan et al. [72]. This method is based on local Fourier transform, hence it

employs rectangular segmentation. The results are shown in Figs. 2.15(a)(d). It failed in

regions around object boundaries and also failed to identify small blur radii, leading to

noisy latent images as shown in Figs. 2.15(b)(e). The corresponding latent images based

on our blur estimation are shown in Figs. 2.15(c)(f).
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2.6.3 User Intervention for Blur Estimation

Next, we show an example of user intervention for the estimated blur radius field men-

tioned in Sec. 2.4. Fig. 2.16(b) shows an image representing the estimated blur radius

field after smoothing. Users can draw on this image to locally increase/decrease the val-

ues as shown in Fig. 2.16(c), for better visibility (Fig. 2.16(g) top) and ringing reduction

(Fig. 2.16(g) middle and bottom). This can be done in an aesthetic sense to obtain a vi-

sually pleasing latent image, and the edited blur radius field needs not correspond to the

scene depth. This user editing operation took from a few to ten minutes for our examples

shown below.

2.6.4 Refocusing Results

Finally, we show several refocusing examples in Figs. 2.17, 2.18, and 2.19, in which

we changed the depth-of-field and moved the focus nearer to or farther from the camera.

Out-of-focus objects became sharp after they were brought into focus, as can be seen in

the floret symbol at the bottom of the red crayon in Fig. 2.17(c) and the furry texture of

the nearer marmot in Fig. 2.19 right.

When synthesizing Fig. 2.17(c) from Fig. 2.17(a), we used the refocusing equation

Eq. 2.23, which simulates focus changes of a real camera (see Sec. 2.5). We obtained

the synthesis result that well approximates a real photograph shown in Fig. 2.17(d). For

Fig. 2.1, we used Eq. 2.24 for simple manipulation of blur radii. For Figs. 2.18 and 2.19,

we used Eq. 2.25 to keep distant objects unaffected as they are too blurry to be fully

restored.

For an image size of 512×512, our deconvolution described in Sec 2.3 took about 1

minute for each blur radius r j, and the blur estimation 15 seconds on an Intel Pentium4

3.2GHz CPU. Although the theoretical time complexity is O(P logP), it seems O(P) com-

putation is dominant, and the deconvolution took 16 minutes and the blur estimation 4

minutes for a 4Mpixel image. Refocusing can be performed in real-time.

2.7 Summary

This chapter has presented a method for removing defocus blur in images in the context

of digital refocusing, in which the goal is not only to perform deblurring but also to

create images with different focus settings. This chapter has focused exclusively on an
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image processing approach without camera optics modifications, in order to set a baseline

performance achievable without modifying the image capture process.

For image deconvolution, we have proposed a method for speeding up deconvolution

computation while taking into account heavy-tailed priors for image derivative distribu-

tions. The proposed method achieves similar image quality with 1/10 computation time

by taking derivatives beforehand and by working in the gradient domain. The proposed

method can also be used for removing blur other than defocus blur.

For blur estimation, we have proposed a method which can handle abrupt blur changes

at depth discontinuities due to object boundaries. Our method uses color image segmen-

tation rather than the traditional rectangular segmentation to better divide the image into

uniformly blurred regions, and the largest blur radius that does not cause ringing after

deconvolution is selected for each region. Although the proposed method was shown to

outperform the previous method, the estimated blur radius fields still needed to be re-

touched to obtain better deblurring and refocusing results.

For creating refocusing effects, we have presented several means of determining the

amount of blur to be added to a restored sharp image based on the estimated blur, with

which users can interactively control the focus settings of photographs after they are cap-

tured. While we have reduced the burden for the user by providing intuitive refocusing

parameters and “auto-focusing” capability, it is still necessary for the user to draw a signed

mask before performing refocusing operations.

In summary, we have found that we can achieve desired refocusing effects by ex-

clusively relying on an image processing approach, but we had to introduce some user

intervention, indicating that image processing alone is still not sufficient for making de-

blurring and refocusing processes completely automatic.
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(a) Input photograph (b) Richardson-Lucy (c) WaveGSM (DWT)

240×240 pixels, grayscale 20 sec. 4 sec.

(d) WaveGSM (TI-DWT) (e) Our method

48 sec. 5 sec.

(f) Input photograph (g) Richardson-Lucy (h) WaveGSM (DWT)

240×240 pixels, color 35 sec. 7 sec.

(i) WaveGSM (TI-DWT) (j) Our method

103 sec. 12 sec.

Figure 2.12: Comparison of four deconvolution methods and their computation times.

46



(a) (b) (c)

Figure 2.13: (a) Photograph spoiled by camera shake. The estimated PSF is shown in the

top left corner. (b) Result of Richardson-Lucy deconvolution. (c) Result of our deconvo-

lution method.

(a) (b)

(c) (d) (e)

Figure 2.14: Results of our local blur estimation shown in gray-level. The maximum

intensity (white) corresponds to a blur radius of 10 pixels. The blue regions indicate that

no estimate was made there. The black lines show the segmentation boundaries.
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Comparison with the existing blur estimation method [72]. (a) Estimation

result for the teapot image shown in Fig. 2.16(a). (b) Latent image based on (a). (c) Latent

image based on our estimate shown in Fig. 2.14(b). (d) Estimation result for the crayon

image shown in Fig. 2.17(a). (e) Latent image based on (d). (f) Latent image based on

our estimate shown in Fig. 2.14(c).
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(a) (b) (c)

(d) (e) (f) (g) (h)

Figure 2.16: Example of user intervention for a blur radius field. (a) Input photograph.

(b) Blur radius field after filling in the undefined (blue) regions in Fig. 2.14(b) and after

smoothing. (c) Edited blur radius field. The red circles indicate the edited regions. (d)

Latent image based on (b). This is the same as Fig 2.15(c). (e) Latent image based on (c).

(f) Magnified crops from the red rectangles in (d) (before editing). (g) Magnified crops

from the corresponding red rectangles in (e) (after editing). (h) Refocused image, created

by using the image (e) as a latent image.

(a) (b) (c) (d)

Figure 2.17: (a) Input photograph, focused on the brown crayon. (b) Created image with

a shallow depth-of-field. (c) Created image, refocused on the orange crayon. (d) Ground

truth photograph, focused on the orange crayon.
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(a) (b)

Figure 2.18: (a) Input photograph, focused on the flower in the center. (b) Created image,

refocused on the flower in the top right corner.

(a) (b)

Figure 2.19: (a) Input photograph, focused on the farther marmot. (b) Created image,

refocused on the nearer marmot.
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Chapter 3

Defocus Blur Removal using a

Color-Filtered Aperture

The previous chapter has shown that automatic defocus deblurring that is solely based

on image processing is still not feasible, and user intervention for blur estimation was

necessary. This chapter describes a method for defocus deblurring consisting of a camera

lens modification with color filters and associated image processing techniques in order

to achieve automatic defocus blur estimation.

3.1 Introduction

Wide aperture lenses are efficient in increasing the amount of incoming light so as to

improve the signal-to-noise ratio of captured images. However, they make the depth-of-

field shallow, and only objects located at a limited range of depth can be focused sharply.

In this chapter we intend to obtain an all-in-focus image by removing defocus blur

whose size is dependent on the scene depth. While coded aperture techniques [48, 90]

facilitate both blur estimation and deconvolution, the blur estimation has to rely solely on

defocus cues, requiring some manual intervention and also resulting in ambiguity between

depths farther and nearer than the focused depth (this ambiguity was also present in Chap-

ter 2, and we let the user draw a mask as shown in Fig. 2.8). Instead, we propose to use

a color-filtered aperture mask to exploit parallax cues which escape the above-mentioned

depth ambiguity.

By dividing the aperture into three regions through which only light in one of the RGB

color bands can pass, we can acquire three shifted views of a scene in the RGB planes

of a captured image in a single exposure. This allows us to take stereo correspondence
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between the RGB planes to estimate the scene depth, which is directly related to the

defocus blur size. A challenge we must address in using a color-filtered aperture is that,

as a scene is captured with three different bands of wavelength, corresponding points

in the RGB planes generally have different signal intensity levels. We develop a color

alignment measure to find correspondence between such RGB signals. Moreover, we

propose a method for extracting the matte of an in-focus foreground object, so that the

extracted foreground will be free from possible degradation due to deconvolution. Color

misalignment cues introduced by the color filters serve to constrain the space of possible

mattes that would otherwise contain erroneous mattes when foreground and background

colors are similar.

The proposed imaging system is portable, and it only requires off-the-shelf color fil-

ters for cameras as additional optical elements. The downsides of using a color-filtered

aperture are that objects having only a single pure R, G, or B color cannot be handled,

and that the visual quality of images is spoiled by color misalignment. We will show,

however, that our method can handle many real-world objects, and we also present how

to reconstruct color-aligned images using extracted depth and matte.

3.2 Color-Filtered Aperture

Fig. 3.1(a) shows our prototype camera lens with color filters in the aperture. We arranged

the RGB regions so that their displacement with respect to the optical center of the lens

aligns with the X and Y axes of the image sensor, as indicated by the arrows in Fig. 3.1(b).

By this arrangement, a scene point farther than the focused depth is observed with a

rightward shift in the R plane, an upward shift in the G plane, and a leftward shift in

the B plane. A scene point nearer than the focused depth will be shifted in the opposite

directions. Note that these color shifts come from geometric optics, not from chromatic

aberration. Fig. 3.2 illustrates this phenomenon in 2D where the aperture is split into two

(R and G) regions.

(a) (b)

Figure 3.1: (a) Camera lens with color filters placed in the aperture. (b) Filter arrange-

ment.
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image sensor
lens

focused

object

background color filters

image sensor
lens

background color filters

(a) (b)

Figure 3.2: 2D illustration of the interactions between light rays from a scene point and a

color-filtered aperture. (a) For a scene point at the focused depth, light rays in the R band

and those in the G band converge to the same point on the image sensor. (b) For a scene

point off the focused depth, light rays in the two bands reach different positions on the

image sensor, resulting in a color shift.

Fig. 3.3 shows an example photograph and its separated RGB planes. Due to the

higher transmittance of the R filter, captured images are relatively reddish.

Figure 3.3: Example photograph taken with our lens, and its separated RGB planes. The

white lines are superimposed to highlight the background color shifts. See Fig. 3.16(a)

for a closeup view.
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3.3 Defocus Blur Estimation

The RGB planes Ir, Ig, and Ib of a captured image I correspond to three views of a scene. If

we take a virtual center view (cyclopean view) as a reference coordinate system, the R, G,

and B planes are shifted to rightward, upward, and leftward according to the arrangement

of the aperture color filters. Meanwhile, the defocus PSF for each color plane is an oblique

square corresponding to the filter shape shown in Fig. 3.1. Since the size of the PSF mea-

sured by the half diagonal of the square (the length of the arrows in Fig. 3.1(b)) is equal to

the disparity between the RGB planes, we can estimate blur sizes as a stereo correspon-

dence problem between the RGB planes. Therefore, letting d be a hypothesized disparity

at (x,y), we need to measure the quality of a match between Ir(x+d,y), Ig(x,y−d), and

Ib(x−d,y).

Clearly, we cannot expect these three values to have similar intensities because they

are recorded with different bands of wavelength. To cope with this issue, inspired by

Levin et al.’s matting approach [50], we exploit the tendency of colors in natural images

to form elongated clusters in the RGB space (color lines model) [71]. We assume that

pixel colors within a local window w(x,y) around (x,y) belong to one cluster, and we use

the magnitude of the cluster’s elongation as a correspondence measure. More specifically,

we consider a set SI(x,y;d) of pixel colors with hypothesized disparity d as SI(x,y;d) =

{(Ir(s+d, t), Ig(s, t−d), Ib(s−d, t)) | (s, t) ∈ w(x,y)}, and search for d that minimizes the

following color alignment measure:

L(x,y;d) =
λ0λ1λ2

σ2
r σ2

g σ2
b

, (3.1)

where λ0,λ1, and λ2 (λ0 ≥ λ1 ≥ λ2 ≥ 0) are the eigenvalues of the covariance matrix

Σ of the color distribution SI(x,y;d), and σ2
r ,σ2

g , and σ2
b are the diagonal elements of

Σ. Note that the dependence on (x,y;d) of the right-hand side of Eq. 3.1 is omitted

for brevity. L(x,y;d) is the product of the variances of the color distribution along the

principal axes, normalized by the product of the variances along the RGB axes. It gets

small when the cluster is elongated (i.e., λ0 ≫ λ1,λ2) in an oblique direction with respect

to the RGB axes, meaning that the RGB components are correlated. In fact, this measure

can be interpreted as an extension of normalized cross-correlation (NCC) [53] so that it

is applicable to three images simultaneously (see Appendix A). L(x,y;d) is in the range

[0, 1], with the upper bound given by Hadamard’s inequality [33], since λ0λ1λ2 = det(Σ).

To illustrate the effect of this measure, we use a sample image shown in Fig. 3.4(a),

taken with a conventional camera lens. Since its RGB planes are aligned, the true dispar-

ity is d = 0 everywhere, and colors within the local window indicated by the red rectangle
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in Fig. 3.4(a) actually form an elongated cluster, as shown in Fig. 3.4(c). If we deliber-

ately misalign the RGB planes by d = 1,3, and 5 pixels, the distribution becomes more

isotropic, and the color alignment measure becomes larger, as shown in Figs. 3.4(d-f).

Now that we can evaluate the quality of a match between the RGB planes, we can

find the disparity d that minimizes L(x,y;d) at each pixel (x,y), from a predetermined set

of disparity values (-5 to 10 in our implementation). As local estimates alone are prone

to error, we use the standard energy minimization framework using graph-cuts [16] to

impose spatial smoothness constraints.
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(d) d = 1,L = 0.11 (e) d = 3,L = 0.39 (f) d = 5,L = 0.54

Figure 3.4: (a) Sample photograph taken with a conventional camera lens. (b) Closeup

of the local window indicated by the red rectangle in (a). (c-f) Plots of the pixel colors

within the local window in the RGB space. The values d and L shown below each plot

are the simulated disparity and the value of Eq. 3.1.
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3.4 Matting

This section describes a method for extracting the matte of an in-focus foreground object,

so that the extracted foreground will be free from possible degradation due to deconvolu-

tion. Matting is a problem of solving for foreground opacity α(x,y) at each pixel (x,y) in

the following matting equation.

I(x,y) = α(x,y)F(x,y)+(1−α(x,y))B(x,y), (3.2)

which models an observed image I as a convex combination of a foreground color F and

a background color B. By capturing an image so that a foreground object is in focus, we

can assume that α(x,y) is aligned between the RGB planes. More precisely, regions with

fractional alpha values (i.e., the silhouette of a foreground object) should be within the

depth-of-field of the lens. Slight violation of this assumption however does not lead to

severe degradation of extracted mattes, as will be shown in Sec. 3.6.

Solving Eq. 3.2 based only on the observation I is an under-constrained problem,

since we have only three measurements (Ir, Ig, and Ib) for seven unknowns (α , Fr, Fg,

Fb, Br, Bg, and Bb) at each pixel. Therefore, to incorporate additional constraints, we use

a trimap which we automatically generate from the disparity map, and we also leverage

the difference in misalignment between foreground and background colors to iteratively

optimize the matte.

3.4.1 Matte Optimization Flow

Algorithm 3.1 shows our iterative matte optimization procedure. For initialization, we

first roughly divide the image into foreground and background regions by thresholding

the disparity map, and we dilate their border to construct a trimap having a conservatively

wide “unknown” region (50-70 pixels in our implementation), as shown in Fig. 3.5(a).

We then initialize the alpha values using a trimap-based matting method, for which we

used Levin et al.’s Closed-Form Matting [50]. While this often gives already good results,

errors can remain where foreground and background colors are similar (see Fig. 3.12(a) as

an example). We detect and correct these errors in the subsequent iterative optimization

using color misalignment cues. To determine how the foreground and background colors

are misaligned in the “unknown” region, we make a two-layer assumption for the scene

around the foreground silhouette. And we propagate the disparity values from the “strictly

foreground” region to obtain foreground disparity map dF(x,y) as shown in Fig. 3.5(b).

Similarly we obtain background disparity map dB(x,y) from the “strictly background”

region (Fig. 3.5(c)).
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In the iterative optimization, letting n denote an iteration count, we first estimate fore-

ground and background colors Fn and Bn based on the current matte αn, by minimizing a

quadratic cost function ∑(x,y) ||I(x,y)−αn(x,y)Fn(x,y)− (1−αn(x,y))Bn(x,y)||
2 derived

from Eq. 3.2, plus smoothness constraints on foreground and background colors, similar

to [50]. These estimated colors Fn and Bn have errors in the same regions as αn has errors.

We detect these erroneous regions by measuring how consistent the estimated colors are

with the foreground and background disparity maps dF(x,y) and dB(x,y), as we will de-

scribe in Sec. 3.4.2. We then correct the alpha values around the detected regions to obtain

the matte αn+1 for the next iteration (Sec. 3.4.3). We iterate this process until change in

the matte is sufficiently small. Fig. 3.6 illustrates each step of the iterative optimization.

Algorithm 3.1: Matte optimization algorithm.

Initialization

1. Construct a trimap from the disparity map.

2. Find an initial matte α0 based on the trimap.

3. Propagate the disparity values to obtain foreground

and background disparity maps dF and dB.

Iterative optimization

1. Estimate foreground color Fn and background color Bn

based on the current αn.

2. Compute consistency measures CFn
and CBn

(Sec. 3.4.2).

3. Update αn+1 based on CFn
and CBn

(Sec. 3.4.3).

4. Repeat until convergence.

3.4.2 Measuring Consistency with Disparity Maps

Similar to the color alignment measure in Eq. 3.1, we consider a set SF(x,y;d) of pixel col-

ors within a local window w(x,y), in this case for the foreground color F(x,y), not for the

input image I(x,y) as SF(x,y;d) = {(Fr(s+d, t),Fg(s, t−d),Fb(s−d, t)) | (s, t) ∈ w(x,y)}

with hypothesized disparity d, and we define a foreground color lines model error as

follows.

eF(x,y;d) =
1

N

N

∑
i=1

l2
i , (3.3)
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(a) (b) (c)

Figure 3.5: (a) Trimap for the toy dog image in Fig. 3.3, constructed from the disparity

map shown in Fig. 3.10(a) top. White: strictly foreground. Black: strictly background.

Gray: unknown. (b) Propagated foreground disparity map dF(x,y). Blue indicates an

undefined region. (c) Propagated background disparity map dB(x,y).

where N = |SF(x,y;d)|, and li is the distance of the i-th color in SF(x,y;d) from the line

fitted to the elongated color cluster (i.e., the first principal axis). Intuitively, we examine

whether the colors in a local window fit the color lines model. Therefore, eF(x,y;d)

becomes large when d is a wrong disparity. We define the background color lines model

error eB(x,y;d) similarly. See Appendix B for more details.

As we have two possible disparities dF(x,y) and dB(x,y) at each pixel (x,y) in the

“unknown” region, we define foreground and background color consistency measures by

incorporating two values of color lines model errors at these two disparities:

CF(x,y) = exp
{

(eF(x,y;dF)− eF(x,y;dB))/κs

}

,

CB(x,y) = exp
{

(eB(x,y;dB)− eB(x,y;dF))/κs

}

,
(3.4)

where κs is a scale parameter. If the estimated foreground color around (x,y) erroneously

contains the (true) background color, CF(x,y) will be large around that region because

eF(x,y;dF) will be large and eF(x,y;dB) will be small. The effect of the background

counterpart CB(x,y) can be similarly explained.

3.4.3 Solving for the Matte

Following Wang and Cohen’s Robust Matting approach [93], we solve for α(x,y) as a

soft graph-labeling problem, where each pixel (regarded as a node in a graph) has data

weights WF(x,y) and WB(x,y), and each pair of neighboring pixels has an edge weight

We(x0,y0;x1,y1). The data weight WF(x,y) is responsible for pulling α(x,y) toward 1,

whereas WB(x,y) pulls it toward 0. The edge weights impose spatial smoothness con-

straints on alpha values by the Matting Laplacian [50]. This formulation is beneficial in

that it can be solved as a sparse linear system [34], not graph-cuts, and that it guarantees

α(x,y) to be in the range [0, 1] without additional hard constraints.
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While Wang and Cohen [93] used color samples gathered from the “strictly fore-

ground” and “strictly background” regions to set the data weights, we instead iteratively

update the data weights according to the consistency measures CFn
(x,y) and CBn

(x,y)

computed for the current estimate of the foreground and background colors Fn and Bn, as

follows.

WFn
(x,y) = κααn(x,y) +κc(CBn

(x,y)−CFn
(x,y)),

WBn
(x,y) = κα(1−αn(x,y))+κc(CFn

(x,y)−CBn
(x,y)),

(3.5)

where κα and κc are constants. We clamp WFn
(x,y) and WBn

(x,y) at 0 to keep them non-

negative. When the foreground consistency measure CFn
(x,y) is smaller (i.e., more con-

sistent) than the background counterpart CBn
(x,y), the foreground data weight WFn

(x,y)

is increased while the background data weight WBn
(x,y) is decreased, so that α(x,y) is

pulled toward 1 from the current value αn(x,y). Conversely, α(x,y) will be pulled toward

0 if CFn
(x,y) > CBn

(x,y).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 3.6: Synthetic toy example demonstrating how our matte optimization works. (a)

Ground truth foreground color. (b) Ground truth background color. (c) Ground truth

matte. (d) Composite image from (a-c) with the background color misaligned by 5 pixels.

This image is input to our matting algorithm. (e) Trimap. In this example we manually

drew it in order to leave a wide “unknown” region. (f) Initialized matte α0. The center

image region has large errors because the foreground and background colors are similar.

These errors will be corrected in the subsequent steps using color misalignment cues from

the ‘x’ shaped textures. (g) Estimated foreground color F0 based on α0 in (f). Blue in-

dicates an undefined region. (h) Estimated background color B0 based on α0 in (f). (i)

Foreground color consistency CF0
computed for F0 in (g). The disparity of (g) around

the top center region is 5, which is inconsistent with the true foreground disparity of 0.

Therefore, CF0
became large around there. (j) Background color consistency CB0

com-

puted for B0 in (h). The disparity of (h) around the bottom center region is 0, which is

inconsistent with the true background disparity of 5. Therefore, CB0
became large around

there. (k) Updated matte. The alpha values were pulled toward 0 where CF0
in (i) is large,

and toward 1 where CB0
in (j) is large. (l) Final matte after convergence, which is close to

the ground truth matte (c).
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3.5 Camera Hardware Implementation

For a prototype camera lens, we cut out a disc with a triple-square-shaped hole from a

piece of black cardboard, glued color filters (Fujifilter SC-58, BPB-53, and BPB-45) to

it, and attached it immediately in front of the aperture diaphragm of a Canon EF 50mm

f/1.8 II lens (see Fig. 3.7). This fabrication was done in a few hours with a box cutter and

a micro screwdriver. We used an unmodified Canon EOS40D DSLR as a camera body.

Fig. 3.8 shows the point-spread function (PSF) of the prototype lens, which is an image

of a defocused point light source. The square shape of each filter is observed mostly as-

is, with only slightly rounded corners at the horizontal extremities due to occlusion by

the lens housing. Fig. 3.8 also shows that the three color bands are well separated. We

achieved this by applying a linear transform to RGB sensor response so as to minimize

crosstalk between the aperture filters and the image sensor (see Appendix C for details).

(a) (b) (c) (d)

Figure 3.7: Prototyping process of a color-filtered aperture lens. (a) Original Canon EF

50mm f/1.8 II lens. (b) The aperture part of the disassembled lens. (c) Color filters are

attached to the aperture. (d) The lens after reassembly.

Color Red Green Blue

Figure 3.8: Point-spread function of our lens and its RGB components. The positions

of the R and B regions are opposite to those in Figs. 3.1 and 3.7(d), as the viewpoint is

behind the lens in this figure.

To align the RGB regions with the image sensor axes, manual adjustment was suf-

ficient. Once this is done, pixel disparities will always align with the X and Y axes of

captured images, requiring no further calibration and rectification at capture time or dur-

ing post-processing.
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3.6 Results

For all of the results shown below, we set the local window size to 15×15 pixels, κs = 0.1,

κα = 0.01, and κc = 0.02. The matte optimization converged in about 20 iterations. The

computation time for a 720× 480 image was 10 sec. for blur estimation, and 2 min. for

matting on an Intel Pentium 4 3.2GHz with 2GB RAM. We used summed-area tables [26]

to rapidly compute covariance matrices in local windows.

3.6.1 Blur Estimation Results

We first demonstrate the performance of our RGB correspondence measure used for dis-

parity/blur estimation. We compare our disparity estimation results with those of the pre-

vious methods [6, 21] in Figs. 3.9(a-c). In order to reveal raw performance, we show local

window estimates without graph-cut optimization. As Amari and Adelson’s method [6]

relies on high-pass filtering, it mostly failed to detect disparities of the defocused scene

backgrounds (Fig. 3.9(b)). Chang et al.’s method [21] performed better, but it handled

color edges and gradations poorly, presumably because these may not be accounted for

by a single intensity normalization factor within a local window (Fig. 3.9(c)). Our method

produced better results than the previous methods (Fig. 3.9(a)).

(a) (b) (c)

Figure 3.9: Comparison of correspondence measures between the RGB planes (local es-

timate). Larger intensities indicate larger disparities. Top row: results for the toy dog

image in Fig. 3.3. Bottom row: results for the woman image in Fig. 3.17. (a) Our method.

(b) Amari and Adelson [6]. (c) Chang et al. [21].

We also compare our results with a mutual information-based method by Kim et al.

[41], which can handle broad types of intensity relationships between images. Since their

method is coupled with iterative graph-cut optimization, our results after (single) graph-
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cut optimization are also shown in Fig. 3.10(a). Because their correspondence measure

is defined for two images, we take the average of the values for the three pairs of RGB

planes (RG, GB, and BR). Their method performed well in view of the fact that it does

not assume a priori knowledge of the intensity relationships. However, some portions of

the foreground objects were not detected (Fig. 3.10(b)).

(a) (b)

Figure 3.10: Comparison of correspondence measures between the RGB planes (global

estimate). Larger intensities indicate larger disparities. Top row: results for the toy dog

image in Fig. 3.3. Bottom row: results for the woman image in Fig. 3.17. (a) Our method

(after graph-cut optimization). (b) Kim et al. [41].

3.6.2 Matting Results

Next we show our matting results. Fig. 3.11(a) shows the extracted matte for the toy dog

image in Fig. 3.3. The hairy silhouette was extracted successfully. We can use this matte

to refine the boundary of the foreground and background regions in the disparity map

as shown in Fig. 3.11(b), by compositing the foreground and background disparity maps

shown in Figs. 3.5(b, c). In Fig. 3.12, we applied existing natural image matting methods,

Closed-Form Matting [50] and Robust Matting [93], with the trimap given by our method.

These results are not for comparison because the previous methods are designed for color-

aligned images, but the matte errors seen in Fig. 3.12 are indicative of the importance of

our color consistency measure in suppressing them.

For proper comparison, we used a ground truth matte shown in Fig. 3.13(a) obtained

by capturing an object in front of a simple background and by using Bayesian Matting

[23], followed by manual touch-up where needed. We created a synthetic “natural” image

as shown in Fig. 3.13(b) by compositing the object over a new background image. We

also created its color-misaligned version as shown in Fig. 3.13(c) by shifting the back-
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(a) (b)

Figure 3.11: (a) Extracted matte for the toy dog image in Fig. 3.3. (b) Refined disparity

map. Compare this with Fig. 3.10(a) top.

(a) (b)

Figure 3.12: Results of existing natural image matting methods. (a) Closed-Form Matting

[50]. (b) Robust Matting [93].

ground color by 3 pixels before composition. We applied the previous methods to the

color-aligned synthetic image, and our method to the color-misaligned one. Though not

perfect, our method produced a better matte as shown in Figs. 3.13(d-f). For quantitative

evaluation, we conducted the same experiment for five more examples shown in Fig. 3.14,

and we computed the mean squared errors (MSE) against the ground truth mattes, which

we plotted in Fig. 3.15. Our method reduced MSE values by 33-86% compared to the

other two methods.

3.6.3 Defocus Deblurring Results

We show defocus blur removal results based on the estimated blur and matte. First, we

restore a color-aligned image as shown in Fig. 3.16(b), by re-compositing the foreground

and background colors after canceling their color misalignment based on the foreground

and background disparity maps. Specifically, if the foreground disparity at (x,y) is d, the

aligned foreground color at that point is restored as: (Fr(x+d,y),Fg(x,y−d),Fb(x−d,y)).

We then restore an all-in-focus background color by stitching deconvolved images based

on the estimated blur size as illustrated in Fig. 2.2, and compose it with the extracted

foreground as shown in Fig. 3.16(c). In addition, by reblurring the deblurred image dif-

ferently as was done in Chapter 2, we can synthetically refocus the image as shown in
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(a) (b) (c)

(d) (e) (f)

Figure 3.13: Comparison using a ground truth matte. (a) Ground truth matte. (b) Synthetic

natural image. (c) Color-misaligned version of (b). (d) Closed-Form Matting (applied to

(b)). (e) Robust Matting (applied to (b)). (f) Our method (applied to (c)).

Fig. 3.16(d). In the presence of hairy foreground objects, alpha mattes are indispensable

for the above operations to give plausible results. Fig. 3.17 shows another deblurring

result for an outdoor photograph.

3.6.4 Additional Results

Fig. 3.18 shows additional color misalignment cancellation results.

Fig. 3.19 shows an example where a portion of the foreground object (the hip of the

sheep) is slightly out of the depth-of-field of the lens, violating the assumption that α(x,y)

is aligned between the RGB planes in Eq. 3.2. However, degradation of the extracted

matte around the region was small, as shown in Fig. 3.19(d).

The extracted mattes can also be used for composing the foreground objects onto

different background images as shown in Fig. 3.20.

Due to the use of color filters, our method cannot handle entirely pure-red objects (as

well as entirely pure-green or pure-blue objects). But this does not mean that objects must

not be mostly red. To prove that our method works for mostly red objects, we applied our

method to a photo of a red chair. This chair is mostly red but not entirely pure-red because:

1) it is not entirely red as it has a silver frame, 2) it is not purely red as this orangish red

65



Man Girl Flower Giraffe Tree

Figure 3.14: Synthetic natural images and their ground truth mattes.
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Figure 3.15: MSE values of the mattes produced by our method and the previous methods

for the images shown in Figs. 3.13 and 3.14.

has a sufficient green component. Our method indeed worked, as shown in Fig. 3.21.

Fig. 3.22 shows additional results for a photograph of two big names in the computer

graphics community.

Using the rapid shooting capability of the camera, we also performed video matting

as shown in Fig. 3.23. We applied our method to each frame in the video independently

without taking into account temporal coherence.

3.7 Summary

This chapter has presented a method for estimating defocus blur sizes by placing red,

green, and blue color filters in a camera lens aperture. By dividing the aperture into three
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(a)

(b)

(c)

(d)

Figure 3.16: Defocus blur removal and refocusing. The right column shows closeup views

of the left one. (a) Captured image. The colors are misaligned. (b) Color misalignment

canceled. (c) Defocus blur removed. (d) Refocused.

regions through which only light in one of the RGB color bands can pass, we can acquire

three shifted views of a scene in the RGB planes of a captured image in a single exposure.

This allows us to take stereo correspondence between the RGB planes to estimate the

scene depth, which is directly related to the defocus blur size. We have also presented a

matting method for extracting an in-focus foreground object so that the unblurred part of

the scene can remain unaffected by the deconvolution process. Our method only modifies

a camera lens with off-the-shelf color filters, and utilizes the RGB planes of the image

sensor of a conventional camera body to capture multi-view images in a single exposure.

We have proposed an effective correspondence measure between the RGB planes, and a

method for employing color misalignment cues to improve the matte. By showing results

for outdoor scenes and/or hairy foreground objects, we have demonstrated the portability

67



(a) (b) (c)

(d) (e)

Figure 3.17: Defocus blur removal for an outdoor scene. (a) Captured image. (b) Ex-

tracted matte. The estimated blur/disparity map is shown in Fig. 3.10(a) bottom. (c)

Deblurred image. The reddish color shade seen in (a) due to the aperture filters is also

corrected. (d) Closeup of (a). (e) Closeup of (c).

(a) (b) (c)

Figure 3.18: More color misalignment cancellation results. (a) Restored images. (b)

Closeups of (a). (c) Closeups of the original.

of our device and the effectiveness of our method in defocus blur removal, as well as in

post-exposure image editing including digital refocusing and composition over different

backgrounds.
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(a) (b) (c) (d)

Figure 3.19: Results for a sheep. (a) Captured image. (b) Blur/disparity map. (c) Matte.

(d) Closeup from the red rectangle in (c).

Figure 3.20: Composition onto different background images.

(a) (b)

(c) (d)

Figure 3.21: Results for a red chair. (a) Captured image. (b) Estimated depth. (c) Ex-

tracted matte. (d) Composite image, where the extracted chair is added back to the input

image multiple times.
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(a) (b)

(c) (d)

Figure 3.22: Results for two big names in the computer graphics community. (a) Captured

image. (b) Estimated depth. (c) Extracted matte. (d) Composite image.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3.23: Some frames from a video matting result, from left to right. (a) Captured

images. (b) Depth maps. (c) Trimaps. (d) Alpha mattes. (e) Composition over a blue

background. (f) Composition over another video.
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Chapter 4

Motion Blur Removal using Circular

Sensor Motion

So far, this dissertation has dealt with defocus blur. This chapter focuses on motion blur,

and describes a method for motion deblurring exploiting a modified image capture process

which involves translation of the camera image sensor during exposure.

4.1 Introduction

Motion blur, while being useful for depicting object motion in still images, often spoils

photographs by losing image sharpness. The frequency band that can be recovered by de-

convolution easily becomes narrow for fast object motion as high frequencies are severely

attenuated and virtually lost.

Follow shot, a photographing technique in which a photographer pans a camera to

track an object during exposure, can capture sharp images of a moving object as if it were

static. However, there are cases where follow shot is not effective: 1) when object motion

is unpredictable; 2) when there are multiple objects with different motion. This is because

follow shot favors particular motion that a photographer has chosen to track, as much as

a static camera favors “motion” at the speed of zero (i.e., static objects): objects moving

differently from favored motion degrade.

This chapter explores camera sensor motion during exposure that treats a wide range

of in-plane linear object motion in any direction and up to some predetermined speed.

That is, although no object may be photographed sharply at capture time, differently

moving objects can be deconvolved with similar quality. This idea is inspired by Levin

et al. [51], who proved that constantly accelerating 1D sensor motion can render motion
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blur invariant to 1D linear object motion (e.g., horizontal motion), and showed that this

sensor motion evenly distributes the fixed frequency “budget” to different object speeds.

We intend to extend their budgeting argument to 2D (i.e., in-plane) linear object motion

by sacrificing motion-invariance. We propose to translate a camera sensor circularly about

the optical axis, and we analyze the frequency characteristics of circular sensor motion in

relation to linear object motion.

By losing motion-invariance, we inevitably reintroduce two issues inherent to the clas-

sical motion deblurring problem, which [51] resolved for 1D motion. Firstly, we need to

estimate a point-spread function (PSF) of motion blur as it depends on object motion.

Fortunately, for a set of PSFs resulting from circular sensor motion, deconvolution by

wrong PSFs causes ringing artifacts, which is not always the case for other image capture

strategies. This allows us to take a simple hypothesis testing approach for PSF estimation.

Secondly, we need to segment an image into regions with different motion in order for

deconvolution to be applicable. This is still a challenging problem which has only been

partially addressed by state-of-the-art methods (e.g., [47] for 1D motion), and this chapter

assumes user-specified motion segmentation.

4.2 Circular Image Integration

Fig. 4.1(a) shows the proposed motion of a camera image sensor. We translate the sensor

along a circle perpendicular to the optical axis while keeping its orientation. We use the

phrase “circular motion” to emphasize that we do not rotate the sensor itself.

During exposure time t ∈ [−T,+T ], the sensor undergoes one revolution with constant

angular velocity ω = π/T . Letting the radius of circular motion be R, the sensor moves

along the circle with constant speed Rω , which corresponds to the target object speed S

in the image space. The corresponding object speed in the world space (i.e., actual speed

in a scene) is determined by the camera optics and the distance to the object from the

camera. Given exposure time 2T and the target object speed S, the appropriate radius is

therefore R = ST/π . Taking an xy plane on the sensor, the sensor motion goes through a

spiral in the xyt space-time volume as shown in red in Fig. 4.1(b).

Fig. 4.2 shows simulated motion blur PSFs and their power spectra of various object

motions observed from a static camera, the coded exposure camera [75], the motion-

invariant camera [51], and our circular motion camera. As can be seen in the figure,

while the power spectrum for a static object observed from a static camera is perfectly

broadband, those for moving objects become quickly narrowband as the object speed in-

creases. The coded exposure camera makes power spectra broadband at the cost of losing
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Optical axis

Lens

Sensor

x

y t

x

y

Exposure

time 2T

Radius R
(a) (b)

Figure 4.1: Circular sensor motion. (a) The sensor is translated circularly about the optical

axis. (b) Trajectory of the sensor motion in the space-time volume (shown in red).

light blocked by the shutter, but the tendency of bandwidth narrowing for faster motion

remains. The motion-invariant camera produces similarly broadband power spectra for

horizontal motions (they are not completely identical due to the tail clipping effect [51]),

but vertical frequencies are sacrificed as motion direction deviates from horizontal. The

circular motion camera produces power spectra that extend to high frequency regions in

all cases. Although they have striped frequency zeros, these zeros facilitate PSF estima-

tion as described in Sec. 4.4.

We evaluated the quality of these PSFs in a similar way to [103] by simulating mo-

tion blur for a set of 12 natural images, and by measuring the mean squared errors

(MSE) between the deconvolved images (using pseudo-inverse deconvolution) and the

original unblurred images. Fig. 4.3 plots the deconvolution noise increase in decibels

as 10log10(MSE/σ2), where we assumed noise corruption for motion blur to be Gaus-

sian of standard deviation σ = 10−3 for [0, 1] pixel values. As shown in the plots, the

motion-invariant camera shows excellent constant performance for horizontal motion up

to the target speed S, but for other motion directions, deconvolution noise increases for

faster object motion. The coded exposure camera and ours do not have such directional

dependence. The coded exposure camera performs almost as perfectly as a static camera

for static objects, and deconvolution noise gradually increases for faster object motion.

The circular motion camera also maintains stable performance for all directions up to

and slightly beyond S. It moderately favors the target object speed S, where it has lower

deconvolution noise than the other cameras except for the motion-invariant camera for

horizontal object motion. The downside of our image capture strategy is the increased

deconvolution noise for static objects.
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(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(a) (b) (c) (d) (e) (f) (g)

Figure 4.2: Motion blur PSFs and their corresponding log power spectra. Rows: (1) PSFs

and (2) power spectra for a static camera. (3)(4) For the coded exposure camera. (5)(6)

For the motion-invariant camera. (7)(8) For the circular motion camera. Columns: (a)

Static object. (b)(c) Horizontal object motion at different speeds. (d)(e) Oblique object

motion. (f)(g) Vertical object motion.

Fig. 4.4 demonstrates the above-mentioned trade-offs, showing synthetically motion

blurred objects and their deblurred images.
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Figure 4.3: Plots of deconvolution noise increase for different object speeds and direc-

tions. Pseudo-inverse deconvolution is used. The exposure time is 1 sec for all the cam-

eras. The vertical gray lines indicate the target (maximum) object speed S = 50 pixels/sec

for the motion-invariant camera and ours. The length 50 code containing 25 ‘1’s [5] was

used for the coded exposure camera (half the light level).
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(1)

(2)

34.3 dB 34.8 dB 35.3 dB4.8 dB

(3)

(4)

31.0 dB 32.3 dB 31.9 dB11.1 dB

(5)
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(7)

(8)

26.7 dB 26.1 dB 25.6 dB28.1 dB

(a) (b) (c) (d)

Figure 4.4: Simulated motion blurred images of a colorful soccer ball and their pseudo-

inverse deconvolution results. The values indicate deconvolution noise increase. Rows:

(1) Blurred and (2) deblurred images for a static camera. (3)(4) Coded exposure camera.

(5)(6) Motion-invariant camera. (7)(8) Circular motion camera. Columns: (a) Static

object. (b)(c)(d) Horizontal, oblique, and vertical object motion at the target speed S.
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4.3 Analysis of Circular Sensor Motion

Levin et al. [51] proved that constantly accelerating 1D sensor motion (going through a

parabola x = at2 in xt space-time) is the only sensor motion that makes PSF invariant to

1D linear object motion. Based on this finding, we can derive the following proposition.

Proposition 1: There is no sensor motion that makes PSF invariant to 2D linear

object motion.

Proof: Suppose there exists such sensor motion m(t) = (mx(t),my(t)). As it is invari-

ant to 2D linear object motion, for any constant object velocity v = (sx,sy), there must

exist c and d such that

m(t)−vt = m(t + c)+d, (4.1)

which means that the object motion only translates the sensor motion path m(t). Differ-

entiating Eq. 4.1 and rearranging, we have:

∂m(t + c)

∂ t
−

∂m(t)

∂ t
= v. (4.2)

From this equation we can see that both ∂mx(t)/∂ t and ∂my(t)/∂ t are linear functions of

t, and therefore mx(t) and my(t) are parabolas. However, letting mx(t) = at2 and my(t) =

bt2, Eq. 4.1 cannot be satisfied because

mx(t)− sxt = a
(

t −
sx

2a

)2

−
s2

x

4a
, (4.3)

mt(t)− syt = b
(

t −
sy

2b

)2

−
s2

y

4b
, (4.4)

and c does not exist unless sx/2a = sy/2b, leading to a contradiction. Q.E.D.

Hence, we must abandon motion-invariance, and we seek to extend Levin et al.’s

another finding that their sensor motion evenly and nearly optimally distributes the fixed

frequency “budget” to different object speeds.

The intuitive explanation for optimality of constant camera acceleration for 1D case is

as follows. Fig. 4.5(a) shows the range of speed [−S,+S] that must be taken care of. We

can cover the entire range by accelerating a camera beginning at speed −S until it reaches

+S. The camera tracks every speed at one moment during exposure. By extending to

2D, the range of velocity (speed + direction) we must cover becomes a disc as shown in

green in Fig. 4.5(b). We are no longer able to fill the entire disc by a finite sensor motion

path, and we opt to trace only the circumference of the disc (shown in blue), which can

be achieved by moving a sensor circularly. The reasons for doing so are threefold.
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1. It makes theoretical analysis easier. Although full frequency analysis of 3D xyt

space-time is difficult, we were able to draw some insights of frequency character-

istics of circular sensor motion.

2. Tracing the circumference alone can be shown to deal with velocity in the interior

of the disc fairly well.

3. It makes implementation of camera hardware easier.

As for Reason 2, we have already seen empirically in Fig. 4.3 that the circular sensor

motion favors the target speed but this tendency is not too pronounced. To further treat

different object speeds evenly, one can consider sampling the interior of the velocity disc

by a set of concentric circles. However, this does not bring in significant improvement of

PSF power spectra, since the phases of the Fourier transform of multiple circular motions

cancel each other when superimposed, resulting in a qualitatively similar set of power

spectra to the one shown in the bottom row of Fig. 4.2 (see Appendix D).

sxsx

+S–S S0

sy

O

(a) (b)

Figure 4.5: The range of velocity (sx,sy) that must be covered by sensor motion for (a)

1D case and (b) 2D case (shown in green). We trace only the circumference of the disc

(shown in blue).

4.3.1 Frequency Budgeting

Now we review the frequency budgeting argument of [51] for the case of 2D object mo-

tion.

We consider a camera path in the xyt space-time volume.

p(x, t) =

{

δ (x−m(t)) for t ∈ [−T,+T ]
0 otherwise

, (4.5)

where x = (x,y), m(t) specifies the camera position at time t, and δ (·) is a delta function.

We would like to consider its 3D Fourier transform, denoted by p̂:

p̂(f, ft) =
∫

Ω

∫ +T

−T
δ (x−m(t))e−2πi(f·x+ ftt)dtdx, (4.6)

79



where f = ( fx, fy) is a 2D spatial frequency, ft is a temporal frequency, and Ω spans the

entire xy plane.

It can be shown that the 2D Fourier transform of a motion blur PSF for object velocity

v is a 2D slice of p̂(f, ft) along the plane of ft =−v · f =−sx fx− sy fy (Fourier projection-

slice theorem [18], see Appendix E). Therefore, given a maximum speed S, the volume

in the 3D fx fy ft frequency domain that these slices can pass through is confined to the

outside of the cone as | ft | ≤ S|f|, as shown in blue in Fig. 4.6(a). We would like | p̂(f, ft)|

to have as large value as possible within this volume, so that motion blur PSFs up to S

have large power spectra. However, the budget is exactly 2T along each vertical line f = c

(the line shown in red and green in Fig. 4.6(a)) for any given spatial frequency c: i.e.,
∫

| p̂(c, ft)|
2d ft = 2T (see Appendix F).

To assign the 2T budget so that any 2D linear object motion below S has the same

amount of PSF spectral power, we consider the following two criteria.

Effectiveness: The budget should be assigned as much as possible within the line

segment of ft ∈ [−S|c|,+S|c|] which is shown in red in Fig. 4.6(a). In other words, we

would like to avoid assigning the budget to the other portions of the line (shown in green

in Fig. 4.6(a)) as they correspond to object speeds beyond S and the budget will be wasted.

Because the budget is exactly 2T unless we close the shutter during exposure, less assign-

ment to some portion means more assignment to the other.

Uniformity: The budget should be distributed evenly across the line segment, so that

every object motion PSF has an equal amount of spectral power.

Therefore, optimal assignment in which both effectiveness and uniformity are perfect

gives T/S|c| to each point on the line segment.

4.3.2 Spectrum of Circular Sensor Motion

We take the 3D Fourier transform of the circular sensor motion m(t)= (Rcosωt,Rsinωt),

a spiral in the xyt space-time as shown in Fig. 4.1(b). By integrating Eq. 4.6 with respect

to t, we obtain:

p̂(f, ft) =
∫

Ω

(

δ (|x|−R)

Rω
e−2πi ftm

−1(x)

)

e−2πif·xdx, (4.7)

since the integrand is non-zero only at |x| = R and at t = m−1(x). Jacobian |dm(t)/dt| =

Rω is introduced in the denominator. By using polar coordinates as x = r cosθ and y =
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Figure 4.6: (a) The cone defining the volume (shown in blue) whose slices passing through

the origin correspond to the power spectra of motion blur PSFs below the speed S. (b)

Discrete ft slices. (c) fy slices. The hyperbolic intersections with the cone are shown in

purple. (d) Plots of Bessel functions Jk(z) of the first kind for some k, which correspond

to the slices in (b).

r sinθ ,

p̂(f, ft) =
∫

Ω

(

δ (r−R)

Rω
e−2πi ftθ/ω

)

e−2πif·xdx. (4.8)

This is a hard-to-integrate expression, but we can proceed if we focus on a set of discrete

ft slices where k = 2π ft/ω is an integer as shown in Fig. 4.6(b), as (see Appendix G):

| p̂(f, ft)|
2 = 4T 2J2

k (2πR|f|), (4.9)

where Jk(z) is the k-th order Bessel function of the first kind [94, 62], which is plotted for

some k in Fig. 4.6(d).

We show the effectiveness and uniformity of this distribution as described in Sec. 4.3.1.

For effectiveness, we show | p̂(f, ft)|
2 is small inside the cone | ft | ≥ S|f|, shown in white

in Fig. 4.6(a). By simple algebraic manipulation, we have 2πR|f| < k inside the cone.

As can be observed in Fig. 4.6(d) particularly clearly for k = 10 and 20, Bessel functions
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Jk(z) start from zero at the origin (except for k = 0), and remain small until coming close

to the first maximum value, which is known to be around z = k +0.808618k1/3 > k [94].

Therefore, Jk(z) is small for z < k, which means | p̂(f, ft)|
2 is small inside the cone.

Next, we show the uniformity of the distribution. For sufficiently large z ≫ k2, the

Bessel function can be approximated as

Jk(z) ≈

√

2

πz
cos

(

z−
kπ
2

−
π
4

)

. (4.10)

Using this approximation, Eq. 4.9 can be written as:

| p̂(f, ft)|
2 ≈

4

π
T

S|f|
cos2

(

2πR|f|−
kπ
2

−
π
4

)

. (4.11)

This equation indicates that, at any given spatial frequency f which is sufficiently large,

| p̂(f, ft)|
2 is a sinusoidal wave with an amplitude of (4/π)(T/S|f|) irrespective of tem-

poral frequency ft . Hence, although undulating, the distribution is uniform along the ft

direction on an average. The amplitude is greater than the optimal assignment T/S|f|

as described in Sec. 4.3.1, and by averaging the cosine undulation in Eq. 4.11, we can

see that the assigned frequency power is (2/π)(T/S|f|) on an average, meaning that the

circular sensor motion achieves 2/π (about 64%) of the optimal assignment (it achieves

more around the target speed).

To verify the above argument, we show a numerically computed power spectrum of a

spiral in Fig. 4.7 by three fy slices as shown in Fig. 4.6(c), along with the power spectra

of the other camera paths. The motion-invariant camera nearly optimally assigns the bud-

get for the fy = 0 slice corresponding to horizontal object motion, but it fails to deliver

the budget uniformly for other cases. Our circular motion camera distributes the budget

mostly evenly within the volume of interest, with condensed power around the cone sur-

face corresponding to the maximum value of Bessel functions, which results in a tendency

to favor the target speed.

4.4 Motion Blur Estimation

As shown in the bottom row of Fig. 4.2, the power spectra of PSFs resulting from circular

sensor motion have different frequency zeros depending on object motion, serving as cues

for PSF estimation [48]. As a result, deconvolution with wrong PSFs will result in ringing

artifacts as shown in Fig. 4.8, which we detect by the following equation:

E(v) =
1

N
∑

j

[

logq

(

∂d j(v)

∂x

)

+ logq

(

∂d j(v)

∂y

)]

, (4.12)
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(1)

(2)

(3)

(4)

(a) (b) (c) (d)

Figure 4.7: Camera paths in the space-time and 2D slices of their 3D log power spectra.

Purple curves show the intersections with the cone of target speed S. Rows: (1) Static

camera. (2) The coded exposure camera. (3) The motion-invariant camera. (4) The

circular motion camera. Columns: (a) Camera path in the xt space-time. See Fig. 4.1(b)

for the circular sensor motion path. (b) Slice at fy = 0. (c)(d) Slices off the fx ft plane

( fy 6= 0).

where N is the number of pixels, j is a pixel index, d(v) denotes a deconvolved image

with pseudo-inverse filtering using the PSF corresponding to object motion v, and q(·) is

a sparseness prior for natural image derivatives learned from sample images. Images with

ringing artifacts have many large derivative values inconsistently with the prior, making

Eq. 4.12 small. We search all possible (discretized) object motion directions and speeds

up to 1.5S, and pick the motion v (equivalently the PSF) that gives the largest value for

Eq. 4.12 as a true PSF.

As shown in Fig. 4.8, the simple hypothesis testing approach described above is valid

only for the circular motion camera PSFs. Figs. 4.8(c)(e) also show that our PSF estima-

tion can clearly distinguish opposite motion directions.
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(1)

6.13 4.92 4.93 3.09 4.93

(2)

5.96 4.19 4.54 3.42 4.13

(3)

4.95 4.56 4.49 3.78 4.49

(4)

2.44 2.54 4.08 2.95 2.91

(a) (b) (c) (d) (e)

Figure 4.8: Deconvolution results for a synthetically motion-blurred ball and their cor-

responding values of the sparseness prior Eq. 4.12. The largest value for each camera

is written in cyan, which identifies the correct PSF only for the circular motion camera.

Rows: (1) Static camera. (2) Coded exposure camera. (3) Motion-invariant camera. (4)

Circular motion camera. Columns: (a) Deconvolution results with static object PSFs, (di-

rection, speed) = (0◦,0). (b) Incorrect speed, (45◦,S/2). (c) Correct PSF, (45◦,S). (d)

Incorrect direction, (90◦,S). (e) Opposite direction, (225◦,S).

4.5 Camera Hardware Implementation

While we believe that circular sensor motion can be implemented with sensor shift mech-

anisms for image stabilization, they are not currently accessible to users, and we made the

following two prototypes by taking different approaches to implementing circular motion.

For the first prototype shown in Fig. 4.9, we opt to translate the entire camera body

mechanically using stepper motors. The circular motion radius is R = 1.1cm, and the

exposure time is set to 2T = 1.0sec. Translation of the whole camera body makes the

target object speed S equal to Rω in the world space (about 7cm/sec in our case), and the

size of PSFs becomes depth-dependent (i.e., far objects are not affected by the camera

motion). Therefore, this prototype only works for scenes up to 50cm away from the
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camera. Precision issues also kept us from using it for farther scenes, because the PSF for

static objects deviates from a circle as the optical axis slightly tilts during circular motion.

To overcome the above-described issues, for the second prototype, we place a tilted

acrylic plate inside the camera lens mount as shown in Fig. 4.10, and rotate it so that

refracted light rays move circularly. The plate is 3mm thick with a refraction index of

1.49, and the tilt angle is 7.7 degrees, making the circular motion radius R to be 0.13mm.

This radius corresponds to 5 pixels in our experiments, and hence the target object speed

is S = 31.4 pixels/sec with the exposure time 2T = 1.0 sec. We used this second prototype

for all of the results shown below.

Micro-controller

and batteries

Stepper motors

to PC

USB ports

Camera

Figure 4.9: Prototype camera based on a Canon PowerShot SX110. The whole camera

body is translated by two stepper motors.

4.6 Results

For deblurring, we performed the PSF estimation described in Sec. 4.4 for each user-

segmented object, and applied deconvolution with the estimated PSF. In order to reduce

ringing due to boundary effects, we made a rectangular image containing a cropped object,

and smoothly fill in the outside of the object region with periodic boundary condition

similarly to [57]. The deblurred objects and the background are blended back together.

The PSF estimation using a multi-resolution approach similar to [28] took 20 min for

a 512 × 512 image on a desktop PC with an Intel Pentium 4 3.2GHz CPU and 2GB

RAM. User intervention for motion segmentation took less than a minute. An example of

segmentation can be seen in Fig. 4.13(d).
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Motor

Worm gear

Ring gear + acrylic plate

Sensor

Camera

body

Side view

Figure 4.10: Prototype camera based on a Canon EOS 40D DSLR, where the lens is

detached to reveal the modified lens mount. We attach an ordinary Canon EF 50mm f/1.8

lens for image capture. After passing through the lens, incoming light (shown in red) is

displaced via the tilted acrylic plate, and the displacement sweeps a circle on the sensor

while the plate rotates (yellow arrow).

4.6.1 Motion Deblurring Results

Fig. 4.11 shows an example of multiple objects moving in different directions and at dif-

ferent speeds. The digits and marks on the cars are visible in the deblurred image. For

comparison, we also show closeups of the deconvolution results in Fig. 4.12 for both the

static camera image and the circular motion camera image. Note that, for Fig. 4.12, we

used simpler, pseudo-inverse deconvolution to better demonstrate high frequency preser-

vation. As shown, more details are recovered for the circular motion camera image with

less deconvolution noise.

(a) (b) (c)

Figure 4.11: Toy cars. (a) From a static camera. (b) From the circular motion camera. (c)

Deblurring result of (b).
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(a) (b) (c) (d)

Figure 4.12: Comparison of pseudo-inverse deconvolution results for the toy car example.

(a)(c) Results for the static camera image. (b)(d) Results for the circular motion camera

image.

Fig. 4.13 shows an example of an object whose parts are moving differently. Fig. 4.13

(d) shows the user-specified motion segmentation. The regions overlap in order to stitch

them smoothly at the borders after deconvolution. Details such as fingers and wrinkles on

the clothes were recovered.

(a) (b) (c) (d)

Figure 4.13: Squat motion. (a) From a static camera. (b) From the circular motion camera.

(c) Deblurring result of (b). (d) User-specified motion segmentation. Four regions are

enclosed by differently-colored lines.

Fig. 4.14 shows an example with a textured background. Due to occlusion boundaries,

artifacts can be seen around the silhouettes of the people, but the deblurred faces are

clearly recognizable. It is worth mentioning that the circular motion camera tells us that

the man was moving downward while the woman was moving leftward (not upward or

rightward), which is unavailable information from the static camera image in Fig. 4.14(a)

and also from the other capture strategies. We also note that, as the sensor partially tracks

object motion during exposure, details such as facial features are already visible in the

captured image even before deconvolution as shown in Fig. 4.14(b). To demonstrate this,

we applied a facial feature point detector [102] to Figs. 4.14(a-c). As shown in Fig. 4.15,

facial feature points were successfully detected without deconvolution. These motion

identification and recognizable image capture capabilities may be useful for surveillance
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purposes.

(a) (b) (c)

Figure 4.14: Moving people in front of a textured background. (a) From a static camera.

(b) From the circular motion camera. (c) Deblurring result of (b).

(a) (b) (c) (d) (e) (f)

Figure 4.15: Results of facial feature point detection [102] for Fig. 4.14. (a)(d) Detection

failed for the static camera image in Fig. 4.14(a), as the faces are severely blurred. (b)(e)

Detection succeeded for the circular motion camera image in Fig. 4.14(b) even before

they were deblurred, since the facial features are already visible. (c)(f) Detection also

succeeded for the deblurred image in Fig. 4.14(c).

Fig. 4.16 shows an example of a license plate of a motorbike. The digits and characters

are legible in the deblurred image Fig. 4.16(c). The motorbike is identified as moving

rightward (not leftward), which is unavailable information from the static camera image

in Fig. 4.16(a). This information may be useful for traffic accident investigation (e.g.,

to identify whether the motorbike crashed into another car on the left or it was trying to

avoid being hit by that car).

(a) (b) (c)

Figure 4.16: License plate of a motorbike. (a) From a static camera. (b) From the circular

motion camera. (c) Deblurring result of (b).
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4.6.2 Comparisons using a High-speed Camera

For comparison with the other capture strategies, we used high-speed camera images of

a horizontally moving resolution chart provided online [5]. Blurred images are simulated

by averaging 150 frames from the 1,000 fps video, resulting in a 39-pixel blur. The length

50 code was used for the coded exposure camera, spending 3 msec for each chop of

the code. For fair comparison, the motion-invariant and circular motion cameras were

targeted to an object speed of 50 pixels (not 39 pixels) per exposure time. We tilted the

camera by 90◦ to simulate the “vertical” object motion relative to the camera. As shown

in Fig. 4.17, the coded exposure deblurring produced a less noisy image than the static

camera, although oblique streaks of noise can still be seen. The motion-invariant camera

produced an even less noisy image for horizontal object motion, but the result for vertical

object motion exhibits severe noise. The circular motion camera produced clean images

for both motion directions, although they are not artifact-free, either.

We also used high speed camera images to demonstrate the recognizability of captured

images even before deconvolution, as compared to the other image capture strategies.

Examples of a vertically moving face are shown in Fig. 4.18. The facial feature point

detection succeeded only for the circular motion camera image of Fig. 4.18(d), as shown

in Fig. 4.18(e).

Fig. 4.19 shows examples of a license plate. They are also simulated from high speed

camera images (note that Fig. 4.16 is a real example, not a simulated one). Large digits

“72-14” are legible for all of the capture strategies, but the characters above these digits

are hard to recognize in the static and coded exposure images shown in Figs. 4.19(a)(b).

Legibility for the motion invariant camera image (c) is not as good as that for the circular

motion camera image (d) as the motion direction is slightly off the horizontal.

4.7 Summary

This chapter has proposed a method for removing motion blur by translating a camera

sensor circularly about the optical axis during exposure, so that high frequencies can

be preserved for a wide range of in-plane linear object motion up to some target speed.

We analyzed the frequency characteristics of circular sensor motion in relation to linear

object motion, and investigated its trade-offs between other capture strategies. We have

also presented a blur estimation method that can be applied to a set of PSFs resulting from

circular sensor motion, based on a simple observation that deconvolution by wrong PSFs

causes ringing artifacts, which is not always the case for other image capture strategies.
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Static camera Coded exposure

Motion-invariant (horizontal) Motion-invariant (vertical)

Circular (horizontal) Circular (vertical)

Figure 4.17: Comparison using high-speed camera images. For each pair of shown im-

ages, the left one is a simulated blurred image, and the right one is its deconvolution

result.

(a) (b) (c) (d) (e)

Figure 4.18: Motion-blurred face simulated from high speed camera images. (a) Static

camera. (b) Coded exposure camera. (c) Motion-invariant camera. (d) Circular motion

camera. (e) Facial feature point detection succeeded for the circular motion camera image

(d) without deconvolution (and failed for the others (a-c)).
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(a) (b) (c) (d)

Figure 4.19: Motion-blurred license plate simulated from high speed camera images. (a)

Static camera. (b) Coded exposure camera. (c) Motion-invariant camera. (d) Circular

motion camera.

We have shown deconvolution results for simulated images as well as real photographs

captured by our prototype camera, and demonstrated that objects moving in different

directions at different speeds can be deblurred equally well.
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Chapter 5

Conclusions and Future Work

This dissertation has proposed methods for removing defocus and motion blurs in pho-

tographs. Since deblurring is generally an ill-posed problem, the proposed method in-

cludes modifications of camera optics that alter the image capture process of traditional

cameras in order to achieve high frequency preservation and to facilitate blur kernel iden-

tification. Aiming at applications to consumer digital cameras, this dissertation proposed

low cost hardware implementation which adopted small modifications to existing cameras

and mechanisms that can be directly derived from existing ones.

5.1 Common Issues

This section describes several issues common to various parts of the proposed methods,

which result from our assumption that spatially-variant blur in an input photograph can be

locally approximated by a uniform blur. This directly leads to the following limitations,

which we would like to address in the future.

First, in order for blur estimation to be reliable, objects in a photograph should be

larger than the blur size around them, so that local segments contain a uniform blur with

enough sample pixels. Hence, estimation can be erroneous for small or thin objects (e.g.,

a strand of hair).

Second, since blur is locally modeled as convolution by a single PSF, translucent

objects are not accounted for. A similar problem occurs around occlusion boundaries [7],

which we alleviated by blending deblurred images. The quality of deblurred images will

degrade particularly if occlusion boundaries frequently appear in a scene (e.g., bars of a

cage).
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Third, sources of image degradation other than blur, such as image compression arti-

facts can disrupt our blur estimation and deconvolution algorithms. Over/under-exposures

also lead to loss of information, breaking the linear relationship between pixel values and

captured light intensities. Blur estimation can still be conducted by excluding affected

regions, but deconvolution will produce artifacts around there as shown in Fig. 5.1. Trans-

parent objects and specular highlights will also induce similar artifacts as they distort the

PSF shape.

(a) (b)

Figure 5.1: (a) Saturated input photograph. (b) Result of deblurring.

5.2 Image Processing Approach to Image Deblurring

We have presented a method for removing defocus blur in images in the context of digital

refocusing, in which the goal is not only to perform deblurring but also to create im-

ages with different focus settings. The proposed method relies exclusively on an image

processing approach without camera optics modifications, in order to set a baseline per-

formance achievable without modifying the image capture process. The proposed method

consists of a fast image deconvolution method for efficient deblurring, a local blur estima-

tion method which can handle abrupt blur changes at depth discontinuities due to object

boundaries, and a set of user interfaces for interactive refocusing.

Although the gradient domain approach made the deconvolution process faster, we

are no longer able to directly impose positivity constraints on variables, which are known

to be effective in regularizing the solution. Currently we fix values after bringing them

back to the image domain, but we would like to seek a way to incorporate such constraints

into the deconvolution process. The degree of ringing suppression of our deconvolution

method depends on the choice of parameter w, which is related to the image noise level.

We would like to consider determining the parameter automatically based on noise esti-

mation methods [56].

We used a simple pillbox PSF model, which seems sufficient for the defocus blur of
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the lens we used. Nevertheless, it is worth considering the use of more complex models

and calibrated PSFs depending on a target imaging system.

It would be interesting to consider applying heavy-tailed priors also to blur estima-

tion, which we did not because we knew that the defocus PSF was a pillbox, which is

much stronger prior knowledge about the PSF shape; and we assumed the blur to be uni-

form within each segment, which may be interpreted as a heavy-tailed prior that allows

discontinuities in a blur radius field occasionally at segment boundaries. For better blur

estimation, it would also be useful to improve segmentation quality.

We provided a means of modifying a blur radius field to fix ringing artifacts that

may still remain. Skilled retouching software users could further improve the quality by

directly working on the latent images. We would like to consider developing example-

based touch-up tools for ordinary users.

5.3 Defocus Blur Removal using a Color-filtered Aper-

ture

We have presented a method for estimating defocus blur sizes and for extracting the alpha

matte of an in-focus foreground object in order to facilitate defocus blur removal. Our

method only modifies a camera lens with off-the-shelf color filters and utilizes the RGB

planes of the image sensor of a conventional camera body to capture multi-view images

in a single exposure. We have proposed an effective correspondence measure between the

RGB planes, and a method for employing color misalignment cues to improve the matte.

The major limitation of our approach is that it does not work for objects having only a

single pure R, G, or B color. Combining with depth-from-defocus methods may partially

solve this problem. However, this does not mean that objects must have achromatic colors

all over. For example, the disparity of the red box in Fig. 3.3 is correctly identified as

shown in Fig. 3.10(a), thanks to the alphabets and the pictures of chocolates printed on

the box. Therefore, our requirement is that objects must not be purely colored entirely,

and we think there are many real-world objects satisfying this requirement. We would

like to further investigate this limitation.

In our imaging system, the f-number is fixed to 1.8 (full aperture of our prototype lens)

because a large aperture increases disparities and thus increases depth resolution. Since

disparities also increase when the lens is focused near, our system typically works well for

foreground objects at 0.5 to 2.5 meters away from the camera with a sufficiently distant

(about twice as far away) background. For farther scenes, depth resolution will gradually
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decrease, and the matte quality will also deteriorate as difference between foreground

and background color misalignment will be small. At a certain point, there will be no

disparity, and the system will not work at all.

By introducing color filters, the amount of incident light is decreased. Increasing the

aperture filter area to compensate for this introduces more defocus. While this degrades

depth estimation accuracy at defocused regions, it suppresses background clutters, which

is beneficial for matting. Color filters may also affect color demosaicing for the image

sensor, although we did not observe any loss of quality in our experiments, mainly because

we downsampled the captured images for tractable computation time.

While our blur estimation works fairly robustly, our matting fails when the foreground

and background colors are similar with little texture, as shown in Fig. 5.2(b), since we

have few color misalignment cues. Another failure mode is that, as we use a relatively

large window (15× 15), we cannot recover small/thin features such as hair strands and

holes in foreground objects, once they are missed in the course of optimization, as shown

in Fig. 5.2(d). We would like to address the above issues in the future.

(a) (b) (c) (d)

Figure 5.2: Failure cases of the proposed matting algorithm. Major errors are indicated by

the arrow and circles. (a) Captured image. (b) Matte from (a). (c) Closeup of the ground

truth matte for the girl image in Fig. 3.14. (d) Our result.

5.4 Motion Blur Removal using Circular Sensor Motion

We have proposed to translate a camera sensor circularly about the optical axis during

exposure, so that high frequencies can be preserved for a wide range of in-plane linear

object motion up to some target speed. We analyzed the frequency characteristics of

circular sensor motion in relation to linear object motion, and investigated its trade-offs

between other capture strategies.

Our camera prevents capture-time loss of frequency content of images and also facili-

tates blur estimation. However, another issue of classical motion deblurring remains. That

is, motion segmentation is left an open problem, for which we assumed user-intervention
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in this dissertation. We also confined ourselves to considering only in-plain linear object

motion. We would like to address these limitations in the future.

Another issue of our method is that static objects are also blurred. One way to alleviate

this is to pause the sensor for a fraction of exposure time before or after the circular

motion. We intend to investigate ways to control the degree to which static and moving

objects are favored relative to each other.

5.5 Future Directions

In this dissertation we have presented two types of camera modifications. One is to place

color filters in the camera lens aperture, and the other is to move the camera image sensor

circularly. Both of the modifications have large design spaces. For the color-filtered

aperture, we could change the square shape of each filter area into other shapes such as

circles and hexagons, or we could change relative positions of the filters. For the circular

sensor motion, we could move the sensor multiple times, move it with acceleration, or

move it along a whorl-like path. We would like to investigate the pros and cons of various

designs for each of the two modified image capture processes.

Another future direction is that, as we have focused on compact and low-cost imple-

mentation of camera hardware modifications, we are interested in making the existing

computational photography techniques (including the ones we have proposed in this dis-

sertation) more common to ordinary people. The first step we would like to take is to im-

plement multi-sensor consumer digital cameras for light-field capture, which can leverage

the abundant findings and knowledge from the recent advances in this field.

96



Bibliography

[1] E. H. Adelson and J. Y. A. Wang. Single lens stereo with a plenoptic camera. IEEE

Trans. Pattern Anal. Machine Intell., 14(2):99–106, 1992.

[2] Adobe Systems Inc. Photoshop CS. http://www.adobe.com/.

[3] A. Agrawal and R. Raskar. Optimal single image capture for motion deblurring. In

Proc. CVPR, pages 1–8, 2009.

[4] A. Agrawal and Y. Xu. Coded exposure deblurring: optimized codes for PSF

estimation and invertibility. In Proc. CVPR, pages 1–8, 2009.

[5] A. Agrawal, Y. Xu, R. Raskar, and J. Tumblin. Motion blur datasets and matlab

codes. http://www.umiacs.umd.edu/˜aagrawal/MotionBlur/.

[6] Y. Amari and E. H. Adelson. Single-eye range estimation by using displaced aper-

tures with color filters. In Proc. Int. Conf. Industrial Electronics, Control, Instru-

mentation, and Automation, volume 3, pages 1588–1592, 1992.

[7] N. Asada, H. Fujiwara, and T. Matsuyama. Seeing behind the scene: analysis

of photometric properties of occluding edges by the reversed projection blurring

model. IEEE Trans. Pattern Anal. Machine Intell., 20(2):155–167, 1998.

[8] O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1994.

[9] G. R. Ayers and J. C. Dainty. Iterative blind deconvolution method and its applica-

tions. Optics Letters, 13(7):547–549, 1988.

[10] M. R. Banham and A. K. Katsaggelos. Spatially adaptive wavelet-based multiscale

image restoration. IEEE Trans. Image Processing, 5(4):619–634, 1996.

[11] M. R. Banham and A. K. Katsaggelos. Digital image restoration. IEEE Signal

Processing Magazine, 14(2):24–41, 1997.

[12] M. Ben-Ezra and S. K. Nayar. Motion-based motion deblurring. IEEE Trans.

Pattern Anal. Machine Intell., 26(6):689–698, 2004.

[13] M. Ben-Ezra, A. Zomet, and S. K. Nayar. Video super-resolution using controlled

subpixel detector shifts. IEEE Trans. Pattern Anal. Machine Intell., 27(6):977–987,

2005.

97



[14] J. Biemond, R. L. Lagendijk, and R. M. Mersereau. Iterative methods for image

deblurring. Proceedings of the IEEE, 78(5):856–883, 1990.

[15] J. M. Bioucas-Dias. Bayesian wavelet-based image deconvolution: a GEM algo-

rithm exploiting a class of heavy-tailed priors. IEEE Trans. Image Processing,

15(4):937–951, 2006.

[16] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via

graph cuts. IEEE Trans. Pattern Anal. Machine Intell., 23(11):1222–1239, 2001.

[17] Y. Y. Boykov and M.-P. Jolly. Interactive graph cuts for optimal boundary & region

segmentation of objects in N-D images. In Proc. ICCV, pages 105–112, 2001.

[18] R. N. Bracewell. The Fourier transform and its applications. McGraw-Hill, 1965.

[19] P. J. Burt and R. J. Kolczynski. Enhanced image capture through fusion. In Proc.

ICCV, pages 173–182, 1993.

[20] M. Cannon. Blind deconvolution of spatially invariant image blurs with phase.

IEEE Trans. Acous., Speech, and Sig. Processing, 24(1):58–63, 1976.

[21] I.-C. Chang, C.-L. Huang, W.-J. Hsueh, H.-C. Lin, C.-C. Chen, and Y.-H. Yeh. A

novel 3-D hand-held camera based on tri-aperture lens. In Proc. SPIE 4925, pages

655–662, 2002.

[22] Y.-Y. Chuang. New models and methods for matting and compositing. PhD thesis,

University of Washington, 2004.

[23] Y.-Y. Chuang, B. Curless, D. H. Salesin, and R. Szeliski. A Bayesian approach to

digital matting. In Proc. CVPR, volume 2, pages 264–271, 2001.

[24] R. Coifman and D. Donoho. Translation-invariant de-noising. In Wavelets and

Statistics, volume 103 of Lecture Notes in Statistics, pages 125–150. Springer-

Verlag, 1995.

[25] D. Comaniciu and P. Meer. Robust analysis of feature spaces: color image seg-

mentation. In Proc. CVPR, pages 750–755, 1997.

[26] F. C. Crow. Summed-area tables for texture mapping. Computer Graphics (Proc.

SIGGRAPH 84), 18(3):207–212, 1984.

[27] E. R. Dowski and G. E. Johnson. Wavefront coding: a modern method of achieving

high performance and/or low cost imaging systems. In Proc. SPIE 3779, pages

137–145, 1999.

[28] R. Fergus, B. Singh, A. Hertzmann, S. T. Roweis, and W. T. Freeman. Removing

camera shake from a single photograph. ACM Trans. Gr., 25(3):787–794, 2006.

[29] D. J. Field. What is the goal of sensory coding? Neural Computation, 6:559–601,

1994.

98



[30] M. Figueiredo and R. Nowak. An EM algorithm for wavelet-based image restora-

tion. IEEE Trans. Image Processing, 12(8):906–916, 2003.

[31] T. Georgiev, K. C. Zheng, B. Curless, D. Salesin, S. Nayar, and C. Intwala. Spatio-

angular resolution tradeoff in integral photography. In Proc. Eurographics Sympo-

sium on Rendering, pages 263–272, 2006.

[32] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen. The lumigraph. In Proc.

ACM SIGGRAPH 96, pages 43–54, 1996.

[33] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and products (sixth

edition). Academic Press, 2000.

[34] L. Grady. Random walks for image segmentation. IEEE Trans. Pattern Anal.

Machine Intell., 28(11):1768–1783, 2006.

[35] P. Green, W. Sun, W. Matusik, and F. Durand. Multi-aperture photography. ACM

Trans. Gr., 26(3):68:1–68:7, 2007.

[36] S. Hiura and T. Matsuyama. Depth measurement by the multi-focus camera. In

Proc. CVPR, pages 953–959, 1998.

[37] A. Isaksen, L. McMillan, and S. J. Gortler. Dynamically reparameterized light

fields. In Proc. ACM SIGGRAPH 2000, pages 297–306, 2000.

[38] JEITA. EXIF: exchangeable image file format for digital still camera.

http://www.exif.org/specifications.html.

[39] N. Joshi, W. Matusik, and S. Avidan. Natural video matting using camera arrays.

ACM Trans. Gr., 25(3):779–786, 2006.

[40] J. Kautsky, J. Flusser, B. Zitova, and S. Simberova. A new wavelet-based measure

of image focus. Pattern Recognition Letters, 23(14):1785–1794, 2002.

[41] J. Kim, V. Kolmogorov, and R. Zabih. Visual correspondence using energy min-

imization and mutual information. In Proc. ICCV, volume 2, pages 1033–1040,

2003.

[42] A. Kubota and K. Aizawa. Reconstructing arbitrarily focused images from two

differently focused images using linear filters. IEEE Trans. Image Processing,

14(11):1848–1859, 2005.

[43] D. Kundur and D. Hatzinakos. Blind image deconvolution. IEEE Signal Processing

Magazine, 13(3):43–64, 1996.

[44] R. L. Lagendijk and J. Biemond. Block-adaptive image identification and restora-

tion. In Proc. Int. Conf. Acoustics, Speech, and Signal Processing, pages 2497–

2500, 1991.

[45] S.-H. Lai, C.-W. Fu, and S. Chang. A generalized depth estimation algorithm with

a single image. IEEE Trans. Pattern Anal. Machine Intell., 14(4):405–411, 1992.

99



[46] T. R. Lauer. Deconvolution with a spatially-variant PSF. In Proc. SPIE 4847, pages

167–173, 2002.

[47] A. Levin. Blind motion deblurring using image statistics. In Proc. Advances in

Neural Information Processing Systems (NIPS), 2006.

[48] A. Levin, R. Fergus, F. Durand, and W. T. Freeman. Image and depth from a

conventional camera with a coded aperture. ACM Trans. Gr., 26(3):70:1–70:9,

2007.

[49] A. Levin, D. Lischinski, and Y. Weiss. A closed form solution to natural image

matting. In Proc. CVPR, pages 61–68, 2006.

[50] A. Levin, D. Lischinski, and Y. Weiss. A closed-form solution to natural image

matting. IEEE Trans. Pattern Anal. Machine Intell., 30(2):228–242, 2008.

[51] A. Levin, P. Sand, T. S. Cho, F. Durand, and W. T. Freeman. Motion-invariant

photography. ACM Trans. Gr., 27(3):71:1–71:9, 2008.

[52] M. Levoy and P. Hanrahan. Light field rendering. In Proc. ACM SIGGRAPH 96,

pages 31–42, 1996.

[53] J. P. Lewis. Fast template matching. In Proc. Vision Interface, pages 120–123,

1995.

[54] C.-K. Liang, T.-H. Lin, B.-Y. Wong, C. Liu, and H. H. Chen. Programmable aper-

ture photography: multiplexed light field acquisition. ACM Trans. Gr., 27(3):55:1–

55:10, 2008.

[55] C.-K. Liang, G. Liu, and H. H. Chen. Light field acquisition using programmable

aperture camera. In Proc. ICIP, volume 5, pages 233–236, 2007.

[56] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang. Noise estimation from a single

image. In Proc. CVPR, pages 901–908, 2006.

[57] R. Liu and J. Jia. Reducing boundary artifacts in image deconvolution. In Proc.

ICIP, pages 505–508, 2008.

[58] L. B. Lucy. An iterative technique for the rectification of observed distributions.

The Astronomical Journal, 79(6):745–754, 1974.

[59] W. Matusik, H. Pfister, A. Ngan, P. Beardsley, R. Ziegler, and L. McMillan. Image-

based 3D photography using opacity hulls. ACM Trans. Gr., 21(3):427–437, 2002.

[60] M. McGuire, M. Matusik, H. Pfister, F. Durand, and J. Hughes. Defocus video

matting. ACM Trans. Gr., 24(3):567–576, 2005.

[61] M. McGuire, W. Matusik, and W. Yerazunis. Practical, real-time studio matting

using dual imagers. In Proc. Eurographics Symposium on Rendering, pages 235–

244, 2006.

100



[62] N. W. McLachlan. Bessel functions for engineers. Oxford University Press, 1934.

[63] A. Mohan, D. Lanman, S. Hiura, and R. Raskar. Image destabilization: pro-

grammable defocus using lens and sensor motion. In IEEE Int. Conf. Computa-

tional Photography, 2009.

[64] F. Moreno-Noguer, P. N. Belhumeur, and S. K. Nayar. Active refocusing of images

and videos. ACM Trans. Gr., 26(3):67:1–67:9, 2007.

[65] H. Nagahara, S. Kuthirummal, C. Zhou, and S. K. Nayar. Flexible depth of field

photography. In Proc. ECCV, pages 60–73, 2008.

[66] J. G. Nagy and D. P. O’Leary. Restoring images degraded by spatially variant blur.

SIAM Journal on Scientific Computing, 19(4):1063–1082, 1998.

[67] S. K. Nayar and Y. Nakagawa. Shape from focus. IEEE Trans. Pattern Anal.

Machine Intell., 16(8):824–831, 1994.

[68] R. Neelamani, H. Choi, and R. Baraniuk. ForWaRD: Fourier-wavelet regular-

ized deconvolution for ill-conditioned systems. IEEE Trans. Signal Processing,

52(2):418–433, 2004.

[69] R. Ng. Fourier slice photography. ACM Trans. Gr., 24(3):735–744, 2005.

[70] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan. Light

field photography with a hand-held plenoptic camera. Tech. Rep. CSTR 2005-02,

Stanford Computer Science, Apr. 2005.

[71] I. Omer and M. Werman. Color lines: image specific color representation. In Proc.

CVPR, volume 2, pages 946–953, 2004.

[72] M. K. Ozkan, A. M. Tekalp, and M. I. Sezan. Identification of a class of space-

variant image blurs. In Proc. SPIE 1452, pages 146–156, 1991.

[73] A. P. Pentland. A new sense for depth of field. IEEE Trans. Pattern Anal. Machine

Intell., 9(4):523–531, 1987.

[74] P. Perez, M. Gangnet, and A. Blake. Poisson image editing. ACM Trans. Gr.,

22(3):313–318, 2003.

[75] R. Raskar, A. Agrawal, and J. Tumblin. Coded exposure photography: motion

deblurring using fluttered shutter. ACM Trans. Gr., 25(3):795–804, 2006.

[76] R. Raskar, J. Tumblin, A. Mohan, A. Agrawal, and Y. Li. Computational photog-

raphy. In Proc. Eurographics STAR, 2006.

[77] A. Rav-Acha and S. Peleg. Two motion-blurred images are better than one. Pattern

Recognition Letters, 26(3):311–317, 2005.

[78] S. J. Reeves and R. M. Mersereau. Blur identification by the method of generalized

cross-validation. IEEE Trans. Image Processing, 1(3):301–311, 1992.

101



[79] W. H. Richardson. Bayesian-based iterative method of image restoration. Journal

of the Optical Society of America, 62(1):55–59, 1972.

[80] A. E. Savakis and H. J. Trussell. Blur identification by residual spectral matching.

IEEE Trans. Image Processing, 2(2):141–151, 1993.

[81] Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring from a single

image. ACM Trans. Gr., 27(3):73:1–73:10, 2008.

[82] A. R. Smith and J. F. Blinn. Blue screen matting. In Proc. ACM SIGGRAPH 96,

pages 259–268, 1996.

[83] E. M. Stein and G. Weiss. Introduction to Foureir analysis on Euclidean spaces.

Princeton University Press, 1971.

[84] M. Subbarao, T. Choi, and A. Nikzad. Focusing techniques. Optical Engineering,

32(11):2824–2836, 1993.

[85] M. Subbarao and N. Gurumoorthy. Depth recovery from blurred edges. In Proc.

CVPR, pages 498–503, 1988.

[86] J. Sun, J. Jia, C.-K. Tang, and H.-Y. Shum. Poisson matting. ACM Trans. Gr.,

23(3):315–321, 2004.

[87] M. F. Tappen, B. C. Russell, and W. T. Freeman. Exploiting the sparse derivative

prior for super-resolution and image demosaicing. In Proc. 3rd Int. Workshop on

Statistical and Computational Theories of Vision, 2003.

[88] A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. Wiley, 1977.

[89] H. J. Trussell and B. R. Hunt. Image restoration of space-variant blurs by sectional

methods. IEEE Trans. Acous., Speech, and Sig. Processing, 26:608–609, 1978.

[90] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin. Dappled

photography: mask enhanced cameras for heterodyned light fields and coded aper-

ture refocusing. ACM Trans. Gr., 26(3):69:1–69:12, 2007.

[91] P. Vlahos. Electronic composite photography. U. S. Patent 3,595,987, 1971.

[92] J. Wang and M. F. Cohen. An iterative optimization approach for unified image

segmentation and matting. In Proc. ICCV, volume 2, pages 936–943, 2005.

[93] J. Wang and M. F. Cohen. Optimized color sampling for robust matting. In Proc.

CVPR, 2007.

[94] G. N. Watson. A treatise on the theory of Bessel functions. Cambridge University

Press, 1922.

[95] M. Welk, D. Theis, T. Brox, and J. Weickert. PDE-based deconvolution with

forward-backward diffusivities and diffusion tensors. In Scale Space and PDE

102



Methods in Computer Vision, volume 3459 of Lecture Notes in Computer Science,

pages 585–597, 2005.

[96] M. Welk, D. Theis, and J. Weickert. Variational deblurring of images with uncertain

and spatially variant blurs. In Proc. DAGM-Symposium, pages 485–492, 2005.

[97] Y. Wexler, A. Fitzgibbon, and A. Zisserman. Bayesian estimation of layers from

multiple images. In Proc. ECCV, pages 487–501, 2002.

[98] W. Xiong and J. Jia. Stereo matching on objects with fractional boundary. In Proc.

CVPR, 2007.

[99] Y. Xiong and S. A. Shafer. Depth from focusing and defocusing. In Proc. CVPR,

pages 68–73, 1993.

[100] Y.-L. You and M. Kaveh. Blind image restoration by anisotropic regularization.

IEEE Trans. Image Processing, 8(3):396–407, 1999.

[101] L. Yuan, J. Sun, L. Quan, and H.-Y. Shum. Image deblurring with blurred/noisy

image pairs. ACM Trans. Gr., 26(3):1:1–1:10, 2007.

[102] M. Yuasa and O. Yamaguchi. Real-time face blending by automatic facial feature

point detection. In IEEE Int. Conf. Automatic Face & Gesture Recognition, pages

1–6, 2008.

[103] C. Zhou and S. Nayar. What are good apertures for defocus deblurring? In IEEE

Int. Conf. Computational Photography, 2009.

[104] C. L. Zitnick, S.-B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-

quality video view interpolation using a layered representation. ACM Trans. Gr.,

23(3):600–608, 2004.

103



Appendix

A Color Alignment Measure and Normalized Cross Cor-

relation

An equivalent of Eq. 3.1 in 2D (e.g., in the RG space) would be:

L(x,y;d) = λ0λ1/σ2
r σ2

g . (A.1)

Let σrg be the covariance between the R and G components, then by λ0λ1 = det(Σ) =

σ2
r σ2

g −σ2
rg, we obtain:

L(x,y;d) = 1−σ2
rg/σ2

r σ2
g (A.2)

Since normalized cross-correlation (NCC) is given as NCC = σrg/σrσg ∈ [−1,1], and

|NCC| ∈ [0,1] indicates the magnitude of correlation, the 2D version of the color align-

ment measure L has a one-to-one correspondence to |NCC|.

B Computing the Color Lines Model Error

Letting ci be the i-th color in SF(x,y;d), µ be the mean color, and v0 be a unit vector

of the fitted line (the first principal eigenvector), trigonometry gives the distance li of the

point ci from the line as:

l2
i = |ci −µ|2 − ((ci −µ)T v0)

2. (B.1)

The average of the first term is, by definition, the variance:

1

N

N

∑
i=1

|ci −µ|2 = σ2
r +σ2

g +σ2
b . (B.2)
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For the second term, we have:

1

N

N

∑
i=1

((ci −µ)T v0)
2 =

1

N

N

∑
i=1

((ci −µ)T v0)
T ((ci −µ)T v0)

=
1

N

N

∑
i=1

vT
0 (ci −µ)(ci −µ)T v0

= vT
0

(

1

N

N

∑
i=1

(ci −µ)(ci −µ)T

)

v0

= vT
0 Σv0 = vT

0 (λ0v0) = λ0(v
T
0 v0) = λ0,

(B.3)

by the definitions of the covariance matrix Σ and the eigenvector v0. Therefore, the color

lines model error can be computed as follows.

eF(x,y;d) = σ2
r +σ2

g +σ2
b −λ0. (B.4)

This turns out to be similar to the color alignment measure of Eq. 3.1, but we found it more

effective for matting to use this unnormalized, direct error measure. Since estimation

errors of background disparities are typically larger than those of foreground disparities,

we discount eB(x,y;d) by scaling it by around 0.7-0.9.

C Color Crosstalk Suppression

Let cr, cg, and cb be the mean image colors of a sheet of white paper through the R, G,

and B filters, respectively. For our prototype,

cr = (1.000,0.335,0.025)T ,

cg = (0.153,1.000,0.162)T , (C.1)

cb = (0.007,0.190,1.000)T ,

where the values are normalized with respect to the maximum component. Letting M =

(cr,cg,cb), we can decompose an observed color co into the three aperture filters’ contri-

butions by M−1co.

D Multiple Revolutions of the Sensor

For the velocity disc shown in Fig. 4.5(b), we trace only the circumference of the disc by

circularly moving the sensor once during exposure. Here we consider additionally tracing

the interior of the disc by concentric circles as shown in Fig. D.1, meaning that the sensor
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undergoes circular motion multiple times with different speeds during exposure. This

may seem to fill in the frequency zeros of the motion blur PSF power spectra seen in the

bottom row of Fig. 4.2. However, frequency zeros remain as shown in Fig. D.2 as the

phases of the Fourier transform of PSFs each corresponding to a single revolution cancel

each other when superimposed. Moreover, as the number of revolutions increases, PSFs

become more like the ones resulting from a static camera or the coded exposure camera,

and begin to favor static objects.

sx

S

sy

O

Figure D.1: Example of two circles (shown in blue) for sampling the velocity disc.

E The Slicing Relationship

As we are interested in motion blur PSF, we consider an object as a point light source

moving at velocity v as δ (x− vt). An image of this object (i.e., PSF) observed from a

camera moving according to m(t) during exposure time [−T,+T ] is given as:

h(x) =
∫ +T

−T
δ (x−vt +m(t))dt. (E.1)

Taking its 2D Fourier transform leads to

ĥ(f) =
∫

Ω

∫ +T

−T
δ (x−vt +m(t))e−2πif·xdtdx. (E.2)

By changing variable as x′ = vt −x, we obtain:

ĥ(f) =
∫

Ω

∫ +T

−T
δ (m(t)−x′)e−2πif·(−x′+vt)dtdx′, (E.3)

and integrating with respect to x′ leads to:

ĥ(f) =
∫ +T

−T
e−2πif·(−m(t)+vt)dt. (E.4)

Meanwhile, by integrating Eq. 4.6 with respect to x, we obtain:

p̂(f, ft) =
∫ +T

−T
e−2πi(f·m(t)+ ftt)dt. (E.5)

Comparing this equation to Eq. E.4, we see that ĥ(f) = p̂(−f, f · v), meaning that the

Fourier transform of a motion blur PSF is a 2D slice of p̂(f, ft) along the plane of ft =

−v · f.
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Figure D.2: Motion blur PSFs and their corresponding log power spectra. Rows: (1) PSFs

and (2) power spectra resulting from two-revolution circular sensor motion. (3)(4) Five-

revolution. (5)(6) Ten-revolution. Columns: (a) Static object. (b)(c) Horizontal object

motion at different speeds. (d)(e) Oblique object motion. (f)(g) Vertical object motion.

F The Amount of the Frequency Budget

From Eq. E.5, we see that p̂(c, ft), when viewed as a function of ft , is the (1D) Fourier

transform of the following function:

b(t) =

{

e−2πic·m(t) for t ∈ [−T,+T ]
0 otherwise

. (F.1)

Therefore, using the Parseval’s theorem,

∫ +∞

−∞
| p̂(c, ft)|

2d ft =
∫ +∞

−∞
|b(t)|2dt

=
∫ +T

−T
1 dt = 2T. (F.2)
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G Fourier Transform of a Spiral

According to [83], 2D Fourier transform of a function g(r)e−ikθ is given as G( fr)e
−ikφ ,

where (r,θ) and ( fr,φ) are the polar coordinates in the primal and frequency domains,

respectively (i.e., fr = |f| ≡ |( fx, fy)|), and we have:

G( fr) = 2πi−k

∫ ∞

0
g(r)Jk(2π frr)rdr. (G.1)

Applying this theorem to Eq. 4.8 leads to:

p̂(f, ft) = 2πi−ke−ikφ
∫ ∞

0

1

Rω
δ (r−R)Jk(2π frr)rdr

= 2πi−ke−ikφ 1

ω
Jk(2πR fr). (G.2)

Hence we have:

| p̂(f, ft)|
2 = 4π2 1

ω2
J2

k (2πR fr)

= 4T 2J2
k (2πR|f|). (G.3)
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