

Human Skin Simulation
by Generating Wrinkles along Vector Fields

by

Yosuke Bando

A Senior Thesis

Submitted to
the Department of Information Science

on February 13, 2001
in partial fulfillment of the requirements

for the Degree of Bachelor of Science

Thesis Supervisor: Tomoyuki Nishita
Title: Professor of Information Science

Abstract

In computer graphics, one of the important factors for rendering realistic
human bodies is quality of skin. To improve this, it is necessary to represent small
wrinkles on skin surfaces, which are locally oriented to certain directions. However,
no method is developed to generate wrinkles over body parts like hands or arms,
taking into account local directions. Thus, this paper proposes a method to generate
wrinkles along the vector field assigned over the mesh which represents a body part.
A vector field is obtained by interpolating the direction vectors which the user
specified at some vertices of the mesh. A wrinkle pattern is generated by drawing
along the vector field a number of line segments as wrinkle furrows, and by
changing depth and width of the furrows depending on the magnitude of the vector
field. The obtained wrinkle pattern is displayed using the bump mapping technique.
An interface was implemented so that the user can easily edit a vector field, and it
was shown that using the vector field whose assignment required relatively simple
operations through this interface, the generated wrinkle patterns simulated the
actual ones well.

 2

Acknowledgments

I would like to thank Professor T. Nishita for his helpful suggestions to this work. I
also thank all the members of Nishita Lab. for their useful discussions. And I
acknowledge the BRDF data provided by the Cornell University Program of
Computer Graphics.

 3

Contents

1 Introduction 4

2 Topography of skin surface 6

3 Skin surface modeling 7

3.1 Vector field assignment …………………………………………..8
3.2 Mapping to texture space ……………………………………….10
3.3 Height field generation ………………………………………….12

4 Skin surface rendering 15

4.1 Normal map generation….…….……………………………….. 15
4.2 Color computation…………………………...……………....……19

5 Implementation 22

5.1 User interface ………………………………….…..………..….…22
5.2 Height field generation ………………………………...….….... 26
5.3 Color computation …………..….….……..….……...……………27

6 Results 29

7 Conclusion 39

References 40

 4

1 Introduction

Recently, computer generated human models often appear in various fields such as
movies, video games, commercial films, surgical operation simulations and so on. In
many cases, they should be realistic enough to make one believe that they really
exist. Thus, in computer graphics, it is getting more and more important to enhance
their realism. Many approaches have been already taken, but there are only a few
studies on human skin rendering, which has much room to improve.

There are two factors to display realistic human skin. First, colors of skin
should imitate that of real human beings. To compute such colors, it is necessary to
take into account the bidirectional reflectance distribution functions (BRDF) of the
skin materials. The BRDF of a material is a function which describes how light is
scattered at its surface. Hanrahan and Krueger regarded skin as layered surfaces
and simulated its BRDF [1]. Marschner et al. measured the BRDF of skin by their
device [2]. Second, small unevenness of skin surfaces should be well represented.
This factor is what this paper mainly deals with.

The main elements which cause unevenness of human skin surfaces and
strongly affect its visual appearance are wrinkles. Distinct wrinkles appear on
specific body parts (e.g. lines on the palm or expressive wrinkles on the face) and
have a different structure depending on the part, showing its characteristics. On the
other hand, small wrinkles exist everywhere on the skin and have a similar
structure, which partially determine the properties of skin material. There are
many studies on the former wrinkles (e.g. [3-6]), but there are only a few on the
latter. Ishii et al. used a hierarchical Voronoi division for creating polygonal
patterns of small wrinkles, and made a curved surface on each polygon to represent
a wrinkle ridge [7]. Wu et al. used a hierarchical Delaunay triangulation instead [6].
However, both did not sufficiently deal with local directions of wrinkles. The former
partially took wrinkle directions into account, but it did not refer to a method to
assign directions to the body part. The latter proposed a method to do this, but it
was only for distinct wrinkles and could not be employed efficiently for small
wrinkles.

 5

Thus, this paper proposes a method to assign local directions to the body part
and to generate wrinkles along them. A triangle mesh is used as the geometric
model of the body part, and local directions are represented by a vector field the
user assigned over the mesh. For assigning a vector field, an interface was
implemented so that the user can easily edit a vector field. The user has only to
specify direction vectors at some vertices of the mesh, and a vector field is obtained
by automatically interpolating the specified vectors. The mesh and the vector field
are mapped to a two-dimensional texture space using planar or cylindrical
projection, and there a wrinkle pattern is generated by drawing along the projected
vector field a number of line segments as wrinkle furrows. Besides, depth and width
of the furrows are changed depending on the magnitude of the vector field. The
obtained wrinkle pattern is displayed using the bump mapping technique. In
addition, the BRDF of skin measured in [2] is optionally taken into account when
displaying.

The system was implemented using OpenGL, widely spread graphics library for
C language. Using this library efficiently so that the system can benefit from
graphics hardware acceleration, enabled fast generation and rendering of wrinkle
patterns. As a display result, it was shown that the generated wrinkle patterns
simulated the actual ones well. And it was also shown that the system could control
several properties of skin material and therefore could express some variety such as
smooth skin and rough skin.

The rest of this paper consists of five sections as follows. Section 2 describes the
topography of the skin surface on which the proposed method is based. Section 3
describes how to model the small variation on the skin surface caused by wrinkle
furrows. Section 4 describes how to render the skin surface modeled in Section 3.
Section 5 describes how the system is implemented. Section 6 shows the results.
Section 7 concludes. References are given at the end.

 6

2 Topography of skin surface

According to [8] and [9], the skin consists of, from top to bottom, the epidermis, the
dermis, and the hypodermis. The epidermis is therefore the surface of the skin, and
is a continually renewing, layered sheet which is mainly populated by the cells
called keratinocytes. The thickness of epidermis is 0.1mm on the average, but it
varies from 0.04mm on the eyelids to 1.6mm on the palms. Though it is the thinnest
component, the epidermis functions as a barrier, protecting the body from the outer
environment and helping maintain the inner environment.

The skin surface patterns begin to form during the fourth and fifth month of
fetal life, and become increasingly clear during childhood. But once acquired, they
remain stable throughout life. Patterned intersecting lines cover the entire skin
surface except palms and soles, forming small polygons. Most of these polygons are
roughly diamond-shaped, although this is not always the case (Figure 2.1). Thus,
there seems to be two directions along which these lines run. Figure 2.1 also shows
that an intersection point of two lines along the same direction is the endpoint of
either of them. The developmental processes that determine the directions of these
lines are not known for sure, although some factors are thought to affect them. In
this paper, these lines are called wrinkle furrows.

(a) (b)

Figure 2.1: (a) Skin surface of a hand. Lines run along two directions (indicated by
arrows), forming roughly diamond-shaped polygons. An intersection point of two
lines along the same direction is the endpoint of either of them (indicated by circles).
(b) A sketch of (a) showing the circled intersection points.

 7

3 Skin surface modeling

Based on the description in Section 2, the proposed method draws wrinkle furrows
along local directions rather than subdivide the surface into polygons as [6] and [7]
did, for those polygons are made as a result of intersection of wrinkle furrows. And
because these lines are likely to form a diamond-shape, the proposed method
assumes that there are two local directions along which furrows run. Thus, two
different and independent vector fields are assigned over a certain body part. A
triangle mesh is used to represent the body part. Figure 3.1 shows an example of
such a mesh.

There are three steps to generate and display wrinkle patterns on the mesh.
First, assign two vector fields on the mesh so that they indicate two local directions
of a wrinkle furrow at each point. Next, map the mesh and the vector fields to a
two-dimensional texture space. Finally, generate a height field so that it represents
the undulation of the skin surface, making wrinkle furrows along the vector fields.

The xyz coordinate system is used, with x-axis toward right, y-axis toward up,
and z-axis toward the user (Figure 3.2).

y

x

Screen

z

Figure 3.1: A triangle mesh Figure 3.2: The coordinate system used.
representing a hand.

 8

3.1 Vector field assignment

Vector fields are assigned to the mesh and indicate the local directions of wrinkle
furrows. Strictly speaking, a vector field must be such that direction vectors are
defined at every point on the mesh. But in this step, they are defined only at the
vertices. This will do because a direction vector at any point on a triangle is linearly
interpolated in the texture space from the three vertices of the triangle. As
mentioned in Section 2, two vector fields are needed, so two direction vectors must
be specified at every vertex. Two direction vectors at vertex are denoted by

 and . The method in this subsection refers to [10].
v

)()1(vd)()2(vd

Initially, is set to the projected vector of onto the tangent
plane (i.e. the plane perpendicular to normal vector at the vertex). And

 is set to , where

)()1(vd

)1(d

)0,1,0(
)(vn

)()2(vd)()(vnv × × denotes the cross product of two vectors
(Figure 3.3). The user changes direction and magnitude of the vectors at some
vertices, and vectors at the rest of the vertices are interpolated. Let vertices at
which the user edited the direction vectors be denoted by , and the
interpolated direction vector at the vertex is obtained using the following
equations. The user can also specify

N
v,L N,2vv ,1

v

iλ (initially set to 1) appearing in the second
equation.

,
||)()(||

,
)(

)(

1

1

)(

)(

i

i
iN

i
i

N

i
i

j
i

j w
w

w

vpvp

vd
vd

−
==

∑

∑

=

= λ
 (3.1)

where j is the index of direction vector, which is 1 or 2, and)v is the position
of verte v . The reason why this equation is adopted is predictability. It is simply
the weighted average where the weigh iw is inversely proportional to the distance
and proportional to

 (p
x

t

iλ , thus the result of interpolation is predictable, which makes
it relatively easy for the user to decide which vectors to edit. Figure 3.4 (a) shows
the edited vectors and (b) shows the vector fields obtained by interpolation.

 9

Figure 3.3: Initial vector fields assigned over the mesh.

Lines represent direction vectors at each vertex.

(a) (b)

Figure 3.4: (a) Two direction vectors specified at four vertices. (b) The obtained

vector fields by interpolating from specified direction vectors in (a).

 10

3.2 Mapping to texture space

To make the wrinkle generation easier and faster, the mesh and the vector fields are
mapped to a two-dimensional texture space. Wrinkles are drawn in this space, and
the generated image is mapped back to the mesh when displayed. Planar projection
and cylindrical projection are used, for most parts of the body can be mapped with
small distortion by selecting appropriate projection of the two. For example, the
hand and the foot can be mapped using planar projection, the arm and the leg
cylindrical projection. The orthogonal coordinate system is used for the texture
space, consisting of s-axis and t-axis.

Planar projection is very simple. Vertex of the mesh is mapped to
point . Figure 3.5 shows this mapping. The image in the texture space is

just the same as the user sees in the screen (of course when the orthogonal
projection is used for displaying the mesh). Direction vector specified

at the vertex is projected in the same way, and therefore the projected vector is
.

),,(zyx ppp
),(yx pp

)y

),,(zyx ddd

,(x dd

t y
x

s z

Figure 3.5: Mapping a triangle and a vector using planar projection.

Three-dimensional space Two-dimensional texture space

Cylindrical projection is a little bit complicated. When the cylinder is placed
vertically, centered at the origin, its surface is expressed by radius r , angle
from z-axis, and height (Figure 3.6). Therefore, any point is cylindrically
projected if the values of and are known (this is projection, so the value of

s
t
s

P
t r

is discarded). Because is expressed as , the

following equations are obtained.

),(zyx pp= , pP),,(srtr cossin s

 11

.,
)otherwise(cos2

)0(cos
,

1

1

22
y

z

x
z

zx pt

r
p

p
r
p

sppr =

⎪
⎪
⎩

⎪⎪
⎨

⎧

⎟
⎠
⎞

⎜
⎝
⎛−

>⎟
⎠
⎞

⎜
⎝
⎛

=+=
−

−

π
 (3.2)

y

s

t

z

Figure 3.6: Parameterization of a cylinder

P
x

.

r

Thus, vertex is mapped to point . Figure 3.7 shows this mapping.

A triangle is projected onto the cylinder, and the cylinder is cut and unfolded into a
plane. Because of this unfolding, projection of a vector involves rotation. A vector is
projected onto the cylinder and the projected vector is rotated by angle around
y-axis so that it is included in the plane. But in this case the projection and the
rotation is exchangeable, so it is no problem to rotate a vector first and to project the
rotated vector onto the plane (just by omitting the z component) next. Therefore,
direction vector is mapped to

),,(zyx ppp

,,(zyx ddd

),(ts

sin(z

s−

))),cos()(yx dsdsd −+− .

Figure 3.7: Mapping a triangle and a vector using cylindrical projection.

x

y

z s

t

s

Three-dimensional space Two-dimensional texture space

 12

3.3 Height field generation

The proposed method uses a height field to represent the undulation of the skin
surface. Height field is a function which represents the height at point
in the texture space. This method regards it as an image, a rectangular color buffer.
Grayscale color is used and it is represented by one value between 0 (black) and 1
(white). This value corresponds to the height. At first, the image is cleared in white,
and here gray line segments are drawn so that they represent the furrow of
wrinkles. In addition, boolean buffer

),(tsh),(ts

B is used for marking points which locate
near the already drawn furrows. This marking forbids drawing a new furrow from
here and thus prevents furrows from becoming too crowded. Because a height field
is generated in the texture space, the projected mesh and the projected vector field
are used in the algorithms below.

When point is given as a starting point, the algorithm for drawing one
wrinkle furrow from here is as follows. is initialized to infinity.

P
mitliN

1. Obtain direction vector d at P by linearly interpolating from three

vertices of the triangle to which P belongs. The interpolation is done in
the similar way to Gouraud’s smooth shading [11].

2. Rotate d by angle ||)(|| d .
3. Move from

anglef
P by length ||)(|| dlengthf in the direction obtained in step 2. If

there are some other furrows or the border of the mesh in the way, set Q
to the intersection point nearest to P . Otherwise set Q to the reached
point (Figure 3.8).

4. In buffer B , set the points covered with segment whose width is

5. Dra h width and in color .

PQ
||)(|| ddensityf , to TRUE.

w segment PQ wit ||)(|| dwidthf ||)(|| ddepthf
6. If 0=mitliN or Q is the intersection point in step 3, stop. Otherwise

return to step 1, setting { } 1||)(||,min −← dmitlimitlimitli fNN ,

holds the number of additional iteration. In step 6, decreases by 1
returning to step 1 unless (this is an integer value) is smaller

QP← .

mitli
hen

than

N mitliN
w ||)(|| dmitlif

cteristics
mitliN . If ||)(|| dmitlif is smaller, mitliN decreases more. The functions such as

anglef and lengthf control the chara of wrinkle furrows as shown in Table

 13

3.1. What kind of functions the implemented system uses is described in Section 5.
Q , in step 3, is set to the intersection point of another furrow if any,

is that such point becomes the endpoint of the furrow as mentioned in Section 2.

The reason why

Table 3.1: Functions and the characteristics of wrinkle furrows they control.
Fu Characteristic nction

P d

||)(|| dlengthf

Q

Outside of
the mesh

Inside of
the mesh

Border Another furrow

P d

||)(|| dlengthf

Q

Outside of
the mesh

Inside of
the mesh

Border

Another furrow

Figure 3.8: (a) There are no other furrows nor the border of the mesh in the
way, thus Q is set to the reached point. (b) There is another furrow and the
border, thus Q is set to the nearest intersection point to P.

(a) (b)

||)(|| df Small variation in direction of furrows angle

||)d(||lengthf Length of one segment forming furrows

||)(||densityf d How crowded furrows are

||)d(||widthf Width of furrows

||)d(||depthf Depth of furrows

||)d(||mitlif Total length of furrows

 14

The following is the algorithm for generating height field by using the
algorithm written above. Recall that the algo points to TRUE
in buffer

),(tsh
rithm above sets some

B
y

and for ids drawing furr vector fields are
enoted b and here.

b ows from those points. Two
d 1F 2F

1. Clear the image in white, and initialize B to FALSE.
2. For each triangle of the mesh, set point P to its center (of gravity) and

draw one fur w from ro here along and draw another furrow from here
along the opposite direction of

1F
 if 1F P is FALSE in B .

aw one furrow from 3. For each pixel of the image, set P to its center and dr
here along 1F and draw another furrow from here along the opposite
direction of 1F if P is FALSE in B .

4. Store the image into),(tsh .
5. Clear the image in white, and initialize B to FALSE.
6. For each triangle of the mesh, set P to its center (of gravity) and draw one

furrow from here along 2F and draw another furrow from here along the
opposite direction of 2F if P is F LSE in A B .

7. For each pixel of the image, set P to its center and draw one furrow from
here along 2F and draw another furrow from here along the opposite
direction of 2F if P is FALSE in B .

8. For each point),(ts , if the value of pixel),(ts is smaller than , set),(tsh
),(tsh to that value.

9. For each point),(ts , noiserktshtsh −←),(),(where r is a random
number between 0 and 1.

),Obtained ted height field. The opposite direction of the vector

on vector
direction, starting po a midpoint

f the furr t, in step 2 or 6, the center of gravity of is selected as

(tsh is the genera
field is obtained simply by replacing directi d with d− . By drawing
another furrow along the opposite int

ov

P
each triangl

 becomes
e

gio

o ow. Firs
point, a starting and the entire mesh is sparsely covered with furrows. Next, in step

3 or 7, the center of each pixel is selected, and the still unc ered re ns are stuffed
with furrows. Furrows along 1F and those along 2F are drawn independently, and
two generated height fields are merged in step 8 by taking the minimum value at
each point),(ts . In step 9, some noise is added to the height field to make the
surface rougher. The user can control how much noise to add by setting the value of

noisek .

 15

4 Skin surface rendering

There are two steps to display wrinkle patterns on the mesh. First, generate a

 each point, from the height field
te the orientation of the wrinkled

urface. Next, compute a color at each point in the texture space by applying some

l map stores the unit normal vector at the point on the mesh which is
apped to p in the texture space. These normal vectors are made to

d surface, and used in the lighting equation.
irst, the no r at each vertex of the mesh is normalized, and mapped to

of bump
apping computes perturbed normal vectors for a parametric surface as if a height

field

normal map, which stores a unit normal vector at
obtained in Section 3. These normal vectors indica
s
lighting equation to the normal vector, and map the generated image back to the
mesh.

4.1 Normal map generation

Norma),(tsn

oint (s

rmal ve

e

m), t

cto

ctio

represent the orientation of the wrinkle
F
the corresponding vertex of the projected mesh. This is done in the way similar to
the mapping of dir n vectors except the z component is not omitted. Next, the
normal vector at each point),(ts is obtained by linearly interpolating from three
vertices of the projected triangle to which point),(ts belongs. This normal vector is
normalized and stored in the normal map. Finally, the normal vectors are perturbed
so that they represent unevenness of the surface given by the height field. The way
of perturbing the normal vectors is based on the bump mapping technique.

The bump mapping technique, invented by Blinn [12], is a normal vector
perturbation technique for simulating lighting effects caused by patterned
irregularities on otherwise locally smooth surfaces. The classic formulation
m

 displaced the surface in the direction of the unperturbed normal vector (Figure
4.1). Assuming a surface is parameterized by u and v , and expressed as),(vuP ,
the normal vector at),(vuP is defined as

.),(
vu

vu
∂
∂

×
∂
∂

=
PPN (4.1)

 16

ows how this normal vector is perturbed using height field The following equation sh
),(vuh .

.
|||||||| ⎟⎟
⎠

⎜⎜
⎝

×
∂∂

+⎟⎟
⎠

⎜⎜
⎝ ∂

×
∂

+=
NN

NN
uvvu

 (4.2) ⎞⎛ ∂∂⎞⎛ ∂∂′ NPPN hh

he derivation of this equation is available in [12] and [13]. Figure 4.2 shows the

relation described in Equation (4.2).

In this method, is defined at each point in the texture space, so the
surface must be al expressed as . In this case, however, the surface

presented by a polygonal mesh cannot be regarded as parameterized by the
xture coordinate. The reason is that the surface is not smooth. The partial

T

(a) (b) (c)

Figure 4.1: (a) A surface and its normal vectors. (b) A height field. (c) The
normal vectors are perturbed as the height field displaces the surface.

N
′N

∂P
v∂
∂

h
so

),(ts
),(tsP

re
te

P

v∂
∂
⋅
P

N
N
||||

 u∂
h

||||N
NP

⋅
∂
∂
u

u∂
∂ h∂

v∂

Figure 4.2: Perturbing normal vector N of parameterized
surface),(vuP using information of height field),(vuh .

 17

derivatives of are not available and also cannot be approximated by the finite
diffe f

P
rences, for these inite differences suddenly change between polygons and this

prevents smooth perturbation of the normal vectors.

Therefore, this method uses the surface defined by unperturbed normal map
),(tsn . This surface is denoted by),(tsP′ , and is defined so that it satisfies the

followings.

1. is expressed as) ,(tsP′ ()),(,, tsfts using some function .

 is ooth because the normal vector at each point is obtained by

near interpolation. Thus the partial derivatives of

f
2. The surface normal vector is),(tsn .

This surface),(ts sm
li P′ (and) are available and
expressed as

f

,,1,0,,0,1 ⎟
⎠

⎜
⎝ ∂

=
∂

⎟
⎠

⎜
⎝ ∂

=
∂ ttss

 (4.3)

and satisfy th

⎞⎛ ∂′∂⎞⎛ ∂′∂ ff PP

lowing equation. e fol

.0),(),(=
∂
′∂

⋅=
∂
′∂
s
P

⋅
t

tsts Pnn

 leads to

 (4.4)

Therefore, expressing),(tsn as (n),, zyx nn

.,1,0,,0,1

n (4

⎟
⎠

⎜⎜
⎝

⎛
=

∂
′∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

∂
′∂

zz

x

ntn
n

s
PP

hus, Equatio .2) evaluates to the following, replacing with , and
with .

⎟
⎞

− yn (4.5)

),(vu),(ts P

P′
T

.,0,1,1,01,,x
n

⎭⎩⎝∂⎪⎭⎪⎩ ⎠⎝∂⎠⎝ zzzz ntnsnn

⎬
⎫

⎨
⎧

×⎟⎟
⎠

⎞
⎜⎜
⎛

−
∂

+⎪⎬
⎫⎪

⎨
⎧

⎟⎟
⎞

⎜⎜
⎛

−×
∂

+⎟⎟
⎞

⎜⎜
⎛

=′ nnN xyy nhnhn
 (4.6)

 18

Note that the normal map stores the unit normal vectors, thus

.
||),(||
),(),(
ts
tsts

N
Nn = (4.7)

Also note that

.1,,),(⎟⎟
⎠

⎞
⎜
⎛

= yx nn
 (4.8) ⎜

⎝∂
′∂

×
∂
′∂

=
zz nnts

ts PPN

ecause scaling a vector does not change its direction, the perturbed normal vector
is obtained using the following equation.

B

NN ′=′′ zn

(){ } (){ }.,0,,,0 nnnN ×−
∂
∂

+−×
∂
∂

+=′′ xzyz nn
t
hnn

s
h (4.9)

Here the s cify to control the influence of

e height field is introduced, which leads to

caling factor bumpk which the user can spe

th

(){ } (){ }.,0,,,0 nnnN ×−
∂
∂

+−×
∂
∂

+=′′ xzbumpyzbump nn
t
hknn

s
hk (4.10)

e, but they can be approximated using
nite differences.

The partial derivatives of h are not availabl
fi

,),(),(),(,),(),(),(
t

tshttsh
t
tsh

s
tshtssh

s
tsh

Δ
−Δ+

≈
∂

∂
Δ

−Δ+
≈

∂
∂ (4.11)

 are the size of a pixel in the texture space. Finally, is
ormalized and stored in the normal map, and in this way the perturbed normal

map is obtained from the unperturbed one.

where sΔ and tΔ N ′′

n

 19

4.2 Color computation

A color at each point in the texture space is computed by applying some

ghting equation to no ector stored in the normal map. Because these
ormal vectors represent the orientation of the wrinkled surface, the generated

led. Either the equation based on Blinn’s lighting
odel [14] or that on the BRDF data is applied (the user can select which model to

),(ts
rmal vli),(tsn

n
image also appears to be wrink
m
use). The generated image is mapped back to the mesh, and consequently the mesh
with wrinkle furrows on its surface is displayed.

Blinn’s lighting model is an empirical but widely used model because of its
simplicity and computational efficiency. Color jc (j is the color component, which

is red, green or blue) is computed using the following equation.

,coscos,, γθ specularlightjdiffuselightjambientambientj rIrIrIc ++= (4.12)

where ambientI is the intensity of light coming from the environm

n

ent,
is the intensity of light coming from the light source,

, and are the percentages of ambient, di

specular component of reflected light,
is the shininess of the material,

lightI
ffuse andjambientr , jdiffuser , specularr

n
and θ and γ are the angles defined in the figure below.

is the unit vector oriented to the light source, is the unit vector oriented to

the viewpoint, and is the unit normal vector of the surface. is the unit
L V

N H

L
H

N

V
γ θ

Light source

Figure 4.3: Relation between vectors N, L, V and H
and angles

Viewpoint

θ and γ .

 20

vector oriented to the middle direction between and .

L V

.
|||| VL

VLH
+
+

= (4.13)

These vectors are used to compute

θcos and γcos .

 cos L= .cos, NHN ⋅=⋅θ γ (4.14)

The optical properties of a mate , ,

 and to the appropriate values. The values the impleme

it is fast and sufficiently accurate,
ut optionally, the lighting equation based on the BRDF data of skin can be used.

The data is measure and
ghting equation, they approximated the BRDF
y Laf 1 heir representation is a

 that is ong’s lighting model [16].

BRDF is a function of incident light directi
 compa d with

. Bec the DF of skin is isotropic,
irec

f isotr of these coefficients for approximating

rial are determined by setting

et al

ause

jambientr ,

nted syste
jdiffuser ,

m uses specular

for skin colors are described in Section 5.

In most cases, Blinn’s model is used because

n r

b
d by Marschner et al. [2], and because the data is huge

cannot be applied directly to the li
with the representation proposed b ortune . [

cosine lobe model based on P
5]. T

h

 BR

generalization of the

),(vurf on u and reflected light
direction v , which describes the intensity of the reflected light as re
that of the incident light. Here u and v are assumed to be normalized and
defined in the local coordinate system of the surface as illustrated in Figure 4.4,
with the surface normal vector as z-axis
d tion of x-axis does not matter. The following is the formulation.

() ,,0max),(,,,∑ +++=
i

n
zzizyyiyxxixr

ivuCvuCvuCDf vu (4.15)

where),,(zyx uuu=u and),,(zyx vvv=v . The first term, D , concerns with

non-directional diffuse, the second with directional diffuse and specular. In the case
o opic reflection, iyix CC ,, =

the measured BRDF are provided by the Cornell University Program of Computer
Graphics.

. The values

 21

u

x

y
Surface

z

v

of the surface

Figure 4.4: The local coordinate system is aligned
to the normal vector of the surface.

Normal vector

Because BRDFs include both diffuse and specular terms, color is computed

using the following equation.

jc

,cos),(,, θvujrlightjambientambientj fIrIc += (4.16)

where , , and ambientI lightI jambientr , θ is the same as those in Equation (4.13).

 22

5 Implementation

The system was implemented using OpenGL. GLUI, the user interface library
based on OpenGL Utility Toolkit (GLUT) is also used for building the interface. This
section describes how the implemented interface is easy to handle, and how the
system benefit from graphics hardware acceleration when generating a height field
and computing colors. The functions used for drawing wrinkle furrows and the
values of the parameters in the lighting equations are also described (see Section
3.3 and Section 4.2).

5.1 User interface

Figure 5.1 shows the user interface implemented using GLUI. The following is its
usage.

Figure 5.1: Implemented user interface.

 23

(1) Body part

The user can select the body parts listed here. When the “READ” button is pushed,
the mesh which represents the selected part is read from the file and displayed.

(2) View and light

The user can set the direction of the light and view to the initial value, which are
both . Parallel light source is used.)1,0,0(

(3) Display

“Overview” mode displays the smooth shaded mesh using skin material specified in
(8). “Edit vectors” mode displays the flat shaded mesh in white, vertices of the mesh
in blue, one vector field in red and the other in green. In this mode, the user can edit
the vector fields. “Height field” mode displays the mesh with a generated height
field. “Wrinkles” mode displays the mesh with a shaded wrinkle pattern using skin
material specified in (8). Orthogonal projection is used for displaying the mesh.
(Figure 5.2)

(a) (b) (c) (d)

Figure 5.2: Four display modes. (a) “Overview” mode.
(b) “Edit vectors” mode. (c) “Height field” mode. (d) “Wrinkles” mode.

(4) Direction vectors

In “Edit vectors” mode, when “Only edited” is checked, only the edited direction
vectors are displayed (Figure 5.3). “INITIALIZE” button initializes and
“INTERPOLATE” button interpolates direction vectors as described in Section 3.1.

 24

(a) (b)

Figure 5.3: (a) All direction vectors are displayed.
(b) Only the edited direction vectors are displayed.

(5) Quit

“QUIT” button terminates the system.

(6) Vector interpolation

In “Edit vectors” mode, “Weight” shows weight λ of the selected vertex. This is
used in interpolating direction vectors (see Section 3.1). The user can change this
value, which varies from 0 to 10.

(7) Wrinkles

“Scale” shows the scaling factor used in generating a height field (see Section
5.2). The user can change this value, which varies from 0.5 to 2. “GENERATE”
button generates a height field and a normal map. “Noise” shows the value of ,
how much noise is added to the height field (see Section 3.3). “Bump” shows the
value of , how much the generated height field influences the surface (see

Section 4.1). The user can change these values, which vary from 0 to 1. “REMAKE”
button remakes the height field and the normal map if only and are

only adding noise to the already generated height field to which noise is not added
yet.

scalek

noisek

bumpk

noisek bumpk

changed. This is faster than “GENERATE” because the height field is obtained by

 25

(8) Skin material

RDF1” and “BRDF2” modes use the lighting model based on the BRDF data.

Besides the graphical user interface mentioned above, the user can also control
the

“B
There are two BRDFs. These are only for display mode “Wrinkles”. “Use parameters
below” mode uses Blinn’s lighting model, and skin material is determined by four
parameters, “Melanin”, “Blood”, “Specular” and “Shininess”. This is for display
mode “Overview” and “Wrinkles”. “Melanin” shows the amount of melanin in the
skin, and “Blood” shows the amount of blood. Both vary from 0 to 1. There is no
physical or biological meaning for these two parameters. “Specular” shows the
intensity of highlight, and “Shininess” shows how much highlight is concentrated.
“Specular” varies from 0 to 1, while “Shininess” from 0 to 128. The user can change
these four values. How these parameters are applied to Blinn’s model is described in
Section 5.3.

system by a mouse. In any display mode, the user can click and drag the mouse
to rotate the mesh by the left button, and to change the direction of light by the
right button. Further, in “Edit vectors” mode, the user can click and select a vertex,
and drag the vector at the selected vertex to change its direction and magnitude
(Figure 5.4).

(a) (b)

Figure 5.4: Editing direction vectors. (a) A ected by clicking

d

 vertex is sel
it, and two initialized direction vectors of the selected vertex are
isplayed. (b) The direction vectors are modified by dragging them.

 26

5.2 Height field generation

s described in Section 3.3, a height field is regarded as an image. The system

A
displays the mesh using double buffering, so two color buffers are available for
generating a height field. The system uses the front buffer for drawing lines which
represent wrinkle furrows, and the back buffer for marking the points which locate
near the already drawn furrows (Buffer B). Lines are drawn by calling OpenGL
functions, glBegin(GL_LINES) and glVer x2f(), thus benefiting from hardware
acceleration.

te

The followings are the functions which the system uses when drawing furrows.

.4.01)(xxf angle −= (5.1)

.)4()(xkxf scalelength += (5.2)

.)6 (5.3) 1()(xkxf scaledensity +=

 (5.6)

r, lo
cept

.)(xkxf scalewidth = (5.4)

.25.0)(2xxfdepth = (5.5)

⎣ ⎦ .1030)(xxf mitli −=

The unit of angle is radian, and the unit of length is pixel. The larger the magnitude
of the direction vector is, the straighte nger, sparser, wider and deeper the
furrow becomes. These functions ex depthf are linear to x so that the user can
predict the result relatively easily. depthf is proportional to the square of x , so that

deep furrows d de of each direction vector is assumed to vary
from 0 to 2. , and concern with length, and length depends on

the conditions such as the scale of the mesh and the texture resolution. Thus, these
functions have a scale factor , which is set to the appropriate value by the user.

stan out. The magnitu
width lengthf densityf f

scalek

 27

5.3 Color computation

Since OpenGL uses Blinn’s lighting model, colors are computed fully by hardware.
The normal map is used for lighting calculation, so the stored normal vectors must
be rotated together as the mesh rotates. This rotation is simply done by referring to
OpenGL modelveiw matrix, which transforms the vertices of the mesh when
displaying. The system calls glGetFloatfv(GL_MODELVIEW_MATRIX, M) and gets
this matrix , and rotates the normal vectors with it. The rotated vector is ,
where is the original normal vector. The color is computed by calling
glNormal3fv(), giving the rotated vector to its argument. Each point in the texture
space is painted in the computed color by calling glBegin(GL_POINTS) and
glVertex2i().

M Mn
n

The parameters used in Blinn’s lighting equation (see Equation (4.12)) are

determined as follows. and are set to 0.3 and 0.7, respectively.

interface. Setting the value of jdiffuser , is based on [17], which describes that the

locus of all normal skin colors forms a simple surface patch within RGB color space
bound by two axes corresponding to the amounts of melanin and blood. For
simplicity, the surface patch is assumed to be plane, and jdiffuser , is calculated using

the following equation.

ambientI lightI specularr

and are set to the values specified in “Specular” and “Shininess” of the user n

,,,,, jbloodbloodjmelaninmelaninjbasejdiffuse akakrr −−= (5.7)

here w j is the color component, which is red, green or blue,

”,

bsorbs,
and

able 5.1 shows the values used for , and . There is no

jser , is the color of skin with no melanin and blood, ba

melanik n is the amount of melanin specified in “Melanin

bloodk is the amount of blood specified in “Blood”,

jn is the percentage of light which melanin amelania ,

jod , is the percentage of light which blood absorbs. bloa

T jbaser , jmelanina ,

jambientr ,

jblooda ,

 to thephysical or biological meaning for these values. is set same value as

jdiffuser , .

 28

Table 5.1: The values used for , and .

 green ue
jbaser , jmelanina , jblooda ,

red bl
jbaser , 0.97 0.87 0.67
jmelanina , 0.69 0.71 0.90
jblooda , 0.00 0.24 0.24

For the lighting model based on the BRDF data, the color computation is done
in so

ftware. The parameters used in the lighting equation (see Equation (4.16)) are
determined as follows. ambientI is set to 0.3, and lightI 0.7. jambientr , is set to the
same value as jD , the non-directional diffuse term for the color component j in
the BRDF (see Equation (4.15)).

 29

6 Results

This section shows some display results created by the implemented system. The
calculation time for generating and rendering wrinkle patterns are also shown.
Image size is 512×512.

Figure 6.1, Figure 6.2 and Figure 6.3 are examples of the hand, the foot and the
arm. The hand and the foot are mapped with planar projection, while the arm is
mapped with cylindrical projection. For each figure, (a) shows the triangle mesh
which represents the body part. (b) shows the edited direction vectors, and (c) shows
the vector fields obtained by interpolating the direction vectors shown in (b). (d)
shows the generated height field from the vector fields. (e) and (f) are the final
images of the body part with generated wrinkle pattern on its surface. The vector
fields of these examples are all specified within 10 minutes. Table 6.1 shows the
calculation time for these examples. The time for generating a height field is
expressed in second (s), and the time for rendering the mesh with the wrinkle
pattern using each lighting model is expressed in frame per second (fps). The
machine used for measuring time has Athlon 1GHz for CPU and GeForce for
graphics accelerator.

Table 6.1: Calculation time for generating a height field and for rendering the mesh
with the wrinkle pattern using Blinn’s lighting model and two BRDFs. The number
of polygons of the mesh is also shown.

Rendering Figure Body part Polygon Generation
Blinn’s BRDF1 BRDF2

6.1 Hand 2807 8 s 19.0 fps 14.8 fps 14.3 fps
6.2 Foot 2332 8 s 18.2 fps 18.2 fps 16.0 fps
6.3 Arm 1373 10 s 10.5 fps 6.2 fps 5.3 fps

The limitation of the mapping with planar projection is seen in Figure 6.1(f)

and Figure 6.2(f). The side of the mesh is mapped with strong distortion, thus the
shading is not properly performed.

Figure 6.4 shows how the generated wrinkle pattern simulates the actual one.
First, the wrinkle furrows run along some directions. Second, the intersecting

 30

furrows form polygons, and most of them are roughly diamond-shaped. Third, the
intersection point of two furrows along the same direction is the endpoint of either
of them.

Figure 6.5, Figure 6.6, Figure 6.7 and Figure 6.8 show that the system can
control several properties of the skin material. Figure 6.5 shows the variation in
distinctness of wrinkles which (see Section 4.1) controls. The wrinkles are

more distinct in (b) than in (a). Figure 6.6 shows the variation in roughness of
surface which (see Section 3.3) controls. The surface is rougher in (b) than in
(a). Figure 6.7 and Figure 6.8 show the various skin colors. BRDF1 is used in Figure
6.7(a), BRDF2 Figure 6.7(b) and Blinn’s model Figure 6.8. Figure 6.8 shows the
difference depending on , , and (see Section 4.2 and 5.3). All

(see Section 5.1). The values of the parameters used in each figure in this section
are listed in Table 6.2. scalek is set to the appropriate value depending on the actual
scale of the body parts (see Section 5.2).

bumpk

bloodk

noisek

melanink specularr

the

n

these parameters can be specified using interface which the system provides

Table 6.2: The values of the parameters used for the examples.

Figure
All these parameters are specified through the user interface.

noise bumpk Lighting model melanink bloodk specularr n k scalek

6.1 0.0 0.5 0.2 0.5 0.2 100 1.1 Blinn’s

6.2 0.0 0.5 Blinn’s 0.2 0.5 0.2 100 1.0

6.3 0.0 0.5 Blinn’s 0.2 0.5 0.2 100 0.8

6.4 0.0 1.0 Blinn’s 0.2 0.5 0.2 100 1.1

6.5(a) 0.0 0.3 Blinn’s 0.2 0.5 0.2 100 1.1

6.5(b) 0.0 0.8 Blinn’s 0.2 0.5 0.2 100 1.1

6.6(a) 0.0 0.3 Blinn’s 0.2 0.5 0.3 100 1.0

6.6(b) 0.3 0.3 Blinn’s 0.2 0.5 0.3 100 1.0

6.7(a) 0.0 0.5 BRDF1 0.8

6.7(b) 0.0 0.5 BRDF2 0.8

6.7(c) 0.0 0.5 Blinn’s 0.05 0.2 0.1 120 0.8

6.7(d) 0.0 0.5 Blinn’s 0.5 0.6 0.4 70 0.8

 31

(a) (b) (c) (d)

(e) (f)

igure 6.1: Disp a e u triangle mesh representing the hand. F l y r s lts of the hand. (a) A

(b) Edited direction vectors at twenty-one vertices of the mesh. (c) Interpolated
vector fields. (d) Generated height field. (e) and (f) The mesh with generated wrinkle
pattern on its surface. Limitation of the mapping with planar projection is seen in
(f) (indicated by a circle).

 32

(a) (b) (c) (d)

(e) (f)

igure 6.2: Display results of the foot. (a) A triangle mesh representing the foot. (b) F
Edited direction vectors at twenty-nine vertices of the mesh. (c) Interpolated vector
fields. (d) Generated height field. (e) and (f) The mesh with generated wrinkle
pattern on its surface. Limitation of the mapping with planar projection is seen in
(f) (indicated by a circle).

 33

(a) (b) (c) (d)

(e) (f)

igure 6.3: Display results of the arm. (a) A triangle mesh representing the arm. (b) F

Edited direction vectors at nine vertices of the mesh. (c) Interpolated vector fields.
(d) Generated height field. (e) and (f) The mesh with generated wrinkle pattern on
its surface.

 34

(c) (b)

igure 6.4: (a) Generated wrinkle pattern of the hand. (b) Magnified image of one F

area indicated by a rectangle in (a). The furrows run along two directions (indicated
by arrows), forming roughly diamond-shaped polygons. An intersection point of two
furrows is the endpoint of either of them (indicated by circles). (c) A sketch of (b)
showing the circled intersection points.

 35

(a) (b)

igure 6.5: Variation in distinctness of wrinkles. The wrinkles are more distinct in F

(b) than in (a).

 36

(a) (b)

igure 6.6: Variation in roughness of surface. The surface is rougher in (b) than in F

(a).

 37

(a) (b)

igure 6.7: Display results using the lighting model based on the BRDF data of two F

persons’ skin.

 38

(a) (b)

igure 6.8: Two examples of skin color using Blinn’s model. Various skin colors can F

be produced by specifying melanink , bloodk , specularr and n .

 39

7 Conclusion

This paper has proposed the method to simulate the skin surface by drawing
wrinkle furrows along the vector fields. The generated wrinkle patterns simulated
the actual ones well in the following points.

 The wrinkle furrows run along some local directions.
 The intersecting furrows form polygons, and most of them are roughly

diamond-shaped.
 The intersection point of two furrows along the same direction becomes the

endpoint of either of them.

Besides, the implemented system achieved the followings.

 It provides the user interface which is easy to handle, especially for
assigning vector fields.

 It enables fast generation and rendering of wrinkle patterns by benefiting
from graphics hardware acceleration.

 It can control several properties of skin by changing some parameters.
 It can use the lighting model based on the measured BRDF data.

This method can be applied to many kinds of body parts because the entire skin

surface except palms and soles is covered with the similarly structured wrinkle
furrows. However, this method cannot deal with distinct and large wrinkles because
it does not consider the shape of a furrow and its bottom is therefore flat. Mapping
with planar projection has some limitations because the side of the mesh is mapped
with strong distortion and the wrinkle pattern is not properly generated nor
displayed, although such areas are not so large. These problems will be dealt with
in the future. In addition, the method to animate the body parts with the generated
wrinkle patterns will be also studied in the future.

 40

References

[1] P. Hanrahan and W. Krueger. Reflection from Layered Surfaces Due to

Subsurface Scattering. Computer Graphics (Proceedings of SIGGRAPH ’93), pp.
165-174, 1993.

[2] S.R. Marschner, S.H. Westin, E.P.F. Lafortune, K.E. Torrance and D.P.

Greenberg. Image-Based BRDF Measurement Including Human Skin.
Proceedings of 10th Eurographics Workshop on Rendering, pp. 139-152, 1999.

[3] M. Viaud and H. Yahia. Facial Animation with Wrinkles. 3rd Workshop of

Animation, Eurographics ’92, Cambridge, 1992.

[4] D. Terzopoulos and K. Waters. Physically-Based Facial Modeling, Analysis, and

Animation. Journal of Visualization and Computer Animation, Vol. 1, No. 2, pp.
73-80, 1990.

[5] Y. Wu, N.M. Thalmann and D. Thalmann. A Plastic-Visco-Elastic Model for

Wrinkles in Facial Animation and Skin Aging. Proceedings of Pacific
Conference ’94, pp. 201-213, 1994.

[6] Y. Wu, P. Kalra and N.M. Thalmann. Simulation of Static and Dynamic

Wrinkles of Skin. Proceedings of Computer Animation ’96, pp. 90-97, 1996.

[7] T. Ishii, T. Yasuda, S. Yokoi and J. Toriwaki. A Generation Model for Human

Skin Texture. Proceedings of CG International ’93, pp. 139-150, 1993.

[8] S.L. Moschella and H.J. Hurley. Dermatology (third edition), Vol. 1, pp. 3-14,

W.B. Saunders Company, 1992.

[9] W. Montagna, A.M. Kligman and K.S. Carlisle. Atlas of Normal Human Skin,

pp. 3-15, Springer-Verlag, 1992.

[10] E. Praun, A. Finkelstein and H. Hoppe. Lapped Textures. Computer Graphics

(Proceedings of SIGGRAPH 2000), pp. 465-470, 2000.

 41

 42

[11] H. Gouraud. Continuous Shading of Curved Surfaces. IEEE Transactions on
Computers, Vol. C-20, No. 6, pp. 623-629, 1971.

[12] J. Blinn. Simulation of Wrinkled Surface. Computer Graphics (Proceedings of

SIGGRAPH '78), pp. 286-292, 1978.

[13] M.J. Kilgard. A Practical and Robust Bump-mapping Technique for Today's

GPUs. GDC (Game Developers Conference) 2000, nVidia Corporation, 2000.

[14] J. Blinn. Models of Light Reflection for Computer Synthesized Pictures.

Computer Graphics (Proceedings of SIGGRAPH ’77), pp. 192-198, 1977.

[15] E.P.F. Lafortune, S.C. Foo, K.E.Torrance and D.P. Greenberg. Non-Linear

Approximation of Reflectance Functions. Computer Graphics (Proceedings of
SIGGRAPH ’97), pp. 117-126, 1997.

[16] B.T. Phong. Illumination for Computer Generated Pictures. Communications of

the ACM, Vol. 18, No. 6, pp. 311-317, 1975.

[17] S. Cotton, E. Claridge and P. Hall. A Skin Imaging Method Based on a Color

Formation Model and its Application to the Diagnosis of Pigmented Skin
Lesions. Proceedings of Medical Image Understanding and Analysis ’99, pp.
49-52, 1999.

