
ShAir: Extensible Middleware for Mobile
Peer-to-Peer Resource Sharing ∗

Daniel J. Dubois1, Yosuke Bando1,2, Konosuke Watanabe1,2, Henry Holtzman1

1MIT Media Lab, Cambridge, MA, USA
2Toshiba Corporation, Tokyo, Japan

ddubois@mit.edu, yosuke1.bando@toshiba.co.jp,
konosuke.watanabe@toshiba.co.jp, holtzman@media.mit.edu

ABSTRACT
ShAir is a middleware infrastructure that allows mobile applica-
tions to share resources of their devices (e.g., data, storage, con-
nectivity, computation) in a transparent way. The goals of ShAir
are: (i) abstracting the creation and maintenance of opportunistic
delay-tolerant peer-to-peer networks; (ii) being decoupled from the
actual hardware and network platform; (iii) extensibility in terms
of supported hardware, protocols, and on the type of resources that
can be shared; (iv) being capable of self-adapting at run-time; (v)
enabling the development of applications that are easier to design,
test, and simulate. In this paper we discuss the design, extensibility,
and maintainability of the ShAir middleware, and how to use it as
a platform for collaborative resource-sharing applications. Finally
we show our experience in designing and testing a file-sharing ap-
plication.

Categories and Subject Descriptors
D.2.11 [Software Engineering]: Software Architectures

General Terms
Design

Keywords
Resource sharing, peer-to-peer, mobile devices, middleware

1. INTRODUCTION AND MOTIVATION
Increasingly large numbers of always-on smartphones and tablet

computers roam our cities with powerful resources such as high
bandwidth WiFi radios, high computational capabilities, and large
quantities of flash storage. Some of these resources may be avail-
able in a device but not used, while some of them may be unavail-
able, but needed. This may happen for example when some popular
video, photo, information (e.g., weather forecast, news, etc.) are
needed, but the cellular/WiFi network is not available to download
them. Another important emerging trend is the appearance of very
small pervasive devices such as the FlashAir SD Card [22], which
is an SD card equipped with a tiny WiFi adapter and a tiny web
∗This work has been partially funded by the Fondazione Fratelli
Rocca (Progetto Roberto Rocca fellowship – MIT-Italy Program).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ESEC/FSE ’13, August 18–26, 2013, Saint Petersburg, Russia
Copyright 2013 ACM 978-1-4503-2237-9/13/08 ...$15.00.

server for sharing its files via WiFi. We envision that tiny devices
that are approaching the general market are likely to become more
common in the future and therefore there is an increasing industrial
effort to find innovative ways for exploiting them.

The purpose of this work is to provide an abstraction layer for
mobile and pervasive devices that application developers can ex-
ploit to share the resources of their devices and to use the resources
available from other devices in a crowd-sourced manner [7]. These
resources will be provided to the application layer as a service in a
similar way as it happens in the cloud computing paradigm [2]: ap-
plications can fulfill their resource needs using resources provided
by third parties on demand. The difference between this idea and
cloud computing is that there is no clear distinction between who
uses the resources and who offers them since each device can play
both roles. In the case of computational resources only, this com-
puting paradigm has been defined as crowd computing [14]. How-
ever, in this paper we extend such definition to any kind of resource
that can be shared, such as data, network connectivity, and storage.

The abstraction layer we are proposing consists of middleware
that exposes to mobile applications some Application Program-
ming Interfaces (APIs) to share and receive shared resources, as
well as an extension mechanism to define new resources and ad-
ditional ways for importing/exporting/managing them. The mid-
dleware is independent from the mobile platform and is built on
top of some additional low level APIs that abstract device-specific
and network-specific low-level details. The modular nature of the
middleware results in an increased separation of concerns, code
reusability, and it also allows applications to avoid loading parts
of the middleware that are not relevant for them. One of the key
features of ShAir is the possibility to add/remove/replace modules
at run-time depending on the context and application needs, thus
allowing the middleware not to be static, but capable of dynamic
evolution.

Last, but not least, our modularization has been designed in such
a way to ease testing applications and middleware extension mod-
ules in existing peer-to-peer simulators. These simulators are able
to scale to a significant number of simultaneous devices, and to
simulate device movements with real mobility patterns [11, 13].

The proposed middleware has been implemented as a Java li-
brary. Its usage has been exemplified in a case-study scenario of a
file-sharing application for the Android platform [9].

2. RELATED WORK
The following is a non-comprehensive list of previously pro-

posed middleware for mobile peer-to-peer resource sharing.
Sip2Share [5] is a middleware infrastructure for sharing services

and activities specific for the Android platform. It extends the An-
droid programming model with the addition of remote computa-
tion. µMAIS [17] has a similar purpose, but resources are exported
in the form of Web Services [1] and it also supports orchestrated

services compositions. Other service-oriented paradigms have been
recently studied in [6, 15]. All these works focus on the concept of
exporting resources as services. MobiClique [16] and a work from
Rodriguez et al [18] propose modular middleware infrastructures
that contain a full network/routing stack for exporting resources
in mobile networks. CoCam [21] is a middleware infrastructure
specialized in sharing persistent resources and real-time streams.
This approach adopts a central coordination for managing group
relationships of its peers. SSN [23] and a work from Helgason et
al [10] propose two different Android middleware infrastructures
for sharing data in an opportunistic way. Both of them contain full
network stack and the middleware is static, meaning that it cannot
change overtime. Mist [19] is a publish-subscribe middleware in-
frastructure that contains a full network stack and that works in a
delay-tolerant way. It is designed to be used as a lower level com-
ponent of higher-level middleware since it does not offer any higher
level of abstraction to the applications. LaCOLLA [12] is a middle-
ware framework for general purpose resource sharing without rout-
ing and delay-tolerant communication support. Haggle [20] is an-
other middleware infrastructure that is network-agnostic, supports
multiple networks, allows complete separation between application
logic and transport logic and also abstracts the concept of resource,
which can be any kind of data object or service. Haggle’s authors
state that in future it can be extended to support proactive behavior,
and opportunistic/delay-tolerant communication.

All the middleware infrastructures proposed above have at least
one of the following limitations. Middleware equipped with full
network stack cannot be easily extended to support evolution and
multiple networks, since the network is not abstract. Moreover,
middleware infrastructures that abstract network are static and have
fixed APIs, therefore it is difficult to adapt their capabilities at run-
time. Other works require centralized coordination, just support a
limited types of resources, or do not support delay-tolerant com-
munication.

In ShAir we have the goal of overcoming all those issues. To
do this we have used Haggle [20] as a source of inspiration, but
with the additional capability to support dynamic evolution of the
middleware services and APIs at run-time, and the possibility to
simulate the applications in real, emulated, and simulated contexts,
without altering the middleware code or configuration.

3. ShAir
In ShAir we propose an architecture that is independent from

the type of network, the number of networks, the nature of the re-
sources and so on, but that focuses on giving to the middleware the
capability to be extended and evolve over time. This need has been
recently pointed out in works such as [3, 4], which say that modern
highly complex distributed systems should not be based on fixed
middleware and fixed APIs, but middleware and application logic
should be able to emerge and evolve. Moreover, applications with
different evolutions of the same middleware should be able to coex-
ist [3]. In our solution we are taking into account these guidelines
of the Software Engineering research community, and, at the same
time, we want to avoid over-engineering and keep the middleware
simple enough to be used in an agile way. This simplicity would be
fundamental if we want to use very simple mobile devices such as
FlashAir [22], as discussed in Section 1.
3.1 Architecture

The ShAir architecture (depicted in Figure 1) is composed of
three parts: Application Logic contains the actual logic of the ap-
plication, which interacts with the Middleware Logic through a col-
lection of specialized APIs (see Figure 2 for details); Middleware
Logic contains all the decision-making logic for managing (adding,
querying, notifying, updating, deleting, transferring) resources and
data persistency; Device Specific Logic contains the implementa-

Application

Communication
Bridge

Middleware
Bridge Data Bridge Subscription/

Sharing Bridge
Extension

Bridge

Middleware
Module

Communication
Module

Data
Module

Sub/Sharing
Module

Extension
Module

ShAir Event Bus

Network
Decorators

Middleware API Communication API Data API Subscription/
Sharing API

Extension
API

Data
Decorators

Network
Low Level

Bridge

Storage
Low Level

Bridge

Extension
Bridge (e.g. sensors,

actuators, ...)

Extension
Decorators

Extension
Low-level APINetwork

Low-level API
Storage

Low-level API

Device
Specific

Logic

ShAir Middleware Logic

Application Logic

4G

Figure 1: ShAir architecture.

tion of low level APIs (detailed in Figure 2) for accessing networks
(e.g., WiFi, 4G, etc.) and storage devices (e.g., flash memory,
cloud storage, etc.), which may be device/platform-specific. All
the exposed APIs abstract observable components and are accom-
panied with additional observer APIs used to manage callbacks.
This structure enables separation of concerns between the applica-
tion, the specific platform, and actual middleware.

The middleware is not layered and contains three parts: Bridges
are instances of the Bridge design pattern used to decouple the APIs
from the internal components; Modules contain the actual business
logic of middleware, such as its decision-making logic. Each mod-
ule may have a reference to the low-level devices. Device accessors
functionalities can also be arbitrarily augmented by using Decora-
tors, which can provide additional functionalities at run-time (e.g.,
for adding routing capabilities to the network or to support multi-
ple networks). The communication among the modules is managed
by an Event Bus that is responsible for decoupling the interaction
among the modules using events in a publish-subscribe way. The
basic modules are: Middleware Module, to manage the middle-
ware lifecycle and add/remove Modules at run-time to make the
middleware adaptable and evolvable; Communication Module, to
manage all network-related decisions; Data Module, to manage re-
sources information and generic data; Subscription/Sharing Mod-
ule, to share resources and subscribe to resources in order for the
application to be notified when they are available.
3.2 Extensibility and Evolvability

In Figure 1 we can see that some blocks are grayed out and
depicted with dotted lines. Such blocks represent optional com-
ponents for the middleware that can be added at runtime by the
running application. This breaks the traditional view that the evo-
lution of the middleware and that of the application logic should
be completely independent. In fact, in lightweight middleware,
adding additional functionalities may require to implement them
in the Application Logic, thus breaking the separation of concerns.
To overcome this, ShAir gives application developers the possibil-
ity to extend the middleware with additional modules, which may
be bridged with additional APIs, equipped with new device dec-
orators, and that may use additional device-specific components,
such as GPS, sensors, and power management. The possibility to
implement additional functionalities in the form of pluggable mod-
ules makes it possible to reuse them in different applications and

start()
stop()
isStarted():boolean
addModule(Module)
removeModule(Module)
getModule(ModuleClass):Module
getProperty(String):Property
setProperty(String, Property)
addListener(MiddlewareCallbackAPI)

Middleware API
sendToOne(Peer, Message)
sendToMany(List<Peer>, Message)
sendToAll(Message)
getPeers():List<Peers>
addListener(Communication
Callback API)

Communication API
putResource(ResourceId, Data, Properties):ResourceHeader
getResource(ResourceId):Resource
getResourceHeader(ResourceId):ContentHeader
setResourceProperties(ResourceId, Properties)
deleteResource(Id)
haveResource(Id):boolean
addListener(DataCallbackAPI)

Data API

Subscribe(ResourceFilter)
Unsubscribe(ResourceFilter)
Share(ResourceId)
Unshare(ResourceId)
addListener(SubSharingCallback API)

Sub/Sharing API

networkStarted()
networkStopped()

Network Low-level Callback API

writeNewFileFromStream(String,Stream)
writeNewFile(String,byte[])
writeFile(String, Position, byte[])
readFile(String):byte[]
readFile(String, Position, Size):byte[]
getStream(String):Stream
haveFile():boolean
deleteFile()

Storage Low-level API
receivedMessage(Peer, Message)
sendSuccess(List<Peer>, Message)
sendFailure(List<Peer>, Message)
newPeer(Peer)
lostPeer(Peer)

Communication Callback API

addedResource(ResourceHeader)
updatedResource
removedResource(ResourceHeader)
sendFailure(Peer, Message)

Data Callback API

getId():String
Peer

getId():String
getOwner():Peer

ResourceId

getId():String
Message

getId():ResourceId
getProperties():Properties
getCreationTimestamp():Long
getType():Class
getSize():Long
getChecksum():String
isBeingTransferred():boolean
getTransferStatus():TransferStatus

ResourceHeader

getResourceHeader():ResourceHeader
getResource():Object

Resource

matches(ResourceHeader):boolean
ResourceFilter

startNetwork()
stopNetwork()
isStarted():boolean

Network Low-level API
middlewareStarted()
middlewareStopped()
updatedProperty(String, Property)

Middleware Callback API

addedSubscription(ResourceFilter)
removedSubscription(ResourceFilter)
sharedResource(ResourceId)
unsharedResource(ResourceId)

Sub/Sharing Callback API

Figure 2: ShAir Application Programming Interface.

to publish/distribute them as middleware plugins in public reposi-
tories or as shared resources.
3.3 Security

The logic needed to validate pluggable modules and to ensure
secure communication is not part of the standard middleware we
are proposing, but is left to custom modules implementations. We
plan in the future to study a systematic way for standardizing addi-
tional optional modules offering these functionalities. However, in
the currently proposed middleware additional pluggable modules
are permitted to include their custom solutions for labeling them-
selves with a version tag, for including a digital signature signed by
any trusted authority, and for validating versions and signatures of
other modules during interactions.
3.4 Maintainability and Testability

ShAir is designed to have basic simple components, and to have
additional features (such as advanced peer-to-peer protocols) added
as additional plugins in the form of modules. This simplicity re-
sults in less components and code to maintain, and therefore makes
the middleware simpler to be used and maintained. The indepen-
dence of the Middleware logic with respect to the Device-specific
Logic also simplifies the testing and simulation phases of middle-
ware components. If the low-level bridges of the Device-specific
Logic are implemented as virtual devices (devices that work in a
simulated way or in conjunction with existing peer-to-peer simula-
tion platforms such as [11, 13]), then the whole Middleware Logic
and the whole Application Logic can be run in simulation mode in
a seamless way. Not having to deal with real devices during simu-
lations makes it possible to scale integration tests to a large number
of devices (depending on the computational resources of the simu-
lation environment). Another characteristic of the middleware that
results in a more effective testing is the possibility to exclude mod-
ules that are not needed, to speed-up testing and to help isolate
problems.

4. IMPLEMENTATION
We have implemented a first basic prototype of ShAir middle-

ware using Java 1.6, then we have extended the middleware infras-
tructure to support delay-tolerant peer-to-peer file sharing. We have
finally validated middleware by creating a file-sharing App for the
Android [9] 2.3.3 platform1.
4.1 Middleware

All the basic modules (see Figures 1 and 2) have been imple-
mented as single Java classes. The EventBus used to exchange
events among the modules is the Guava EventBus2. Module instan-
tiations are managed by the Guice dependency injection library3.
With the use of these external libraries we have been able to keep
1http://shair.media.mit.edu
2http://code.google.com/p/guava-libraries
3http://code.google.com/p/google-guice/

the code base of all the basic middleware under 5000 lines of code.
As will be detailed in Section 4.3 the network abstraction of the
middleware does not take care of peer-to-peer communication since
that task is delegated to the Android-specific low-level network de-
vice we have implemented.

4.2 Testing and Simulation
Middleware has been tested using customized VirtualNetwork

and VirtualStorage implementations. Each integration test made
use of these implementations in addition to standard object mock-
ing with Mockito 4. Tests have been run using TestNG 5, while
code quality and test coverage have been assessed with Sonar 6. We
have also integrated VirtualNetwork and VirtualStorage into Peer-
Lets for the ProtoPeer simulator [13] to permit a future study of
non-functional properties and massively distributed simulations.

4.3 File-sharing App
Requirements. The file-sharing App we have implemented has the
following requirements: Android [9] platform support; the applica-
tion should let the user take pictures with the built-in camera and
share them as a file resource into ShAir; the user should also re-
ceive the pictures shared by others, put comments in the pictures,
delete them, chat with other nearby users, receive rewards in terms
of scores every time they use their bandwidth to share pictures.
Middleware Extensions. The additional modules we have added
to the system are: ResourceAdvertisingModule, to advertise nearby
devices of the availability of the resources of a device; Resource-
SeekingModule, to ask a nearby device for a resource the appli-
cation is interested in; ResourceRequestModule, to respond to re-
source requests; ResourceResponseModule, to actually handle re-
sponses to resource requests; NickNameAssociationModule, to as-
sociate a nickname to a peer. Each new module may be as small as
under 100 lines of code, therefore easy to maintain.
Device-specific Logic for Android. We had first to implement the
bridges for the Device-specific Logic. As storage device we have
used the internal built-in flash storage. For peer-to-peer networking
we have used the built-in WiFi only: the device alternates between
WiFi AP mode and WiFi Client mode in a random fashion to cre-
ate dynamic WLANs and discover nearby peers [8]. This choice
is due to the fact that alternative peer-to-peer approaches such as
WiFi-direct and Bluetooth either require mandatory user-assisted
device pairing or device rooting, while we want to share files in
a transparent opportunistic way that also works in unmodified de-
vices. In addition to this we have also experimented, without mod-
ifying the middleware logic, a configuration in which the built-in
WiFi is a permanent WiFi Client that connects to FlashAir WiFi
SD cards [22] in permanent WiFi AP mode disseminated in the
environment.

4http://code.google.com/p/mockito
5http://www.testng.org
6http://www.sonarsource.com

Figure 3: ShAir FileSharing Android App.

Figure 4: Experiment with 12 devices.

Application Logic. Since all the communication and data manage-
ment are abstracted by middleware, the Application Logic consists
mostly of user-interaction logic, with some additional basic logic
to instantiate and manage the state of the application, of the net-
work, and of middleware. A screenshot of the running application
is shown in Figure 3: on the left side we can see several file trans-
fers in progress, while file details after the transfer can be seen on
the right side. We have experimented our App by sharing pictures
simultaneously among 12 devices (tablets and phones) from several
vendors (see Figure 4).

5. CONCLUSIONS
In this paper we have seen how ShAir can be used as a building

element of emergent mobile resource-sharing applications in which
mobile devices can opportunistically cooperate and share resources
to each other without any fixed existing infrastructure. The mid-
dleware infrastructure we have proposed has been designed with
the idea of run-time extensibility and run-time evolution in mind,
thus going beyond the concept of static APIs of most preexistent
works in the area. In addition to this, we have also shown that the
non-device-specific nature of ShAir makes its codebase reusable in
different real and simulated platforms, and also simplifies unit and
integration testing since the emergent-behavior nature of a mobile
peer-to-peer system is difficult to mock. We have finally shown our
development experience with a middleware implementation in Java
and a case study based on a file-sharing application for Android.

The next developments for this work will focus on the optimiza-
tion of non-functional properties of middleware, thus increasing
security, the number of devices and resources that can be shared,
while minimizing energy consumption.

6. REFERENCES
[1] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web ser-

vices. Springer, 2004.
[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,

A. Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and
M. Zaharia. A view of cloud computing. Commun. ACM,
53(4):50–58, Apr. 2010.

[3] M. Autili, P. Inverardi, P. Pelliccione, and M. Tivoli. Devel-
oping highly complex distributed systems: a software engi-
neering perspective. J. of Internet Services and Applications,
3(1):15–22, 2012.

[4] G. Blair and P. Grace. Emergent middleware: Tackling the
interoperability problem. Internet Comp., 16(1):78–82, 2012.

[5] G. Canfora and F. Melillo. Sip2share - a middleware for mo-
bile peer-to-peer computing. In S. Hammoudi, M. van Sin-
deren, and J. Cordeiro, editors, ICSOFT ’12, pages 445–450.
SciTePress, 2012.

[6] M. Caporuscio, P.-G. Raverdy, and V. Issarny. ubiSOAP:
A Service-Oriented Middleware for Ubiquitous Networking.
IEEE Trans. on Services Computing, 5(1):86–98, 2012.

[7] A. Doan, R. Ramakrishnan, and A. Y. Halevy. Crowdsourcing
systems on the world-wide web. Commun. ACM, 54(4):86–
96, Apr. 2011.

[8] D. J. Dubois, Y. Bando, K. Watanabe, and H. Holtzman.
Lightweight Self-organizing Reconfiguration of Opportunis-
tic Infrastructure-mode WiFi Networks. In IEEE SASO ’13.
IEEE, 2013.

[9] Google Inc. Android. http://www.android.com.
[10] O. R. Helgason, E. A. Yavuz, S. T. Kouyoumdjieva, L. Paje-

vic, and G. Karlsson. A mobile peer-to-peer system for oppor-
tunistic content-centric networking. In MobiHeld ’10, pages
21–26, 2010.

[11] A. Keränen, J. Ott, and T. Kärkkäinen. The ONE simulator
for DTN protocol evaluation. In Simutools ’09, pages 55:1–
55:10, 2009.

[12] J. M. Marques, Z. Vilajosana, T. Daradoumis, and L. Navarro.
LaColla: Middleware for self-sufficient online collaboration.
IEEE Internet Computing, 11(2):56–64, 2007.

[13] A. Montresor and M. Jelasity. Peersim: A scalable p2p simu-
lator. In IEEE P2P ’09, pages 99–100, 2009.

[14] D. G. Murray, E. Yoneki, J. Crowcroft, and S. Hand. The case
for crowd computing. In MobiHeld ’10, pages 39–44, 2010.

[15] K. Nakao and Y. Nakamoto. Toward remote service invoca-
tion in android. In UIC/ATC ’12, pages 612–617, 2012.

[16] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and
C. Diot. Mobiclique: middleware for mobile social network-
ing. In ACM WOSN ’09, pages 49–54, 2009.

[17] P. Plebani, C. Cappiello, M. Comuzzi, B. Pernici, and S. Ya-
dav. MicroMAIS: executing and orchestrating Web ser-
vices on constrained mobile devices. Softw. Pract. Exper.,
42(9):1075–1094, Sept. 2012.

[18] J. RodríGuez-Covili, S. F. Ochoa, J. A. Pino, R. Messeguer,
E. Medina, and D. Royo. A communication infrastructure to
ease the development of mobile collaborative applications. J.
of Network and Comp. Applications, 34(6):1883–1893, 2011.

[19] M. Skjegstad, F. Johnsen, T. Bloebaum, and T. Maseng. Mist:
A reliable and delay-tolerant publish/subscribe solution for
dynamic networks. In NTMS ’12, pages 1–8, 2012.

[20] J. Su, J. Scott, P. Hui, J. Crowcroft, E. Lara, C. Diot, A. Goel,
M. Lim, and E. Upton. Haggle: Seamless Networking for
Mobile Applications. In J. Krumm, G. Abowd, A. Senevi-
ratne, and T. Strang, editors, UbiComp ’07, volume 4717,
pages 391–408. Springer, 2007.

[21] E. Toledano, D. Sawada, A. Lippman, H. Holtzman, and
F. Casalegno. Cocam: A collaborative content sharing frame-
work based on opportunistic p2p networking. In IEEE CCNC
’13, pages 158–163, 2013.

[22] Toshiba Corp. FlashAir: SD Card with Embedded WLAN.
http://www.toshiba-components.com/FlashAir.

[23] J. Yin and M. Chen. SSN: a seamless spontaneous network
design around opportunistic contacts. J. Mob. Multimed.,
7(4):239–255, Dec. 2011.

