
Supporting Heterogeneous Networks and Pervasive
Storage in Mobile Content-Sharing Middleware

Daniel J. Dubois1,3, Yosuke Bando2,1, Konosuke Watanabe2,1, Arata Miyamoto2,1,
Munehiko Sato1, William Papper4,1, V. Michael Bove, Jr.1

1MIT Media Lab, Cambridge, MA, USA; 2Toshiba Corporation, Tokyo, Japan;
3Imperial College London, London, UK; 4Washington University in St. Louis, MO, USA

ddubois@media.mit.edu, yosuke1.bando@toshiba.co.jp, konosuke.watanabe@toshiba.co.jp, arata.miyamoto@toshiba.co.jp,
munehiko@media.mit.edu, wpapper@wustl.edu, vmb@media.mit.edu

Abstract—Sharing digital content with others is now an impor-
tant part of human social activities. Despite the increasing need to
share, most sharing operations are not simple. Many applications
are not interoperable with others, require an Internet connection,
or require cumbersome configuration and coordination efforts.
Our idea is to simplify digital content sharing on mobile devices
by providing support for self-organizing heterogeneous networks
and pervasive storage. That is, mobile devices can spontaneously
connect to each other over a mixture of different available
networks (e.g., 3G/4G, WiFi, Bluetooth, etc.) without requiring
an explicit user action of network selection or mandatory In-
ternet access. Moreover, indirect communication can be further
augmented by pervasive storage. Mobile devices can store shared
content on it, which can later be automatically downloaded by
other devices in proximity, thus allowing location-based sharing
with minimal coordination even when devices are not in the
same location at the same time. This paper shows how these
technologies can be incorporated into mobile content-sharing
middleware to simplify sharing operations among mobile devices
without any modification to commercially available devices or
applications. In particular, (i) we provide an implementation of
our approach as extension modules for existing content-sharing
middleware, (ii) we present two example applications built on top
of it, and (iii) we demonstrate our approach through experiments
in representative situations.

Keywords—Content sharing; proximity sharing; heterogeneous
networks; pervasive storage; throwboxes; mobile peer-to-peer; op-
portunistic networks; store-and-forward; delay-tolerant networks.

I. INTRODUCTION

Sharing experiences with others is an important part of
human social activities, and sharing content using mobile
devices is becoming increasingly popular in this digital age.
There are many popular means of sharing digital content,
ranging from old – but still used – methods such as e-mail
attachments, MMS, and Bluetooth file transfer, to new methods
such as AirDrop, DropBox, WhatsApp, Viber, and the always
growing social network services that provide their own cloud-
based sharing services (e.g., Facebook, Google+). However,
despite their popularity, these services do not necessarily cover
all the sharing needs that a mobile user has. To cite some
examples, the sharing capabilities of most popular apps and
social networks (e.g., WhatsApp, Viber, Facebook Messenger)
require an Internet connection to actually deliver messages (the
same also applies to e-mail). Other methods that only rely on

This work has been partially funded by Toshiba Corporation, and by the
People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement n.
629982 (SPANDO). Special thanks to Henry Holtzman, Dhairya Dand, and
Eun-young Lim for their assistance with the early stages of the work.

proximity such as Bluetooth and AirDrop require an active
direct connection to start the sharing process. Both of these
limitations are not desirable. For instance, with methods that
require Internet access, people who cannot afford data plans
and do not live in areas where there is free WiFi will rarely
be able to share anything through the Internet in a reasonable
amount of time. On the other hand, people that want to use
proximity-based methods have to face other problems such
as the lack of interoperability, and tedious configurations and
coordination. For example, applications using Bluetooth for
proximity-based sharing may not be able to talk with others
that use only WiFi technologies. Some applications require
users to select a device that is currently in range and active,
thus not allowing them to choose a device that has been
previously seen and that might appear again. Having to wait
for the appearance of a user is an example of coordination
complexity that affects the ease of use of many proximity-
based sharing applications.

The goal of this paper is to address the limitations described
above by providing applications with support for heteroge-
neous networks [12] to increase interconnectivity potential,
and pervasive storage [19] to enhance delayed sending in
commercial mobile devices. Heterogeneous networks have
been defined in several ways in literature, but in our context we
define them as a class of networks in which different elements
may be connected to each other using different communication
methods. An example of such a network is this: let us consider
three mobile devices A, B, and C, in which link AB is a
WiFi connection, while link BC is a Bluetooth connection.
To the best of our knowledge, it is still a complex task to
allow A to share something with C without an active user
intervention in B to save and re-share it using a different
communication method. We address this problem by having a
sharing mechanism that is transparent with respect to inhomo-
geneous networks. As for pervasive storage, we define it as any
network device that can be accessed for reading and writing by
nearby mobile devices. One example of pervasive storage is a
WiFi SD card, which provides read/write primitives to nearby
devices through a WiFi connection. However, any wirelessly
networked device may act as pervasive storage if properly
configured, such as a smart TV or a hard drive connected to a
capable wireless access point. We use these pervasive storage
devices to enable offline sharing among devices in the same
location, but not simultaneously. For example, a person can
enter a conference room equipped with pervasive storage, and
share a file with a colleague that will be in that room later.
This works like a digital version of a sticky note, and does

not require any strong assumption such as the availability of
a free Internet connection, complex configurations, or human
coordination.

The support of heterogeneous networks increases the con-
nectivity potential of content-sharing applications because
pieces of information can travel from one device to another in
a peer-to-peer fashion independently from the type of available
networks. Moreover, data can be shared with devices that are
not currently connected directly, since data can be temporarily
stored in nearby mobile devices until the intended recipient
is in range. Another desirable property of heterogeneous net-
works is that a pair of devices may be connected using more
than one network at the same time; in such a case, it is possible
to exchange data using the connection that optimizes the over-
all communication in the network, for example by minimizing
latency or maximizing transfer speed, depending on the policy
adopted. If we further introduce support for pervasive storage,
we can have an intermediate storage device that can retain
shared information until the intended recipient appears. This
can be useful in situations in which there is no direct link
between a source and a destination, or when an application
wants to use a location-based sharing approach rather than
destination-based. Scenarios in which this approach is useful
include, but are not limited to, the following situations: (i)
sharing pictures when traveling abroad with friends, while not
everyone has cellular roaming or access to WiFi hotspots; (ii)
sharing in rural areas or in subway cars that have no cellular
network; (iii) sharing help requests over partially disabled pre-
existing networks after a natural disaster; (iv) sharing with
people in proximity without being socially connected to them
(e.g., they are not friends in a social network and their phone
number and email address are not known); and (v) sharing
information to a location rather than to a given set of people,
for example at a temporary event like a conference or a concert.
An indoor visual example with both heterogeneous networks
and pervasive storage technologies employed can be seen in
Figure 1.

Fig. 1: Content can be shared seamlessly via different com-
munication technologies. It can also be stored on a pervasive
storage device (depicted in purple), and re-shared to other
nearby devices.

What we deliver in this paper is an approach and an im-
plementation to support the technologies mentioned above on
a proximity-based content-sharing platform: we provide new
extension modules for existing middleware, new applications,
and results of evaluations run on real devices. The paper is
organized as follows. In Section II, we discuss related research.
Section III describes our approach, and in particular how it was

designed and implemented. In Section IV, we show some real
example applications and a device that can be used as perva-
sive memory. Section V demonstrates our approach through
experiments in representative situations. Finally, Section VI
concludes the paper.

II. RELATED WORK

Content sharing in proximity for mobile devices is a hot
topic studied in multiple research areas. In the area of systems
and software, academic contributions such as Haggle [16],
MobiClique [11], MundoCore[1], and ShAir [4] propose mid-
dleware and standards for sharing content in mobile environ-
ments. The same concepts are also becoming established in the
industry sector in applications such as OpenGarden [10] and
AllJoyn [13]. Protocols and algorithms for creating opportunis-
tic networks in proximity include [3], which allow devices to
create a temporary ad-hoc network to each other for proximity-
based sharing. Another class of approaches, called infostation
paradigm [15], creates ad-hoc networks by relying on scat-
tered nodes that act as temporary access points. All these
works focus on methodologies for sharing resources among
different mobile devices with minimal user configuration and
interaction. In this paper, we have the same goal, but our focus
is on introducing the use of wireless heterogeneous networks
and pervasive storage devices to further enhance the sharing
capabilities of nearby mobile devices.

Wireless heterogeneous networks in literature have been
defined in several different ways, depending on the context.
The characterizing element of this class of networks is the
intrinsic diversity of its elements, which might be characterized
by differences in network access technologies, connectivity,
radio-frequency spectra, and so on. These networks are now
becoming increasingly popular because they can be used to
reduce communication costs, to optimize network capacity, to
improve the quality of service, to increase network coverage,
and so on [12]. Surveys on this area have been recently
published [5, 7], but most of the problems addressed focus
on finding handover mechanisms for 4G networks and several
other solutions to optimize the infrastructure for providers of
broadband services. Beside these successful results, little effort
has been made in using the same concepts at a consumer
application level. In particular, the possibility to adaptively
combine different existing proximity-based communication
technologies such as Bluetooth and WiFi to improve the user
experience is an area that has not been fully explored yet.

For what concerns the use of pervasive storage for
proximity-based communication, a recent research roadmap
paper [2] explains the need for such solutions. Existing litera-
ture contains some effort in the use of dedicated devices as per-
vasive storage, which are also known as throwboxes [19]. They
have been mainly employed to improve context-awareness
and the performance of store-and-forward networks [18]. In
GSTAR [9], the authors propose a solution for improving store-
and-forward routing by using pervasive storage as a temporary
buffer when the destination of shared content is not currently
available. Finally, another class of solutions uses cloud-enabled
approaches, where pervasive storage is used as a mirror for
cloud storage (e.g., [20]). These existing solutions typically
require either that pervasive devices used as storage have some
degree of computation capability and configuration, or the
presence of an existing infrastructure such as access to cloud
computing systems.

In summary, our approach is based on the combination of

existing research on proximity-based content-sharing middle-
ware, the idea of heterogeneous networks, and the adoption
of throwbox-style pervasive storage, where our novelty and
main contribution lie in providing extended middleware and
example applications that exhibit the following three properties
at the same time: (i) handling proximity-based content-sharing
between mobile devices and pervasive storage devices seam-
lessly on unmodified off-the-shelf devices without mandatory
Internet access, (ii) exploiting pervasive storage devices as
permanent data repositories that can re-share data to new,
previously unknown, mobile devices, and (iii) combining the
use of heterogeneous networks with pervasive storage.

III. APPROACH AND IMPLEMENTATION

Since platforms for mobile data sharing already exist, we
provide support for heterogeneous networks and pervasive
storage by extending one of the platforms, for which we choose
ShAir [4] for its extensibility. Although we use it as an example
for simplicity, this approach can be easily adapted and repeated
on alternative middleware whose components are separated in
a similar way.

Generic'Applica,ons'
Generic'Applica,ons'

ShAir'Applica,ons'

ShAir'Controllers'ShAir'Controllers'ShAir'Controllers'

ShAir'
Modules'ShAir'
Modules'ShAir'Plugins'

Network'Storage'
Synchroniza,on'

Plugin'

ShAir'
Modules'ShAir'
Modules'ShAir'Plugins'

WiFi''
Network'
Driver'

Bluetooth'
Network'
Driver'

Cloud'
Network'
Driver'

File'
Storage'
Driver'

FlashAir'
Network'Storage'

Driver'

Storage'Driver'
Interface'

Network'Driver''
Interface'

Network'Driver'Interfaces'

Network'Storage'
Driver'Interface'

Applica,on'Programming'Interface'

ShAir'Middleware'
'Extension'Plugins'

Sh
Ai
r'M

id
dl
ew

ar
e'

Sh
Ai
r'A

pp
lic
a,

on
s'

Sh
Ai
r'D

riv
er
s'

Mul,'
Network'
Driver'

ShAir'Event'Bus'

Fig. 2: Extended ShAir architecture. Our extension modules
are highlighted in green.

A. Background on Content-sharing Platform ShAir
To show how our approach can be implemented in prac-

tice, we give a brief overview of ShAir. ShAir provides an
abstraction to application developers for sharing information.
Its architecture is simple and composed of three levels, as
shown in Figure 2. The first level is the application level,
which is the part of any ShAir-enabled application that in-
teracts with its underlying middleware through an application
programming interface (API). This means that, even if the
middleware implementation changes, as long as the API does
not change, there will be no need to modify any application.
The second level is the middleware level. It is composed of:
ShAir controllers, which provide the actual implementation
of the API; ShAir event bus, which manages event-based
communication among different middleware parts; and ShAir
plugins, which contain the decision-making logic of ShAir.
ShAir plugins make decisions on how to share content and on

how to interact with the controllers as well as with drivers,
which we explain next. The third level is the driver level,
which provides the middleware with access to device-specific
hardware and networking capabilities. This access is provided
through driver interfaces, which are implemented by device-
specific modules called drivers. Similarly to the application
level, the middleware level does not need to be modified even
if drivers change, as long as replacement drivers implement the
same driver interface. ShAir comes with two driver interfaces
and their respective Android implementations: the storage
driver interface and the network driver interface. The storage
driver interface is implemented by the file storage driver,
which enables access to the Android file system. The network
driver interface is used for device-to-device communication
and has three implementations: (i) WiFi network driver, which
allows devices to interact with all the devices connected to
the same WiFi network without using a network gateway; (ii)
Cloud network driver, which allows devices to interact with all
the devices connected to a particular cloud messaging server
through any available Internet connection; (iii) Bluetooth net-
work driver, which allows devices to interact with all the
other Bluetooth devices in proximity that have been previously
paired1. The three green blocks in Figure 2 show the extension
modules we have added to support heterogeneous networks
and pervasive storage, as we will explain in the following
subsections.

B. Heterogeneous Network Extension
The purpose of this extension is to allow the content-sharing

platform to support multiple network technologies at the same
time. This is done by adding a new driver that abstracts
multiple networks as a single network. In the ShAir platform,
this is realized by introducing a new network aggregator driver,
called multi-network driver, which implements the network
driver interface and can be instrumented with multiple drivers
each of which again implements the network driver interface,
as shown in Figure 2. This driver accepts an arbitrary number
of existing network drivers together with a policy for making
decisions when a device can be reached with more than one
connection. As an example policy, we have implemented a
low latency policy, which constantly estimates the latency of
each link using a simple ping-based protocol, and gives higher
priority to the one with the lowest latency. This policy can
be modified and replaced with more sophisticated ones in the
future. The goal of the policy is to self-organize paths of
content sharing in such a way that the whole heterogeneous
network optimizes a given property (e.g., latency or speed).
In our example, the network self-organizes so as to have
reduction of latency as an emergent property. Since our ShAir
modification consists in only one additional driver, there is no
need to modify existing applications that use ShAir, except for
the part that instantiates the middleware and its drivers.

C. Pervasive Storage Extension
The purpose of this extension is to permit the use of

pervasive storage as a common repository that hosts shared
content, and then makes it available to intended destinations
later, as soon as they appear. This extension is realized by
introducing two new components: (i) a middleware plugin re-
sponsible for sharing and retrieving data to and from pervasive

1We need to pair devices because, for security reasons, interaction with
non-paired devices is not currently allowed in commercial devices.

storage devices and (ii) a driver for accessing pervasive storage
devices. To do this on the ShAir platform, we have added, as
shown in Figure 2, (i) a new middleware plugin called network
storage synchronization plugin, which implements a newly-
defined network storage driver interface to access pervasive
storage devices and (ii) a new driver called FlashAir network
storage driver, which implements the network storage driver
interface using FlashAir WiFi SD card [17] as a pervasive
storage device.

The network storage synchronization plugin is responsible
for listening to events in which local content on the mobile
device is shared/unshared/updated, and then for executing
the appropriate upload, download, or removal operations on
pervasive storage. Moreover, the plugin listens to events in
which a new nearby pervasive storage device is detected: in
such a case, the plugin fetches a list of files on the newly-
detected pervasive storage, downloads all the files intended for
the mobile device, removes the files from the pervasive storage
that have been previously unshared on the mobile device, and
finally uploads the files that have been previously shared or
updated on the mobile device to the pervasive storage.

The FlashAir network storage driver is an implementation
of the network storage driver interface, which is used by
the network storage synchronization plugin to interact with
pervasive storage devices. It provides primitives to: (i) detect
pervasive storage devices in proximity; (ii) list the files stored
in a pervasive storage device; and (iii) upload, download, and
delete a file to and from a pervasive storage device. We provide
an implementation of this driver that uses the commercial
FlashAir WiFi SD card as pervasive storage. Since FlashAir
works as a WiFi access point and runs a web server, accessing
its content can be implemented using HTTP requests [6].

IV. APPLICATIONS

The support of heterogeneous networks and pervasive de-
vices can provide additional means for interaction and infor-
mation sharing among mobile device users. The applicability
of our approach spans from location-based leisure applications
(e.g., photo sharing, news/blog sharing, dating services, etc.)
to more serious applications (e.g., distributing critical software
updates, broadcasting critical alerts, emergency response, etc.).
This section presents two such examples to provide concrete
representative usage scenarios, which are made possible with
the proposed middleware extensions. We also show an example
implementation of pervasive storage.

A. News Article Sharing
People in the same place are likely to have a similar interest

in location-specific news. Based on the extended middleware,
we implemented an application shown in Figure 3, called News
Share, for sharing news articles (or any website) mainly with
co-located people. It allows users to share websites that they
think are interesting to the local community while browsing
under Internet connections. Once articles are marked shared,
the application parses, downloads, and stores the websites in
the local storage on the mobile device, so that they can be
directly transferred to other users and pervasive storage devices
without requiring Internet access.

Figure 4 shows the usage scenario for this application.
While under cellular networks, a user can browse websites
and mark them shared, or obtain articles shared by other
News Share users through the cloud. After the user gets on

(a) (b) (c)

Fig. 3: Screenshots of the News Share application. (a) User
can select “News Share” option to share websites from a
browser while online. (b) The home screen shows posts from
nearby users and pervasive storage devices. Proximity-based
sharing happens even while offline. (c) User can select a post
to view the associated website stored in the mobile device.

a subway car where Internet connections are unavailable, the
articles are sent to a pervasive storage device installed on the
car via proximity-based WiFi. People getting on the same
car later can receive them, and further relay them to other
nearby people via Bluetooth. One of the people gets off the
car, and goes to a cafe, where he shares the articles with
his friend, which in turn can be shared with people coming
in later through a pervasive storage device installed in the
cafe. All of these communications are performed by calling
the common middleware APIs for sharing content without
specifying network types.

WiFi

Bluetooth

3G/4G WiFi Bluetooth

Fig. 4: Usage scenario for the News Share application.
As seen in the cafe scenario, even in cases where Internet

connections are available, pervasive storage devices serve as
digital sticky notes on which people can leave shared articles
and messages, and thus they can be viewed as a simple
tool for providing location-based services without requiring
explicit location information from mobile devices such as
GPS coordinates. To make installation of pervasive storage as
simple as possible, we use a WiFi-enabled SD card FlashAir
as mentioned earlier, because of its small size and weight (2
grams), and its low cost (around $30). As it operates with
DC 3V power supply, we attached a USB AC adapter and
an additional voltage regulator, so that it can be readily used
by only plugging it into an electrical outlet, as shown in
Figure 5(a)(b). Alternatively, two AA batteries can be used
instead for short-term usage as shown in Figure 5(c).

B. Emergency Response
In an emergency situation such as an earthquake or hurri-

cane, oftentimes people will be in desperate need of commu-
nication means, but at that very moment, cell towers may be
down. We implemented an application that was designed to
allow affected people to submit help requests, and let people
know each other’s situations by sharing messages and pictures
describing their surroundings, as shown in Figure 6.

(a) (b) (c)

Fig. 5: Example implementations of pervasive storage. (a)
WiFi SD card attached to an AC adapter. (b) It can be used by
plugging into an electrical outlet with no further configuration.
(c) Alternative implementation using two AA batteries.

(a) (b)

Fig. 6: Screenshots of the emergency response application.
(a) Users can submit requests for relief supplies. Pictures and
messages can also be shared. (b) Shared items can also be
shown on a map if GPS coordinates are associated.

The considered scenario is depicted in Figure 7. Help
requests are relayed through people’s devices via Bluetooth
until they get picked up by a flying drone hovering over the
area and providing WiFi access. The drone can further relay
the requests to the mission control center using a directional
antenna capable of long-distance (up to a few kilometers)
communication [14]. At the direction of the mission control
center, requested items will be delivered [8]. Shared messages
and pictures can also be sent to the mission control center
to increase situational awareness, while at the same time they
can be stored in pervasive devices set up temporarily with
battery power as shown in Figure 5(c), serving as emergency
digital bulletin boards. The application worked in cooperation
with the airborne and mission control systems provided by the
respective authors of [8, 14].

Bluetooth
WiFi WiFi

ZigBee

WiFi
Mission control center

Airborne network

Fig. 7: Usage scenario for the emergency response application.

V. EVALUATION

In this section we analyze how the extended middleware
works on real mobile devices when sharing data of different
sizes in different situations.

A. Setting
To perform this evaluation, we use the following tools

combined in different ways in three representative scenarios:

• Ten smartphones from Samsung and Sony equipped
with Android 4.1 or higher. These smartphones do not
have a SIM card and are WiFi and Bluetooth capable.

• An evaluation application powered by the extended
ShAir middleware discussed in Section III. This ap-
plication allows us to share files of arbitrary sizes
and to log the progress of file transfer with respect
to time. The application automatically subscribes to
any content, meaning that each phone running the
application is the intended destination of any content
that is shared by the application itself.

• An 8GB WiFi SD card, which is the first generation
FlashAir from Toshiba.

• An 802.11n WiFi router connected to a wired 1Gbit/s
Internet access provided by MIT.

• A physical Linux server running RabbitMQ enterprise
messaging system connected to the internal MIT net-
work. It allows a configurable artificial delay in order
for us to simulate high-latency situations.

1) Setting of Scenario 1: Single Network: This scenario
is used to analyze the baseline behavior of our evaluation
application when the ShAir middleware is used without our
extension, meaning that the use of more than one network
technology at a time (heterogeneous network) and pervasive
storage access are not available in this scenario.

Under this scenario, we perform three experiments. In the
first experiment (Sc1-WiFi), we configure the evaluation
application using the WiFi network driver, and then connect
all the phones to our WiFi router. The WiFi network driver
permits direct connections among the phones connected to
the same access point without using its Internet connectivity.
In the second experiment (Sc1-Cloud), we keep all the
phones connected to our WiFi router, but we use the Cloud
network driver instead. The Cloud driver works by using our
RabbitMQ to exchange messages, therefore it would work
with any other kind of Internet connection (including one
based on 3G/4G). To make this second experiment more
difficult and different from the first one, we configured the
artificial delay of RabbitMQ to 1000ms. In the third experi-
ment (Sc1-Bluetooth), we connected all the phones via
Bluetooth as in Figure 8(a), which is a topology of degree 3
that minimizes the maximum distance between two phones. We
had to use this topology instead of connecting all the phones to
each other because the current Bluetooth stack in our phones
exhibited excessive instability when heavily used with more
than three phones connected.

(a) (b)

Fig. 8: Connection topologies in the experiments. (a) Experi-
ment Sc1-Bluetooth. (b) Sc2-Partitioned.

2) Setting of Scenario 2: Heterogeneous Network: This
scenario is used to analyze how our approach works when

Fig. 9: Experiment results.

using heterogeneous networks, that is, multiple networks at
the same time. In the first experiment (Sc2-Partitioned)
for this scenario, we have phones that only use the WiFi driver,
phones that only use the Cloud driver, phones that only use the
Bluetooth driver, and finally phones use a combination of those
drivers. The exact arrangement can be seen in Figure 8(b),
which shows the three different network partitions. As in the
previous scenario, phones with either WiFi or Cloud driver are
connected to our WiFi router. The phones using a combination
of drivers (depicted with red numbers) act as gateways for
re-sharing content across network partitions characterized by
different technologies. By running this experiment, we sim-
ulate a situation in which phones in a given location have
access to one or more networks (e.g., some phones have only
Internet access, some phones have only WiFi access, and some
phones have both accesses). It is important to notice that, in
this experiment, we have only one possible technology that
connects any two phones, therefore the decision-making mech-
anism of our approach is not used. In the second experiment of
this scenario (Sc2-Redundant), we configure the evaluation
application with both the WiFi and Cloud drivers, so that all
the phones are connected to each other using two redundant
links characterized by different technologies. The purpose of
this experiment is to see the decision-making capability of our
approach. In both experiments, RabbitMQ is configured with
a delay of 1000ms, as in Scenario 1.

3) Setting of Scenario 3: Sharing from Pervasive Stor-
age: In this scenario, we performed an experiment
(Sc3-PervasiveStorage) to analyze the impact of per-
vasive storage on the sharing experience of users. We
configure the evaluation environment in the same way as
Sc2-Partitioned, so we have phones with different tech-
nologies connected in different ways without redundant links.
The only difference of this experiment is that one Bluetooth
phone has the pervasive storage driver enabled and its WiFi
radio is associated to the WiFi SD card. With this experiment,
we show how data stored in the WiFi SD card is distributed
to all the phones in the system.

B. Evaluation Parameters
For each experiment described above, we performed three

experiment variations by sharing files containing random
data of three different sizes: 100KB, 1MB, and 10MB. The
smallest size represents short messages or any other kind
of alert of the real world. The medium size represents typ-
ical MMS-style shared information (e.g., medium resolution
pictures, large text files, and audio). The large size repre-
sents other heavier multimedia content (e.g., high-resolution

pictures, short videos, and applications). A file was initially
shared by only one random phone for each experiment,
except for Experiment Sc2-Partitioned, which used a
random phone that had only the Bluetooth driver enabled; and
Sc3-PervasiveStorage, which used the WiFi SD card.
The file size is the only input parameter that we changed for
each experiment variation, while the main output parameter
is the percentage of delivery of the file with respect to
time, which we simply call percentage of delivery metric.
Given that each phone is capable of measuring the percentage
of completion for the shared file they have to receive, the
percentage of delivery metric is the average completion per
phone, excluding the phone that actually shared the file first.

C. Results
1) Scenario 1: In this scenario, we ran three experiments

with WiFi, Cloud, and Bluetooth, respectively, and each of
them was repeated with 100KB, 1MB, and 10MB file sizes.
Figure 9 shows the percentage of delivery with respect to
time. We consider these results as a baseline and benchmark to
demonstrate that the middleware and network overhead added
by our approach is negligible compared to the results without
our approach. To make the experiments more realistic, the
experiments were carried out in an area with a high number
of pre-existing WiFi networks, therefore it is reasonable not
to expect the performance to reach the theoretical maxima of
the network technologies we used.

2) Scenario 2: This scenario is to show that our support
for heterogeneous network has two benefits: (1) it is able
to merge networks with different technologies; (2) it is able
to optimize the distribution time when redundant links are
present. From the Figure 9, we can see that in the 100KB
and 1MB variations for Experiment Sc2-Partitioned,
we were able to converge in a finite time that is similar
to the Bluetooth experiments, while in the 10MB variation,
the convergence is between the WiFi/Cloud experiments and
Bluetooth experiments. The reason is that, since this experi-
ment uses all the networks, it benefits from higher speeds of
WiFi and Cloud partitions, but it also suffers from the slower
speed of the Bluetooth partition. However, these benefits only
appear when the size is sufficiently large. By looking at
the Sc2-Redundant experiments of Figure 9, we can see
that they look very similar to the fastest WiFi experiments
(Sc1-WiFi), which means that the heterogeneous network
driver is able to sense the higher delay of the Cloud alternative
and chooses the lowest latency option, which is the WiFi driver
that does not require Internet access. To give some statistical
validity to the behavior in this situation, Figure 10 shows the

averages and the error bars that represent the standard deviation
of Experiment Sc2-Redundant over 10 runs. As the figure
shows, the results confirm that our approach is stable2 and still
behaves similarly to the fastest WiFi experiments.

3) Scenario 3: In this scenario, we perform Experiment
Sc3-PervasiveStorage, which evaluates the time it
takes for a file to move from a WiFi SD card to all
the phones configured in the same way as in Experiment
Sc2-Partitioned, where the SD card is connected to one
of the devices in the Bluetooth partition pointed to by the
arrow in Figure 8(b). As we see from Figure 9, the files
of all the three sizes were successfully transferred in times
that were similar to or, at most, slightly longer than those
in Experiment Sc2-Partitioned. The slight delay we can
see in the 10MB variation is the time that is needed to transfer
the data from the WiFi SD card to the first phone. In the
100KB and 1MB variations, no clear delay can be observed,
given the corresponding variances observed in Figure 10. From
this result, we can say that transferring content from or to
a pervasive storage device just adds its transfer time to the
regular performance as seen in Scenario 2.

Fig. 10: Experiment Sc2-Redundant over 10 runs.

VI. CONCLUSIONS

In this paper, we have shown how the combined support
for heterogeneous networks and pervasive storage in mobile
content-sharing middleware allows for simple and seamless
sharing operations. In particular, we have shown that the
proposed approach works in a transparent way with respect to
existing networks, does not require modifications of commer-
cial devices or existing applications, and it is easy to manage
both from the end user perspective and from the application
developer perspective. By using our approach, shared data can
move from a source mobile device to a destination device
without the need for the use of the same network technology
on both ends, and there is no need for a recipient to be active
during a sharing event, since it can receive the content later
from a pervasive storage device. We have implemented exten-
sion modules for the ShAir proximity-based content-sharing
middleware to realize our approach. We have also implemented
news sharing and emergency response applications on top
of the extended middleware, together with a prototype of a
pervasive storage device based on the FlashAir WiFi SD card.
Finally, we have demonstrated through experiments that our
extended middleware spontaneously converges when used in

2Stability is clear in the case of a file size of 10MB, but is not obvious in
the case of 100KB and 1MB, since actual transfer time tends to be smaller
than sharing latency.

partitioned networks connected with different communication
technologies, and is able to optimize itself in the presence of
redundant links.

From the results of the experiments, we have seen that the
time needed to share moderately-sized content is short enough
to prove that the system can find immediate and practical use
with unmodified, inexpensive commercial devices that many
people currently own. However, there is still a limitation to
the current system in handling large volumes of data (e.g.,
video files) due to congestion in wireless frequency bands.
We plan to address this issue by introducing smarter routing
and communication protocols. In addition, we would like to
include other types of mobile and pervasive devices in our
evaluation other than smartphones and WiFi SD cards, such
as smart watches, smart TVs, and smart printers.

VII. REFERENCES
[1] E. Aitenbichler, J. Kangasharju, and M. Mühlhäuser. Mundocore: A

light-weight infrastructure for pervasive computing. Pervasive and
Mobile Computing, 3(4):332–361, 2007.

[2] M. Conti, S. K. Das, C. Bisdikian, et al. Looking ahead in pervasive
computing: Challenges and opportunities in the era of cyber-physical
convergence. Pervasive and Mobile Computing, 8(1):2–21, 2012.

[3] D. J. Dubois, Y. Bando, K. Watanabe, and H. Holtzman. Lightweight
Self-organizing Reconfiguration of Opportunistic Infrastructure-mode
WiFi Networks. In IEEE SASO ’13, 2013.

[4] D. J. Dubois, Y. Bando, K. Watanabe, and H. Holtzman. ShAir: An
Extensible Platform for Wireless Resource Sharing on Mobile Devices.
In ESEC/FSE ’13, pages 687–690. ACM, 2013.

[5] H. ElSawy, E. Hossain, and M. Haenggi. Stochastic geometry for
modeling, analysis, and design of multi-tier and cognitive cellular
wireless networks: A survey. IEEE Comm. Surveys Tut., 15(3):996–
1019, 2013.

[6] Fixstars Corp. FlashAir Devel. https://flashair-developers.com/en/.
[7] D. Lopez-Perez, I. Guvenc, G. de la Roche, et al. Enhanced intercell

interference coordination challenges in heterogeneous networks. IEEE
Wireless Comm.E, 18(3):22–30, June 2011.

[8] P. J. Mosterman, D. E. Sanabria, E. Bilgin, K. Zhang, and J. Zander.
A heterogeneous fleet of vehicles for automated humanitarian missions.
Computing in Science and Engineering, 16(3):90–95, 2014.

[9] S. C. Nelson, G. Bhanage, and D. Raychaudhuri. Gstar: Generalized
storage-aware routing for mobilityfirst in the future mobile internet. In
ACM MobiArch ’11, pages 19–24, New York, NY, USA, 2011. ACM.

[10] Open Garden Inc. Open Garden. http://opengarden.com/.
[11] A.-K. Pietiläinen, E. Oliver, J. LeBrun, G. Varghese, and C. Diot.

Mobiclique: middleware for mobile social networking. In ACM WOSN
’09, pages 49–54, 2009.

[12] S. ping Yeh, S. Talwar, G. Wu, N. Himayat, and K. Johnsson. Capacity
and coverage enhancement in heterogeneous networks. IEEE Wireless
Comm.E, 18(3):32–38, June 2011.

[13] Qualcomm Innovation Center, Inc. AllJoyn. https://www.alljoyn.org/.
[14] V. J. Sheth, M. Bokshi, E. Pruett, C. Drotar, Y. Wan, S. Fu, and

K. Namuduri. A testbed for multi-domain communication networks
using lego mindstorms. In AIAA Infotech@Aerospace Conference, 2013.

[15] T. Small and Z. J. Haas. The shared wireless infostation model: A new ad
hoc networking paradigm (or where there is a whale, there is a way). In
ACM MobiHoc ’03, pages 233–244, New York, NY, USA, 2003. ACM.

[16] J. Su, J. Scott, P. Hui, J. Crowcroft, E. de Lara, C. Diot, A. Goel, M. Lim,
and E. Upton. Haggle: Seamless networking for mobile applications. In
J. Krumm, G. Abowd, A. Seneviratne, and T. Strang, editors, UbiComp
’07, volume 4717, pages 391–408. Springer, 2007.

[17] Toshiba Corporation. FlashAir: SD Card with Embedded WLAN. http:
//www.toshiba-components.com/FlashAir/.

[18] M. Xiao, J. Wu, and L. Huang. Community-aware opportunistic routing
in mobile social networks. IEEE Trans. on Computers,, 63(7):1682–
1695, July 2014.

[19] W. Zhao, Y. Chen, M. Ammar, et al. Capacity enhancement using
throwboxes in dtns. In IEEE MASS 2006, pages 31–40, Oct 2006.

[20] W. Zheng, P. Xu, X. Huang, and N. Wu. Design a cloud storage platform
for pervasive computing environments. Cluster Computing, 13(2):141–
151, 2010.

