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Figure 1: (a) Top: camera lens with color filters placed in the aperture. Bottom: filter arrangement. (b) Captured image. The background
color is misaligned (see Fig. 16(c) for a closeup). (c) Estimated depth (the darker, the nearer). (d) Extracted matte. (e) Composite image.

Abstract

This paper presents a method for automatically extracting a scene
depth map and the alpha matte of a foreground object by capturing
a scene through RGB color filters placed in the camera lens aper-
ture. By dividing the aperture into three regions through which only
light in one of the RGB color bands can pass, we can acquire three
shifted views of a scene in the RGB planes of an image in a single
exposure. In other words, a captured image has depth-dependent
color misalignment. We develop a color alignment measure to esti-
mate disparities between the RGB planes for depth reconstruction.
We also exploit color misalignment cues in our matting algorithm
in order to disambiguate between the foreground and background
regions even where their colors are similar. Based on the extracted
depth and matte, the color misalignment in the captured image can
be canceled, and various image editing operations can be applied
to the reconstructed image, including novel view synthesis, post-
exposure refocusing, and composition over different backgrounds.

Keywords: computational photography, computational camera,
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1 Introduction

Rapid progress in the field of computational photography has
brought forth new types of cameras and imaging systems capable
of capturing additional scene properties that conventional photog-
raphy misses. These properties, when combined with computation,
extend the ability of imaging applications in many ways: increased
dynamic range and resolution, depth-guided editing, post-exposure
refocusing, variable lighting and reflectance, to name but a few.

*e-mail: yosukel.bando@toshiba.co.jp
fe-mail: robin@ntu.edu.tw
fe-mail: {ybando, nis} @is.s.u-tokyo.ac.jp

While elaborate imaging systems and optical elements continue to
emerge, one of the recent trends in this field is to make a system
compact, or even portable [Ng et al. 2005; Georgeiv et al. 2006],
and to simplify optical elements to be attached to the conventional
camera [Levin et al. 2007; Veeraraghavan et al. 2007]. The ability
to easily switch from being a computational camera to the con-
ventional one to capture regular photographs is also claimed as
an advantage [Green et al. 2007; Liang et al. 2008]. This trend
will serve as a driving force for making computational photography
more commonplace and affordable for ordinary users.

To boost this trend, this paper proposes a method for automatically
extracting a scene depth map and the alpha matte of a foreground
object with a conventional camera body and a slightly modified
camera lens with RGB color filters placed in the aperture. By divid-
ing the aperture into three regions through which only light in one of
the RGB color bands can pass, we can acquire three shifted views of
a scene in the RGB planes of a captured image in a single exposure,
which enables depth reconstruction. While this idea has already
been proposed previously [Amari and Adelson 1992; Chang et al.
2002], we realize this idea in a hand-held camera without the need
for additional equipment other than color filters. We also devise a
better correspondence measure between the RGB planes which are
recorded with different bands of wavelength. Moreover, we propose
a method for extracting the matte of an in-focus foreground object,
which is an entirely novel application of a color-filtered aperture.
Color misalignment cues introduced by the filters serve to constrain
the space of possible mattes that would otherwise contain erroneous
mattes when foreground and background colors are similar.

The downsides of using a color-filtered aperture are that objects
having only a single pure R, G, or B color cannot be handled, and
that the visual quality of images is spoiled by color misalignment.
We will show, however, that our method can handle many real-
world objects, and we also present how to reconstruct color-aligned
images using extracted depth and matte. By showing results for
outdoor scenes and/or hairy foreground objects, we demonstrate the
portability of our device and the effectiveness of our method, with
several image editing examples such as novel view synthesis, post-
exposure refocusing, and composition over different backgrounds.

2 Related Work

This section reviews several research areas that are closely related
to our work. Readers can refer to [Raskar et al. 2006] for an exten-
sive survey on computational photography.



Color-filtered aperture. The idea of using color filters in the aper-
ture to estimate depth has been proposed previously. Amari and
Adelson [1992] used a squared intensity difference measure for
high-pass filtered images to estimate disparities. As they discussed
in their paper, however, this measure was insufficient to compen-
sate for intensity differences between the color planes. Their proto-
type was not portable, and only a single result for a textured planar
surface was shown. Chang et al. [2002] normalized the intensi-
ties within a local window in each color plane before taking the
sum of absolute differences between them. But as their camera
was equipped with a flashbulb for projecting a speckle pattern onto
the scene in order to generate strong edges in all the color planes,
the performance of their correspondence measure in the absence
of a flash was not shown. They also had to capture another im-
age without flash to obtain a “normal” image. We propose a better
correspondence measure between the color planes. We believe our
matting method based on a color-filtered aperture is entirely new.

Coded aperture. Several researchers placed a patterned mask in
the aperture to change the frequency characteristics of defocus blur
to facilitate blur identification/removal and depth estimation [Levin
et al. 2007; Veeraraghavan et al. 2007]. These methods offered
portable imaging systems with minimal modifications to the con-
ventional camera, which inspired us to pursue this direction. Our
approach differs in that it relies on parallax cues rather than defo-
cus cues, which introduces a view correspondence problem but es-
capes ambiguity between depths farther and nearer than the focused
depth. We also propose a parallax-based matting method.

Single-lens multi-view image capture. Adelson and Wang [1992]
showed that light rays entering a camera can be captured separately
depending on their incident angle by placing a microlens array on
the image sensor, and they estimated depth from multi-view images
captured through a single main lens. Ng et al. [2005] realized this
idea in a hand-held camera, and proposed a post-exposure refocus-
ing method by noting that the captured multi-view images corre-
spond to the light field inside the camera [Ng 2005]. Multi-view
images can also be captured by placing an attenuation mask on the
image sensor [Veeraraghavan et al. 2007], or by splitting light rays
at the aperture [Green et al. 2007; Liang et al. 2008] or outside
the main lens [Georgeiv et al. 2006]. Our method also splits light
rays at the aperture, but requires only color filters as additional op-
tical elements to the lens without requiring multiple exposures. Al-
though this comes with a price of a reduced number of views (only
three) each having only a single color plane, we can still obtain
useful information for post-exposure manipulation of images.

Matting. In image editing, matting is an important technique for
extracting foreground objects in an image so that they can be com-
posited over other images. We only review some of the most rel-
evant work to ours here. Interested readers can refer to Chuang’s
thesis [2004] for more information. The traditional approach to
matting is to use a blue or green screen as a background [Vlahos
1971; Smith and Blinn 1996]. Extracting a matte from a single nat-
ural image (i.e., an image with general unknown background col-
ors) requires user intervention, a typical form of which is a trimap
that segments an image into “strictly foreground,” “strictly back-
ground,” and “unknown” regions. Fractional alpha values are com-
puted in the “unknown” region based on the information from the
other two regions [Chuang et al. 2001; Levin et al. 2008; Wang
and Cohen 2007]. To automate matting, previous approaches used
multiple images. Smith and Blinn [1996] captured images of a fore-
ground object with two different known background colors. Alter-
natively, Wexler et al. [2002] used a sequence of images of a trans-
lating/rotating object. Xiong and Jia [2007] captured images from
two viewpoints, and computed their stereo correspondences taking
into account alpha values of a foreground object. Several methods
used synchronized cameras to capture multiple images of an ob-

ject [McGuire et al. 2005; McGuire et al. 2006; Joshi et al. 2006].
Our method can automatically extract alpha mattes with a single
hand-held camera in a single exposure.

3 Color-Filtered Aperture

Fig. 1(a) shows our prototype camera lens with color filters in the
aperture. We arranged the RGB regions so that their displacement
with respect to the optical center of the lens aligns with the X and
Y axes of the image sensor, as indicated by the arrows in Fig. 1(a)
bottom. By this arrangement, a scene point farther than the focused
depth is observed with a rightward shift in the R plane, an upward
shift in the G plane, and a leftward shift in the B plane. A scene
point nearer than the focused depth will be shifted in the opposite
directions. Note that these color shifts come from geometric optics,
not from chromatic aberration. Fig. 2 illustrates this phenomenon
in 2D where the aperture is split into two (R and G) regions.

For a prototype camera lens, we cut out a disc with a triple-square-
shaped hole from a piece of black cardboard, glued color filters (Fu-
jifilter SC-58, BPB-53, and BPB-45) to it, and attached it immedi-
ately in front of the aperture diaphragm of a Canon EF 50mm /1.8
I lens. This fabrication was done in a few hours with a box cutter
and a micro screwdriver. We used an unmodified Canon EOS40D
DSLR as a camera body. Fig. 3 shows the point-spread function
(PSF) of the prototype lens, which is an image of a defocused point
light source. The square shape of each filter is observed mostly as-
is, with only slightly rounded corners at the horizontal extremities
due to occlusion by the lens housing. Fig. 3 also shows that the
three color bands are well separated. We achieved this by apply-
ing a linear transform to RGB sensor response so as to minimize
crosstalk between the aperture filters and the image sensor (see Ap-
pendix A for details).

To align the RGB regions with the image sensor axes, manual ad-
justment was sufficient. Once this is done, pixel disparities will
always align with the X and Y axes of captured images, requir-
ing no further calibration and rectification at capture time or during
post-processing. Fig. 4 shows an example photograph and its sep-
arated RGB planes. Due to the higher transmittance of the R filter,
captured images shown in this paper are relatively reddish.
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Figure 2: 2D illustration of the interactions between light rays
from a scene point and a color-filtered aperture. (a) For a scene
point at the focused depth, light rays in the R band and those in the
G band converge to the same point on the image sensor. (b) For a
scene point off the focused depth, light rays in the two bands reach
different positions on the image sensor, resulting in a color shift.
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Figure 3: Point-spread function of our lens and its RGB compo-
nents. The positions of the R and B regions are opposite to those in
Fig. I(a), as the viewpoint is at the opposite side of the filters.



Figure 4: Example photograph taken with our lens, and its sep-
arated RGB planes. The white lines are superimposed to highlight
the background color shifts. See Fig. 15(a) for a closeup view.

4 Depth Estimation

The RGB planes I, I, and I; of a captured image I correspond
to three views of a scene. If we take a virtual center view (cyclo-
pean view) as a reference coordinate system, the R, G, and B planes
are shifted to rightward, upward, and leftward according to the ar-
rangement of the aperture color filters. Therefore, letting d be a
hypothesized disparity at (x,y), we need to measure the quality of
a match between I-(z+d, y), I4(z, y—d), and Iy (z—d, y).

Clearly, we cannot expect these three values to have similar in-
tensities because they are recorded with different bands of wave-
length. To cope with this issue, inspired by Levin et al.’s mat-
ting approach [2008], we exploit the tendency of colors in natural
images to form elongated clusters in the RGB space (color lines
model) [Omer and Werman 2004]. We assume that pixel colors
within a local window w(z, y) around (z, y) belong to one cluster,
and we use the magnitude of the cluster’s elongation as a correspon-
dence measure. More specifically, we consider a set S7(z,y; d)
of pixel colors with hypothesized disparity d as S;(z,y;d) =
{(IT(S+d7 t)7 IQ (57 t_d)7 ]b(S—d, t)) | (87 t) € w(x7 y)}’ and
search for d that minimizes the following color alignment measure:

L(z,y;d) = Aoz /oros0h, )

where Ao, A1, and A2 (Ag > A1 > A2 > 0) are the eigenvalues of
the covariance matrix 3 of the color distribution S7(x, y; d), and
o2, ag, and o are the diagonal elements of ¥. Note that the de-
pendence on (z,y; d) of the right-hand side of Eq. (1) is omitted
for brevity. L(z,y;d) is the product of the variances of the color
distribution along the principal axes, normalized by the product of
the variances along the RGB axes. It gets small when the cluster is
elongated (i.e., Ao > A1, A2) in an oblique direction with respect
to the RGB axes, meaning that the RGB components are correlated.
In fact, this measure can be interpreted as an extension of normal-
ized cross correlation (NCC) [Lewis 1995] so that it is applicable to
three images simultaneously (see Appendix B). L(x, y; d) is in the
range [0, 1], with the upper bound given by Hadamard’s inequal-
ity [Gradshteyn and Ryzhik 2000], since Ao A1 A2 = det(X).

To illustrate the effect of this measure, we use a sample image
shown in Fig. 5(a), taken with a conventional camera lens. Since
its RGB planes are aligned, the true disparity is d = 0 everywhere,
and colors within the local window indicated by the red rectangle in
Fig. 5(a) actually form an elongated cluster, as shown in Fig. 5(c). If
we deliberately misalign the RGB planes by d = 1, 3, and 5 pixels,
the distribution becomes more isotropic, and the color alignment
measure becomes larger, as shown in Figs. 5(d-f).

Now that we can evaluate the quality of a match between the RGB
planes, we can find the disparity d that minimizes L(x, y; d) at each
pixel (x,y), from a predetermined set of disparity values (-5 to 10
in our implementation). As local estimates alone are prone to error,
we use the standard energy minimization framework using graph-
cuts [Boykov et al. 2001] to impose spatial smoothness constraints.

(b)

@d=1,L=011 (d=3,L=039 (Hd=5,L=0.54

Figure 5: (a) Sample photograph taken with a conventional cam-
era lens. (b) Closeup of the local window indicated by the red rect-
angle in (a). (c-f) Plots of the pixel colors within the local window
in the RGB space. The values d and L shown below each plot are
the simulated disparity and the value of Eq. (1).

5 Matting

Matting is a problem of solving for foreground opacity «(x,y) at
each pixel (z, y) in the following matting equation.

I('Tvy) = a(ac,y)F(a:, y) + (1 - Oé(l‘7y))B($,y), (2)

which models an observed image I as a convex combination of a
foreground color F' and a background color B. By capturing an
image so that a foreground object is in focus, we can assume that
a(z,y) is aligned between the RGB planes. More precisely, re-
gions with fractional alpha values (i.e., the silhouette of a fore-
ground object) should be within the depth-of-field of the lens.
Slight violation of this assumption however does not lead to severe
degradation of extracted mattes, as will be shown in Sec. 6.

Solving Eq. (2) based only on the observation I is an under-
constrained problem, since we have only three measurements (/,,
I4, and I;) for seven unknowns (o, F'., Fy, Fy, B, By, and By).
at each pixel. Therefore, to incorporate additional constraints, we
use a trimap which we automatically generate from the disparity
map, and we also leverage the difference in misalignment between
foreground and background colors to iteratively optimize the matte.

5.1 Matte Optimization Flow

Algorithm 1 shows our iterative matte optimization procedure. For
initialization, we first roughly divide the image into foreground and
background regions by thresholding the disparity map, and we di-
late their border to construct a trimap having a conservatively wide
“unknown” region (50-70 pixels in our implementation), as shown
in Fig. 6(a). We then initialize the alpha values using a trimap-based
matting method, for which we used Levin et al.’s Closed-Form Mat-
ting [2008]. While this often gives already good results, errors can



remain where foreground and background colors are similar (see
Fig. 9(a) as an example). We detect and correct these errors in the
subsequent iterative optimization using color misalignment cues.
To determine how the foreground and background colors are mis-
aligned in the “unknown” region, we make a two-layer assumption
for the scene around the foreground silhouette. And we propagate
the disparity values from the “strictly foreground” region to obtain
foreground disparity map dr (x, y) as shown in Fig. 6(b). Similarly
we obtain background disparity map dp(z,y) from the “strictly
background” region (Fig. 6(c)).

In the iterative optimization, letting n denote an iteration count, we
first estimate foreground and background colors F,, and B,, based
on the current matte o, by minimizing a quadratic cost function
Z(gc,y) HI(Ia y) —Qn ("L‘7 y)Fn ("L‘7 y) - (1 — Qn (ZII, y))Bn(:rv y)H2
derived from Eq. (2), plus smoothness constraints on foreground
and background colors, similar to [Levin et al. 2008]. These es-
timated colors F,, and B,, have errors in the same regions as o,
has errors. We detect these erroneous regions by measuring how
consistent the estimated colors are with the foreground and back-
ground disparity maps dr(z,y) and dg(z,y), as we will describe
in Sec. 5.2. We then correct the alpha values around the detected re-
gions to obtain the matte o, 41 for the next iteration (Sec. 5.3). We
iterate this process until change in the matte is sufficiently small.
Fig. 7 illustrates each step of the iterative optimization.

Algorithm 1: Matte optimization algorithm.

Initialization

1. Construct a trimap from the disparity map.

2. Find an initial matte ;g based on the trimap.

3. Propagate the disparity values to obtain foreground and
background disparity maps dr and dp.

Iterative optimization

1. Estimate foreground color F,, and background color B,,
based on the current cvy,.

2. Compute consistency measures C'r,, and C,, (Sec. 5.2).

Update a, 41 based on Cr,, and Cp,, (Sec. 5.3).

4. Repeat until convergence.
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Figure 6: (a) Trimap for the toy dog image in Fig. 4, constructed
from the disparity map shown in Fig. 10(d) top. White: strictly
foreground. Black: strictly background. Gray: unknown. (b) Prop-
agated foreground disparity map dr (x,y). Blue indicates an unde-
fined region. (c) Propagated background disparity map dg(z,y).

5.2 Measuring Consistency with Disparity Maps

Similar to the color alignment measure in Eq. (1), we consider
a set Sp(x,y;d) of pixel colors within a local window w(z,y),
in this case for the foreground color F(x,y), not for the input
image I(z,y), with hypothesized disparity d as Sr(z,y;d) =
((Fr(s+,2), Fy(s,t-d), Fy(s—d, 1) | (5,1) € w(z, 1)}, and we
define a foreground color lines model error as follows.

. — 1 N 2
6F(£7y7d)_ﬁzli7 (3)
i=1

where N = |Sr(z,y;d)|, and [; is the distance of the i-th color
in Sp(z,y;d) from the line fitted to the elongated color cluster
(i.e., the first principal axis). Intuitively, we examine whether the
colors in a local window fit the color lines model. Therefore,
er(z,y;d) becomes large when d is a wrong disparity. We de-
fine the background color lines model error eg(x, y; d) similarly.
See Appendix C for more details.

As we have two possible disparities dr(z,y) and dg(x,y) at each
pixel (x,y) in the “unknown” region, we define foreground and
background color consistency measures by incorporating two val-
ues of color lines model errors at these two disparities:

CF(ZL‘,y) = exp {(6F(£L',y; dF) - eF(xvy;dB))/K/S}v

4
Cole,y) = exp{(en (@, yids) — es(myide)) fmady

where ks is a scale parameter. If the estimated foreground color
around (z,y) erroneously contains the (true) background color,
Cr(z,y) will be large around that region because e (z, y; dr) will
be large and er(x,y;dp) will be small. The effect of the back-
ground counterpart Cg(x, y) can be similarly explained.

5.3 Solving for the Matte

Following Wang and Cohen’s Robust Matting approach [2007], we
solve for a(z, y) as a soft graph-labeling problem, where each pixel
(regarded as a node in a graph) has data weights Wg(z,y) and
W (z,y), and each pair of neighboring pixels has an edge weight
We(xo,yo;21,y1). The data weight Wr(z,y) is responsible for
pulling a(z, y) toward 1, whereas Wy (z, y) pulls it toward 0. The
edge weights impose spatial smoothness constraints on alpha values
by the Matting Laplacian [Levin et al. 2008]. This formulation is
beneficial in that it can be solved as a sparse linear system [Grady
2006], not graph-cuts, and that it guarantees a(x,y) to be in the
range [0, 1] without additional hard constraints.

While Wang and Cohen [2007] used color samples gathered from
the “strictly foreground” and “strictly background” regions to set
the data weights, we instead iteratively update the data weights
according to the consistency measures CF, (z,y) and Cp,, (x,y)
computed for the current estimate of the foreground and back-
ground colors F,, and B,,, as follows.

WFn (‘Ta y) = K/aan(xvy) + HC(CBn (xvy) - CFn (xvy))7
W, (2,y) = ka(l — an(2,9)) + £e(Cr, (z,y) — Cs, (2,y)),
Q)]

where ko and k. are constants. We clamp Wrg, (x,y) and
Wa,, (z,y) at 0 to keep them non-negative. When the foreground
consistency measure Cp, (z,y) is smaller (i.e., more consistent)
than the background counterpart C'g,, (x,y), the foreground data
weight W, (z,y) is increased while the background data weight
W, (z,y) is decreased, so that «(z, y) is pulled toward 1 from the
current value o, (z,y). Conversely, a(z,y) will be pulled toward
0if Cr, (z,y) > Cg, (z,y).

6 Results

For all of the results shown below, we set the local window size to
15 x 15 pixels, ks = 0.1, ko = 0.01, and kK. = 0.02. The matte
optimization converged in about 20 iterations. The computation
time for a 720 x 480 image was 10 sec. for depth estimation, and
2 min. for matting on an Intel Pentium 4 3.2GHz with 2GB RAM.

We first demonstrate the performance of our RGB correspondence
measure. We compare our disparity estimation results with those of
the previous methods [Amari and Adelson 1992; Chang et al. 2002]
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Figure 7: Synthetic toy example demonstrating how our matte optimization works. (a) Ground truth foreground color. (b) Ground truth
background color. (c¢) Ground truth matte. (d) Composite image from (a-c) with the background color misaligned by 5 pixels. This image is
input to our matting algorithm. (e) Trimap. In this example we manually drew it in order to leave a wide “unknown” region. (f) Initialized
matte o. The center image region has large errors because the foreground and background colors are similar. These errors will be corrected
in the subsequent steps using color misalignment cues from the ‘x’ shaped textures. (g) Estimated foreground color Fo based on oy in (f).
Blue indicates an undefined region. (h) Estimated background color Bg based on o in (f). (i) Foreground color consistency Cr, computed
for Fo in (g). The disparity of (g) around the top center region is 5, which is inconsistent with the true foreground disparity of 0. Therefore,
Cr, became large around there. (j) Background color consistency Cp, computed for Bo in (h). The disparity of (h) around the bottom center
region is 0, which is inconsistent with the true background disparity of 5. Therefore, Cp, became large around there. (k) Updated matte. The
alpha values were pulled toward 0 where C'r, in (i) is large, and toward 1 where Cg,, in (j) is large. (1) Final matte after convergence, which

is close to the ground truth matte (c).

in Figs. 10(a-c). In order to reveal raw performance, we show local
window estimates without graph-cut optimization. As Amari and
Adelson’s method relies on high-pass filtering, it mostly failed to
detect disparities of the defocused scene backgrounds (Fig. 10(b)).
Chang et al.’s method performed better, but it handled color edges
and gradations poorly, presumably because these may not be ac-
counted for by a single intensity normalization factor within a local
window (Fig. 10(c)). Our method produced better results than the
previous methods (Fig. 10(a)).

We also compare our results with a mutual information-based
method by Kim et al. [2003], which can handle broad types of in-
tensity relationships between images. Since their method is coupled
with iterative graph-cut optimization, our results after graph-cut op-
timization are also shown in Fig. 10(d). Because their correspon-
dence measure is defined for two images, we take the average of the
values for the three pairs of RGB planes (RG, GB, and BR). Their
method performed well in view of the fact that it does not assume
a priori knowledge of the intensity relationships. However, some
portions of the foreground objects were not detected (Fig. 10(e)).

Next we show our matting results. Fig. 8(a) shows the extracted
matte for the toy dog image in Fig. 4. The hairy silhouette was
extracted successfully. We can use this matte to refine the bound-
ary of the foreground and background regions in the depth map as
shown in Fig. 8(b), by compositing the foreground and background
disparity maps shown in Figs. 6(b-c). In Fig. 9, we applied existing
natural image matting methods, Closed-Form Matting [Levin et al.
2008] and Robust Matting [Wang and Cohen 2007], with the trimap
given by our method. These results are not for comparison because
the previous methods are designed for color-aligned images, but the
matte errors seen in Fig. 9 are indicative of the importance of our
color consistency measure in suppressing them.

For proper comparison, we used a ground truth matte shown in
Fig. 11(a) obtained by capturing an object in front of a simple
background and by using Bayesian Matting [Chuang et al. 2001],
followed by manual touch-up where needed. We created a syn-
thetic “natural” image by compositing the object over a new back-
ground image, as shown in Fig. 11(b). We also created its color-

misaligned version by shifting the background color by 3 pixels
before composition. We applied the previous methods to the color-
aligned synthetic image, and our method to the color-misaligned
one. Though not perfect, our method produced a better matte as
shown in Figs. 11(c-e). For quantitative evaluation, we conducted
the same experiment for five more examples shown in Fig. 12, and
we computed the mean squared errors (MSE) against the ground
truth mattes, which we plotted in Fig. 13. Our method reduced
MSE values by 33-86% compared to the other two methods.

As our camera is portable, and only a single exposure is required,
it is easy to capture moving objects such as animals, as shown in
Fig. 14. Using the camera’s rapid shooting capability, we can also
perform video matting. The supplemental video shows an extracted
video matte of a walking person.

(a) (b)

Figure 8: (a) Extracted matte for the toy dog image in Fig. 4.
(b) Refined depth map. Compare this with Fig. 10(d) top.

(@) (b)

Figure 9:  Results of existing natural image matting methods.
(a) Closed-Form Matting. (b) Robust Matting.
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Figure 10: Comparison of correspondence measures between the RGB planes. Larger intensities indicate larger disparities. Top row:
results for the toy dog image in Fig. 4. Bottom row: results for the woman image in Fig. 1. (a) Our method (local estimate). (b) Amari and
Adelson [1992] (local). (c¢) Chang et al. [2002] (local). (d) Our method (after graph-cut optimization). (e) Kim et al. [2003] (based on

mutual information with iterative graph-cut optimization).

(a)

(b)

(© (d)

(e)

Figure 11: Comparison using a ground truth matte. (a) Ground truth matte. (b) Synthetic natural image. (c) Our method (applied to the
color-misaligned version of (b)). (d) Closed-Form Matting (applied to (b)). (e) Robust Matting (applied to (b)).

Fig. 14 also shows a portion of the foreground object (the hip of
the sheep) is slightly out of the depth-of-field of the lens, violating
the assumption that «(x, y) is aligned between the RGB planes in
Eq. (2). However, degradation of the extracted matte around the
region was small, as shown in Fig. 14(d).
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Figure 12: Synthetic natural images and their ground truth mattes.
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Figure 13: MSE values of the mattes produced by our method and
the previous methods for the images shown in Figs. 11 and 12.

Finally, we show several post-exposure image editing examples
based on the extracted depth and matte. First of all, we can restore a
color-aligned image (Fig. 15(b)) by re-compositing the foreground
and background colors after canceling their misalignment based on
the foreground and background disparity maps. Specifically, if the
foreground disparity at (x,y) is d, the aligned foreground color at
that point is restored as: (F, (x+d y), Fy(z,y- d) Fb(a: d,y)).
Moreover, as the defocus PSF is a square whose size is given by
the disparity map, we can restore an all-in-focus background color
by deconvolution (Fig. 15(c)). By blurring the foreground color and
the all-in-focus background color differently, we can synthetically
refocus the image (Fig. 15(d)) [Bando and Nishita 2007]. In the
presence of hairy foreground objects, alpha mattes are indispens-
able for the above operations to give plausible results. The sup-
plemental video shows interactive refocusing and view synthesis
animations. We can also composite color-aligned foreground ob-
jects over other images as shown in Figs. 1(e) and 14(e), where we
adjusted the objects’ color to match the corresponding background.
Fig. 16 shows additional color misalignment cancellation results.

7 Discussions and Conclusions

We have presented a method for automatically extracting a scene
depth map and the alpha matte of an in-focus foreground object us-
ing a color-filtered aperture. Our method only modifies a camera
lens with off-the-shelf color filters to capture multi-view images
in a single exposure. We have proposed an effective correspon-
dence measure between the RGB planes, and a method for employ-
ing color misalignment cues to improve the matte. We believe our
concise camera design with various post-exposure image editing
capabilities will make computational photography a more readily
available tool for many users.



(b)

() (d

Figure 14: Results for a sheep. (a) Captured image. (b) Depth map. (c) Matte. (d) Closeup from the red rectangle in (c). (e) Composite.
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(2) (b)

© (d)

Figure 15: Examples of post-exposure image editing based on the extracted depth and matte. The bottom row shows closeup views of the
top row. (a) Captured image. The colors are misaligned. (b) Color misalignment canceled. (c) Defocus blur removed. (d) Refocused.

The major limitation of our approach is that it does not work for
objects having only a single pure R, G, or B color. Combining
with depth-from-defocus methods may partially solve this problem.
However, this does not mean that objects must have achromatic col-
ors all over. For example, the disparity of the red box in Fig. 4 is
correctly identified as shown in Fig. 10(d), thanks to the alphabets
and the pictures of chocolates printed on the box. Therefore, our
requirement is that objects must not be purely colored entirely, and
we think there are many real-world objects satisfying this require-
ment. We would like to further investigate this limitation.

In our imaging system, the f-number is fixed to 1.8 (full aperture
of our prototype lens) because a large aperture increases disparities
and thus increases depth resolution. Since disparities also increase
when the lens is focused near, our system typically works well for
foreground objects at 0.5 to 2.5 meters away from the camera with
a sufficiently distant (about twice as far away) background. For far-
ther scenes, depth resolution will gradually decrease, and the matte
quality will also deteriorate as color misalignment will be small.

By introducing color filters, the amount of incident light is de-
creased. Increasing the aperture filter area to compensate for this
introduces more defocus. While this degrades depth estimation
accuracy at defocused regions, it suppresses background clutters,
which is beneficial for matting. Color filters may also affect color
demosaicing of the image sensor, although we did not observe any
loss of quality in our experiments, mainly because we downsam-
pled the captured images for tractable computation time.

While our depth estimation works fairly robustly, our matting fails
when the foreground and background colors are similar with little
texture, as shown in Fig. 17(b), since we have few color misalign-
ment cues. Another failure mode is that, as we use a relatively large
window (15 x 15), we cannot recover small/thin features such as

hair strands and holes in foreground objects, once they are missed
in the course of optimization, as shown in Fig. 17(d). We would
like to address the above issues in the future.

(b) (©)

Figure 16: More color misalignment cancellation results. (a) Re-
stored images. (b) Closeups of (a). (c) Closeups of the original.

(b) © (@)

Figure 17: Failure cases. Major errors are indicated by the arrow
and circles. (a) Captured image. (b) Matte from (a). (c) Closeup of
the ground truth matte for the girl image in Fig. 12. (d) Our result.
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Appendix A Color Crosstalk Suppression

Let ¢,, cg, and ¢;, be the mean image colors of a sheet of white paper
through the R, G, and B filters, respectively. For our prototype,

¢r = (1.000,0.335,0.025) ",
¢y = (0.153,1.000,0.162)", (A.1)
e = (0.007,0.190, 1.000) 7,

where the values are normalized with respect to the maximum com-

ponent. Letting M = (cr, g, ¢b), we can decompose an observed
color ¢, into the three aperture filters’ contributions by M ~c,,.

Appendix B Color Alignment Measure and NCC
An equivalent of Eq. (1) in 2D (e.g., in the RG space) would be:
L(z,y;d) = MoAi /oo, (B.1)

Let 0,4 be the covariance between the R and G components, then
by AoA1 = det(X2) = 0303 — afg, we obtain:

L(z,y;d)=1— afg/afag (B.2)

Since NCC = o0,4/0r04 € [0,1], the 2D version of the color
alignment measure L has a one-to-one correspondence to NCC.



Appendix C  Computing the Color Lines Model Error

Letting ¢; be the i-th color in Sr(z, y; d), u be the mean color, and
vo be a unit vector of the fitted line (the first principal eigenvector),
trigonometry gives the distance [; of the point ¢; from the line as:

17 =i — pl® = ((ei = ) o). (C.1)
The average of the first term is, by definition, the variance:

N
1
NZ|C,‘—M‘2:0‘$+O‘§+O‘§. (C.2)

i=1
For the second term, we have:
1 & 1 &
5 D = ) o) = of (N > (e = w)(e - MT) vo
i=1 i=1
= ngvo = vOT(ono) = A(),
(C.3)

by the definitions of the covariance matrix ¥ and the eigenvector vg.
Therefore, the color lines model error can be computed as follows.

er(z,y;d) = ol + aj + 02 = Xo. (C4)

This turns out to be similar to the color alignment measure of
Eq. (1), but we found it more effective for matting to use this un-
normalized, direct error measure. Since estimation errors of back-
ground disparities are typically larger than those of foreground dis-
parities, we discount e (z, y; d) by scaling it by around 0.7-0.9.



