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Figure 1. Left: A single input photograph, focused on the person in the left. Middle: Created image,

refocused on the person in the middle. Right: Created image, refocused on the person in the right.

Abstract

This paper explores an image processing method for syn-

thesizing refocused images from a single input photograph

containing some defocus blur. First, we restore a sharp im-

age by estimating and removing spatially-variant defocus

blur in an input photograph. To do this, we propose a local

blur estimation method able to handle abrupt blur changes

at depth discontinuities in a scene, and we also present an

efficient blur removal method that significantly speeds up

the existing deconvolution algorithm. Once a sharp image

is restored, refocused images can be interactively created

by adding different defocus blur to it based on the estimated

blur, so that users can intuitively change focus and depth-of-

field of the input photograph. Although information avail-

able from a single photograph is highly insufficient for fully

correct refocusing, the results show that visually plausible

refocused images can be obtained.

1. Introduction

Digital refocusing, a technique that generates photographs

focused to different depths (distances from a camera) af-

ter a single camera shot, is attracting the attention of the

computer graphics community and others in view of its in-

teresting and useful effects. The technique is based on the

light field rendering, and exploits the fact that a photograph

is a 2D integral projection of a 4D light field [27], as was

simulated by Isaksen et al. [17]. Ng et al. made this tech-

nique practical with their hand-held plenoptic camera [28],

eliminating the need for large and often expensive apparatus

such as a camera array or a moving camera that was tradi-

tionally required to capture light fields. Since then, other

novel camera designs have been emerging in order to im-

prove the resolution of images and/or to reduce the cost of

optical equipment attached to a camera [16].

In an attempt to make digital refocusing a more com-

mon tool for digital photography, we are interested in de-

veloping an image processing method for synthesizing re-

focused images from a single photograph taken with a con-

ventional camera. If we had a sharp, all-focus photograph

with a depth map of the scene, it would be straightforward

to create depth-of-field effects by blurring the input photo-

graph according to the depth, as some of the existing image-

editing software do (e.g., the Lens Blur filter of Adobe Pho-

toshop CS). In this paper we address a more general and

challenging problem where an input photograph is focused

to a certain depth with a finite depth-of-field and hence con-

tains some defocus blur as shown in Fig. 1 left, and where

we must first estimate “a sharp image with a depth map”

from that photograph.

In general, this problem ultimately amounts to recon-

structing a 4D light field from a single image, which is in-

tractable. Therefore, in this paper we assume that spatially-

variant defocus blur in an input photograph can be locally

approximated by a uniform blur, and we restore a sharp

image by stitching multiple deconvolved versions of an in-

put photograph. We present a deconvolution algorithm that

significantly speeds up one of the state-of-the-art methods



called WaveGSM [6]. And we also propose a local blur esti-

mation method applicable to irregularly-shaped image seg-

ments in order to handle abrupt blur changes at depth dis-

continuities due to object boundaries. To create desired re-

focusing effects, we present several means of determining

the amount of blur to be added to a restored sharp image

based on the estimated blur, by which users can change fo-

cus and depth-of-field interactively and intuitively.

Even with the assumption described above, the problem

is still ill-posed, and created images can have artifacts that

might need to be retouched. We provide users with a means

of modifying an estimated blur field to partially fix them.

2. Related Work

To our knowledge, techniques that synthesize refocused im-

ages from a single conventional photograph have not been

reported in the literature. Kubota and Aizawa used two im-

ages, and generated arbitrarily focused images by assuming

that a scene consisted of two depth layers, each of which

was in focus in either image [19]. Fusion-based image en-

hancement methods can generate images with an extended

depth-of-field from multiple input images [8].

Blind image deconvolution techniques restore the origi-

nal sharp image from an observed degraded image without

precise knowledge of a point-spread function (PSF) [20].

Most of the existing methods assume a PSF to be either

spatially-invariant (uniform) [14, 10] or spatially-variant

but slowly varying [29, 21] across the image, and are not di-

rectly applicable to removing defocus blurs in photographs

where captured scenes have wide depth variations. Levin

identified spatially-variant motion blur by examining the

difference between the image derivative distribution along

the motion direction and that along its perpendicular direc-

tion [23]. This technique cannot be applied to our problem,

as defocus blur has no directionality.

Depth-from-focus/defocus techniques generate a depth

map of a scene by estimating the amount of defocus blurs

in images. Existing methods either use multiple images [30,

38, 26], or make an estimate at edges in a single image by

assuming that a blurred ramp edge is originally a sharp step

edge [30, 35, 22].

Spatially-invariant, non-blind image deconvolution still

remains an active research area [5, 15]. We build our de-

convolution algorithm on one of the state-of-the-art meth-

ods called WaveGSM [6] as an integral component of our

digital refocusing method.

Other related work exploiting customized optical ele-

ments includes wavefront coding [13] for making an imag-

ing system insensitive to misfocus; defocus video matting

[25] with multiple video cameras with different focus set-

tings; and motion deblurring with a fluttered shutter [32].

3. Proposed Method

3.1. Overview

Fig. 2 shows a block diagram of our method. From an in-

put photograph gc(x,y) with c ∈ {red, green, blue}, we first

restore a latent image lc(x,y), which would have been ob-

served if defocus blur had not been introduced by the cam-

era lens system. We use the standard disc PSF parameter-

ized by radius r of the circle of confusion, referred to as blur

radius, as a defocus blur model [4]:

h(x,y;r) =

{

1/πr2 for
√

x2 + y2 ≤ r

0 otherwise
, (1)

and we generate multiple differently deblurred images

dc, j(x,y) by deconvolving an input photograph with each

of the predetermined M + 1 blur radii {r j| j = 0,1, · · · ,M}.

That is, we remove uniform defocus blur with blur radius r j

from gc(x,y) to obtain dc, j(x,y). This amounts to solving

gc(x,y) = h(x,y;r j)∗dc, j(x,y)+nc(x,y), (2)

where ∗ denotes convolution, and nc(x,y) is a noise term.

Eqn. 2 is known to be an ill-posed inverse problem, whose

solution is given in Sec. 3.2. The M + 1 blur radii are

arranged in ascending order as r0 < r1 < r2 < · · · < rM ,

and r0 = 0 so that dc,0(x,y) ≡ gc(x,y). We typically use

r j = 0.5 j, and rM = 10.0 (in pixels).

From the deblurred images dc, j(x,y), we locally select

the “best” image and stitch them together to obtain the la-

tent image lc(x,y), the approach known as sectional method

[37]. More precisely, we first estimate a blur radius field

rorg(x,y) which describes with what blur radius the input

photograph is originally blurred around each pixel location

(x,y), as described in Sec. 3.3. We then linearly blend the

deblurred images as

lc(x,y) =
r j+1 − rorg(x,y)

r j+1 − r j
dc, j(x,y)+

rorg(x,y)− r j

r j+1 − r j
dc, j+1(x,y),

(3)

where j is appropriately chosen for each pixel (x,y) such

that r j ≤ rorg(x,y) ≤ r j+1.

Now that we obtained the latent image lc(x,y), we cre-

ate an output refocused image oc(x,y) by blurring the la-

tent image1. Sec. 3.4 presents a method for determining a

new blur radius field rnew(x,y) to be added to the latent im-

age in order to meet desired refocusing effects. To perform

the synthesis in real-time, we again employ the sectional

method, and we prepare multiple differently blurred im-

ages as bc, j(x,y) = h(x,y;r j) ∗ lc(x,y) in the preprocessing

stage. In the interactive refocusing stage, we perform linear

interpolation similar to Eqn. 3 for a new blur radius field

rnew(x,y) and the blurred images bc, j(x,y) and bc, j+1(x,y).

1Because convolution of two disc PSFs does not result in another

disc PSF, refocused images cannot be obtained by directly convolv-

ing/deconvolving an input photograph.
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Figure 2. Block diagram of the proposed method.

3.2. Image Deconvolution

For notational convenience, this subsection uses a matrix-

vector version of Eqn. 2 with subscripts omitted as [4]

g = Hd+n, (4)

where g, d, and n are P-vectors representing gc(x,y),
dc, j(x,y), and nc(x,y), respectively, with lexicographic or-

dering of P discretized pixel locations, and H is a P × P

matrix representing convolution by a PSF h(x,y;r j).

Since solving Eqn. 4 for d as a least squares problem

of minimizing ‖g−Hd‖2 is known to be ill-posed due to

ill-conditioned matrix H, one needs prior knowledge about

which images are more likely to occur in nature. How-

ever, frequently-used Gaussian smoothness priors are not

suitable for restoring sharp (hence not necessarily smooth)

images. Therefore, recent methods exploit so-called heavy-

tailed priors, according to which the distributions of band-

pass filter outputs of (sharp) natural images have a narrower

peak and a broader foot than Gaussians as shown in Fig. 3,

allowing occasional discontinuities (such as edges) in re-

stored images [15, 6]. These methods use discrete wavelet

transform (DWT) as band-pass filters, but since restored im-

ages suffer from blocky artifacts arising from the dyadic

image partitioning in DWT, they use translation-invariant

DWT (TI-DWT) [11] to reduce such artifacts at the cost of

significant increase in computational complexity.

We avoid this problem by using derivative filters in-

stead of DWT, as they are translation-invariant and do not

perform dyadic image partitioning. Specifically, we bring

Bioucas-Dias’s wavelet domain method (WaveGSM) [6]

into the gradient domain, because the Gaussian scale mix-

ture (GSM) representation used in WaveGSM is also appli-

cable to speeding up the non-linear optimization involving

heavy-tailed priors in the gradient domain. Applying heavy-

tailed priors to gradient distributions was shown to be useful

in super-resolution [36] and camera shake PSF estimation

[14]. Following Tappen et al. [36], we use a generalized

Laplacian distribution as a heavy-tailed prior model:

p(dx[i]) ∝ exp(−|dx[i]|
α/β ) , (5)

where dx[i] denotes the i-th element of the derivative of

d with respect to x, and p(·) denotes a probability den-

sity function of an argument variable. We set α = 0.3
and β = 0.085 with pixel values in range [0, 1], so that

Eqn. 5 approximates sample gradient distributions as shown

in Fig. 3. We use the same prior for y derivatives, dy[i].
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Figure 3. Left: Sample sharp images. Right:
Gradient distributions of the top image (red)
and of the bottom image (green), and the gen-

eralized Laplacian distribution we use (blue).
For visibility, these plots are horizontally dis-
placed. They all actually peak at zero.

Taking derivatives of Eqn. 4 leads to the following two

gradient domain deconvolution equations:

gx = Hdx +nx, gy = Hdy +ny. (6)

Through the derivation described in Appendix A, the x part

of Eqn. 6 leads to expectation maximization (EM) iterations

involving the following system of linear equations:

(HT H+wSm)dx = HT gx, (7)

where HT is the transpose of H, m is an EM iteration count,

Sm is a diagonal matrix representing the prior term that is



updated for each EM iteration, and w is a user-specified

weight for the prior term (typically around 10−3). The solu-

tion to Eqn. 7 for dx becomes the next estimate dm+1
x , from

which Sm+1 is computed, and this process is iterated. Eqn. 7

can be solved rapidly by the second-order stationary itera-

tive method [3], with the use of fast Fourier transform (FFT)

for matrix multiplication by H and HT . We set the observa-

tion as an initial estimate: d0
x = gx. The y part of Eqn. 6 is

solved similarly. After obtaining estimated latent gradients

d̂x and d̂y, we reconstruct the deblurred image d̂ by solving

a Poisson equation [31]. As we use FFT, periodic bound-

ary conditions are assumed. Edge tapering is performed to

reduce boundary effects, and the DC component lost by the

derivative filters is restored from the input photograph.

The time complexity of our method is O(P logP) in the

number P of pixels owing to the use of FFT, which remains

the same as that of WaveGSM. However, the amount of

computation is significantly reduced in two respects. First,

we have only O(P) derivative coefficients to be updated,

in contrast to O(P logP) TI-DWT coefficients. Second,

WaveGSM performs O(P logP) TI-DWT and its inverse for

each iteration, whereas our method performs derivative and

its inverse (i.e., integral) operations only at the beginning

(by deriving Eqn. 6 from Eqn. 4) and at the end (by solving

a Poisson equation) of the whole deconvolution process.

3.3. Local Blur Estimation

Similar to the existing spatially-variant PSF estimation

techniques, we divide an image into segments, and we as-

sume the blur to be uniform within each segment. However,

rectangular segmentation as in [29, 21] can produce seg-

ments that violate this uniformity assumption, as the blur

radius can change abruptly due to depth discontinuities at

object boundaries. Therefore, we perform color image seg-

mentation [12] so that segments conform to the scene con-

tent. In what follows, we present a blur radius estimation

method that is applicable to non-rectangular segments.

Our approach is to select the blur radius from the pre-

determined M + 1 candidate blur radii {r j} that gives the

“best” deblurred image for each segment. Unfortunately,

focus measures [34, 18] are not suitable for this selection

criterion, because digitally deconvolved images with wrong

blur radii have different image statistics from optically mis-

focused images. Instead, we measure the amplitude of os-

cillatory artifacts in deblurred images due to overcompensa-

tion of blur (examples can be seen in Fig. 7). For simplicity,

we explain this phenomenon using the 1D version of Eqn. 2:

g(x) = h(x;r)∗d(x)+n(x), (8)

where the PSF is given by the following box function:

h(x;r) =

{

1/2r for |x| ≤ r

0 otherwise
. (9)

In the frequency domain, Eqn. 8 is rewritten as

G(ω) = sinc(rω)D(ω)+N(ω), (10)

where uppercase letters represent the Fourier transforms of

their lowercase counterparts, and ω denotes frequency. The

Fourier transform of h(x;r) is sinc(rω) [9]. Neglecting the

noise, an approximate solution to Eqn. 10 can be given by

the following equation, known as pseudo-inverse filtering:

D̂(ω) =
sinc(rω)

sinc2(rω)+ ε
G(ω), (11)

where ε is a small number (around 10−3) to avoid zero di-

vision at ω = kπ/r (k = ±1,±2, · · ·). If G(ω) is non-zero

at these frequencies, it is overly amplified (scaled by 1/ε),

which results in oscillation in the deblurred image. As it is

often the case that |G(ω)| is a decreasing function with re-

spect to |ω|, major oscillation occurs at ω = ±π/r, which

emerges as striped artifacts with an interval of 2r pixels.

Suppose we deblur a signal that has been blurred with ra-

dius r by a pseudo-inverse filter with radius R. Then at the

major oscillation frequency ω = π/R, we obtain the follow-

ing equation from Eqns. 10 and 11 (similar for ω =−π/R):

D̂(π/R) =
1

ε
(sinc(πr/R)D(π/R)+N(π/R)) . (12)

Fig. 6(a) shows a plot of |D̂(π/R)| as a function of R, as-

suming that |D(ω)| is also a decreasing function and that

|N(ω)| is constant (white noise) and is small compared to

|D(ω)| except for high frequencies. From this plot we can

expect to observe large oscillation in deblurred images for

R > r. Therefore, the maximum radius with which pseudo-

inverse filtering does not produce large oscillation is esti-

mated to be the true blur radius. The above discussion is

also applicable to the 2D case, as the Fourier transform of

Eqn. 1 has a similar shape to circular sinc functions [9].

For each candidate radius r j, we apply pseudo-inverse

filtering to an input photograph with that radius, and we

measure the amplitude of oscillation by the ratio of the

number of pixels within each segment whose values are out

of range [θc,min − δ ,θc,max + δ ], where [θc,min,θc,max] is the

original range of pixel values within that segment of an in-

put photograph for each color channel c, and δ is a small

number around 0.1. This “oscillation measure” can be eas-

ily computed for arbitrarily-shaped segments. For reliabil-

ity, however, we exclude too small or thin segments (e.g.,

under 100 pixels). From a set of blur radii {r j}, we identify

the maximum radius having the oscillation measure below

a certain threshold as the true blur radius. If this measure

never exceeds the threshold, which typically occurs for seg-

ments with minimal color variance, we do not make an es-

timate for those segments.

A blur radius field rorg(x,y) is obtained by stitching the

estimated blur radii. Values in segments where no estimate



was made as described above are interpolated from sur-

rounding segments. We apply some smoothing to rorg(x,y)
in order to suppress occasional spurious estimates, and also

to reduce step transitions that could lead to discontinuities

in refocused images.

From a blur radius field rorg(x,y) and deblurred im-

ages dc, j(x,y), we can reconstruct a latent image lc(x,y) by

Eqn. 3. As we cannot guarantee the blur estimation to be

perfect, we provide users with a simple drawing interface

in which pixel intensity corresponds to the size of a blur

radius, so that users can interactively modify the estimated

blur radius field. Modification to the blur radius field is im-

mediately reflected in the latent image.

3.4. Interactive Refocusing

To provide users with intuitive refocusing parameters, we

associate a depth map z(x,y) of the scene with the original

blur radius field rorg(x,y) through the ideal thin lens model

[30]:

z(x,y) =
F0v0

v0 −F0 −qorg(x,y) f0
, (13)

F0, f0, and v0 are the original camera parameters, which

represent the focal length, the f-number, and the distance

between the lens and the image plane, respectively, and

qorg(x,y) is the original signed blur radius field, such that

rorg(x,y) = |qorg(x,y)|. The sign of qorg(x,y) is related to

the original focused depth z0 = F0v0/(v0 −F0) as: q(x,y) <
0 for z(x,y) < z0, and q(x,y) > 0 for z(x,y) > z0. As we can

only estimate rorg(x,y), we let users draw binary masks to

specify the sign as shown in Fig. 4. Rough masks seem suf-

ficient. Our drawing interface provides users with graph-cut

image segmentation capability [7].

Figure 4. Top row: Input photographs. Bot-
tom row: Corresponding masks. White in-
dicates negative (nearer than the original fo-

cused depth), and black positive (farther).

Suppose that we change the camera parameters to F, f ,

and v, then a new signed blur radius field qnew(x,y) is de-

rived by using Eqn. 13 as

F0v0

v0 −F0 −qorg(x,y) f0
=

Fv

v−F −qnew(x,y) f
, (14)

where we eliminated z(x,y) to directly associate qnew(x,y)
with qorg(x,y). Solving Eqn. 14 for qnew(x,y) leads to

qnew(x,y) =
f0vF

f v0F0
qorg(x,y)+

v0F0(v−F)− vF(v0 −F0)

f v0F0
,

(15)

from which a new (unsigned) blur radius field to be added

to the latent image is obtained as rnew(x,y) = |qnew(x,y)|.
The original camera parameters F0, f0, and v0 may be

obtained from EXIF data [1] embedded in a JPEG file cre-

ated by most of the recent digital cameras. However, some

parameters are often unavailable, and EXIF data itself may

not be available from converted or edited image files. In ad-

dition, it is not necessarily intuitive to manipulate the actual

values when handling an image, not a camera. Therefore,

we present three simplified versions of Eqn. 15, in which

relative camera parameters are used.

qnew(x,y) = (vr qorg(x,y)+A0(vr −1))/ fr, (16)

qnew(x,y) = (qorg(x,y)+qo f s)/ fr, (17)

qnew(x,y) = (ur qorg(x,y)+qmax(1−ur))/ fr, (18)

where vr ≡ v/v0 is a relative image plane distance, A0 ≡
F0/ f0 is the original aperture, fr ≡ f / f0 is a relative f-

number, qo f s ≡ ((v−F)−(v0−F0))/ f0 is a blur radius off-

set, ur ≡ vF/v0F0 is a relative product of the image plane

distance and the focal length, and qmax ≡ (v0−F0)/ f0 is the

maximum blur radius. Eqn. 16 is derived by assuming the

focal length to be constant as F = F0, hence it has a good

analogy to changing focus using a real camera. Eqn. 17

assumes vF = v0F0. Though it is not realistic to change

the parameters in this manner when handling a real cam-

era, users can intuitively manipulate blur with a simple off-

set qo f s. Eqn. 18 assumes v−F = v0 −F0. This is useful

for refocusing among near objects while keeping far objects

unaffected, as qmax corresponds to z = ∞ in Eqn. 13.

Using any one of the above equations, users can interac-

tively do the following three types of refocusing operations.

Changing depth-of-field. This operation can be done

by changing relative f-number fr. Increasing fr extends the

depth-of-field, whereas decreasing fr makes it shallower.

Changing focus. This can be done by changing vr, qo f s,

or ur depending on the refocusing equation in use. The other

parameters A0 and qmax can also be adjusted, which we typ-

ically set to max{rorg(x,y)} for good refocusing effects.

Auto-focusing. Users can simply specify a point in a

photograph which they want to be in focus. An appropri-

ate value is automatically computed for the parameter of

the selected refocusing equation so that qnew(x,y) = 0 at the

specified point (xs,ys) as

vr = A0/(A0 +qorg(xs,ys)),

qo f s = −qorg(xs,ys), (19)

ur = qmax/(qmax −qorg(xs,ys)).



(a) Input photograph (b) Richardson-Lucy (c) WaveGSM (DWT) (d) WaveGSM (TI-DWT) (e) Our method

240×240 pixels, grayscale 20 sec. 4 sec. 48 sec. 5 sec.

(f) Input photograph (g) Richardson-Lucy (h) WaveGSM (DWT) (i) WaveGSM (TI-DWT) (j) Our method

240×240 pixels, color 35 sec. 7 sec. 103 sec. 12 sec.

Figure 5. Comparison of four deconvolution methods and their computation times.

4. Results

All of the input photographs shown in this paper were taken

with a Canon EOS-1D Mark II camera and a Canon EF

28-70mm wide aperture (F2.8) lens. The image format

was JPEG with sRGB color space (gamma-corrected with

γ = 2.2). We inverted this gamma-correction during decon-

volution and blur estimation.

We first demonstrate the performance of our blur estima-

tion and deconvolution methods for uniform defocus blur.

For the images shown in Figs. 5(a)(f), in which the scenes

have approximately uniform depths, we plotted their oscil-

lation measure in Fig. 6(b), treating the whole image as one

segment. The arrows show the estimated blur radii with a

threshold of 0.01, which are 11 pixels for Fig. 5(a) and 7

pixels for Fig. 5(f). These results conform to visual inspec-

tion as shown in Fig. 7. Fig. 7 also shows that the number of

out-of-range pixels (see Sec. 3.3) begins to increase as the

pseudo-inverse filter radius exceeds the true blur radius.

Based on the estimated blur radii, we applied our de-

convolution method, along with Richardson-Lucy [24, 33],

WaveGSM with ordinary DWT, and that with TI-DWT.

Fig. 5 shows the results. Since Richardson-Lucy does not

exploit explicit image priors, it produced less sharp images

with noise (between the alphabets in Fig. 5(b)) and halo arti-

facts (around the hair and face in Fig. 5(g)). WaveGSM with

DWT resulted in blocky images as expected (see Sec. 3.2).

Our method produced better (for the alphabet image) or

comparable (for the face image) results as compared to

WaveGSM with TI-DWT, running about 10 times faster.
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(a) (b) (c) (d) (e)

Figure 8. Results of our local blur estimation shown in gray-level. The maximum intensity (white)

corresponds to a blur radius of 10 pixels. The blue regions indicate that no estimate was made
there. The black lines show the segmentation boundaries.

(a) (b) (c) (d) (e) (f)

Figure 9. Comparison with the existing blur estimation method [29]. (a) Estimation result for the
teapot image shown in Fig. 10(a). (b) Latent image based on (a). (c) Latent image based on our
estimate shown in Fig. 8(b). (d) Estimation result for the crayon image shown in Fig. 12(a). (e) Latent

image based on (d). (f) Latent image based on our estimate shown in Fig. 8(c).

Next, we show several local blur estimation results in

Fig. 8. The input photographs are shown in the leftmost im-

ages in Figs. 1, 10, 12, 13, and 14. We performed relatively

fine segmentation to ensure estimation locality. The esti-

mated radii approximately correspond to the scene depths.

For comparison, we applied the spatially-variant blur esti-

mation method by Özkan et al. [29]. This method is based

on local Fourier transform, hence it employs rectangular

segmentation. The results are shown in Figs. 9(a)(d). It

failed in regions around object boundaries and also failed

to identify small blur radii, leading to noisy latent images

as shown in Figs. 9(b)(e). The corresponding latent images

based on our blur estimation are shown in Figs. 9(c)(f).

Next, we show an example of the user intervention men-

tioned in Sec. 3.3. Fig. 10(b) shows an image representing

the estimated blur radius field after smoothing. Users can

draw on this image to locally increase/decrease the values

as shown in Fig. 10(c), for better visibility (Fig. 10(f) top)

and ringing reduction (Fig. 10(f) middle and bottom). This

can be done in an esthetic sense to obtain a visually pleasing

latent image, and the edited blur radius field needs not cor-

respond to the scene depth. This user editing operation took

from a few to ten minutes for our examples shown below.

Finally, we show several refocusing examples in Figs.

12, 13, and 14, in which we changed the depth-of-field and

moved the focus nearer to or farther from the camera. Out-

of-focus objects became sharp after they were brought into

focus, as can be seen in the floret symbol at the bottom

of the red crayon in Fig. 12(c) and the furry texture of the

nearer marmot in Fig. 14 right.

When synthesizing Fig. 12(c) from Fig. 12(a), we used

the refocusing equation Eqn. 16, which simulates focus

changes of a real camera (see Sec. 3.4). We obtained the

synthesis result that well approximates a real photograph

shown in Fig. 12(d). For Fig. 1, we used Eqn. 17 for simple

manipulation of blur radii. For Figs. 13 and 14, we used

Eqn. 18 to keep distant objects unaffected as they are too

blurry to be fully restored.

For an image size of 512× 512, our deconvolution took

about 1 minute for each blur radius r j, and the blur es-

timation 15 seconds on an Intel Pentium4 3.2GHz CPU.

Although the theoretical time complexity is O(P logP), it

seems O(P) computation is dominant, and the deconvolu-

tion took 16 minutes and the blur estimation 4 minutes for a

4Mpixel image. Refocusing can be performed in real-time.

5. Conclusion

This paper has presented a method of digital refocusing

from a single photograph, which allows users to interac-

tively change focus and depth-of-field of a photograph after

taking it with an unmodified conventional camera.



(a) (b) (c) (d) (e) (f)

Figure 10. Example of user intervention for a blur radius field. (a) Input photograph. (b) Blur radius

field after filling in the undefined (blue) regions in Fig. 8(b) and after smoothing. (c) Edited blur
radius field. The red circles indicate the edited regions. (d) Latent image based on (b). (e) Latent
image based on (c). (f) On the left are magnified crops from the red rectangles in (d) (before editing),

and on the right from the corresponding red rectangles in (e) (after editing).

5.1. Limitations

We assumed that spatially-variant blur in an input photo-

graph can be locally approximated by a uniform defocus

blur. This directly leads to the following limitations.

First, in order for the blur estimation to be reliable, ob-

jects in a photograph should be larger than the blur radius

around them, so that local segments contain a uniform blur

with enough sample pixels. Hence, estimation will be er-

roneous for small or thin objects (e.g., a strand of hair). In

other words, though our blur estimation method can handle

depth discontinuities, these should not occur frequently.

Second, since depth-of-field effects are locally modeled

as convolution by a single PSF, translucent objects are not

accounted for. A similar problem occurs around occlusion

boundaries [2], which we alleviated by smoothing a blur

radius field and by blending deblurred images. The qual-

ity of refocused images will degrade particularly if occlu-

sion boundaries frequently appear in a scene (e.g., bars of a

cage), which is the case we already exclude in this paper as

described above.

Third, sources of image degradation other than defo-

cus blur, such as motion blur and image compression ar-

tifacts, can disrupt our blur estimation and deconvolution

algorithms. Over/under-exposures also lead to loss of in-

formation, breaking the linear relationship between pixel

values and captured light intensities. Blur estimation can

be still conducted by excluding affected regions, but de-

Figure 11. Left: Saturated input photograph.

Right: Result of deblurring.

convolution will produce artifacts around there as shown in

Fig. 11. Transparent objects and specular highlights also

induce similar artifacts as they distort the PSF shape.

5.2. Issues and Future Work

Along with the above limitations, there are several issues for

our method to be discussed which suggest future research

directions.

We used a simple disc PSF model,

which seems sufficient for our PSF (cali-

brated and shown in the inset). Neverthe-

less, it is worth considering the use of more

complex models and calibrated PSFs de-

pending on a target imaging system.

It would be interesting to consider applying heavy-tailed

priors also to blur estimation, which we did not in this paper

because: we knew that the defocus PSF was a disc, which

is much stronger prior knowledge about the PSF shape; and

we assumed the blur to be uniform within each segment,

which may be interpreted as a heavy-tailed prior that allows

discontinuities in a blur radius field occasionally at segment

boundaries. For better blur estimation, it would also be use-

ful to improve segmentation quality.

We provided a means of modifying a blur radius field to

fix ringing artifacts that may still remain. Skilled retouching

software users could further improve the quality by directly

working on the latent images. We would like to consider de-

veloping example-based touch-up tools for ordinary users.
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(a) (b) (c) (d)

Figure 12. (a) Input photograph, focused on the brown crayon. (b) Created image with a shallow
depth-of-field. (c) Created image, refocused on the orange crayon. (d) Ground truth photograph,

focused on the orange crayon.

Figure 13. Left: Input photograph, focused on
the flower in the center. Right: Created image,
refocused on the flower in the top right corner.

Figure 14. Left: Input photograph, focused on

the farther marmot. Right: Created image, re-
focused on the nearer marmot.
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Appendix A

This appendix briefly describes a derivation of Eqn. 7 in Sec. 3.2

from (the x part of) Eqn. 6.

Assuming that the noise nx in the gradient domain can be mod-

eled as a Gaussian with variance w and that the prior is indepen-

dently applicable to each pixel location i, the posterior distribution

of a latent gradient dx given an observation gx is given as

p(dx|gx) ∝ p(gx|dx)p(dx) ∝ exp

(

−
‖gx −Hdx‖

2

2w

)

P

∏
i=1

p(dx[i]).

(A.1)

The latent gradient is estimated as the maximizer of (the logarithm

of) Eqn. A.1 as

d̂x = argmax
dx

{

−
‖gx −Hdx‖

2

2w
+

P

∑
i=1

ln p(dx[i])

}

, (A.2)

leading to non-linear optimization because the prior term is not

quadratic: ln p(dx[i]) = −|dx[i]|
α/β with α = 0.3 (see Eqn. 5).

In order to solve Eqn. A.2 efficiently, we follow the WaveGSM

approach, and we represent the heavy-tailed prior as a Gaussian

scale mixture (GSM) as

p(dx[i]) =
∫ ∞

0
p(dx[i]|s)p(s)ds, (A.3)

where p(dx[i]|s) is a zero-mean Gaussian with scale (or variance)

s, weighted by p(s). Regarding s as a “missing variable,” Eqn. A.2

is turned into an expectation maximization (EM) iteration as

dm+1
x = argmax

dx

{

−
‖gx −Hdx‖

2

2w
+

P

∑
i=1

E m
i [ln p(dx[i]|s)]

}

,

(A.4)

where m is an iteration count, and E m
i [·] denotes the expectation

with respect to p(s|dm
x [i]), the probability density of scale s given

the current (m-th) estimate dm
x [i] of the latent gradient. Since

p(dx[i]|s) is a Gaussian, the prior term in Eqn. A.4 now becomes

E m
i [ln p(dx[i]|s)] = E m

i

[

−
(dx[i])

2

2s

]

= −
(dx[i])

2

2
E m

i

[

1

s

]

,

(A.5)

which is quadratic with respect to dx[i] since E m
i [s−1] is fixed dur-

ing m-th EM iteration (see [6] for more details):

E m
i

[

1

s

]

=
α

β |dm
x [i]|2−α

. (A.6)

Now that the objective function to be maximized in Eqn. A.4 is

quadratic, taking its derivative with respect to dx and setting it to

zero leads to the following system of linear equations, as presented

in Eqn. 7:

(HT H+wSm)dx = HT gx, (A.7)

where Sm is a diagonal matrix representing the prior term whose

i-th element is given by Eqn. A.6, and w serves as a weighting

coefficient for it, which we treat as a user-specified value.


