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Abstract

This document presents supplementary results, data, and derivations that are not included in the paper due to

space limitation. The sections, equations, and figures in this supplementary material are not numbered from 1 in

order to prevent confusion with those in the paper.

8. Additional Results

This section shows some additional results.

8.1. Example of a License Plate

Fig. 20 shows an example of a license plate of a motorbike.

The digits and characters are legible in the deblurred image

in Fig. 20(c). The motorbike is identified as moving right-

ward (not leftward), which is unavailable information from

the static camera image in Fig. 20(a). This information may

be useful for traffic accident investigation (e.g., to identify

whether the motorbike crashed into another car on the left or

it was trying to avoid being hit by that car).

8.2. Additional Recognizability Comparisons

In Fig. 15 we demonstrated that the facial feature point de-

tection succeeded for a circular motion camera image even

before deconvolution, while it failed for a static camera im-

age. To compare with the other image capture strategies, we

used high speed camera images similarly to the resolution

chart examples in Fig. 16. Examples of a vertically moving

face are shown in Fig. 21. The facial feature point detec-

tion succeeded only for the circular motion camera image of

Fig. 21(d), as shown in Fig. 21(e).
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Figure 20: License plate of a motorbike. (a) From a static

camera. (b) From the circular motion camera. (c) Deblur-

ring result of (b).

(a) (b) (c) (d) (e)

Figure 21: Motion-blurred face simulated from high speed

camera images. (a) Static camera. (b) Coded exposure cam-

era. (c) Motion-invariant camera. (d) Circular motion cam-

era. (e) Facial feature point detection succeeded for the cir-

cular motion camera image (d) without deconvolution (and

failed for the others (a-c)).



Table 1: Result statistics of the paired-comparison for subjective evaluation of image recognizability.

Object motion

Camera motion Sta Cod Mot Cir Sta Cod Mot Cir Sta Cod Mot Cir Sta Cod Mot Cir

Static camera  0.448 0.006 0.000  0.897 0.982 0.964  0.885 0.964 1.000  0.897 0.248 0.988

Coded exposure 0.552  0.000 0.006 0.103  0.927 0.970 0.115  0.545 0.994 0.103  0.079 0.933

Motion-invariant 0.994 1.000  0.000 0.018 0.073  0.606 0.036 0.455  1.000 0.752 0.921  0.988

Circular (ours) 1.000 0.994 1.000  0.036 0.030 0.394  0.000 0.006 0.000  0.012 0.067 0.012 

Sta: static camera, Cod: coded exposure camera, Mot: motion-invariant camera, Cir: circular motion camera.

Static object Horizontal object motion Oblique object motion Vertical object motion

Fig. 22 shows examples of a license plate. They are also

simulated from high speed camera images (note that Fig. 20

is a real example, not a simulated one). Large digits “72-14”

are legible for all of the capture strategies, but the charac-

ters above these digits are hard to recognize in the static and

coded exposure images shown in Figs. 22(a,b). Legibility for

the motion invariant camera image (c) is not as good as that

for the circular motion camera image (d) as the motion di-

rection is slightly off the horizontal.

(a) (b) (c) (d)

Figure 22: Motion-blurred license plate simulated from high

speed camera images. (a) Static camera. (b) Coded exposure

camera. (c) Motion-invariant camera. (d) Circular motion

camera.

8.3. Simple Workaround for Static Scene Parts

As mentioned in the paper, one of the drawbacks of our

method is that it blurs and degrades static scene parts. Since

it is often possible to take another photograph of static scene

parts before or after the fact, we can use it as a background

image as shown in Fig. 23.

Figure 23: The deconvolved background in Fig. 14(c) was

replaced by another image captured without moving the sen-

sor.

9. Statistics of the Subjective Evaluation

In Sec. 6 we described the subjective evaluation of recog-

nizability. The results of the paired-comparison test prior to

being processed by Thurstone’s method are summarized in

Table 1. For example, “0.552” at the leftmost column means

that, for static objects, 55.2% of the subjects preferred the

images captured with a static camera over those with the

coded exposure camera.

10. More Revolutions of the Sensor

In Fig. 4(1) we showed that circularly moving the sensor

twice with different speeds within a single exposure does

not fill in the frequency zeros of the motion blur PSFs. Even

if we increase the number of revolutions, frequency zeros

will not disappear as shown in Fig. 24. Moreover, PSFs be-

come more like the ones resulting from a static camera or the

coded exposure camera, and begin to favor static objects.
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Figure 24: Motion blur PSFs and their corresponding log

power spectra. Rows: (1) PSFs and (2) power spectra re-

sulting from two-revolution circular sensor motion (same

as Fig. 4(1)). (3)(4) Five-revolution. (5)(6) Ten-revolution.

Columns: (a) Static object. (b)(c) Horizontal object motion

at different speeds. (d)(e) Oblique object motion. (f)(g) Ver-

tical object motion.



11. Derivations

For completeness, here we include derivations relevant to

Sec. 4 in the paper which we omitted for brevity.

11.1. Non-existence of 2D Motion-invariant Camera

For 2D linear object motion, we can show that motion-

invariance is not achievable.

Proposition 1: There is no sensor motion that makes PSF

invariant to 2D linear object motion.

Proof : Suppose there exists such sensor motion m(t) =
(mx(t),my(t)). As it is invariant to 2D linear object motion,

for any constant object velocity v = (sx,sy), there must exist

c and d such that

m(t)−vt = m(t + c)+d, (10)

which means that the object motion only translates the sen-

sor motion path m(t). Differentiating Eq. (10) and rearrang-

ing, we have:

dm(t + c)

dt
−

dm(t)

dt
= −v. (11)

From this equation we can see that dm(t)/dt is a linear func-

tion of t. Letting dmx(t)/dt = axt + bx and dmy(t)/dt =
ayt +by, and plugging them back into Eq. (11), we obtain:

axc = −sx,

ayc = −sy, (12)

and c exists only when −sx/ax = −sy/ay, leading to a con-

tradiction.

11.2. The Slicing Relationship

In Sec. 4.1 we used the property that the 2D Fourier trans-

form of a motion blur PSF for object velocity v is a 2D slice

of the 3D Fourier transform p̂(f, ft) (Eq. (2)) of a camera

path in the xyt space-time, where the slice is taken along the

plane of ft = −v · f. This relationship can be derived as fol-

lows.

As we are interested in motion blur PSF, we consider

an object as a point light source moving at velocity v as

δ(x−vt). An image of this object (i.e., PSF) observed from

a camera moving according to m(t) during exposure time

[−T,+T ] is given as:

h(x) =
Z +T

−T
δ(x−vt +m(t))dt. (13)

Taking its 2D Fourier transform leads to:

ĥ(f) =
Z

Ω

Z +T

−T
δ(x−vt +m(t))e−2πif·x

dtdx, (14)

which can be integrated with respect to x to yield:

ĥ(f) =
Z +T

−T
e
−2πif·(−m(t)+vt)

dt. (15)

Meanwhile, by integrating Eq. (2) with respect to x, we ob-

tain:

p̂(f, ft) =
Z +T

−T
e
−2πi(f·m(t)+ ft t)dt. (16)

Comparing Eqs. (15) and (16), we see that ĥ(f) = p̂(−f, f ·v),
meaning that the Fourier transform of a motion blur PSF is

a 2D slice of p̂(f, ft) along the plane of ft = −v · f.

11.3. The Amount of Frequency Budget

Here we show that the frequency budget for the 3D

Fourier transform p̂(f, ft) of a camera path is exactly 2T

along each vertical line f = c (the line shown in red and

green in Fig. 5(a)) for any given spatial frequency c: i.e.,
R

| p̂(c, ft)|
2d ft = 2T , as described in Sec. 4.1.

From Eq. (16), we see that p̂(c, ft), when viewed as a

function of ft , is the (1D) Fourier transform of the follow-

ing function:

b(t) =

{

e−2πic·m(t) for t ∈ [−T,+T ]
0 otherwise

. (17)

Therefore, using the Parseval’s theorem,
Z +∞

−∞
| p̂(c, ft)|

2
d ft =

Z +∞

−∞
|b(t)|2dt

=
Z +T

−T
1 dt = 2T. (18)

11.4. Asymptotic Form of Bessel Functions

To derive Eq. (6) in Sec. 4.2, we used the asymptotic form

of Bessel functions Jk(z). The specific formula is as follows.

Jk(z) ≈

√

2

πz
cos

(

z−
kπ

2
−

π

4

)

, (19)

which is valid for z ≫ k2.


