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Abstract

Image blur caused by object motion attenuates high frequency content of images, making post-capture deblur-

ring an ill-posed problem. The recoverable frequency band quickly becomes narrower for faster object motion

as high frequencies are severely attenuated and virtually lost. This paper proposes to translate a camera sensor

circularly about the optical axis during exposure, so that high frequencies can be preserved for a wide range of

in-plane linear object motion in any direction within some predetermined speed. That is, although no object may

be photographed sharply at capture time, differently moving objects captured in a single image can be decon-

volved with similar quality. In addition, circular sensor motion is shown to facilitate blur estimation thanks to

distinct frequency zero patterns of the resulting motion blur point-spread functions. An analysis of the frequency

characteristics of circular sensor motion in relation to linear object motion is presented, along with deconvolution

results for photographs captured with a prototype camera.

Categories and Subject Descriptors (according to ACM CCS): I.4.1 [Image Processing and Computer Vision]: Dig-

itization and Image Capture— I.4.3 [Image Processing and Computer Vision]: Enhancement—Sharpening and

deblurring

1. Introduction

Motion blur often spoils photographs by losing image sharp-

ness. As motion blur attenuates high frequency content of

images, motion deblurring is an ill-posed problem and of-

ten comes with noise amplification and ringing artifacts

[BLM90]. Although image deconvolution techniques ad-

vance continuously to tackle this problem, motion deblurring

is still challenging since the recoverable frequency band eas-

ily becomes narrow for fast object motion as high frequen-

cies are severely attenuated and virtually lost.

A simple countermeasure, called follow shot, can capture

sharp images of a moving object as if it were static by pan-

ning a camera to track the object during exposure. However,

there are cases where follow shot is not effective: 1) when

object motion is unpredictable; 2) when there are multiple
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objects with different motion. This is because follow shot

favors particular motion one has chosen to track, as much

as a static camera favors “motion” at the speed of zero (i.e.,

static objects): objects moving differently from favored mo-

tion degrade.

This paper explores a camera hardware-assisted approach

to single-shot motion deblurring that simultaneously pre-

serves high frequency image content for different object mo-

tion. Under the assumption that object motion is in-plane

linear (having arbitrary 2D directions) within some prede-

termined speed, we propose to translate a camera sensor cir-

cularly about the optical axis during exposure, so that the

camera partially “follow-shots” various object motion. As a

result, differently moving objects can be deconvolved with

similar quality.

Our work is inspired by Levin et al. [LSC∗08], who

proved that constantly accelerating 1D sensor motion can

render motion blur invariant to 1D linear object motion

(e.g., horizontal motion), and showed that this sensor motion

evenly distributes the fixed frequency “budget” to different
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object speeds. Similarly to Cho et al. [CLDF10], we intend

to extend Levin et al.’s budgeting argument to 2D (i.e., in-

plane) linear object motion by sacrificing motion-invariance.

However, unlike Cho et al.’s and other researchers’ multi-

shot approaches [CLDF10, RAP05, YSQS07, AXR09], in

this paper we would like to seek a single-shot solution be-

cause increasing the number of exposures may incur other

issues such as capture time overhead/delay between multiple

exposures, signal-to-noise ratio degradation if shorter expo-

sure time per shot is used, or violation of the linear object

motion model if total exposure time becomes longer.

By losing motion-invariance, we inevitably reintroduce an

issue inherent to the classical motion deblurring problem,

which [LSC∗08] resolved for 1D motion; we need to lo-

cally estimate a point-spread function (PSF) of motion blur

as it depends on object motion. Fortunately, although we rely

on user intervention to segment images into different mov-

ing objects, we can show that PSF discriminability for each

moving object is higher for the circular sensor motion cam-

era than the previous single-shot image capture strategies,

thanks to distinct frequency zero patterns of the PSFs.

Although we cannot guarantee worst-case deblurring per-

formance as the PSFs have frequency zeros, circular sensor

motion can be shown to provide 2/π (≈ 64%) of the optimal

frequency bound on an average. We show deconvolution re-

sults for simulated images as well as real photographs cap-

tured by our prototype camera, and also demonstrate other

advantages of circular sensor motion: 1) motion blurred ob-

jects in an image are recognizable (e.g., text is readable) even

without deconvolution; 2) the circular motion strategy has no

180◦ motion ambiguity in PSF estimation; it can distinguish

rightward object motion from leftward one.

2. Related Work

Capture time approach: Motion blur can be reduced using

short exposure time, but signal-to-noise ratio worsens due to

loss of light. Recent cameras are equipped with image sta-

bilization hardware that shifts the lens or sensor to compen-

sate for camera motion acquired from a gyroscope. This is

effective for preventing camera shake blur but not for object

motion blur. Ben-Ezra and Nayar [BEN04] acquired cam-

era motion from a low resolution video camera attached to

a main camera, which was used for camera shake removal

for the main camera. Tai et al. [TDBL08] extended their

approach to handle videos with non-uniform blur. Joshi et

al. [JKZS10] used a 3-axis accelerometer and gyroscopes to

guide camera shake removal.

Raskar et al. [RAT06] developed a coded exposure tech-

nique to prevent attenuation of high frequencies due to mo-

tion blur at capture time by opening and closing the shut-

ter during exposure according to a pseudo-random binary

code. The method was extended to be capable of PSF es-

timation [AX09] and to handle non-uniform/nonlinear blur

[TKLS10, DMY10].

The trade-offs among the coded exposure photography,

motion-invariant photography [LSC∗08], and ours are sum-

marized as follows (refer also to [AR09] for detailed com-

parison between the coded exposure and motion-invariant

strategies). A static camera can capture static objects per-

fectly, but high frequencies will be rapidly lost as object mo-

tion gets faster. The coded exposure strategy significantly re-

duces this loss of frequencies. The motion-invariant strategy

best preserves high frequencies for 1D (horizontal) object

motion up to the predetermined speed, denoted by S, but it

does not generalize to other motion directions. The circular

motion strategy can treat any direction, and it achieves bet-

ter high frequency preservation for target object speed S than

the coded exposure strategy. Similar to the motion-invariant

strategy, the circular motion strategy degrades static scene

parts due to sensor motion, but it can partially track moving

objects so that they are recognizable even before deconvo-

lution. Unlike the other strategies, the circular motion strat-

egy has no 180◦ motion ambiguity in PSF estimation. These

trade-offs will be explained in more detail and demonstrated

in the following sections.

Cho et al. [CLDF10] proposed a two-shot approach with

the motion-invariant strategy aimed to two orthogonal di-

rections (i.e., horizontal and vertical). In contrast, this pa-

per pursues a single shot approach. Direct comparison with

multi-shot approaches requires elaborate modeling of cap-

ture time overhead and noise and is out of the scope of this

paper, but we will present some observation in Sec. 4.

Post-capture approach (PSF estimation and image decon-

volution): This field has a large body of literature, and we

refer the readers to [KH96] for the early work. Recently,

significant advancement was brought forth by the incorpo-

ration of sophisticated regularization schemes and by ex-

tending the range of target blur to non-uniform and/or large

ones [FSH∗06,Lev06,Jia07,SXJ07,SJA08,YSQS08,JSK08,

CL09, XJ10, KTF11]. Some researchers used multiple im-

ages [RAP05,YSQS07,AXR09,ZGS10], some of which use

different exposure times or flash/no-flash image pairs.

Other applications of sensor motion: Some researchers

proposed to move sensors for different purposes. Ben-Ezra

et al. [BEZN05] moved the sensor by a fraction of a pixel

size between exposures for video super-resolution. Mohan

et al. [MLHR09] moved the lens and sensor to deliberately

introduce motion blur that acts like defocus blur. Nagahara

et al. [NKZN08] moved the sensor along the optical axis to

make defocus blur depth-invariant.

3. Circular Image Integration

Fig. 1(a) shows the proposed motion of a camera image sen-

sor. We translate the sensor along a circle perpendicular to

the optical axis while keeping its orientation. We use the

phrase “circular motion” to emphasize that we do not rotate

the sensor itself.

c© 2011 The Author(s)
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During exposure time t ∈ [−T,+T ], the sensor undergoes

one revolution with constant angular velocity ω = π/T . Let-

ting the radius of circular motion be R, the sensor moves

along the circle with constant speed Rω, which corresponds

to the target object speed S in the image space. The corre-

sponding object speed in the world space (i.e., actual speed

in a scene) is determined by the camera optics and the dis-

tance to the object from the camera. Given exposure time 2T

and the target object speed S, the appropriate radius is there-

fore R = ST/π. Taking an xy plane on the sensor, the sensor

motion goes through a spiral in the xyt space-time volume as

shown in red in Fig. 1(b).

Optical axis

Lens

Sensor

x

y t

x

y

Exposure

time 2T

Radius R

(a) (b)

Figure 1: Circular sensor motion. (a) The sensor is trans-

lated circularly about the optical axis. (b) Sensor motion

trajectory (red curve) in the space-time volume.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(a) (b) (c) (d) (e) (f) (g)

Figure 2: Motion blur PSFs and their corresponding log

power spectra. Rows: (1) PSFs and (2) power spectra

for a static camera. (3)(4) Coded exposure camera. (5)(6)

Motion-invariant camera. (7)(8) Circular motion camera.

Columns: (a) Static object. (b)(c) Horizontal object motion

at different speeds. (d)(e) Oblique object motion. (f)(g) Ver-

tical motion.

Fig. 2 shows simulated motion blur PSFs and their power

spectra of various object motions observed from a static

camera, the coded exposure camera [RAT06], the motion-

invariant camera [LSC∗08], and our circular motion cam-

era. While the power spectrum of a static object for a static

camera is perfectly broadband, those of moving objects be-

come quickly narrowband as the object speed increases. The

coded exposure camera makes power spectra broadband at

the cost of losing light blocked by the shutter, but the ten-

dency of bandwidth narrowing for faster motion remains.

The motion-invariant camera produces similarly broadband

power spectra for horizontal motions (they are not com-

pletely identical due to the tail clipping effect [LSC∗08]),

but vertical frequencies are sacrificed as motion direction

deviates from horizontal. The circular motion camera pro-

duces power spectra that extend to high frequency regions in

all cases. Although they have striped frequency zeros, these

zeros facilitate PSF estimation as described in Sec. 5.

4. Analysis

Levin et al. [LSC∗08] proved that constantly accelerating

1D sensor motion is the only sensor motion that makes PSF

invariant to 1D linear object motion. From this finding we

can see that there is no sensor motion that makes PSF in-

variant to 2D linear object motion. Hence, we must abandon

motion-invariance, and we seek to extend Levin et al.’s an-

other finding that their sensor motion evenly and nearly op-

timally distributes the fixed frequency “budget” to different

object speeds.

The intuitive explanation for optimality of constant cam-

era acceleration for 1D case is as follows. Fig. 3(a) shows the

range of speed [−S,+S] that must be taken care of. We can

cover the entire range by accelerating a camera beginning

at speed −S until it reaches +S. The camera tracks every

speed at one moment during exposure. By extending to 2D,

the range of velocity (speed + direction) we must cover be-

comes a disc as shown in green in Fig. 3(b). We are no longer

able to fill the entire disc by a finite sensor motion path, and

we opt to trace only the circumference of the disc (shown in

blue), which can be achieved by moving a sensor circularly.

The reasons for doing so are threefold.

1. It makes theoretical analysis easier. Although full fre-

quency analysis of 3D xyt space-time is difficult, we were

able to draw some insights into frequency characteristics

of circular sensor motion.

2. Tracing the circumference alone can be shown to deal

with velocity in the interior of the disc fairly well.

3. It makes implementation of camera hardware easier.

Multi-revolution and multi-shot approaches: As for Rea-

son 2 above, to further treat different object speeds evenly,

one can consider sampling the interior of the velocity disc

by a set of concentric circles. However, this does not bring

in significant improvement of PSF power spectra, since the

c© 2011 The Author(s)
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phases of the Fourier transform of multiple circular motions

cancel each other when superimposed, resulting in a set of

power spectra as shown in Fig. 4(1), which is qualitatively

similar to the one shown in the bottom row of Fig. 2. That

is, for multiple PSFs whose Fourier transforms are given

as Fi( fx, fy) (i = 0,1, · · ·), the combined power spectrum

|∑i Fi( fx, fy)|
2 can be zero for some frequency (a,b) even

if |Fi(a,b)|2 > 0 for some or all i. If multiple shots were

allowed, the phase cancellation would not occur, and the

combined power spectrum would be ∑i |Fi( fx, fy)|
2, mean-

ing that frequency zeros of one PSF could be filled with

non-zero frequencies of the other PSFs [AXR09]. There-

fore, whether or not to take multi-shot approaches depends

on a cost model for multiple shots (if there is no cost, tak-

ing many images is preferable, for example), which is left

as future work. For a single shot approach, moving a sensor

in two orthogonal directions as in [CLDF10] during expo-

sure produces power spectra shown in Fig. 4(2), which have

tendency of bandwidth narrowing for faster object motion.

sxsx

+S–S S0

sy

O

(a) (b)

Figure 3: The range of velocity (sx,sy) that needs to be cov-

ered for (a) 1D case and (b) 2D case (shown in green). We

trace only the circumference of the disc (shown in blue).

(1)

(2)

Figure 4: Power spectra of the motion blur PSFs from

(1) two-revolution circular sensor motion and (2) horizon-

tal sensor motion followed by vertical one. The order of

columns is the same as in Fig. 2.

4.1. Frequency Budgeting

Now we review the frequency budgeting argument of

[LSC∗08] for the case of 2D object motion.

We consider a camera path in the xyt space-time volume.

p(x, t) =

{

δ(x−m(t)) for t ∈ [−T,+T ]
0 otherwise

, (1)

where x = (x,y), m(t) specifies the camera position at time

t, and δ(·) is a delta function. We would like to consider its

3D Fourier transform, denoted by p̂:

p̂(f, ft) =
Z

Ω

Z +T

−T
δ(x−m(t))e−2πi(f·x+ ft t)dtdx, (2)

where f = ( fx, fy) is a 2D spatial frequency, ft is a temporal

frequency, and Ω spans the entire xy plane.

It can be shown that the 2D Fourier transform of a motion

blur PSF for object velocity v is a 2D slice of p̂(f, ft) along

the plane of ft = −v · f = −sx fx − sy fy (Fourier projection-

slice theorem [Bra65]). Therefore, given a maximum speed

S, the volume in the 3D fx fy ft frequency domain that these

slices can pass through is confined to the outside of the cone

as | ft | ≤ S|f|, called the wedge of revolution in [CLDF10], as

shown in blue in Fig. 5(a). We would like | p̂(f, ft)| to have

as large value as possible within this volume, so that motion

blur PSFs up to S have large power spectra. However, the

budget is exactly 2T along each vertical line f = c (the line

shown in red and green in Fig. 5(a)) for any given spatial

frequency c: i.e.,
R

| p̂(c, ft)|
2d ft = 2T [LSC∗08].

To assign the 2T budget so that any 2D linear object mo-

tion below S has a similar amount of PSF spectral power, we

consider the following two criteria.

Effectiveness: The budget should be assigned as much as

possible within the line segment of ft ∈ [−S|c|,+S|c|] which

is shown in red in Fig. 5(a). In other words, we would like

to avoid assigning the budget to the other portions of the

line (shown in green in Fig. 5(a)) as they correspond to ob-

ject speeds beyond S and the budget will be wasted. Because

the budget is exactly 2T unless we close the shutter during

exposure, less assignment to some portion means more as-

signment to the other.

Uniformity: The budget should be distributed evenly across

the line segment, so that every object motion PSF has an

equal amount of spectral power.

Therefore, optimal assignment in which both effective-

ness and uniformity are perfect gives T/S|c| to each point

on the line segment.

4.2. Spectrum of Circular Sensor Motion

Now we take the 3D Fourier transform of the circular sensor

motion m(t) = (Rcosωt,Rsinωt), a spiral in the xyt space-

time as shown in Fig. 1(b). By integrating Eq. (2) with re-

spect to t, we obtain:

p̂(f, ft) =
Z

Ω

(

δ(|x|−R)

Rω
e
−2πi ft m

−1(x)
)

e
−2πif·x

dx, (3)

since the integrand is non-zero only at |x| = R and at t =
m−1(x). Jacobian |dm(t)/dt| = Rω is introduced in the de-

nominator. By using polar coordinates as x = r cosθ and

y = r sinθ,

p̂(f, ft) =
Z

Ω

(

δ(r−R)

Rω
e
−2πi ft θ/ω

)

e
−2πif·x

dx. (4)

This is a hard-to-integrate expression, but we can proceed if

we focus on a set of discrete ft slices where k = 2π ft/ω is

an integer as shown in Fig. 5(b), as (see Appendix A):

| p̂(f, ft)|
2 = 4T

2
J

2
k (2πR|f|), (5)

c© 2011 The Author(s)
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Figure 5: (a) The cone defining the volume (shown in blue) whose slices passing through the origin correspond to the power

spectra of motion blur PSFs below the speed S. (b) Discrete ft slices. (c) fy slices. The hyperbolic intersections with the cone

are shown in purple. (d) Plots of Bessel functions Jk(z) of the first kind for some k, which correspond to the slices in (b).

where Jk(z) is the k-th order Bessel function of the first kind

[Wat22], which is plotted for some k in Fig. 5(d).

We show the effectiveness and uniformity of this distri-

bution as described in Sec. 4.1. For effectiveness, we show

| p̂(f, ft)|
2 is small inside the cone | ft | ≥ S|f|, shown in white

in Fig. 5(a). By simple algebraic manipulation, we have

2πR|f| < k inside the cone. As can be observed in Fig. 5(d)

particularly clearly for k = 10 and 20, Bessel functions Jk(z)
start from zero at the origin (except for k = 0), and remain

small until coming close to the first maximum value, which

is known to be around z = k + 0.808618k1/3 > k [Wat22].

Therefore, Jk(z) is small for z < k, which means | p̂(f, ft)|
2 is

small inside the cone.

Next, we show the uniformity of the distribution. Eq. (5)

can be approximated using the asymptotic form of Bessel

functions [Wat22] for z ≫ k2 as:

| p̂(f, ft)|
2 ≈

4

π
T

S|f|
cos

2

(

2πR|f|−
kπ
2

−
π
4

)

. (6)

This equation indicates that, at any given spatial frequency

f which is sufficiently large, | p̂(f, ft)|
2 is a sinusoidal wave

with an amplitude of (4/π)(T/S|f|), which is independent

of ft and hence uniform along the ft direction. The am-

plitude itself is greater than the optimal assignment T/S|f|
as described in Sec. 4.1, and averaging the cosine undula-

tion in Eq. (6) reveals that the assigned frequency power is

(2/π)(T/S|f|) on an average, meaning that the circular sen-

sor motion achieves 2/π (about 64%) of the optimal assign-

ment.

To verify the above argument, we show a numerically

computed power spectrum of a spiral in Fig. 6 by three fy
slices as shown in Fig. 5(c), along with the power spectra of

the other camera paths. The motion-invariant camera nearly

optimally assigns the budget for the fy = 0 slice correspond-

ing to horizontal object motion, but it fails to deliver the bud-

get uniformly for other cases. Our circular motion camera

distributes the budget mostly evenly within the volume of in-

terest, with condensed power around the cone surface corre-

sponding to the maximum value of Bessel functions, which

results in a moderate tendency to favor the target speed.

(1)

(2)

(3)

(4)

(a) (b) (c) (d)

Figure 6: Camera paths in the space-time and 2D slices of

their 3D log power spectra. Purple curves show the inter-

sections with the cone of target speed S. Rows: (1) Static

camera. (2) Coded exposure camera. (3) Motion-invariant

camera. (4) Circular motion camera. Columns: (a) Camera

path in the xt space-time. See Fig. 1(b) for the circular sen-

sor motion path. (b) Slice at fy = 0. (c)(d) Slices off the fx ft
plane ( fy 6= 0).

5. PSF Estimation

As shown in the bottom row of Fig. 2, the power spectra

of PSFs resulting from circular sensor motion have differ-

ent frequency zeros depending on object motion, serving as

cues for PSF estimation. According to the model presented

in [LFDF07], PSF discriminability between candidate PSFs

i and j can be measured using the following equation.

D(i, j) =
1

N
∑
fx, fy

(

σi( fx, fy)

σ j( fx, fy)
− log

σi( fx, fy)

σ j( fx, fy)

)

−1, (7)

c© 2011 The Author(s)
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where N is the number of discretized frequency components,

and σi( fx, fy) is the variance of the frequency component at

( fx, fy) in images blurred with PSF i, which is given as:

σi( fx, fy) =
β|Fi( fx, fy)|

2

|Gx( fx, fy)|2 + |Gy( fx, fy)|2
+η, (8)

where Fi and (Gx,Gy) are the Fourier transforms of PSF i

and of the gradient operators, β is the variance of natural

image gradients, and η is the noise variance (we set β =
5.6×10−3 and η = 1.0×10−6). D(i, j) becomes large when

the ratio of σi and σ j is large, especially when either of them

is zero (i.e., their frequency zero patterns are different).

To compare the PSF discriminability for various capture

strategies, we generated a set of PSFs corresponding to all

possible (discretized) object motions, and plot in Fig. 7(a)

the minimum value of Eq. (7) among all the pairs of the

PSFs. We set the target object speed as S = 50 pixel/sec, and

considered object speed up to 1.5S. Motion direction and

speed were discretized by 15◦ and 5 pixels/sec, respectively.

As shown by the red line, all of the capture strategies except

ours have (almost) zero discriminability. This is because ob-

jects moving in opposite directions at the same speed pro-

duce (almost) the same motion blur except for the circular

motion camera (see Fig. 7(b)(c)). We also plot the PSF dis-

criminability (green line) apart from this 180◦ ambiguity by

limiting object motion direction to [0◦,165◦]. In this case,

too, the circular motion camera gained the highest value.

 0

 0.5

 1

 1.5

 2

Static
camera

Coded
exposure

Motion-
invariant

Circular
(ours)

P
S

F
 d

is
cr

im
in

ab
il

it
y

Capture strategy (camera motion)

All motions
Non-opposite

(a) (b) (c)

Figure 7: (a) Plot of PSF discriminability. (b) PSFs of 45◦

object motion direction for static, coded exposure, motion-

invariant, and circular motion cameras (from top to bottom).

(c) PSFs of 225◦ direction at the same speed.

Thanks to this high PSF discriminability, simple hypoth-

esis testing works well in estimating PSFs for the circular

motion camera, for which we used so-called MAPk estima-

tion [LWDF09]. We examine all possible object motions and

pick the motion (equivalently the PSF) that gives the largest

value for the following log posterior probability distribution.

log p(Fi|B) = ∑
fx, fy

[

log(σi( fx, fy))+
|B( fx, fy)|

2

σi( fx, fy)

]

, (9)

where B is the Fourier transform of a motion blurred image.

6. Experiments

Simulation: We evaluated the frequency preservation

gained from the various image capture strategies by simulat-

ing motion blur for a set of 12 natural images, and by mea-

suring the mean squared errors (MSE) between the Wiener-

deconvolved images and the original unblurred images. Ex-

ample images are shown in Fig. 8. Fig. 9 plots the deconvolu-

tion noise increase in decibels as 10 log10(MSE/σ2), where

(1)

(2)

34.3 dB 34.8 dB 35.3 dB4.8 dB

(3)

(4)

31.0 dB 32.3 dB 31.9 dB11.1 dB

(5)

(6)

24.5 dB 31.2 dB 32.5 dB21.6 dB

(7)

(8)

26.7 dB 26.1 dB 25.6 dB28.1 dB

(a) (b) (c) (d)

Figure 8: Simulated motion blurred images and their Wiener

deconvolution results. The values indicate deconvolution

noise increase. Rows: (1) Blurred and (2) deblurred images

for a static camera. (3)(4) Coded exposure camera. (5)(6)

Motion-invariant camera. (7)(8) Circular motion camera.

Columns: (a) Static object. (b)(c)(d) Horizontal, oblique,

and vertical object motion at the target speed S.
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Figure 9: Plots of deconvolution noise increase for different object speeds and directions. The exposure time is 1 sec for all the

cameras. The vertical gray lines indicate the target object speed S = 50 pixels/sec for the motion-invariant camera and ours.

The length 50 code containing 25 ‘1’s [AXRT10] was used for the coded exposure camera (half the light level).

we assumed noise corruption for motion blur to be Gaus-

sian of standard deviation σ = 10−3 for [0, 1] pixel values.

The motion-invariant camera shows excellent constant per-

formance for horizontal motion up to the target speed S, but

for other directions, deconvolution noise increases for faster

object motion. The coded exposure camera and ours have

no such directional dependence. The coded exposure cam-

era performs almost as perfectly as a static camera for static

objects with marginal increase in deconvolution noise due to

light loss, and the noise gradually increases for faster object

motion. The circular motion camera also maintains stable

performance up to and slightly beyond S. It moderately fa-

vors the target speed S, for which it has lower deconvolution

noise than the other cameras except for the motion-invariant

camera for horizontal object motion. The downside of our

strategy is the increased noise for static objects.

Real examples using a prototype camera: For prototyping

we placed a tilted acrylic plate inside the camera lens mount

as shown in Fig. 10, and rotated it so that the refracted light

rays were translated circularly. The plate is 3mm thick with

a refraction index of 1.49, and the tilt angle is 7.7◦, resulting

in a circular motion radius R of 0.13mm. This corresponds

to 5 pixels in our setup, and the target object speed is S =

31.4 pixels/sec with the exposure time 2T = 1.0 sec.

Motor

Worm gear

Ring gear + acrylic plate

Sensor

Camera

body

Side view

Figure 10: Prototype camera based on a Canon EOS 40D.

The lens is detached to reveal the modified lens mount. After

passing through the lens, incoming light (shown in red) is

displaced via the tilted acrylic plate, and the displacement

sweeps a circle on the sensor while the plate rotates (yellow).

For deblurring, we performed the PSF estimation de-

scribed in Sec. 5 for each user-segmented object, and ap-

plied the deconvolution method of Shan et al. [SJA08]. The

deblurred objects and the background are blended back to-

gether. The PSF estimation took 20 min for a 512 × 512

image on an Intel Pentium 4 3.2GHz CPU.

Fig. 11 shows an example of multiple objects moving in

different directions and at speeds. The digits and marks on

the cars are visible in the deblurred image. For comparison,

Fig. 12 shows closeups of the results from the static and

circular motion camera images, in which we used simpler,

Wiener deconvolution to better demonstrate high frequency

preservation. More details were recovered for the circular

motion camera image with less deconvolution noise.

(a) (b) (c)

Figure 11: Toy cars. (a) From a static camera. (b) From the

circular motion camera. (c) Deblurring result of (b).

(a) (b) (c) (d)

Figure 12: Comparison of Wiener deconvolution results for

the toy car example. (a)(c) Results for the static camera im-

age. (b)(d) Results for the circular motion camera image.
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(a) (b) (c) (d)

Figure 13: Squat motion. (a) From a static camera. (b) From the circular motion camera. (c) Deblurring result of (b). (d)

User-specified motion segmentation. Four regions are enclosed by differently-colored lines.

(a) (b) (c)

Figure 14: Moving people. (a) From a static camera. (b) From the circular motion camera. (c) Deblurring result of (b).

Fig. 13 shows an example of an object whose parts are

moving differently. Fig. 13(d) shows the user-specified mo-

tion segmentation, for which manual specification took less

than a minute. The regions overlap so that they can be

stitched smoothly at the borders after deconvolution. Details

such as fingers and wrinkles on the clothes were recovered.

Fig. 14 shows an example with a textured background.

Due to occlusion boundaries, artifacts can be seen around the

silhouettes of the people, but the deblurred faces are clearly

recognizable. It is worth mentioning that the circular motion

camera tells us that the man was moving downward while

the woman was moving leftward (not upward or rightward),

which is neither available information from the static camera

image in Fig. 14(a) nor from the other capture strategies.

We also note that details such as facial features are already

visible in Fig. 14(b) even before deconvolution, which were

successfully identified by an automatic facial feature point

detector as shown in Fig. 15. These motion identification and

recognizable image capture capabilities may be useful for

surveillance purposes.

Comparison using a high-speed camera: For comparison

with the other capture strategies, we used high-speed camera

images of a horizontally moving resolution chart provided

online [AXRT10]. Blurred images are simulated by averag-

ing 150 frames from the 1,000 fps video, resulting in a 39-

pixel blur. The length 50 code was used for the coded expo-

(a) (b) (c) (d) (e) (f)

Figure 15: Results of facial feature point detection [YY08]

for Fig. 14. (a)(d) Detection failed for the static camera im-

age in Fig. 14(a), as the faces are severely blurred. (b)(e)

Detection succeeded for the circular motion camera image

in Fig. 14(b) even before they were deblurred, since the fa-

cial features are already visible. (c)(f) Detection also suc-

ceeded for the deblurred image in Fig. 14(c).

sure camera, spending 3 msec for each chop of the code. For

fair comparison, the motion-invariant and circular motion

cameras were targeted to an object speed of 50 pixels (not

39 pixels) per exposure time. We tilted the camera by 90◦

to simulate the “vertical” object motion relative to the cam-

era. As shown in Fig. 16, the coded exposure deblurring pro-

duced a less noisy image than the static camera, but oblique

streaks of noise can still be seen. The motion-invariant cam-

era produced a clean image for horizontal object motion, but

the result for vertical object motion exhibits severe noise.

The circular motion camera produced clean images for both

motion directions.
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Static camera Coded exposure

Motion-inv. (horizontal) Motion-inv. (vertical)

Circular (horizontal) Circular (vertical)

Figure 16: Comparison using high-speed camera images.

For each pair of images, the left one is a simulated blurred

image, and the right one is its deconvolution result. Please

magnify the images on the PDF to clearly see the differences.

Subjective evaluation of recognizability: We have argued

that motion-blurred objects are more recognizable with cir-

cular camera motion than the other image capture strategies.

To quantitatively back up this claim, we conducted subjec-

tive evaluation where 55 persons were asked which of pre-

sented images were more recognizable to them (i.e., image

textures and patterns such as facial features and text were

more clearly seen or readable). We used the three images

shown in Fig. 17, and we synthetically motion-blurred each

image with the four image capture strategies as shown in

Fig. 18. We presented every pair of the four blurred im-

ages to the subjects, and asked them to select either im-

age (paired-comparison test). Therefore, 18 pairs were pre-

sented to the subjects (6 pairs for each image). This test was

done four times with different object motion: static, horizon-

tal, oblique, and vertical. From the number of “votes” from

the subjects, relative recognizability can be quantified using

Thurstone’s method [Thu27] as shown in Fig. 19. For static

objects, recognizability was of course the best with a static

camera, but for moving objects, the circular motion camera

gained the highest values for all of the motion directions.

Figure 17: Original images used for the subjective evalua-

tion, presented only once in the beginning of the test.

Figure 18: Blurred images used for the subjective evalua-

tion. The shown images correspond to vertical object motion

captured with static, coded exposure, motion-invariant, and

circular motion cameras (from left to right). All of the six

pairs of these four images were presented to the subjects.
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Figure 19: Relative recognizability scale between various

image capture strategies.

7. Conclusions

We have proposed a method to facilitate motion blur removal

from a single image by translating a camera sensor circularly

about the optical axis during exposure, so that high frequen-

cies can be preserved for a wide range of in-plane linear ob-

ject motion within some target speed. We analyzed the fre-

quency characteristics of circular sensor motion, and inves-

tigated its trade-offs between other image capture strategies.

The advantages include reduced deconvolution noise at the

target speed, improved PSF discriminability, and image rec-

ognizability without deconvolution.

The prototype implementation of the camera hardware

may appear complicated, but it will be much simpler as

technologies advance. In this paper we confined ourselves

to in-plain linear object motion, and we also assumed user-

specified motion segmentation. We would like to address

these limitations in the future. Another issue of our method

is that static objects are also blurred. One way to alleviate

this is to pause the sensor for a fraction of exposure time.

We intend to investigate ways to control the degree to which

static and moving objects are favored relative to each other.
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Appendix A: Fourier Transform of a Spiral

According to [SW71], 2D Fourier transform of a function

g(r)e−ikθ is given as G( fr)e
−ikφ, where (r,θ) and ( fr,φ) are

the polar coordinates in the primal and frequency domains,

respectively (i.e., fr = |f| ≡ |( fx, fy)|), and we have:

G( fr) = 2πi
−k

Z ∞

0
g(r)Jk(2π frr)rdr. (A.1)

Applying this theorem to Eq. (4) with k = 2π ft/ω leads to:

p̂(f, ft) =

(

2πi
−k

Z ∞

0

δ(r−R)

Rω
Jk(2π frr)rdr

)

e
−ikφ

= 2πi
−k 1

ω
Jk(2π frR)e

−ikφ

= 2T Jk(2πR|f|) i
−k

e
−ikφ. (A.2)
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