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Expression is an important aspect of music performance. It is the
added value of a performance and is part of the reason that music
is interesting to listen to and sounds alive. Understanding and mod-
eling expressive content communication is important for many en-
gineering applications in information technology. For example, in
multimedia products, textual information is enriched by means of
graphical and audio objects. In this paper, we present an original
approach to modify the expressive content of a performance in a
gradual way, both at the symbolic and signal levels. To this pur-
pose, we discuss a model that applies a smooth morphing among
performances with different expressive content, adapting the audio
expressive character to the user’s desires. Morphing can be real-
ized with a wide range of graduality (from abrupt to very smooth),
allowing adaptation of the system to different situations. The sound
rendering is obtained by interfacing the expressiveness model with
a dedicated postprocessing environment, which allows for the trans-
formation of the event cues. The processing is based on the orga-
nized control of basic audio effects. Among the basic effects used, an
original method for the spectral processing of audio is introduced.
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I. INTRODUCTION

Understanding and modeling expressive content commu-
nication is important for many engineering applications in
information technology. In multimedia products, textual in-
formation is enriched by means of graphical and audio ob-
jects. A correct combination of these elements is extremely
effective for the communication between author and user.
Usually, attention is put on the visual part rather than sound,
which is merely used as a realistic complement to image or
as a musical comment to text and graphics. With increasing
interaction, the visual part has evolved consequently while
the paradigm of the use of audio has not changed adequately,
resulting in a choice among different objects rather than in
a continuous transformation on these. A more intensive use
of digital audio effects will allow us to interactively adapt
sounds to different situations, leading to a deeper fruition of
the multimedia product. It is advisable that the evolution of
audio interaction leads to the involvement of expressive con-
tent. Such an interaction should allow a gradual transition
(morphing) between different expressive intentions. Recent
researches have demonstrated that it is possible to commu-
nicate expressive content at an abstract level, so as to change
the interpretation of a musical piece [1].

In human musical performance, acoustical or perceptual
changes in sound are organized in a complex way by the
performer in order to communicate different emotions to the
listener. The same piece of music can be performed trying
to convey different specific interpretations of the score, by
adding mutable expressive intentions. A textual or musical
document can assume different meanings and nuances
depending on how it is performed; see [2] for an overview
of models of expressiveness in speech. In multimedia,
when a human performer is not present, it is necessary
to have models and tools that allow the modification of a
performance by changing its expressive intention. The aim
of this paper is to address this problem by proposing a model
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for continuous transformation of expressive intentions of a
music performance.

Research on music performance carried out in these last
decades have analyzed the rules imposed by musical praxis.
In fact, audio content normally is represented by a musical
score. A mechanical performance (played with the exact
values indicated in the score) of that score is, however,
lacking of musical meaning and is perceived dull as a text
read without any prosodic inflexion. Indeed, human per-
formers never respect tempo, timing, and loudness notations
in a mechanical way when they play a score; some deviations
are always introduced [3]. These deviations change with the
music style, instrument, and musician [4]. A performance
which is played accordingly to appropriate rules imposed by
a specific musical praxis, will be called natural. Moreover,
Clynes [5] evidenced the existence of composer’s pulses
consisting of combined amplitude and timing warps, and
specific to each composer. There are also some implicit
rules that are related to different musical styles and musical
epoch that are verbally handed on and used in the musical
practice. Furthermore, a musician has his own performance
style and his own interpretation of the musical structure,
resulting in a high degree of deviation from the notation of
the score. Repp [6] deeply analyzed a lot of professional
pianists’ performances, measuring deviations in timing and
articulation; his results showed the presence of deviation
patterns related to musical structure.

Studies in music performance use the word expressive-
ness to indicate the systematic presence of deviations from
the musical notation as a communication means between
musician and listener [7]. The analysis of these systematic
deviations has led to the formulation of several models
that try to describe their structures and aim at explaining
where, how, and why a performer modifies, sometimes in
an unconscious way, what is indicated by the notation of the
score. It should be noticed that although deviations are only
the external surface of something deeper and not directly
accessible, they are quite easily measurable, and, thus, it
is useful in developing computational models in scientific
research. Some models based on an analysis-by-measure-
ment method have been proposed [8]–[12]. This method is
based on the analysis of deviations measured in recorded
human performances. The analysis aims at recognizing
regularities in the deviation patterns and to describe them
by means of mathematical relationships. Another approach
derives models, which are described with a collection of
parametric rules, using an analysis-by-synthesis method.
The most important is the KTH rule system [13]–[15].
Other rules were developed by De Poli [16]. Rules describe
quantitatively the deviations to be applied to a musical
score, in order to produce a more attractive and humanlike
performance than the mechanical one that results from
a literal playing of the score. Every rule tries to predict
(and to explain with musical or psychoacoustic principles)
some deviations that a human performer inserts. Machine
learning performance rules is another active research stream.
Widmer [17], [18] and Katayose [19] used some artificial
intelligence (AI) inductive algorithms to infer performance

rules from recorded performances. Similar approaches with
AI algorithms using case-based reasoning were proposed by
Arcos [20] and Suzuki [21]. Several methodologies of ap-
proximation of human performances were developed using
neural network techniques [22], a fuzzy logic approach [23],
[24] or a multiple regression analysis [25]. Most systems
act at symbolic (note-description) level; only Arcos [26]
combined it with sound processing techniques for changing
a recorded musical performance.

All the above researches aim at explaining and modeling
the natural performance. However, the same piece of music
can be performed trying to convey different expressive in-
tentions [7], changing the natural style of the performance.
One approach for modeling different expressive intentions is
being carried out by Bresin and Friberg [27]. Starting from
the above-mentioned KTH rules, they developed some macro
rules for selecting appropriate values for the parameters in
order to convey different emotions.

In this paper, we present a different approach to modify the
expressive content of a performance in a gradual way both at
symbolic and signal level. The paper is organized as follows.
Section II introduces the schema of our system for interactive
control of expressiveness; in Section III, a general overview
of the expressiveness model and its different levels are given;
Section IV discusses the rendering of expressive deviations
in prerecorded audio performances by appropriate expressive
processing techniques. In Section V, we present the results
and some practical examples of the proposed methodology
and the assessment based on perceptual tests.

II. SYSTEM OVERVIEW

A musical interpretation is often the result of a wide range
of requirements on expressiveness rendering and technical
skills. The understanding of why certain choices are, often
unconsciously, preferred to others by the musician, is a
problem related to cultural aspects and is beyond the scope
of this work. However, it is still possible to extrapolate
significant relations between some aspects of the musical
language and a class of systematic deviations. For our pur-
poses, it is sufficient to introduce two sources of expression.
The first one deals with aspects of musical structures such
as phrasing, hierarchical structure of phrase, harmonic
structure and so on [4], [6], [11], [12]. The second involves
those aspects that are referred to with the term expressive
intention, and that relate to the communication of moods
and feelings. In order to emphasize some elements of the
music structure (i.e., phrases, accents, etc.), the musician
changes his performance by means of expressive patterns
as crescendo, decrescendo, sforzando, rallentando, etc.;
otherwise, the performance would not sound musical. Many
papers analyzed the relation or, more correctly, the possible
relations between music structure and expressive patterns
[28], [29].

Let us call neutral performance a human performance
played without any specific expressive intention, in a
scholastic way and without any artistic aim. Our model is
based on the hypothesis that when we ask a musician to
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Fig. 1. Scheme of the system. The input of the expressiveness model is composed of a musical score
and a description of a neutral musical performance. Depending on the expressive intention desired by
the user, the expressiveness model acts on the symbolic level, computing the deviations of all musical
cues involved in the transformation. The rendering can be done by a MIDI synthesizer and/or driving
the audio processing engine. The audio processing engine performs the transformations on the
prerecorded audio in order to realize the symbolic variations computed by the model.

play in accordance with a particular expressive intention, he
acts on the available freedom degrees, without destroying
the relation between music structure and expressive patterns
[11]. Already in the neutral performance, the performer
introduces a phrasing that translates into time and intensity
deviations respecting the music structure. In fact, our studies
demonstrate [30] that by suitably modifying the systematic
deviations introduced by the musician in the neutral per-
formance, the general characteristics of the phrasing are
retained (thus keeping the musical meaning of the piece),
and different expressive intentions can be conveyed.

The purpose of this research is to control in an automatic
way the expressive content of a neutral (prerecorded) per-
formance. The model adds an expressive intention to a neu-
tral performance in order to communicate different moods,
without destroying the musical structure of the score. The
functional structure of the system used as a testbed for this
research is shown in Fig. 1.

In multimedia systems, musical performance are normally
stored as a Musical Instrument Digital Interface (MIDI)
score or audio signal. The MIDI protocol allows electronic
devices to interact and work in synchronization with other
MIDI compatible devices. It does not send the actual mu-
sical note, but the information about the note. It can send
messages to synthesizers telling it to change sounds, master
volume, modulation devices, which note was depressed, and
even how long to sustain the note [31], [32]. Our approach
can deal with a melody in both representations. The input of
the expressiveness model is composed of a description of a
neutral musical performance and a control on the expressive
intention desired by the user. The expressiveness model
acts on the symbolic level, computing the deviations of all
musical cues involved in the transformation. The rendering
can be done by a MIDI synthesizer and/or driving the audio
processing engine. The audio processing engine performs
the transformations on the prerecorded audio in order to
realize the symbolic variations computed by the model. The
system allows the user to interactively change the expressive

Fig. 2. Multilevel representation.

intention of a performance by specifying its own preferences
through a graphical interface.

III. MULTILEVEL REPRESENTATION

To expressively process a performance, a multilevel repre-
sentation of musical information is proposed and the relation
between adjacent levels is outlined (Fig. 2). The first level is
the 44.1-kHz, 16-b digital audio signal.

The second level is the time-frequency (TF) representa-
tion of the signal which is required for analysis and trans-
formation purposes. TF representations are appreciated in
the field of musical signal processing because they provide
a reliable representation of musical sounds as well as an ef-
fective and robust set of transformation tools [33]. The spe-
cific TF representation adopted here relies on the well-known
sinusoidal model of the signal [34], [35], which has been
previously used in the field of musical signal processing with
convincing results (see, e.g., [26]), and for which a software
tool is freely available (SMS, [36]). The analysis algorithm
acts on windowed portions (here called frames) of the signal,
and produces a time-varying representation as sum of sinu-
soids (here called partials), which frequencies, amplitudes,
and phases slowly vary over time. Thus, the th frame of
the sinusoidal modeling is a set
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Fig. 3. TF representation of a violin tone: frequencies and amplitudes (only 20 partials are shown).

Fig. 4. Musical parameters involved in the control of expressiveness.

of triples of frequency, amplitude, and phase parameters de-
scribing each partial. , the number of partials, is taken
high enough to provide the maximum needed bandwidth.
The noisy (or stochastic) part of the sound, i.e., the differ-
ence between the original signal and the sinusoidal recon-
struction, is sometimes modeled as an autoregressive (AR)
stochastic process. However, we will not consider this com-
ponent here, and we use the sinusoidal signal representation
to model string- and windlike nonpercussive musical instru-
ments. Looking at the TF representation, Fig. 3, the signal
appears extremely rich in microvariations, which are respon-
sible for the aliveness and naturalness of the sound.

The third level represents the knowledge on the musical
performance as events. This level corresponds to the same
level of abstraction of the MIDI representation of the
performance, e.g., as obtained from a sequencer (MIDI list
events). A similar event description can be obtained from
an audio performance. A performance can be considered
as a sequence of notes. The th note is described by the
pitch value FR , the Onset time , and Duration
DR (which are time-related parameters), and by a set of
timbre-related parameters: Intensity , Brightness BR
(measured as the centroid of the spectral envelope [37]),
and energy envelope, described by Attack Duration AD
and Envelope Centroid EC (i.e., the temporal centroid

Table 1
P-Parameters at the Third-Level Representation

of the dynamic profile of the note). This representation can
be obtained from the TF representation by a semiautomatic
segmentation. From the time-related parameters, the Inter
Onset Interval IOI and the Legato

DR IOI parameters are derived. Fig. 4 and
Table 1 show the principal parameters introduced. A more
detailed description of musical and acoustical parameters
involved in the analysis of expressiveness can be found in
[11]. The parameters (from now on, P-parameters)
that will be modified by the model are , IOI ,
and the timbre-related parameters key velocity for MIDI

CANAZZA et al.: MODELING AND CONTROL OF EXPRESSIVENESS IN MUSIC PERFORMANCE 689



Fig. 5. Computation of the parameters of the model.

performance or , BR , AD , and EC for audio
performance.

The fourth level represents the internal parameters of the
expressiveness model. We will use, as expressive representa-
tion a couple of values for every P-parameter.
The meaning of these values will be explained in the next
section.

The last level is the control space (i.e., the user interface),
which controls, at an abstract level, the expressive content
and the interaction between the user and the audio object of
the multimedia product.

A. The Expressiveness Model

The model is based on the hypothesis, introduced in Sec-
tion II, that different expressive intentions can be obtained by
suitable modifications of a neutral performance. The trans-
formations realized by the model should satisfy some condi-
tions: 1) they have to maintain the relation between structure
and expressive patterns and 2) they should introduce as few
parameters as possible to keep the model simple. In order
to represent the main characteristics of the performances,
we used only two transformations: shift and range expan-
sion/compression. Different strategies were tested. Good re-
sults were obtained [30] by a linear instantaneous mapping
that, for every P-parameter and a given expressive intention
, is formally represented by

(1)

where is the estimated profile of the performance re-
lated to expressive intention , is the value of the
P-parameter of the th note of the neutral performance,
is the mean of the profile computed over the entire
vector, and are, respectively, the coefficients of shift
and expansion/compression related to expressive intention.
We verified that these parameters are very robust in the mod-
ification of expressive intentions [38]. Thus, (1) can be gen-
eralized to obtain, for every P-parameter, a morphing among
different expressive intentions as

(2)

This equation relates every P-parameter with a generic ex-
pressive intention represented by the expressive parameters

and that constitute the fourth-level representation and
that can be put in relation to the position of the control
space.

B. The Control Space

The control space level controls the expressive content
and the interaction between the user and the final audio
performance. In order to realize a morphing among different
expressive intentions we developed an abstract control
space, called perceptual parametric space (PPS), that is a
two-dimensional (2-D) space derived by multidimensional
analysis (principal component analysis) of perceptual tests
on various professionally performed pieces ranging from
Western classical to popular music [29], [39]. This space
reflects how the musical performances are organized in
the listener’s mind. It was found that the axes of PPS are
correlated to acoustical and musical values perceived by
the listeners themselves [40]. To tie the fifth level to the
underlying ones, we make the hypothesis that a linear
relation exists between the PPS axes and every couple of
expressive parameters

(3)

where and are the coordinates of the PPS.

C. Parameter Estimation

Event, expressive and the control levels are related by (1)
and (3). We will now get into the estimation process of the
model parameters (see Fig. 5); more details about the relation
between , , and audio and musical values will be given in
Sections IV and V.

The estimation is based on a set of musical performances,
each characterized by a different expressive intention. Such
recordings are made by asking a professional musician to
perform the same musical piece, each time being inspired by
a different expressive intention (see Section V for details).
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Moreover, a neutral version of the same piece is recorded.
Recordings are first judged by a group of listeners, who as-
sign different scores to the performances with respect to a
scoring table in which the selectable intentions are reported
(see [40] for more details). Results are then processed by a
factor analysis. In our case [29], [39], this analysis allowed us
to recognize two principal axes explaining at least the 75%
of the total variance. The choice of only two principal fac-
tors, instead of three or four, is not mandatory. However, this
choice results in a good compromise between the complete-
ness of the model and the compactness of the parameter con-
trol space (PPS). The visual interface, being the 2-D control
space, is effective and easy to realize. Every performance can
be projected in the PPS by using its factor loading as and

coordinates. Let us call the coordinates of the per-
formance in the PPS. Table 4 in Section V shows the factor
loadings obtained from factor analysis. These factor loadings
are assumed as coordinates of the expressive performances in
the PPS.

An acoustical analysis is then carried out on the expressive
performances, in order to measure the deviations’ profiles of
the P-parameters. For each expressive intention, the profiles
are used to perform a linear regression with respect to the
corresponding profiles evaluated in the neutral performance,
in order to obtain and in the model in (1). The result is
a set of expressive parameters , for each expressive inten-
tion and each of the P-parameters. Given , , and ,
estimated as above, for every P-parameter the corresponding
coefficients and ( ) of (3) are estimated
by multiple linear regression, over expressive intentions.

Up to this point, the schema of Fig. 2 has been covered
bottom-up, computing the model parameters from a set of
sample performances. Therefore, it is possible to change the
expressiveness of the neutral performance by selecting an ar-
bitrary point in the PPS, and computing the deviations of the
low-level acoustical parameters. Let us call and the co-
ordinates of a (possibly time-varying) point in the PPS. From
(3), for every P-parameter, and values are
computed. Then, using (2), the profiles of event-layer cues
are obtained. These profiles are used for the MIDI synthesis
and as input to the postprocessing engine acting at levels 1
and 2, according to the description in the next section.

IV. REAL-TIME RENDERING

The rendering of expressive variations on digitally
recorded audio relies on a sound processing engine based on
the sinusoidal representation. The expressiveness model out-
lined in Section III is adapted to produce the time-varying
controls of the sound processing engine, focusing on a
wide class of musical signals, namely monophonic and
quasi-harmonic sounds such as wind instruments and solo
string instruments. All the principal sound effects are
obtained by controlling the parameters of the sinusoidal
representation, and are briefly summarized. Time stretching
is obtained by changing the frame rate of resynthesis and
by interpolating between the parameters of two frames in
case of noninteger step. Pitch shift is obtained by scaling the

Table 2
Multiplicative Factors of Musical Parameters and Basic
Audio Effects

frequencies of the harmonics and by preserving formants
with spectral envelope interpolation. Intensity and bright-
ness control is achieved by scaling the amplitude of partials
in an appropriate way, so as to preserve the natural spectral
characteristics of the sound when its intensity and brightness
are modified. We stress here the fact that spectral modifi-
cations can occur mainly as a function of the performance
dynamic level, or even as a function of ad hoc performance
actions influencing the timbre, depending on the degree of
control offered by the musical instrument. The nature of the
instrument will, thus, determine the degree of independence
of the brightness control from the intensity control.

To the purpose of modeling these spectral cues in expres-
sive musical performances, an original spectral processing
method is introduced. This permits the reproduction of
the spectral behavior exhibited by a discrete set of sound
examples, whose intensity or brightness varies in the de-
sired interval depending on the expressive intention of the
performance.

Let us introduce a set of multiplicative factors , ,
, , , , , representing the changes of the mu-

sical parameters under the control of the audio processing
engine. The first three factors are the time-stretching factors
of the IOI interval, the attack duration, and the duration of
the whole note, respectively. The Legato variation factor is
related to the variations of the note duration and of IOI, and
can be expressed as . The intensity factor

specifies a uniform change of the dynamic level over the
whole note. The factor specifies a change in the temporal
position of the dynamic profile centroid of the note, and is
related to a nonuniform scaling of the dynamic profile over
the note duration. The factor specifies a modification
of the spectral centroid over the whole note, and is related
to a reshaping of the original short-time spectral envelopes
over the note duration. The rendering of the deviations com-
puted by the model may, thus, imply the use of just one of the
basic sound effects seen above, or the combination of two or
more of these effects (see Table 2), with the following gen-
eral rules.

Local Tempo: Time stretching is applied to each note.
It is well known that in strings and winds, the duration of
the attack is perceptually relevant for the characterization
of the conveyed expressive intention. For this reason, a
specific time-stretching factor is computed for the attack
segment and is directly related to the indicated by the
model. The computation of the time stretch control on the
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Fig. 6. Energy envelope of two violin notes. Upper panel: original natural performance. Lower
panel: overlapping adjacent notes after a modification of the Legato parameter.

note relies on the cumulative information given by the
and factors, and on the deviation induced by the
Legato control considered in the next item.

Legato: This musical feature is recognized to have great
importance in the expressive characterization of wind and
string instruments performances. However, the processing of
Legato is a critical task that would imply the reconstruction
of a note release and a note attack if the notes are origi-
nally tied in a Legato, or the reconstruction of the transient
if the notes are originally separated by a micropause. In both
cases, a correct reconstruction requires a deep knowledge of
the instrument dynamic behavior, and a dedicated synthesis
framework would be necessary. Our approach to this task is
to approximate the reconstruction of transients by interpola-
tion of amplitudes and frequency tracks.

The deviations of the Legato parameter are processed
by means of two synchronized actions: the first effect of a
Legato change is a change in the duration of the note by ,
since DR IOI , where is
the original Legato degree and is the Legato for the new
expressive intention. This time-stretching action must be
added to the one considered for the Local Tempo variation,
as we will see in detail. Three different time-stretching
zones are recognized within each note (with reference
to Fig. 6): attack, sustain and release, and micropause.
The time-stretching deviations must satisfy the following
relations:

where , , and , are the duration of the attack, sus-
tain–release, and micropause segment, respectively, and ,

, and , are the new duration of these segments. Each re-
gion will be processed with a time stretch coefficient com-
puted from the above equations

(4)

where , , and are the time-stretching factors of the at-
tack, sustain–release, and micropause segment, respectively.
If an overlap occurs due to the lengthening of a note, the
time stretch coefficient in (4) becomes negative. In this
case, the second action involved is a spectral linear interpola-
tion between the release and attack segments of two adjacent
notes over the overlapping region (see Fig. 6). The length
of the overlapping region is determined by the Legato de-
gree, and the interpolation within partial amplitude will be
performed over the whole range. The frequency tracks of the
sinusoidal representation are lengthened to reach the pitch
transition point. Here, a 10- to 15-ms transition is generated
by interpolating the tracks of the actual note with those of
the successive note. In this way, a transition without glis-
sando is generated. Glissando effects can be controlled by
varying the number of interpolated frames. This procedure,
used to reproduce the smooth transition when the stretched
note overlaps with the following note, is a severe simplifi-
cation of instruments transients, but is general and efficient
enough for real-time purposes.

Envelope Shape: The center of mass of the energy enve-
lope is related to the musical accent of the note, which is
usually located on the attack for Light or Heavy intentions, or
close to the end of note for Soft or Dark intentions. To change
the position of the center of mass, a triangular-shaped func-
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Fig. 7. Spectral envelope representation by mel-cepstrum coefficients. Upper panel: original
spectrum (frequency axis in hertz). Lower panel: warped and smoothed version of the original
spectrum, and the spectral envelope obtained by using 15 mel-cepstrum coefficients (frequency
axis in mel).

tion is applied to the energy envelope, where the apex of the
triangle corresponds to the new position of the accent.

Intensity and Brightness Control: The intensity and bright-
ness of the sound frame are controlled by means of a spectral
processing model relying on learning from real data the spec-
tral transformations which occur when such a musical param-
eter changes. First, a perceptually weighted representation
of spectral envelopes is introduced, so that the perceptually
relevant differences are exploited in the comparison of spec-
tral envelopes. Next, the parametric model used to represent
spectral changes is outlined. Finally, the proposed method is
applied to the purpose of modeling the intensity and bright-
ness deviation for the control of expressiveness.

A. Representation of Spectral Envelopes

To switch from the original sinusoidal description to a
perceptual domain, the original spectrum is turned to the
mel-cepstrum spectral representation. The mel-frequency
cepstral coefficients (mfcc) for a given sound frame are
defined as the discrete-cosine transform (DCT) of the
frequency domain logarithmic output of a mel-spaced filter
bank. The first mel-cepstrum coefficients ,
where is usually in the range 10–30, represent a smooth
and warped version of the spectrum, as the inversion of the
DCT leads to

(5)

where is the frequency in mel, is the frame energy, and
with being the sam-

pling frequency. The normalization factor is introduced

to ensure that the upper limit of the band corresponds to a
value of one on the normalized warped frequency axis. The
conversion from hertz to mel is given by the analytical for-
mula [41]. Fig. 7 shows
an example of a mel-cepstrum spectral envelope.

The above definition of mel-cepstrum coefficients usually
applies for a short sound buffer in the time-domain. To con-
vert from a sinusoidal representation, alternative methods
such as the discrete cepstrum method [42] are preferred: for
a given sinusoidal parametrization, the magnitudes
of the partials are expressed in the log domain and the fre-
quencies in hertz are converted to mel frequencies

. The real mel-cepstrum parameters are fi-
nally computed by minimizing the following least-squares
(LS) criterion:

(6)

The aim of the mel-cepstrum transformation in our frame-
work is to capture the perceptually meaningful differences
between spectra by comparing the smoothed and warped ver-
sions of spectral envelopes.

We call now the th par-
tial magnitude (in dB) of the mel-cep\-strum spectral enve-
lope, and , with , the
difference between two mel-cepstrum spectral envelopes. By
comparison of two different spectral envelopes, it is possible
to express the deviation of each partial in the multiplicative
form , and we call conversion pattern
the set computed by the comparison of two spectral
envelopes.
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B. Spectral Conversion Functions

In this section, the parametric model for the spectral con-
version functions and the parameter identification principles
are presented. The conversion is expressed in terms of devi-
ations of magnitudes, normalized with respect to the frame
energy , from the normalized magnitudes of a reference
spectral envelope. The reference spectral envelope can be
taken from one of the tones in the data set. If the tones in the
data set are notes from a musical instrument, with a simple
attack–sustain–release structure, we will always consider the
sustain average spectral envelopes, where the average is gen-
erally taken on a sufficient number of frames of the sustained
part of the tones. Once the spectrum conversion function has
been identified, the reference tone can be seen as a source
for the synthesis of tones with different pitch or intensity,
and correct spectral behavior. Moreover, we are interested in
keeping also the natural time variance of the source tone, as
well as its attack–sustain–release structure. To this purpose,
we make the simplifying hypothesis that the conversion func-
tion identified with respect to the sustained part of notes can
be used to process every frame of the source note. We fur-
ther make the following assumptions on the structure of the
conversion function [43].

• Due to the changing nature of the spectrum with the
pitch of the tone, the conversion function is depen-
dent on the pitch of the note. From the above consid-
eration, the function will then be a map ,
where is the maximum number of partials in the
SMS representation.

• We adopt the following parametric form for the generic
conversion function:

... (7)

with

(8)

where denotes a radial basis function with
parameter vector , is the number of radial basis
units used, and is a
matrix of output weights. The th component of the
conversion function, , describes how the mag-
nitude of the th partial will adapt with respect to the
desired fundamental frequency .

The parametric model introduced in (8) is known in
the literature as a radial basis function network (RBFN)
and is a special case of feedforward neural networks
which exhibit high performances in nonlinear curve-fitting
(approximation) problems [44]. Curve fitting of data points
is equivalent to finding the surface in a multidimensional
space that provides a best fit to the training data, and
generalization is the equivalent to the use of that surface
to interpolate the data. Their interpolation properties have
proven to be effective in signal processing tasks relating
to our application, e.g., for voice spectral processing
aimed at speaker conversion [45]. The radial functions

in (7) can be of various kinds. Typical choices are
Gaussian, cubic, or sigmoidal functions. Here, a cubic form

, with , is used. This may not
be the best choice as for the final dimension and efficiency
of the network, e.g., RBFNs with normalized Gaussian
kernels (NRBF nets) can result in smaller and more com-
pact networks. However, a simpler implementation with a
reduced set of parameters per kernel and with essentially the
same curve-fitting capabilities was preferred here.

1) Identification of the RBFN Parameters: As usually
needed by the neural networks’ learning procedures, the
original data is organized in a training set. In our case,
the pitch values of the training set notes are stored in the
input training vector , where each
component corresponds to a row of the output matrix

, with being a matrix
whose rows are the spectral envelope conversion patterns
coming from the comparisons among the spectral envelopes
from the source data and those from the target data. The way
spectra are selected from both data sets depends on the final
high-level transformation to be realized. In the next section,
a practical case will be treated to exemplify the training set
generation procedure. Here, we make the hypothesis that the
training set has been computed with some strategy, and we
summarize the RBFN parametric identification procedure.
The centers of the radial basis functions are iteratively
selected with the OLS algorithm [46], which places the
desired number of units (with ) in the positions
that best explains the data. Once the radial units with centers

have been selected, the image of through
the radial basis layer can be computed as ,

. The
problem of identifying the parameters of (8) can,
thus, be given in the closed form , the LS
solution of which is known to be with
pseudo-inverse of . As can be seen, this parametric model
relies on a fast-learning algorithm, if compared to other
well-known neural network models whose iterative learning
algorithms are quite slow (e.g., backpropagation or gradient
descent algorithms).

To summarize the principal motivations why we adopted
the RBFN model, we emphasize that the RBFNs can learn
from examples, have fast training procedures, and have good
generalizing properties, meaning that if we use a training set
of tones having pitch values of ,
the resulting conversion function will provide a coherent re-
sult in the whole interval .

2) Training Set Generation for the Control of Inten-
sity: The spectral modeling method will be now used to
realize intensity transformations which preserve the spectral
identity of a musical instrument.

Let be a conversion function identified following
the procedure described. The synthesis formula is then

(9)

where is the magnitude of the th partial of a source
tone. Let us say now that, given a source tone with intensity
level (e.g., a note from the neutral performance), we are
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interested in rising or lowering the original intensity. The
analysis of the same notes taken from musical performances
with different expressive intentions allows us to determine,
for each note, the two tones having the minimum and
the maximum intensity, here called, respectively, and

. Say is the
conversion function that allows to switch from to ,
and say is the
conversion function that allows to switch from to .
Note that and are still functions of
fundamental frequency and not of intensity; we are in fact
assuming that they turn the original note with intensity level

into a note with intensity level or , respectively. A
simple way to produce a tone with intensity level between

and or between and is, thus, to weight the
effect of the conversion functions.1 To this purpose, let
us define , where the
function , ranging from , for , to
one, for , weights the effect of the conversion
function. Then, the resynthesis formula that computes the
new amplitudes for the intensity level is

(10)

A logarithmic function for the function has shown
to be suitable to perform an effective control on the range

.
An alternative solution, slightly more complicated,

would have been to design the conversion function
adopting bivariate radial functions . The design
of the training set in this case would have required the
selection, for each note in the performance, of a minimum
number of sound frames with intensities spanning the range

.
As a final remark, we stress the fact that this spectral pro-

cessing method is based on a learning-from-data approach
and is highly dependent on the training data. As a conse-
quence, with the present setup it is not possible to apply a
given conversion function on a neutral performance which is
not the one used during the training, and a different conver-
sion function will be necessary for each new neutral perfor-
mance to be processed.

V. RESULTS AND APPLICATIONS

We applied the proposed methodology on a variety of
digitally recorded monophonic melodies from classic and
popular music pieces. Professional musicians were asked
to perform excerpts from various musical scores, inspired
by the following adjectives: light, heavy, soft, hard, bright,
and dark. The neutral performance was also added and
used as a reference in the acoustic analysis of the various
interpretations. Uncoded adjectives in the musical field
were deliberately chosen to give the performer the greatest

1Although one is not guaranteed on whether the model will reproduce or
not the original spectral behavior of the instrument with respect to changes
of the intensity level, this approach has proven to be satisfactory for the class
of sounds considered here.

Fig. 8. Analysis: normalized intensity level of neutral
performance of Mozart’s sonata K545.

possible freedom of expression. The recordings were car-
ried out in three sessions, each session consisting of the
seven different interpretations. The musician then chose the
performances that, in his opinion, best corresponded to the
proposed adjectives. This procedure is intended to minimize
the influence that the order of execution might have on
the performer. The performances were recorded at the the
Centro di Sonologia Computazionale (CSC), University of
Padova, Padova, Italy, in monophonic digital format at 16 b
and 44.1 kHz. In total, 12 scores were considered, played
with different instruments (violin, clarinet, piano, flute,
voice, saxophone) and by various musicians (up to five for
each melody). Only short melodies (between 10 and 20 s)
were selected, allowing us to assume that the underlying
process is stationary (the musician does not change the
expressive content in such a short time window).

Semiautomatic acoustic analyses were then performed in
order to estimate the expressive time- and timbre-related cues
IOI, , AD, , EC, and BR. Fig. 8 shows the time evolution of
one of the considered cues, the intensity level , normalized
in respect to maximum Key Velocity, for the neutral perfor-
mance of an excerpt of Mozart’s sonata K545 (piano solo).

Table 3 reports the values of the and parameters com-
puted for Mozart’s sonata K545, using the procedure de-
scribed in Section III-C. For example, it can be noticed that
the value of the Legato ( ) parameter is important for dis-
tinguishing hard ( , 92 means quite staccato) and soft
( , 43 means very legato) expressive intentions; con-
sidering the Intensity ( ) parameter, heavy and bright have a
very similar value, but a different value; that is, in heavy
each note is played with a high Intensity ( , 70), on
the contrary bright is played with a high variance of Inten-
sity ( , 06).

The factor loadings obtained from factor analysis carried
out on the results of the perceptual test are shown in Table 4.
These factor loadings are assumed as coordinates of the
expressive performances in the PPS. It can be noticed
that factor 1 distinguishes bright (0.8) from dark ( 0.8)
and heavy ( 0.75), factor 2 differentiates hard (0.6) and
heavy (0.5) from soft ( 0.7) and light ( 0.5). From the
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Table 3
Expressive Parameters Estimated From Performances of Mozart’s Sonata K545

Table 4
Factor Loadings Are Assumed as Coordinates of the Expressive
Performances in the PPS

data such as the ones in Table 3 and the positions in the
PPS, the parameters of (3) are estimated. Then the model
of expressiveness can be used to change interactively the
expressive cues of the neutral performance by moving in the
2-D control space. The user is allowed to draw any trajectory
which fits his own feeling of the changing of expressiveness
as time evolves, morphing among expressive intentions
(Fig. 9).

As an example, Fig. 10 shows the effect of the control
action described by the trajectory (solid line) in Fig. 9 on
the intensity level (to be compared with the neutral inten-
sity profile show in Fig. 8). It can be seen how the intensity
level varies according to the trajectory; for instance, hard and
heavy intentions are played louder than the soft one. In fact,
from Table 3, the values are 1.06 (hard), 1.06 (heavy), and
0.92 (soft). On the other hand, we can observe a much wider
range of variation for light performance than
for heavy performance . The new intensity level
curve is used, in its turn, to control the audio processing en-
gine in the final rendering step.

As a further example, an excerpt from the Corelli’s sonata
op. V is considered (Fig. 11). Figs. 12–14 show the energy
envelope and the pitch contour of the original neutral, heavy,
and soft performances (violin solo). The model is used to ob-
tain a smooth transition from heavy to soft (dashed trajectory

Fig. 9. Control: trajectories in the PPS space corresponding
to different time evolution of the expressive intention of the
performance. Solid line: the trajectory used on the Mozart theme;
dashed line: trajectory used on the Corelli theme.

Fig. 10. Synthesis: normalized intensity level corresponding to
the trajectory in Fig. 9.

Fig. 11. Score of the theme of Corelli’s sonata op. V.
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Fig. 12. Analysis: energy envelope and pitch contour of neutral performance of Corelli’s sonata
op. V.

in Fig. 9) by applying the appropriate transformations on the
sinusoidal representation of the neutral version. The result
of this transformation is shown in Fig. 15. It can be noticed
that the energy envelope changes from high to low values,
according to the original performances (heavy and soft). The
pitch contour shows the different behavior of the IOI param-
eter: the soft performance is played faster than the
heavy performance . This behavior is preserved
in our synthesis example.

We developed an application, released as an applet, for
the fruition of fairytales in a remote multimedia environment
[38]. In these kinds of applications, an expressive identity can
be assigned to each character in the tale and to the different
multimedia objects of the virtual environment. Starting from
the storyboard of the tale, the different expressive intentions
are located in a control spaces defined for the specific con-
texts of the tale. By suitable interpolation of the expressive
parameters, the expressive content of audio is gradually mod-
ified in real time with respect to the position and movements
of the mouse pointer, using the model describe above.

This application allows a strong interaction between the
user and the audiovisual events. Moreover, the possibility of
having a smoothly varying musical comment augments the
user emotional involvement, in comparison with the partici-
pation reachable using rigid concatenation of different sound
comments. Sound examples can be found on our Web site
[47].

VI. ASSESSMENT

A perceptive test was realized to validate the system.
A categorical approach was considered. Following the

categorical approach [28], we intend to verify if perfor-
mances synthesized according to the adjectives used in our
experiment, are recognized. The main objective of this test
is to see if a “static” (i.e., not time-varying) intention can
be understood by listeners and if the system can convey the
correct expression.

According to Juslin [48], forced-choice judgments and
free-labeling judgments give similar results when listeners
attempt to decode a performer’s intended emotional ex-
pression. Therefore, it was considered sufficient to make
a forced-choice listening test to assess the efficacy of the
emotional communication. A detailed description of the
procedure and of the statistical analyses can be found in
[49]. In the following, some results are summarized.

A. Material

We synthesized different performances using our model.
Given a score and a neutral performance, we obtain the five
different interpretations from the control space, i.e., bright,
hard, light, soft, and heavy. We did not consider the dark one,
because in our previous experiments we noticed that it was
confused with the heavy one, as can be seen in Fig. 9.

It was important to test the system with different scores to
understand how high is the correlation between the inherent
structure of the piece and the expressive recognition. Three
classical pieces for piano with different sonological charac-
teristics were selected in this experiment: “Sonatina in sol”
by L. van Beethoven, “Valzer no. 7 op. 64” by F. Chopin, and
K545 by W. A. Mozart.

The listeners’ panel was composed of 30 subjects: 15
experts (musicians and/or conservatory graduated) and 15
commons (without any particular musical knowledge). No
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Fig. 13. Analysis: energy envelope and pitch contour of heavy performance of Corelli’s sonata
op. V.

Fig. 14. Analysis: energy envelope and pitch contour of soft performance of Corelli’s sonata op. V.

restrictions related to formal training in music listening were
used in recruiting subjects. None of the subjects reported
having hearing impairments.

B. Procedure

The stimuli were played by a PC. The subjects listened
to the stimuli through headphones at a comfortable loudness
level. The listeners were allowed to listen the stimuli as many
time as they needed, in any order. Assessors were asked to

evaluate the grade of brightness, hardness, lightness, soft-
ness, and heaviness of all performances on a graduated scale
(0 to 100). Statistical analyses were then conducted in order
to determine if the intended expressive intentions were cor-
rectly recognized.

C. Data Analysis

Table 5 summarizes the assessors’ evaluation. The
ANOVA test on the subject’s response always yielded a
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Fig. 15. Synthesis (loop of the 16-note excerpt): energy envelope and pitch contour of an expressive
morphing. The expressive intention changes smoothly from heavy to soft. The final rendering is the
result of the audio transformations controlled by the model and performed on the neutral performance.

Table 5
Assessors’ Evaluation Average (From 0 to 100)

Rows represent the evaluation labels, and columns show the different stimuli. Legend: B=Bright, Hr=Hard, L=Light, S=Soft, Hv=Heavy, N=Neutral.

p-index less than 0.001: the p values indicate that one or
more populations’ means differ quite significantly from
the others. From data analyses, such as observation of the
means and standard deviations, we notice that generally,
for a given interpretation, the correct expression obtains
the highest mark. One exception is the Valzer, where the
light interpretation is recognized as soft—with a very slight
advantage. Moreover, with K545, heavy performance was
judged near to hard expressive intention (82.8 versus 80.3)
whereas hard performance near to bright (68.4.8 versus
67.3) expressive intention, suggesting a slight confusion
between these samples.

It is also interesting to note that listeners, in evaluating the
neutral performance, did not spread uniformly their evalu-
ation among the adjectives. Even if all the expressions are
quite well balanced, we have a predominance of light and

soft. The bright expression is also quite high but no more
than the average brightness of all performances.

A high correlation between hard and heavy and between
light and soft can be noticed. Those expressions are well in-
dividuated in two groups. On the other hand, bright seems to
be more complicated to highlight. An exhaustive statistical
analysis of the data is discussed in [49], as well as the descrip-
tion of a test carried out by means of a dimensional approach.
It is important to notice that the factor analysis returns our
PPS. Automatic expressive performances synthesized by the
system give a good modeling of expressive performance re-
alized by human performers.

VII. CONCLUSION

We presented a system to modify the expressive content
of a recorded performance in a gradual way both at the
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symbolic and the signal levels. To this purpose, our model
applies a smooth morphing among different expressive
intentions in music performances, adapting the expressive
character of the audio/music/sound to the user’s desires.
Morphing can be realized with a wide range of graduality
(from abrupt to very smooth), allowing to adapt the system
to different situations. The analyses of many performances
allowed us to design a multilevel representation, robust with
respect to morphing and rendering of different expressive
intentions. The sound rendering is obtained by interfacing
the expressiveness model with a dedicated postprocessing
environment, which allows for the transformation of the
event cues. The processing is based on the organized control
of basic audio effects. Among the basic effects used, an
original method for the spectral processing of audio is
introduced. The system provided interesting results for
both the understanding and focusing of topics related to
the communication of expressiveness, and the evaluation of
new paradigms of interaction in the fruition of multimedia
systems.
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