Computational Photography: Advanced Topics

Paul Debevec
Ramesh Raskar
Jack Tumblin
Computational Photography, Advanced Topics

Debevec, Raskar and Tumblin

Module 1: 105 minutes

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:45</td>
<td>A.1 Introduction and Overview</td>
<td>Raskar, 15 minutes</td>
</tr>
<tr>
<td>2:00</td>
<td>A.2 Concepts in Computational Photography</td>
<td>Tumblin, 15 minutes</td>
</tr>
<tr>
<td>2:15</td>
<td>A.3 Optics: Computable Extensions</td>
<td>Raskar, 30 minutes</td>
</tr>
<tr>
<td>2:45</td>
<td>A.4 Sensor Innovations</td>
<td>Tumblin, 30 minutes</td>
</tr>
<tr>
<td>3:15</td>
<td>Q & A</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td>Break: 15 minutes</td>
<td></td>
</tr>
</tbody>
</table>

Module 2: 105 minutes

<table>
<thead>
<tr>
<th>Time</th>
<th>Topic</th>
<th>Presenter(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:45</td>
<td>B.1 Illumination As Computing</td>
<td>Debevec, 25 minutes</td>
</tr>
<tr>
<td>4:10</td>
<td>B.2 Scene and Performance Capture</td>
<td>Debevec, 20 minutes</td>
</tr>
<tr>
<td>4:30</td>
<td>B.3 Image Aggregation & Sensible Extensions</td>
<td>Tumblin, 20 minutes</td>
</tr>
<tr>
<td>4:50</td>
<td>B.4 Community and Social Impact</td>
<td>Raskar, 20 minutes</td>
</tr>
<tr>
<td>5:10</td>
<td>B.4 Panel discussion</td>
<td>All, 20 minutes</td>
</tr>
</tbody>
</table>

Class Page: http://ComputationalPhotography.org
Computational Photography: Advanced Topics

A2: Core Concepts
(15 minutes)

Jack Tumblin
Northwestern University
Focus, Click, Print: ‘Film-Like Photography’

Light + 3D Scene:
- Illumination, shape, movement, surface BRDF, …

2D Image:
- ‘Instantaneous’ Intensity Map
- Rays
- Rays

Angle(θ, φ)

Position(x, y)

‘Center of Projection’
(P³ or P² Origin)
Perfect Copy: Perfect Photograph?

Scene Light Intensities

Display Light Intensities

'Pixel values'
(scene intensity? display intensity?
perceived intensity? 'blackness/whiteness'?)
‘Film-Like’ Photography

Ideals, Design Goals:

– ‘Instantaneous’ light measurement...
– Of focal plane image behind a lens.
– Reproduce those amounts of light.

Implied:

“What we see is \(\approx \) focal-plane intensities.”

well, no...we see much more!

(seeing is deeply cognitive)
Our Definitions

• ‘Film-like’ Photography:
 Displayed image \(\cong\) sensor image

• ‘Computational’ Photography:
 Displayed image \(\neq\) sensor image
 \(\cong\) visually meaningful scene contents

A more expressive & controllable displayed result, transformed, merged, decoded data from compute-assisted sensors, lights, optics, displays
What *is* Photography?

Safe answer:

A wholly new, expressive medium (ca. 1830s)

- Manipulated display of what we think, feel, want, …
 - Capture a memory, a visual experience in tangible form
 - ‘painting with light’; express the subject’s visual essence
 - “Exactitude is not the truth.” –Henri Matisse
What *is* Photography?

- A ‘bucket’ word: a neat container for messy notions (e.g. aviation, music, comprehension)
- A record of what we see, or would like to see, in tangible form.
- Does ‘film’ photography always capture it? Um, no...
- What do we see?
What *is* Photography?

PHYSICAL

3D Scene
- light sources, BRDFs, shapes, positions, movements, ...

Eyepoint
- position, movement, projection, ...

Light & Optics

Exposure Control, tone map

PERCEIVED

Scene
- light sources, BRDFs, shapes, positions, movements, ...

Eyepoint
- position, movement, projection, ...

Vision

Image

\[I(x,y,\lambda,t) \]

Display

\[RGB(x,y,t_n) \]

Photo: A Tangible Record
Editable, storable as Film or Pixels

Photo: A Tangible Record
Editable, storable as Film or Pixels
Ultimate Photographic Goals

PHYSICAL

3D Scene
light sources, BRDFs, shapes, positions, movements, ...

Eyepoint
position, movement, projection, ...

Light & Optics

Sensor(s)

Computing

Visual Stimulus

Vision

PERCEIVED or UNDERSTOOD

3D Scene?
light sources, BRDFs, shapes, positions, movements, ...

Eyepoint?
position, movement, projection, ...

Meaning...

Photo: A Tangible Record
Scene estimates we can capture, edit, store, display
Photographic Signal: Pixels Rays

• Core ideas are ancient, simple, seem obvious:
 – Lighting: ray sources
 – Optics: ray bending/folding devices
 – Sensor: measure light
 – Processing: assess it
 – Display: reproduce it

• Ancient Greeks:
 ‘eye rays’ wipe the world
to feel its contents…

http://www.mlahanas.de/Greeks/Optics.htm
Claim: Computing can improve every step
Review: How many Rays in a 3-D Scene?

A 4-D set of infinitesimal members.

Imagine:

- Convex Enclosure of a 3D scene
- Inward-facing ray camera at every surface point
- Pick the rays you need for ANY camera outside.

2D surface of cameras, + 2D ray set for each camera → 4D set of rays.

(Levoy et al. SIGG’96) (Gortler et al. ‘96)
4-D Light Field / Lumigraph

Measure all the **outgoing** light rays.
4-D Illumination Field

Same Idea: Measure all the *incoming* light rays
4D x 4D = 8-D Reflectance Field

Ratio: $R_{ij} = \frac{\text{outgoing ray}_i}{\text{incoming ray}_j}$
Because Ray *Changes* Convey Appearance

- These rays + all these rays give me…

- MANY more useful details I can examine…
Expressive Time Manipulations

What other ways better reveal appearance to human viewers?
(Without direct shape measurement?)

Can you understand this shape better?

Time for space wiggle. Gasparini, 1998.
Missing:

Viewpoint Freedom

“Multiple-Center-of-Projection Images” Rademacher, P, Bishop, G., SIGGRAPH '98
Missing: **Interaction**…

Adjust everything: lighting, pose, viewpoint, focus, FOV,…

Winnemoller EG 2005: after Malzbender, SIGG2001
Mild Viewing & Lighting Changes;
(is true 3D shape necessary?)

Convincing visual appearance:
Is Accurate Depth really necessary?

a few good 2-D images may be enough…

"Image jets, Level Sets, and Silhouettes"
Lance Williams,
talk at Stanford, 1998.
Future Photography

Novel Cameras

- Generalized Sensors
- Ray Reconstructor
- Generalized Processing
- 4D Ray Sampler
- General Optics: 4D Ray Benders

Novel Displays

- Generalized Display
- Recreated 4D Light field
- Viewed 4D Light Field
- Scene: 8D Ray Modulator

Novel Illuminators

- Lights
- Modulators
- General Optics: 4D Ray Benders

4D Incident Lighting
‘The Ideal Photographic Signal’

I CLAIM IT IS:

All Rays? Some Rays? **Changes** in Some Rays

Photographic ray space is vast and redundant
>8 dimensions: 4D view, 4D light, time, \(\lambda\),

? Gather only ‘visually significant’ ray changes?

? What rays should we measure?
? How should we combine them?
? How should we display them?
Beyond ‘Film-Like’ Photography

Call it ‘Computational Photography’:
To make ‘meaningful ray changes’ tangible,

- Optics can do more…
- Sensors can do more…
- Light Sources can do more…
- Processing can do more…

by applying low-cost storage, computation, and control.