
Chapter

Eighteen
Programming by

Analogous Examples

Alexander Repenning and Corrina

Perrone

Agent Sheets, Inc., Center of LifeLong Learning & Design,
University of Colorado, Boulder

TNT Job Number: [002564] • Author: [Lieberman] • Page: 351

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Abtract

Analogies are powerful cognitive mechanisms that people use to construct
new knowledge from knowledge already acquired and understood. When
analogies are used with programming by example (PBE), the result is a new
end-user programming paradigm combining the elegance of PBE to create
programs with the power of analogies to reuse programs. The combina-
tion of PBE with analogies is called Programming by Analogous Examples
(PBAE).

18.1 Introduction

Why do end users need to program? In a world with an ever-increasing
flood of information, people become overwhelmed trying to cope with it.
With the ubiquity of computer networks, the information challenge is no
longer about accessing information but processing it. The direct manipula-
tion paradigm, popularized in the 1980s, begins to break down when it is no
longer feasible to directly manipulate the sources of information such as
the location of all the files on your hard disk or all the emails in your in box.

End-user programming (Nardi 1993) is becoming a crucial instrument in
the daily information-processing struggle. End-user programming is a form
of programming done by the end user to customize information processing.
Most computer end users do not have the background, motivation, or time
to use traditional programming approaches, nor do they typically have the
means to hire professional programmers to create their programs. Sim-
ple forms of end-user programming include the use of email filters to clean
up email by directing specified emails into separate folders or the use of
spreadsheets to explore the total cost of a new house.

Programming by example (PBE) is a powerful end-user programming
paradigm enabling computer users without formal training in program-
ming to create sophisticated programs. PBE environments create programs
for end users by observing and recording as users manipulate information
on a GUI level. For instance, in Microsoft Word PBE is used to build macros.

The focus of this chapter is the problem of PBE reuse. A user may find
the PBE-generated program useful but may need either to generalize it or to
modify it for a related yet different task. Program reuse is a well-known soft-
ware design problem (Lange 1989). Reuse problems hamper productivity of
a wide range of software projects, from those involving individual end-user

352

TNT Job Number: [002564] • Author: [Lieberman] • Page: 352

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

programmers to large distributed teams of software developers (Roschelle
et al. 1999). In the PBE context, reuse poses even more complex issues.
While initially PBE shields end users from having to deal with program-
ming issues, reuse will force them to leap cognitively between two levels of
representations:

• The GUI level: This is the level of representation featuring windows,
icons, and menus familiar to users. For instance, in the case of a word
processor application such as Microsoft Word, this is the level that rep-
resents content directly manipulated by users with operations such as
typing in new text, formatting text, using cursor keys to navigate through
a document, and so forth.

• The program level: This is the level of representation that captures user
manipulations into programs so that they can be replayed by the users.
In the case of Word, this is the level of Visual Basic. Manipulations by us-
ers are recorded as Visual Basic scripts. Users assign scripts to keyboard
commands or to user-defined toolbar commands.

The PBE representation chasm describes how difficult it is for users to
comprehend the mapping between the GUI and the programming levels. In
reuse this chasm is especially problematic since users, to adapt representa-
tions at the programming level to their needs, will be required to have at
least a minimal understanding of the programming level representations.
For the end user with no previous exposure to programming in general or to
programming in Visual Basic, this transition may be too complex and result
in frustration. As a consequence, the user may just give up on the idea of
end-user programming and continue to solve the original problem manu-
ally again and again for years.

Analogies are powerful cognitive mechanisms that people use to con-
struct new knowledge from knowledge already acquired and understood.
When analogies are used with PBE, the result is a new end-user program-
ming paradigm combining the elegance of PBE to create programs with the
power of analogies to reuse programs. The combination of PBE with analo-
gies is called programming by analogous examples (PBAE). Analogies are an
effective representation level bridging the GUI level with the program level.

In this chapter, we portray the reuse problem with two detailed exam-
ples. In the first example a Microsoft Word macro to do repetitive refor-
matting is created and reusability of macros is explored. This example is
chosen not because the Word macro-recording mechanism is the most
sophisticated PBE system but because Word has a large user base and,

Chapter Eighteen: Programming by Analogous Examples 353

TNT Job Number: [002564] • Author: [Lieberman] • Page: 353

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:45 PM

Color profile: Generic CMYK printer profile
Composite Default screen

consequently, readers may best be able to relate to use/reuse issues in this
context. In the second example, a SimCity-like simulation is built using
the AgentSheets (Repenning and Sumner 1995) simulation authoring tool.
AgentSheets provides an end-user programming approach that is consider-
ably more accessible to most users than Visual Basic. We will show that
even if the program level is more accessible, there is still a need for analo-
gies as a PBE reuse mechanism. Throughout these examples PBAE is con-
trasted with existing reuse mechanisms known from object-oriented pro-
gramming, such as inheritance.

18.2 The GUI to Program Chasm

As PBE techniques become more widely adopted in both commercial and
research systems, users incrementally construct and edit new behavior or
commands as needed. As in traditional programming approaches, effective
reuse of this new behavior is limited by underlying representations. In fact,
these representations run the risk of presenting end-user programmers
with the same copy/paste/modify, or inherit, reuse problem that profes-
sional programmers have struggled with for years. What makes reuse even
more problematic in a PBE situation is that the programs that need to be
modified for reuse have been machine generated. Typically these programs
contain little information regarding how they could be changed. In this sec-
tion, we describe a reuse scenario in which an end user is trying to reformat
an address list automatically.

Microsoft Word and other applications allow for modular modification
through the macro mechanism. Users are given an interface to program
macros by example through the Record New Macro menu command. Addi-
tional support is given by the macro-editing toolbar and menu functions.
Once a macro is named and assigned to a toolbar icon or a keyboard com-
mand, the macro is created by simply doing the task desired—in our exam-
ple, repetitive reformatting. The system records keystrokes and compiles
the command into Visual Basic, and the command can then be invoked by
anyone editing a document.

Often a user would like to modify, and hence reuse, a macro with addi-
tional, related actions and have the entire new set of changes assigned to
the same keyboard command. There are mechanisms to rename the macro,
and thus copy the same behavior, but any modification to an existing macro
must be done through the Visual Basic programming language. For in-
stance, how would a user have to modify the macro to reformat not just the

354

TNT Job Number: [002564] • Author: [Lieberman] • Page: 354

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:46 PM

Color profile: Generic CMYK printer profile
Composite Default screen

“Fax:” but also an “Address:” field? To modify this macro through the record
function, a user would have to overwrite the old macro, go through the ex-
act actions that were previously recorded, and then record the desired addi-
tional behavior.

To be able to reuse existing macros and make them useful in more gen-
eral situations, users will have to drop from the GUI level (Fig. 18.1, left) to
the program level (Fig. 18.1, right). According to the Word documentation:1

Recorded macros are great when you want to perform exactly the same task

every time you run the macro. But what if you want to automate a task in

which actions vary with the situation, or depend on user input [. . .]? To cre-

ate powerful automations, you should learn to program in Visual Basic for

Applications.

The cognitive chasm between the GUI and program levels is quite large.
The GUI level provides only very limited options for reuse. Even though
advanced reuse requires making the transition into the program level, no

Chapter Eighteen: Programming by Analogous Examples 355

TNT Job Number: [002564] • Author: [Lieberman] • Page: 355

S

R

L

Figure 18.1

Creating a PBE to format all occurences of the “Fax:” into “Fax Number”: the GUI
level (left) shows a document edited with find-and-replace dialogue box, and the
program level (right) shows a Visual Basic editor.

1. Microsoft Corporation, Getting Results with Microsoft Word 98 Macintosh Edition
(Redmond, Wash.: Microsoft Corporation, 1987-1998), p.fl227.

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

intermediate steps are provided to take the user from the simple recording
mechanism to the Visual Basic programming language. At the GUI level, us-
ers are limited in reuse to copy macros as black boxes into other documents
or to make macros generally available to all documents. At the program
level, code may be copied, pasted, and modified with the same difficulty as
any other object-oriented program. At this point, the user has jumped from
the comfortable environment of direct manipulation at the GUI level di-
rectly into the uncomfortable or downright frustrating programming level.

18.3 Programming by Analogous Examples

We use the AgentSheets simulation authoring tool to explain how analogies
bridge the chasm between the GUI level and the program level in PBE.
AgentSheets is employed to build SimCity-like simulations and export them
as interactive Java applets. A large number of simulations have been built
by a wide range of users, including elementary school kids and NASA
scientists. A detailed description of AgentSheets can be found elsewhere
(www.agentsheets.com/userforum-publications.html).

AgentSheets combines PBE with graphical rewrite rules (Cypher and
Smith 1995; Lieberman 1987; Repenning 1993, 1995) into an end-user pro-
gramming paradigm. Graphical rewrite rules (GRRs), which are also used in
systems such as Cocoa/KidSim, and Creator, are powerful languages to ex-
press the concept of change in a visual representation. These rules declara-
tively describe spatial transformations with a sequence of two or more
dimensional situations containing objects (Fig. 18.2, right). Situations can
be interpreted with respect to objects contained and spatial relationships
holding between these objects. The differences between situations imply
one or more actions capable of transforming one situation into another. In
AgentSheets, any number of GRRs can be aggregated to create complex be-
haviors for agents, and these agents and their behaviors combine and inter-
act to simulate anything from heat diffusion to urban planning. We have
found that it is highly likely that behavior created in one simulation will be
desirable for users building other simulations.

Compared to the previously described GUI/program level chasm in
Word, the chasm between the GUI and program level in AgentSheets is less
pronounced. The GRR representation at the program level matches the rep-
resentation at the GUI level closely. For instance, the user-produced train
and train track icons found at the GUI level are also found at the program
level. This representational mapping helps users comprehend programs.

356

TNT Job Number: [002564] • Author: [Lieberman] • Page: 356

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

We argue that despite this closer match between GUI and programming, it
is still necessary to have a mechanism to deal with reuse.

18.3.1 Making Cars Move Like Trains: An Analogy

In the application called Sustainopolis (Fig. 18.2) used to explore public
transportation issues, an end user—in this case, an urban planner—wishes
to incorporate cars and streets. Noticing that Trains and Tracks are already
successfully programmed, and realizing that cars move on streets similar to
the way trains move on tracks, the user wishes to reuse the move behavior
already written for the Train object and attach it to the Car object.

One approach would be for the user to start from scratch and simply
demonstrate all the examples of Car and Street interactions. Unfortunately,
the set of rules attached to the Train is quite large. The problem is that even
for a relatively simple behavior such as making the Train follow the Track,
rules had to be demonstrated to specify all of the meaningful combinations
of interactions between Trains and Tracks (see also Fig. 18.5, later). Trains

Chapter Eighteen: Programming by Analogous Examples 357

TNT Job Number: [002564] • Author: [Lieberman] • Page: 357

S

R

L

Figure 18.2

Programming a train to follow a train track by example in AgentSheets. When a
user moves a train on a train track at the GUI level (left), AgentSheets records the
movement including context and represents it at the program level as graphical re-
write rule (right).

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

are capable of heading in four different directions (north, south, east, and
west). A complete specification accounting for fifteen different train track
pieces (straight tracks, vertical and horizontal; four orientation of curves,
four different T intersections, one crossing, and four orientations of cul de
sacs) requires 256 rules. These rules specify behavior in situations such as
“If the train drives into a cul-de-sac, which way should the train go if it has a
choice of going left or right?” If the Tracks are carefully arranged in the sim-
ulation, a good number of rules can be eliminated, but the point remains
that it must have taken quite a while and some patience to demonstrate the
complete set of rules. Given that in our scenario this behavior already exists,
it would be preferable to find a way to avoid having to demonstrate the en-
tire set of rules again to specify the conceptually similar interaction be-
tween Cars and Streets.

A different approach is to copy all the Train’s rules into the Car and man-
ually edit them by substituting corresponding icons. In most GRR systems,
the user would then copy all the rules from Trains and Tracks to Streets and
Cars and then simply substitute Cars for Trains and Streets for Tracks. But is
time saved? This is basically the same arduous, error-prone process a pro-
grammer must go through to reuse a program or a Word user must go
through to reuse a macro. Without the understanding of what the user in-
tends, can we facilitate the reuse process? We argue that the mechanism
that allows an end user to program allows reuse as well.

Programming by analogous examples supports the reuse of previously
recorded example programs. Instead of creating the behavior of cars from
scratch either through demonstration or through manual editing, users
generate a complete set of rules by specifying an analogy.

It is the relationship between Trains and Tracks that the user wishes to
reuse by applying it to Cars and Streets (Fig. 18.3). In contrast to object-ori-
ented programming, in which inheritance is used to define an ontology of
object classes, analogies are used to define an ontology of object relation-
ships represented by verbs such as “move.”

The Analogy dialogue box (Fig. 18.4) is used to define analogies. The re-
sult is that the behavior programmed via graphical rewrite rule for Trains
moving on Tracks is transferred to Cars on Streets. The verb “moves” is dif-
ferentiated for Trains and Cars, so that Trains do not now move on Streets,
nor will Cars move on Tracks, because no relationship is implied between
Trains and Streets or Cars and Tracks.

Here, reuse is expressed in terms of existing objects, and no abstractions
are required. The result of the analogy is a new set of GRRs attached to Cars
that allow Cars to move on Streets. All the rules generated by analogy are

358

TNT Job Number: [002564] • Author: [Lieberman] • Page: 358

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter Eighteen: Programming by Analogous Examples 359

TNT Job Number: [002564] • Author: [Lieberman] • Page: 359

S

R

L

Figure 18.3

ANALOGY
move on

like
move on

cars streets

trains tracks

move-on

move-on

Transferring the relationship between objects.

Figure 18.4

Making an analogy.

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

like ordinary graphical rewrite rules in that the user can edit them to deal
with exceptions to the analogy.

In summary, PBE systems often feature representations that, through
the use of analogies, serve as bridge between the GUI level and the program
level. Here, a user formulating an analogy created new behavior out of exist-
ing behavior. This style of reuse-enhanced programming in which an initial
set of programs is created through PBE and then extended through analo-
gies is what we call programming by analogous examples.

18.4 Discussion

So far we have described the user perspective of PBAE. What is the depth at
which an analogy mechanism needs to “understand” a program to create
an analogous program? On the one hand, mere syntactic symbol substitu-
tion will not be sufficient for the transformation of nontrivial programs. On
the other hand, a deep understanding of the program semantic is not only
an extraordinarily hard and yet unsolved artificial intelligence (AI) prob-
lem but would probably also require users to annotate programs exten-
sively with semantic information to enable analogies. We discuss next how
PBAE moves beyond simple substitution without becoming an AI com-
plete problem. We also list some of the problems when trying to use inheri-
tance found in object-oriented programming as an improvement over sim-
ple substitution.

18.4.1 Beyond Syntactic Rewrite Rules

A first step toward creating more usable and reusable rewrite rules it to
move from syntactic rewrite rules to semantic rewrite rules. To transform
programs, it is important for programs to include semantic meta-informa-
tion. This meta information can capture—to a limited degree—what the
programs is doing and how it is doing it. First-generation rewrite rule–based
systems such as AgentSheets91 and later Cocoa, Vampire, and Creator oper-
ate only on a syntactic level. A rule such as the one shown in Figure 18.5 is
rich in meaning to a human being but cannot be interpreted by syntactic
rewrite rule systems.

The system does not know what trains and train tracks are, nor does it
have any sense of the functional relationship between a train and the train
tracks. To a syntactic rewrite rule, systems objects are uninterpretable

360

TNT Job Number: [002564] • Author: [Lieberman] • Page: 360

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

bitmaps, and scenes are patterns containing objects. Without semantics,
the system cannot allow users to generalize or reuse behaviors such as the
behavior of a train following a train track. The meaning of a syntactic re-
write rule remains strictly in the programmer’s head.

The lack of semantics not only makes reuse difficult but also creates a
significant problem for building new behaviors from scratch. Suppose a
user would like to create a complete set of rules that makes trains follow
train tracks (see Figure 18.6). Through the power of programming by exam-
ple, the rule described earlier is defined in no time. With this one rule, trains
can follow any number of horizontal train tracks. However, a track system is
not limited to horizontal track pieces—there are also curves, intersections,
and so forth. Fortunately, the user does not have to draw all these different
track pieces manually but can have AgentSheets generate new bitmaps au-
tomatically by transforming the original depiction drawn by the user. The
transformation of bitmaps is a syntactic transformation.

Unfortunately, the complete behavior of trains following tracks is made
a bit more complex since we now have fifteen different track pieces (Fig.
18.8 on page XXX). A very large set of rules would have to be defined to
specify all the combinations of track pieces that the train is currently on, the
track pieces the train can move to, and the four different directions that the
train can move onto. What started as a very simple single rule quickly has
turned into a tedious PBE exercise. The lack of semantics dramatically re-
duces the scalability of a PBE approach. In effect, users get trapped by
affordances of the programming environment. They are off to quick start to
create a simple behavior only to be “trapped” by the programming ap-
proach later when trying to create more complex behaviors.

Chapter Eighteen: Programming by Analogous Examples 361

TNT Job Number: [002564] • Author: [Lieberman] • Page: 361

S

R

L

Figure 18.5

A rule that makes a train follow a train track.

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To scale the combination of PBE with graphical rewrite rules, it is neces-
sary to add at least a limited amount of semantics. Semantics simplifies at
least two kinds of programming:

• Original programming: Building new behavior: Semantic graphical re-
write rules simplify programming by allowing end users to annotate the
objects that are programmed with semantic information. For instance,
AgentSheets94 (Repenning 1994a&b) allows users to annotate objects
with connectivity information describing whether an object has input
and/or output ports in a certain direction. AgentSheets can transform
agents syntactically (how an agent looks) as well as semantically (what
an agent means). The same kind of annotation makes sense for all kind
of agents representing agents in a context of flow. Examples include
roads, train tracks, rivers, and wires.

• Programming through reuse: Analogies: The same semantics that help a
user create original programs simply can also support reuse. The

362

TNT Job Number: [002564] • Author: [Lieberman] • Page: 362

S

R

L

Figure 18.6

Syntactic transformation: AgentSheets has created a curve by “bending” a track icon
designed by the user.

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

following section will describe how this same connectivity semantics en-
ables reuse through analogies.

18.4.2 From Substitutions to Analogies

The analogy menu specified in Figure 18.4 only uses four icons out of a
much larger set of icons representing Cars and Trains. There are Cars and
Trains with different headings as well as Streets and Tracks representing dif-
ferent topologies. For a Train to move properly on all kinds of Tracks, all of
these icons are available to AgentSheets. A mechanism that would merely
substitute the Car and Street icons for the Train and Track icons to create a
set of analogous rewrite rules would not be very useful because it would
only match a very small subset of all relevant rules. How does the analogy
system establish the more general mapping between all these different but
related items?

Analogy mechanisms need to have access to some minimal semantic
information establishing more general correspondence (Chee 1993; Gold-
stone, Medin, and Gentner 1991; Medin, Goldstone, and Gentner 1993). It is
no trivial matter for a computer system to substitute correctly at all the nec-
essary levels required to render the resulting code useful and usable without
further editing by a human. Lewis (1988) proposes a concept called pup-
stitution to decrease the brittleness inherent in straight copy and paste
techniques.

In the AgentSheets substrate, systematicity in analogy (Perrone and
Repenning 1998) is facilitated by connectivity semantics. Structural and be-
havioral similarity between the base and target objects defines system-
aticity. Analogies are made by specifying which relationship should be
transferred. Cars and Trains are objects that can be as simple or complex as
a user desires—they may have a single applicable behavior or many. How-
ever, when the user specifies that Cars move like Trains, it is this specific be-
havior that is transferred. For this to occur with a high degree of system-
aticity, and therefore effectiveness to the user, the Street and Track objects
must be structurally similar.

AgentSheets assures this in two ways. Structure is created by the base
icons created for the gallery. Syntactic transformations are applied by the
system at the user’s request that will automatically create meaningful varia-
tions to illustrate intersections and curves, as well as directional orientation
(Repenning 1995). This creates the visual variations necessary to place the
Agents on the AgentSheets worksheet and saves the user many hours of

Chapter Eighteen: Programming by Analogous Examples 363

TNT Job Number: [002564] • Author: [Lieberman] • Page: 363

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:12:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TNT Job Number: [002564] • Author: [Lieberman] • Page: 364

S

R

L

Figure 18.7

Agent depictions are also transformed semantically. Semantics capture input/output
information representing the implied connectivity of a depiction.

Figure 18.8

Street-T-N

Street-T-E

Street-W-N

Street-W-S

Dead-End-4

Dead-End-3

Dead-End

Dead-End-2

Auto

Auto-2

Track-Dead-:

Track-Dead-:

Track-W-N

Track-W-S Track-N-E

Track Track+Track-N-S

Track-T-E

Track-T-N

Track-T-W

Track-T-S

Track-E-S

Track-Dead-:

Track-Dead-:Auto-3

Auto-4

Street-E-S

Street-N-E

Street Street-H-S Street+

Street-T-S

Street-T-W

Gallery: Opolitans

Icons are transformed syntactically and semantically. Users only define the basic root
icons, such as the horizontal Street segment, which then get transformed into icons
such as curves in terms of appearance and meaning. The semantic information is
used to match up icons for analogies.

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

work upon the icon depictions. Icons are then annotated by the user with
semantic information such as connectivity (Figure 18.7), which is potential
behavior. Connectivity defines input and output ports of each icon. For in-
stance, a horizontal Street segment icon has inputs/outputs to its left and
right. Transforming the annotated Track creates an entire family of Track
icons (Figure 18.8, right), which essentially act as throughputs for objects
that move on them.

This semantic and syntactic connectivity information about an icon is
used to support pupstitution in PBAE. By specifying the connectivity of an
icon (as in Figure 18.8, left) and then transforming it, the move GRR now ac-
quires a useful dimension of complexity. After the analogy is made, Cars
have a rule set isomorphic to the Train rule set, that is, Cars know how to
move on all kinds of Streets (see Figure 18.9). The system uses the semantic
information available to ensure a high systematicity between the base and
target; thus, the correct mapping between Tracks and Streets is made with-
out the user’s intervention.

The general insight is that a little semantics is necessary to enable
meaningful analogies. On the one hand, this means that users will have
to provide some additional up-front information to annotate their designs
with minimalist semantics. On the other hand, this kind of semantic an-
notation dramatically improves the reusability of behavior. In the case of

Chapter Eighteen: Programming by Analogous Examples 365

TNT Job Number: [002564] • Author: [Lieberman] • Page: 365

S

R

L

Figure 18.9

Only the first few out of a set of 256 rules created by AgentSheets’ “Semantic rewrite
rule” system to define the “Cars follow Streets like Trains follow Tracks” behavior.

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

AgentSheets, users only need to provide semantics information to the base
agents. For instance, they need to specify the connectivity of a Street agent
that they have defined. AgentSheets can automatically transform agents
representing flow conductors such as streets, wires, or pipes syntactically
(by applying geometric transformations to the agent bitmap) as well as
semantically (by applying topological transformations to the agent’s
connectivity).

18.4.3 Reuse through Inheritance

In object-oriented programming, inheritance can serve the role of reuse
mechanism. An object subclass not only inherits the behavior of the super-
class but can even overwrite and extend this behavior. How would inheri-
tance have worked for our trains and cars example? One easy way to get
analogous behavior is to make Car a type of, or subclass of, Train and Street
a subclass of Track. While this approach will produce the desired behavior
because of inheritance, it is ontologically unsound, and changing the object
hierarchy in this way produces a misleading model based on weak design.

To correct this problem, it is expected that the end-user become a bit
more of a programmer. In the class hierarchy, Cars become siblings of
Trains and Streets sibling of Tracks by creating two abstract superclasses:
Moving Object and Movement Guiding Object (Figure 18.10).

366

TNT Job Number: [002564] • Author: [Lieberman] • Page: 366

S

Figure 18.10
Moving
object

Movement
guiding
object

Train Car Track Street

Reusing through inheritance.

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

To enable both Trains and Cars to move, a generalized graphical rewrite
rule needs to be expressed in terms of Moving Object and Movement
Guiding Object. While this new class hierarchy may be ontologically sound,
it introduces serious problems:

• Need for abstractions: Abstractions are nontrivial for end users to make
and are hard to represent visually. This is especially true in the case
where objects are represented by user-defined icons. How would ab-
stract objects embodying Moving Objects and Movement Guiding Ob-
jects look and who would have to draw them?

• Overgeneralization: If city traffic is run with this new representation
in place, Trains can now move on Streets and Cars will now move on
Tracks, which, although theoretically possible, should not be allowed to
happen in the urban planning domain application. To get around this
real-life constraint, the behavior of Trains and Cars would need to be
specialized again to prevent these unwanted combinations of Moving
Objects and Movement Guiding Objects.

Inheritance is a powerful means of generalization that could increase the
usefulness of PBE. However, the tension between inheritance and PBE with
respect to representational concreteness is hard to resolve. Inheritance is
pulling toward the need to introduce and manipulate abstract representa-
tions, whereas PBE is pulling toward the need to provide highly concrete
representations that can be manipulated by end users.

18.5 Conclusion

In PBE, the representation that the user sees at the GUI level may indeed be
vastly different from the representation a user is faced with at the program
level. In PBE systems, special representations are often used to make the
transition between the two levels easier for an end user. These representa-
tional features enable programming by analogous examples, which in turn
simplifies program reuse.

Our work with PBAE is at an early but promising stage. The combina-
tion of some semantic information with structural information has allowed
reuse of complex behaviors in the context of interactive simulations. Of
course, the more similarity between behavior the user has created and
wants to reuse and the target behavior makes for a better analogy and

Chapter Eighteen: Programming by Analogous Examples 367

TNT Job Number: [002564] • Author: [Lieberman] • Page: 367

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

minimal editing. We are continuing work on PBAE to allow for greater dif-
ferentiation by a user trying to determine appropriate analogical matches.
For instance, Cars moving on Streets and Electricity moving through Wires
also share similarity, but Electricity can go both directions at an intersec-
tion. Therefore, an analogy made between the two creates accident-prone
Cars. Next steps will also explore the use of PBAE in nonsimulation applica-
tion domains.

Acknowledgements

The authors wish to acknowledge Clayton Lewis, Braden Craig, and the
members of the Center of LifeLong Learning & Design at the University
of Colorado. The research was supported by the National Science Founda-
tion under grants No. DMI-9761360, RED 925–3425, and Supplement to
RED 925–3425. AgentSheets research and AgentSheets Inc. are supported by
the National Science Foundation (REC 9804930, REC-9631396, and CDA-
940860).

References

Chee, Y. S. 1993. Applying Gentner’s theory of analogy to the teaching of computer

programming. International Journal of Man Machine Studies, 38: 347–368.

Cypher, A., and D. C. Smith. 1995. KidSim: End user programming of simulations. In

Proceedings of the 1995 Conference of Human Factors in Computing Systems

(Denver, Colo.). ACM Press.

Goldstone, R. L., D. L. Medin, and D. Gentner. 1991. Relational similarity and the

nonindependence of features in similarity judgments. Cognitive Psychology 23:

222–262.

Lange, B. M. 1989. Some strategies of reuse in an object-oriented programming en-

vironment. In CHI ’89 (Houston, Tex.). Association for Computing Machinery.

Lewis, C. 1988. Some learnability results for analogical generalization. Technical Re-

port No. CU-CS-384–88, University of Colorado, Computer Science Department.

Lieberman, H. 1987. An example-based environment for beginning programmers. In

Artificial Intelligence and Education ed. R. W. Lawler and M. Yazdani. Norwood,

N.J.: Ablex.

Medin, D. L., R. L. Goldstone, and D. Gentner. 1993. Respects for similarity. Psycho-

logical Review 100, no. 2: 254–278.

368

TNT Job Number: [002564] • Author: [Lieberman] • Page: 368

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Nardi, B. 1993. A small matter of programming. Cambridge, Mass.: MIT Press.

Perrone, C., and A. Repenning. 1998. Graphical rewrite rule analogies: Avoiding the

inherit or copy & paste reuse dilemma. In Proceedings of the 1998 IEEE Sympo-

sium of Visual Languages (Nova Scotia, Canada). Computer Society.

Repenning, A. 1993. Agentsheets: A tool for building domain-oriented visual pro-

gramming environments. In INTERCHI ’93: Conference on Human Factors in

Computing Systems (Amsterdam). ACM Press.

———. 1994a. Bending icons: syntactic and semantic transformation of icons. In

Proceedings of the 1994 IEEE Symposium on Visual Languages (St. Louis, Mo.).

IEEE Computer.

———. 1994b. Programming substrates to create interactive learning environments.

Journal of Interactive Learning Environments 4, no. 1 (Special Issue on End-User

Environments) 45–74.

———. 1995. Bending the rules: Steps toward semantically enriched graphical re-

write rules. In Proceedings of Visual Languages (Darmstadt, Germany). IEEE

Computer Society.

Repenning, A., and T. Sumner. 1995. Agentsheets: A medium for creating domain-

oriented visual languages. IEEE Computer 28, no. 3: 17–25.

Roschelle, J., C. DiGiano, M. Koutlis, A. Repenning, J. Phillips, N. Jackiw, and D.

Suthers. 1999. Developing educational software components. IEEE Computer 32,

no. 9: 50–58.

Chapter Eighteen: Programming by Analogous Examples 369

TNT Job Number: [002564] • Author: [Lieberman] • Page: 369

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

TNT Job Number: [002564] • Author: [Lieberman] • Page: 370

S

R

L

V:\002564\002564.VP
Thursday, December 21, 2000 2:13:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

