

Will Software Ever
Work?
Henry Lieberman, MIT Media Lab,
and

Christopher Fry, Bowstreet, Inc.

Introduction

Will software ever work? No, not if it's "business as usual" in the software industry.
But we could make it work.

In the rest of this issue, you'll hear some amazing predictions for the future -- instant,
universal communication, pervasive computing, new medical applications, etc.
There's only one problem. The software for all these things might not work.

Certainly, if today's software is any indication, it won't. Today's software is
appallingly full of bugs. A large, complex product like Microsoft Word is routinely
released even when the vendor knows that thousands of bugs exist in it. A misplaced
comma in a program caused a NASA space mission to fail. Computers crash or
freeze, applications lose data or files, seemingly for no reason. Cryptic error message
confuse users.

We could go on and on complaining about it, but, unfortunately, we don't need to.
Every reader of this magazine, and every computer user has plenty of their own
stories of the unreliability of modern software. Many of these problems are simply
minor, time-wasting annoyances. But as computer applications enter more and more
of our lives, as this issue is promising you, it becomes more and more important that
the software really works.

But we're not writing this article to sound notes of doom and gloom. Cassandras such
as the "Inside Risks" column in the back of this magazine can provide you with a
copious collection of horror stories.

The problem is not, as many people assume, that system designers and programmers
make mistakes. That, we can't avoid. To err is human. Of course, we know of many
good software practices that can and should reduce error -- systematic design
practices, good programming style, safer programming languages, better testing
before release. But we can hardly hope to completely eliminate bugs before software
is released. The problem is really that when errors do occur, we currently don't have

any really good ways of discovering what went wrong and how to fix it. That's what
we've got to change.

People make plenty of mistakes in social, economic and informational exchanges, but
an important difference between people and machines is that when mistakes occur in
human society, we have good ways of finding out what they are and of fixing them.
If you think somebody is telling you something wrong, you can interact with them
about it to find out what is wrong, and (assuming goodwill), correct it. You can ask
them why they did what they did. You can verify what they are telling you with
others. You can ask them what they can do to correct a mistake.

When something goes wrong with a computer, typically, you are stuck. You can't ask
the computer what it was doing, why it did it, or what it might be able to do about it.
You can report the problem to a programmer, but typically, that person doesn't have
very good ways of finding out what happened, either. So bugs don't get fixed. It's that
helplessness in the face of problems that causes interaction with computers to feel so
frustrating.

Happily, we believe that this can be fixed. But not if the software industry goes on
competing only on the ever-increasing accumulation of features. Instead, software
development of the future will increasingly be oriented towards making software
more self-aware, transparent, and adaptive. Software will still contain some bugs
(perhaps fewer), but people will be able to fix bugs themselves by interacting with
the software. Software developers will have better tools for systematically finding out
where bugs are, and the software will give them help in correcting the bugs.
Interacting with software will be a cooperative problem solving activity between the
user and the system.

No, not if our economy can help it

Nevertheless, there are some strong forces working against software ever really
working. The first is economic.

Given the competative marketplace, developers are often pressured to come up with
innovations. Products that feature reliability get edged-out in the marketplace by
products that offer more features. Another problem is the endless treadmill of
software releases, where "version skew" occurs as Product A depends on Version 1
of Product B, but Version 2 of Product B breaks A. Asking the user to manually
track and manage these relationships is disastrous. These social conditions practically
guarantee that today's software will be unreliable.

There will have to be a "consumer revolt" against widespread unreliability, and
willingness to reward reliability and improvability in products. Historically, such a
revolt might be comparable to the American or French Revolutions in impact. A
small, but encouraging sign is the recent commercial acceptance of the Palm Pilot,
which proposed a simple, reliable, functional interface, winning over more "capable"
but complicated and unreliable competitors.

 - 2 -

No, not if today's programming culture can help it

Another obstacle is the "macho" culture of programming. "Real programmers" don't
need debugging tools. People are psychologically reluctant to admit the prevalence of
bugs in their programs, and that makes them unwilling to devote time and money to
improving the process of dealing with them.

Barbara Liskov said, "Having a bug in your program is like having a cockroach in
your kitchen", a distasteful metaphor suggesting that the presumed cause of a bug is
negligence on the programmer's part. But we think it is this denial of the normalcy of
bugs and debugging that have directly lead to the unreliability of software.

Yes, only if we provide the tools to fix it

It may sound silly to say it, but software will only ever work if we provide the tools
to fix it when it goes wrong. Right now, we don't.

We see an important new direction in providing end-user debugging tools. These will
be tools that users can use themselves to fix or improve their software. It's crazy that
we can't ask a computer at any moment, "What are you doing?" or "Why did you do
that?". If we can't get that kind of basic information, we won't be able to tell the
programmers what's wrong.

An exciting new technology for giving end users the kind of procedural control that
only programmers had is Programming by Example [2]. When the user wants to
teach the computer how to do something new, or something different, an example is
demonstrated step-by-step in the user interface and the computer records and
generalizes a program.

Just because most users are end-users rather than programmers doesn't mean that the
public shouldn't be concerned with tools for developers. The quality of debugging
tools for developers has a direct impact on the quality of the resulting software,
because if developers can't find and fix bugs the software will not improve quickly
enough.

Boeing spent more than $50 million developing the interface to the cockpit of the
Boeing 777, even though the "user community" is only a few hundred pilots. This
expense is justified because those hundreds of pilots ferry around millions of
passengers who pay the consequences of errors. Hundreds of programmers write
programs for millions of people, yet no efforts of comparable scale have been
mounted to improve the tools for debugging.

Moore's Law states that computers double in performance once every 18 months.
Fry's Law says that programming environments double in performance once every 18
years. If that. We're not talking about simply the speed of running an application, but
more importantly, the speed to develop reliable software functionality, regardless of
how fast it runs.

 - 3 -

 - 4 -

One thing that can help is better programming languages. Languages that software is
built on need not just to be reliable in themselves, they also need to be easy to learn,
powerful, and extensible. One characteristic of language design not generally
appreciated is the design for debuggability. Another is the design for ease of
advanced tool creation. Its a lot easier to add good tools to a good langauge than the
other way around.

It's not our place here to detail the many ways in which debugging tools can be
improved. See [1] and [3] for a myriad of exciting new developments and directions.
An important component of debugging tools is software visualization, using the
considerable graphic capabilities of modern computers and our prodigious power of
perception to quickly perceive spatially and dynamically what is going on in
software. Other kinds of tools support the detective work of localizing bugs,
diagnosing and analyzing problems, and instrumenting pieces of the software
environment to monitor their behavior.

Ultimately, software will be something that we can use, not just for doing tasks, but
for figuring out what it is that we really want. After all, almost any improvement to a
piece of software could be viewed as "debugging it". So the process of debugging is
really a process of improvement, and software is really a medium for "debugging"
ourselves. Therein lies hope.

References

1. Henry Lieberman, ed. Special Section on the Debugging Scandal,
Communications of the ACM, March 1997.

2. Henry Lieberman, ed. Your Wish is My Command, Morgan
Kaufmann, 2001.

3. John Stasko, John Domingue, Marc Brown, and Blain Price, eds.
Software Visualization, MIT Press, Cambridge, MA, 1998.

--

HENRY LIEBERMAN is a Research Scientist in the Software Agents group at the Massachusetts
Institute of Technology Media Lab in Cambridge, Mass. lieber@media.mit.edu

CHRISTOPHER FRY currently works at Bowstreet, Inc. in Lynnfield, MA on tools for
developing complex web sites. cfry@bowstreet.com

	Introduction
	References

