
Chapter 1

COMPUTER-AIDED DESIGN OF
USER INTERFACES BY EXAMPLE

Henry Lieberman
Media Laboratory, Massachusetts Institute of Technology (MIT), 20 Ames St. 320 G
Cambridge, MA 02139 (USA)
E-mail: lieber@media.mit.edu – URL: http://lieber.www.media.mit.edu/people/lieber/
Tel.: +1-617-253-0315 – Fax: +1-617-253-6215

Abstract: A promising approach to Computer-Aided Design of User Interfaces (CADUI)
is Programming by Example, where an interface designer demonstrates the be-
havior of an interface by presenting concrete examples and demonstrating how
the system should behave on those examples. It lets the user interface designer
“play end-user”, simulating what an end-user would see and do. A software
agent records the steps of the user interface and generalizes a program that can
be used in analogous situations in the future. The popular genre of so-called
Interface Builders can be seen as a “poor-man’s” Programming by Example. It
is now time to extend such systems so that behavior as well as appearance can
be specified by example.

Key words: Programming by example, programming by demonstration, computer-aided
design, interface builders, machine learning, software agents.

1. CAD/CAM AND USER INTERFACE DESIGN

The goal of Computer-aided Design of User Interfaces (CADUI) is to
enlist the computer to aid an interface designer in constructing an interactive
interface to be eventually used by an end-user. This point of view is by anal-
ogy to Computer-Aided Design and Computer-Aided Manufacturing (CAD
or CAD/CAM). CAD traditionally refers to tools to visualize, describe, edit
and test manufactured artifacts, which are now an indispensable part of all
manufacturing and production processes.

Computer-Aided Design systems are successful in manufacturing be-
cause they replace the specifications of numerical parameters, a task difficult

1

2 Lieberman

for humans to perform reliably, with the visualization and editing of visual
representations of virtual objects, which is much more natural for humans to
perform. Computer-Aided Design systems can be successful in user interface
design because they replace specification of programming language con-
structs, which are difficult for humans to perform reliably, with the visuali-
zation and editing of visual representations of virtual interfaces, which are
more natural for humans to perform.

While manufacturing CAD systems are oriented towards describing the
size and shape (and perhaps associated attributes such as materials or cost)
of products, user interface CAD must not only describe the appearance and
form of the user interface, but also the behavior of the interface. If, for a
given interface, each interface element can have its own independent behav-
ior, then a user interface often can be defined simply by combining and con-
necting pre-defined behavioral elements. But if there are interactions be-
tween the elements, if there is state to be maintained, or particular actions to
be taken, then some other method for describing the behavior must be found.
The usual approach is for the interface designer to write code in a traditional
programming language, like C or Java, or text in a high-level interface de-
scription language.

Figure 1. Can we design user interfaces the way we design CAD artifacts?

Computer-Aided Design of User Interfaces by Example 3

But writing and debugging in these languages is a difficult cognitive task for
most people. To make the CAD analogy complete, it would be better if we
could specify dynamic behavior by visualizing and editing virtual objects
visually represented on the screen than by writing textual specifications, no
matter how high level the language.

2. PROGRAMMING BY EXAMPLE

It is this goal which is the objective of Programming by Example (PBE,
sometimes also called Programming by Demonstration). With Programming
by Example, the user interface designer gets to “play user”. He or she takes
on the role of operating the user interface in the same manner as the intended
end-user would, interacting with the on-screen interface components to
demonstrate concrete examples of how to use the interface. The PBE system
records the steps of the interaction, and synthesizes a program, in a similar
manner to the way many interfaces contain so-called “macro” facilities that
can record and playback interface steps. But in contrast to conventional mac-
ros, PBE systems have the ability to generalize programs, by using machine
learning techniques to replace constants with variables, objects and actions
with more general descriptions. The generalized program can then be used in
situations analogous to, but not exactly the same as, those upon which it was
taught. Programming by Example takes advantage of people’s natural ten-
dency to learn by example, and to teach by example.

Programming by Example systems have a long history, but PBE remains
a minority viewpoint, relative to mainstream computer science. The PBE vi-
sion is quite radical, involving heuristics, machine learning, and agent ap-
proaches that conventional interface designers are not accustomed to. Over
the years, a dedicated group of researchers has proved the feasibility of Pro-
gramming by Example systems in an astonishingly wide variety of interest-
ing domains as diverse as text editing, graphical editing, Web browsing and
authoring, geographic information systems, animation, video games, educa-
tional applications, traditional CAD-CAM, and others.

There are two seminal collections of works in this field. The first, Allen
Cypher’s Watch What I Do [4], collects the initial works in this field dating
back to David Canfield Smith’s pioneering 1975 Pygmalion. It also includes
a wealth of background material on this topic, such as a glossary, chronol-
ogy, test suite and several survey articles. My recent book, Your Wish is My
Command [12] brings together most of the important work in this field to
date, detailing examples of over 17 different systems in the above-mentioned
application areas, several of which are now commercially available. It incor-
porates a number of contributions from the international community of re-
searchers in this topic.

4 Lieberman

3. PROGRAMMING BY EXAMPLE AND “INTER-

FACE BUILDERS”

Perhaps the closest conventional interface design tools to Programming
by Example are the so-called “Interface Builders” – graphical editors that al-
low the interface designer to draw the position and size of so-called “wid-
gets” – interactive interface elements such as menus, buttons, icons, text en-
try fields, etc. Interface builders trace their history to the early direct-
manipulation interfaces, and were introduced in their modern form by Bux-
ton [3]. More modern versions include the Microsoft Visual Basic editor,
Apple’s Hypercard and FaceSpan, or Macintosh Common Lisp’s IFT Inter-
face Tools. Animation editors used for interface “mock-ups” such as Mac-
romind Director and Toolbook provide even more capabilities for including
interactive elements and time-dependent behavior into interfaces. What’s
great about these systems is that they let you construct concrete examples of
interfaces so that you can get immediate visual feedback as to the appear-
ance to the end-user of the interface. They are the “poor man’s” Program-
ming by Example for interface design.

But all these tools break down at a certain level of complexity of the in-
terface. It is usually not possible in such editors to allow the interface to take
an arbitrary action in response to a user’s selection of a button or menu item,
except to invoke some already-defined function. The definition of such a
function needs to be done in a conventional programming language, or, in
many of the modern interface builder environments, in a so-called “scripting
language”. Visual Basic, Hypertalk, or Macromind’s Lingo (which has a
graphical representation) can also be considered scripting languages. Script-
ing languages are usually simplified programming languages that are
deemed to be simpler for non-expert users to program, but they are typically
quite limited in their ability to define new objects and new behavior, and
most are quite poorly designed from the programming language standpoint.
Worse, the interaction with the programming language is completely di-
vorced from the interaction with the interface elements.

The approach of Programming by Example to interface design is to en-
courage the designer to switch roles, first casting the designer in the role of
the end-user, where the designer simulates the actions that the end-user will
eventually take in the interface. Then, in response, the interface designer
simulates the role of how the interface will respond to the user’s actions. The
PBE system then records and generalizes the program. David Wolber refers
to this as stimulus-response PBE [20]. An important aspect of stimulus-
response PBE is that it generalizes on time as well as on example objects; the
user demonstrates when to do something as well as what to do.

The first attempt to turn an interface builder into a true Programming by

Computer-Aided Design of User Interfaces by Example 5

Example system was Brad Myers’ Peridot [15]. Peridot featured a “simu-
lated mouse” that was used to demonstrate user actions so that it was not
confused with the ordinary mouse used to interact with Peridot itself. Peridot
used inference to generalize geometric relations in the interface such as
when objects line up, replaced constants with variables in situations such as
looping through a displayed list of choices and generated some simple condi-
tionals.

Figure 1. Peridot.

Myers and his group at Carnegie-Mellon University produced a long series
of Programming by Example systems that operated in the Interface Builder
domain. These are too numerous to describe in detail, but are surveyed in
[14] and the papers referenced there. Notable among them were Lapidary;
Jade, which created dialog boxes by example; Gilt, which permitted “call-
backs” from interface elements; and, perhaps the most sophisticated, Mar-
quise [16]. Several of these systems provided many ways for the user to edit
properties of the generalizations constructed by the system. Elements of all
these systems were incorporated in the general purpose User-Interface Man-
agement Systems produced by Myers and his group, first Garnet [15], then
its successor Amulet.

Though not strictly an Interface Builder itself, my general purpose Pro-
gramming by Example system, Tinker [9] used some Interface Builder-like
techniques [interactive construction and placement of interface elements]
and was used to construct interactive interfaces such as a spreadsheet-like in-
terface [8] and a video game [9]. Tinker was perhaps the most procedurally
general Programming by Example system, allowing functional abstraction,
subroutines, and conditionals. Conditionals were defined from presenting

6 Lieberman

multiple examples, one example for each branch of the conditional. Tinker
did require the knowledge of the programming language, and it required
more explicit programming steps than many of the other Programming by
Example systems, but the interface designer got more procedural power as a
result. The interface designer typed in snippets of code, which were immedi-
ately executed, and the resulting objects, either code objects or interface ob-
jects, were then available as examples to be used in subsequent steps of the
demonstration. Generalizations were propagated through the tree of depend-
encies in the code.

Programming by Rehearsal [5] allowed constructing interfaces by using
the metaphor that the interface elements were “performance” in the interface
“performance”. Designers could “audition” the performers to learn their ca-
pabilities. Hidden variables were placed “backstage”. It was used by teachers
and kids for educational applications.

4. COMPUTER-AIDED DESIGN OF ANIMATED
APPLICATIONS BY EXAMPLE

For applications that make more intensive of time-dependent and ani-
mated interfaces, such as computer games, some Programming by Example
systems go beyond Interface Builders that define standard menu-and-icon in-
terfaces to provide extensive facilities for defining dynamic, autonomously
acting objects and demonstrating transformations. Still mainly in the Inter-
face Builder paradigm, David Wolber’s Pavlov system [20] takes the script-
ing and timeline metaphor appearing in animation interface systems such as
Macromind Director, and giving them a Programming by Example compo-
nent to demonstrate the dynamic behavior of individual objects in the inter-
face and their interaction. Wolber’s article has a direct comparison of his
system with the more conventional Director.

David Canfield Smith, and Allen Cypher’s Stagecast Creator [18] and
Alex Repenning and Corinna Perrone-Smith’s AgentSheets [17] use a rule-
based metaphor. Rules are defined by constructing before-and-after exam-
ples that specify the conditions under which a rule is to fire, and the action to
take as a result, in terms of how it transforms the before state to the after
state. The principal application is for children to build computer games. Both
use a grid world and finite-state transitions to structure the domain to model
the movable game characters and (relatively) fixed scenery.

A radically different approach is taken by Ken Kahn’s Toontalk [6]. In
Toontalk, the programming environment itself is an animated video game.
Programming language constructs are animated video characters. Robot
characters represent user-defined programs whose thought-bubbles contain

Computer-Aided Design of User Interfaces by Example 7

the code, animated actions demonstrated by example. A variety of physical-
world metaphors, cities, houses and trucks, birds and nests, etc. are used to
explain the behavior of the program constructs, which are based on an under-
lying model of concurrent logic programming.

Figure 3. Toontalk.

5. COMPUTER-AIDED DESIGN OF WEB APPLI-
CATIONS BY EXAMPLE

These days, many Web pages themselves can be considered user inter-
faces. Although a Web browser is often regarded as a specific application,
Web pages that have embedded menus or forms, Javascript, Java applets and
the like can be regarded as independent user interfaces, and Web page au-
thoring amounts to interactive interface design. We are beginning to see
Programming by Example applied in this domain as well. Web pages are
constructed by operations of browsing, cutting and pasting from other Web
pages, as well as giving advice to the system about how to interpret the for-
mat of Web pages.

Two examples are Atsushi Sugiura’s Internet Scrapbook [19] and Mat-
thias Bauer, Dietmar Dengler and Gabriele Paul’s Trias [1]. Trias is espe-
cially interesting as a Programming by Example system because it embodies
a mixed-initiative dialog – at any moment, either the user or the system may
propose an action to be taken. The user and the system co-operate to define a
“wrapper” – a description that describes how to extract example elements,
like the price specification in an e-commerce Web page, from subsequent
Web pages. This supplies the generalization for user actions.

8 Lieberman

6. COMPUTER-AIDED DESIGN OF CAD/CAM AP-

PLICATIONS BY EXAMPLE

Perhaps the most direct analogy between Computer-Aided Design of
products and interfaces is when those interfaces operated in the CAD/CAM
domain itself. Patrick Girard [7] and his colleagues have developed some of
the most sophisticated and industrial-strength Programming by Example sys-
tems as extensions to a traditional parametric CAD system for design of me-
chanical and electronic products. The systems, EBP and is successor GIPSE,
notably incorporate constraints on the part descriptions. Constraints also play
an important role in interface design. They paid careful attention to inference
of control structures, and providing extensive example-oriented editing and
debugging facilities.

Figure 4. EBP: A CAD/CAM system with PBE.

7. COMPUTER-AIDED EXTENSION OF USER IN-
TERFACES BY EXAMPLE

Strictly speaking, many Programming by Example systems, like EBP
mentioned above, do not create arbitrary interfaces from scratch in the way
that the Interface Builder-like PBE systems do. Instead, they already come
with a user interface (the underlying CAD/CAM system in EBP’s case), and
they add the ability to extend rather than completely redefine, the interface
with new capabilities demonstrated by example. The original interface re-
mains accessible to the user. So they, too, can be considered as Computer-
Aided Design systems for User Interface Design, but by extension rather
than by construction de novo.

Computer-Aided Design of User Interfaces by Example 9

Almost all PBE systems extend the interface in some way. Some just re-
cord a single macro and allow playback of the last macro recorded. Some al-
low the recorded sequences to be named or otherwise referred to. But the
best in this category try to deal with the issue of how to integrate the user-
defined capabilities seamlessly into the existing underlying application’s in-
terface metaphor.

Figure 5. Mondrian.

My Mondrian system [10,11] represents the operations of the underlying
graphical editor with “domino” icons that picture states of the screen before
and after the operation. For example, the icon representing the “Draw Rec-
tangle” operation consists of a left square showing a blank screen and a right
square containing the rectangle. When the user defines a new operation, the
system constructs a new icon composed of the screen state before the dem-
onstration on the left side, and the screen state after the demonstration (when
it is completed) on the right side. Thus the user-defined operation is repre-
sented with the same visual language as used for the built-in operations, and
user-defined operations may then take place as parts of further user-defined
operations.

Mondrian is also unique in its ability to define declarative as well as pro-
cedural knowledge by example. Mondrian lets the user introduce new gener-
alization descriptions by drawing graphical annotations on an object. In an
example domain of learning operational and maintenance procedures from
video input, Mondrian allows the user to select portions of the video frame
to serve as the graphical representations of example objects. Objects can be
grouped, and labelled with text labels to show their structure. Mondrian then

10 Lieberman

learns part-whole hierarchies amongst the objects and the names of relations
between the parts and wholes. When the user selects these objects in the fu-
ture, Mondrian generalizes them according to their place in the part-whole
hierarchy and their named relations. This is a way of introducing new con-
cepts by example as well as simply new procedures.

Figure 6. Graphical annotation in Mondrian, and inferred conceptual structure.

Another avenue for extension of user interfaces is through the use of

software agents [2]. Interface agents provide proactive assistance to users of
interactive interfaces by tracking user behavior, creating user profiles and
user models, anticipating user needs, and accepting high-level goals and ad-
vice from the user. Agents effectively extend the capabilities of interfaces in
dynamic ways not explicitly presented by the menu and icon operations, and
in some cases, in ways not even anticipated by the interface designer.

Examples can play an important role in software agent interfaces because
they can be the most effective means for a user to communicate their desires
to the agent, obviating the need for more explicit instruction. We investi-
gated an agent, Apple Data Detectors, that parses text occurring in naturally
in e-mail, calendars and other applications, and applies semantically appro-
priate actions. We implemented a system, Grammex [13] for teaching the
system new text patterns by presenting example text to be recognized and
going through a dialog that interactively generalizes or specializes hypothe-
ses about how to recognize substrings. This is the first interface that brings
control of text recognition and parsing technology to non-expert users.

8. CONCLUSION

Like Computer-Aided Design systems for products and manufacturing
applications, Computer-Aided Design systems for user interfaces can make
the design process easier, more interactive and less-error prone. The success

Computer-Aided Design of User Interfaces by Example 11

of CAD/CAM systems for product design is predicated on the fact that the
system allows the user to interact with virtual examples of the artifact under
construction. This takes advantage of people’s natural tendency to teach and
to learn by example. But user interfaces have dynamic and interactive behav-
ior, and to define such behavior we need more mechanism then just specifi-
cation of appearance of interfaces. By recording actions of a simulated end-
user and generalizing them, Programming by Example provides the technol-
ogy for bringing the success of the CAD/CAM applications to user interface
design.

REFERENCES

[1] Bauer, M., Dengler, D., and Paul, G., Programming by Demonstration for In-
formation Agents, in [12], pp. 7-20.

[2] Bradshaw, J. (ed.), Software Agents, MIT Press, Cambridge, 1996.
[3] Buxton, W., Lamb, M.R., Sherman, D., and Smith, K.C., Towards a Compre-

hensive User Interface Management System, in Proc. of ACM Conf. on Com-
puter Graphics SIGGRAPH’83 (Detroit, 25-29 July 1983), Computer Graphics,
Vol. 17, No. 3, ACM Press, New York, 1983, pp. 576-583.

[4] Cypher, A. (ed.), Watch What I Do: Programming by Demonstration, MIT
Press, Cambridge, 1993.

[5] Finzer, W.F. and Gould, L., Rehearsal World: Programming by Rehearsal, in
[4], pp. ?-?.

[6] Girard, P., Bringing Programming by Demonstration to CAD Users, in [12], pp.
135-162.

[7] Kahn, K., Generalizing by Removing Detail: How any Program Can Be Cre-
ated by Working with Examples, in [12], pp. 21-44.

[8] Lieberman, H., Constructing Graphical User Interfaces by Example, in Proc. of
Conf. Graphics Interface’82 (Toronto, May 1982), pp. 295-302.

[9] Lieberman, H., Tinker: An Example Oriented Programming Environment for
Beginning Programmers, in R. Lawler and M. Yazdani (eds), Artificial Intelli-
gence and Education, Vol. 1, Ablex Publishing Company, 1987.

[10] Lieberman, H., Mondrian: A Teachable Graphical Editor, in [4], pp. 340-358.
[11] Lieberman, H., A Demonstrational Interface for Recording Technical Proce-

dures by Annotation of Videotaped Examples, International Journal of Human-
Computer Studies, Vol. 43, 1995, pp. 383-417.

[12] Lieberman, H. (ed.), Your Wish is My Command: Programming by Example,
Morgan Kaufmann, San Francisco, 2001. Introduction accessible at http://lieber.
www.media.mit.edu/people/lieber/PBE/Your-Wish/

[13] Lieberman, H., Nardi, B., and Wright, D., Training Agents to Recognize Text by
Example, in [12], pp. 227-244.

12 Lieberman

[14] Myers, B. and McDaniel, R., Demonstrational Interfaces: Sometimes You Need

a Little Intelligence; Sometimes You Need a Lot, in [12], pp. 45-60.
[15] Myers, B., Garnet: Uses of Demonstrational Techniques, in [4], pp. 219-238.
[16] Myers, B., McDaniel, R., and Kosbie, D., Marquise: Creating Complete User

Interfaces by Demonstration, in Proc. of ACM Conf. on Human Aspects in
Computing Systems INTERCHI’93 (Amsterdam, 24-29 April 1993), ACM
Press, New York, 1993, pp. 293-300.

[17] Repenning, A. and Perrone-Smith, C., Programming by Analogous Examples,
in [12], pp. 351-370.

[18] Smith, D.C., Cypher, A., and Tesler, L., Novice Programming Comes of Age, in
[12], pp. 7-19.

[19] Sugiura, A., Web Browsing by Demonstration, in [12], pp. 61-86.
[20] Wolber, D., Pavlov: Where PBD Meets Macromedia's Director, in [12], pp.

345-350.

	CAD/CAM AND USER INTERFACE DESIGN
	PROGRAMMING BY EXAMPLE
	PROGRAMMING BY EXAMPLE AND “INTERFACE BUILDERS”
	COMPUTER-AIDED DESIGN OF ANIMATED APPLICATIONS BY EXAMPLE
	COMPUTER-AIDED DESIGN OF WEB APPLICATIONS BY EXAMPLE
	COMPUTER-AIDED DESIGN OF CAD/CAM APPLICATIONS BY EXAMPLE
	COMPUTER-AIDED EXTENSION OF USER INTERFACES BY EXAMPLE
	CONCLUSION
	REFERENCES

