
 Adaptation in Automated User-Interface Design
Jacob Eisenstein and Angel Puerta

RedWhale Software
277 Town and Country

Palo Alto, CA 94305 USA
+1 650 321 3437

{jacob, puerta}@redwhale.com

ABSTRACT
Design problems involve issues of stylistic preference and
flexible standards of success; human designers often
proceed by intuition and are unaware of following any strict
rule-based procedures. These features make design tasks
especially difficult to automate. Adaptation is proposed as a
means to overcome these challenges. We describe a system
that applies an adaptive algorithm to automated user
interface design within the framework of the MOBI-D
(Model-Based Interface Designer) interface development
environment. Preliminary experiments indicate that
adaptation improves the performance of the automated user
interface design system.

Keywords
Model-based interface development, machine learning,
decision trees, theory refinement, user interface
development tools, interface models, theory refinement

INTRODUCTION
Design is a human ability that eludes formalization. Human
designers are often not aware of following strict rule-based
procedures when they make design decisions. Moreover,
design decisions often cannot be evaluated on any kind of
objective scale of utility. Two qualified human experts may
make strikingly different decisions, and still there may be
no way to identify one expert's decision as unambiguously
"correct." Even though it is clear that in such a case neither
expert is wrong, it is also clear that not just any decision
would do. Although there may be more than one right
answer to a design problem, there are still wrong answers. It
is this condition that makes design a creative task, and this
is why design proves so challenging for computer
automation.

We are specifically interested in automating particular
features of user interface design. Previous work in the
automation of user interface design has had mixed success.

Researchers have developed systems that are effective for
narrowly focused domains including, for example,
automatic generation of forms, or automatic generation of
dialog boxes for database access [9, 3]. However, no
technique has been shown to be applicable at a general
level. We claim that adaptive, automated systems that
solicit and respond to user feedback may be able to succeed
where previous efforts have failed.

An adaptive system for automated user interface design will
benefit both designers and interface-design researchers.
Designers will benefit in at least three ways:

1. User-interface design software will adapt to
accommodate their stylistic preferences. In the
case of individual idiosyncrasies, designers can
trust that the software will take their preferences
into account. Where there are whole schools of
thought on design—e.g., within a single software
company—adapted versions of the interface
design software can be distributed.

2. Designers will find it easier to explain their
stylistic preferences to others, since the adaptive
algorithm will extract a formal description of that
style.

3. Technological developments in user-interface
design can be accommodated by existing design
software without the need for updates or patches.
If, for example, a new user-interface widget is
introduced, the automatic design algorithm can
learn to handle it by observing the designer's
behavior.

Adaptation will also benefit researchers, who can discover
new information about the way designers make decisions,
by observing the results of using the adaptive algorithm.
Errors in the automatic design formalism will be easily
identified and corrected. Differences between schools of
design will be made explicit. Researchers will discover
what design knowledge is consensus and what is a matter of
preference. In sum, adaptation will serve as a formal

methodology that will help researchers to develop and
refine general aspects of a theory of user interface design.

SURF – OUR GUIDING PHILOSOPHY
Our work is guided by four main principles which
distinguish it from other forays into automatic user-
interface design. These principles are represented by the
acronym "SURF."

1. SENSITIVITY. It is important that the interface
designer is aware that the adaptive algorithm is
sensitive to what the designer is doing. The
adaptive algorithm ought to respond to a minimum
of feedback from the designer. This will make it
easier for the designer to become familiar with the
adaptive algorithm, and the designer will be more
likely to trust the interface-design environment as
a whole. If the adaptive algorithm is not
sufficiently sensitive to user feedback, the designer
will have a difficult time predicting the behavior of
the adaptive algorithm, and may find it more
cumbersome and confusing than useful. In terms of
the learning algorithm we will employ, this
consideration leads us to favor local learning
methods over large-scale batch learning.

2. UNDERSTANDABILITY. In any automated
system where a symbiotic, cooperative relationship
with the user is desired, it is important that the user
of the system understands how and why automatic
decisions are made. The automation algorithm that
generates the user interface must be
comprehensible to the interface designer, and the
designer must be able to alter it explicitly and
directly, if so desired. Symbolic methods are
therefore favored over less user-comprehensible
strategies, such as neural networks.

3. REFINEMENT. In developing the adaptive
algorithm, we favor theory refinement, rather than
learning from scratch. There is no need for our
adaptive algorithm to automatically build a
knowledge base of automatic user interface design
rules from the ground up. There already exists a
large body of work on the automation of user
interface design decisions. We have designed our
adaptive algorithm to take full advantage of this
body of work. This principle supports the principle
of sensitivity because it is easier to build an
adaptive system that is sensitive when given a head
start in the form of an existing base of knowledge.

4. FOCUS. We do not believe that at the present
time it is reasonable to expect to move directly
from an abstract description of a user interface to
the automatic creation of the complete user
interface. Rather, we want to apply automation

only to those features of the design process where
we think automation has something to offer. We
have focused our work on the selection of
interactors—visual elements, such as buttons or
sliders, that allow the user to view or manipulate
data. Our automation algorithm returns an ordered
list of interactors; the interface designer then
chooses from this list while performing layout. It is
hoped that the number of design decisions that can
be automated will increase with further research.
For the present, the only way to build a system that
is usable in real-world design projects is to focus
on those areas of design that are particularly
amenable to automation and leave other areas of
design in human hands.

In summary, we will describe an adaptive, automated
system for user interface design that adheres to the
principles of SURF. This system is part of a larger
framework, which we will now describe.

FRAMEWORK
MOBI-D
The adaptive algorithm described in this paper supplements
MOBI-D, an existing model-based interface development
environment [6]. Model-based systems for user interface
development require the specification of a declarative
interface model that explicitly describes all relevant aspects
of the user interface in a formal language. MOBI-D then
provides a comprehensive suite of tools to aid in the
development and refinement of the interface model.

A range of tools is provided in order to handle each stage in
the interface development cycle. First, a knowledge
elicitation system called U-TEL helps the user of the
interface develop models of the interface's data and task
structures [11]. Next, the interface designer uses model
editors to create relations between the more abstract
elements in the data and task structures and the more
concrete elements that describe the actual look and feel of
the interface. For the final stage of development, we
provide MOBILE, a layout tool that can be configured to
reflect the decisions made at previous stages in the design
process. [7]

Interface design is viewed theoretically as a process of
creating mappings between various formal elements at
different levels of abstraction. For example, an abstract task
object may map on to abstract domain object that is
manipulated when the user executes that task. But that same
domain object may map on to a concrete interactor, such as
a checkbox, through which the user actually performs the
manipulation. TIMM, The Interface Model Mapper, is a
tool within MOBI-D that assists designers in the generation
of these mappings [8]. Some of these mappings—the
principle of Focus forbids us from saying that “all”—can be
made automatically. In this paper, we describe how TIMM
automatically generates mappings between domain objects

and concrete interactors, and how this automatic generation
of mappings benefits from adaptation.

Decision Trees
In order to perform the automatic mappings, a decision tree
is used. A decision tree defines a procedure for classifying
cases into groups based on discriminants. Discriminants are
features of the cases that may be relevant to how they are
sorted. The decision tree specifies which discriminants to
consider and in what order. Figure 1 gives a simplified
example of a decision tree for interactor selection.

Consider the following example. Suppose a hi-tech movie
theater wanted to develop a system to recommend current
films to prospective moviegoers. The first discriminant is
the viewer's age; movies that have been rated 'R' are
restricted to adults, and should not be recommended if the
viewer is under 18. Likewise, children's movies are
generally not to be recommended to viewers over the age of
13. Now consider the group that falls between the two
boundaries: viewers between the ages of 13 and 18. For this
group, another discriminant is applied to determine whether
or not the viewer is on a date (with a boyfriend or
girlfriend). If so, then the selection is narrowed down to
films that might be appropriate for a date, and then a third
and final discriminant can be applied to determine the
viewer's favorite actor or actress. By this method, the
prospective moviegoer is classified into a viewer group
with similar interests, and a short, customized list of
recommendations is generated.

A decision tree offers two significant advantages as a
method for automation. First, decision trees are extremely
readable: more so than knowledge-bases of rules, and
certainly more so than other methods such as neural or
Bayesian networks [14]. Rule-based systems are difficult to
read because they are sensitive to the order in which the
rules are applied. Often, one must analyze a whole series of
rules in order to be able to predict the effect. Bayesian
methods require the user to consider a large number of
relevance values; again, it is difficult to predict the effect of
changes to a large-scale Bayesian network. Neural networks
offer little in the way of comprehensible justification for the
effects they produce. By contrast, the structure of a decision
tree makes it easy to predict its effects. The second
advantage offered by decision trees is that there is already a
body of work on applying decision trees to the automatic
selection of interactors. Vanderdonckt has created a
comprehensive decision tree based on interface-design
guidelines given by a wide variety of sources [13]. By using
decision trees, we are able to take advantage of this work.

The decision tree in our movie example used certain
discriminants, such as age and favorite actor, to classify
moviegoers into consumer groups. In this application,
domain elements—objects that the user of the interface will
modify or view—are classified, and are assigned a set of
possible interactors based on this classification. In essence,
mappings are created between domain objects and

interactors. We use the following discriminants for user
interface design:

1. Type. e.g. Boolean, integer, float. Assigning an
edit field to a domain element whose type is
Boolean makes little sense, as it would require the
user to manually type in "true" or "false." A
Boolean element is best mapped to a check box or
radio button.

2. Number of Allowed Values. When there are only
a few allowed values, an interactor such as a set of
radio buttons may suffice. But when there are
many allowed values, a list box is better. When
there so many allowed values that even a list box
cannot fit in the dialog window, a drop-list is used.

3. Number of Sibling Domain Elements. This is a
measure of how many other pieces of the domain
model are likely to be modified on the same
screen. When screen crowdedness may become an
issue, the more space-efficient interactors are
favored.

4. Range. Information about whether a domain
object is a range of continuous data or a set of
discrete allowed values affects interactor selection.
For example, a domain element that consists of a
deep range of integers will be better handled by an
edit field and spinner than by a list box of allowed
values.

5. Similarity of Near Values. If near values in the
range are similar, then a slider might be helpful.
But if near values bear no similarity—as is the

Figure 1: A Simple Decision Tree for Interactor Selection

Figure 2: The Adaptation Algorithm

case in most strings, for example—then a text box
would be the only reasonable choice.

We claim that this set of discriminants, while clearly not
exhaustive, is broad enough to support automation.

THE ADAPTATION ALGORITHM
TIMM is the tool in the MOBI-D suite that assists the
interface designer in the selection of interactors [8]. The
goal of automation is to produce an ordered list of
recommendations for the interface designer. But the
interface designer always has the option of correcting the
automatic interactor recommendations made by TIMM.
Whenever the interface designer corrects one of the
suggestions made by TIMM, the interaction is recorded as
an error. Otherwise, the recommendation is considered
successful. After a session is finished, TIMM applies an
adaptive algorithm to correct its decision tree, based on the
entire history of cases.

The adaptive algorithm has three operators for altering the
decision tree. Whichever operator can reduce the number of
errors by the greatest amount is selected. Operators are
applied sequentially until no operator can reduce the total
number of errors in the history of cases. The operators are
as follows:

1. Change the recommended interactors for a given
leaf of the tree.

2. Alter the boundary conditions for a branch.

3. Add a branch, and then set the output of the new
leaves.

Changing the recommendations for a given leaf is the
simplest operation. Suppose that the decision tree dictates
that Boolean domain elements are best treated by a
checkbox, but the designer selects radio buttons instead.
This stylistic preference can be handled by changing the
recommendation of the leaf for Boolean domain variables
to radio buttons.

An alteration of the boundary conditions is more complex.
In our movie recommendation example, the age 13 is a
boundary condition, because it draws a line between two
groups of moviegoers: children and teens. Now imagine
that market research discovers that young adolescents have
become more sophisticated (or perhaps jaded), and that the
age 11 would be a better cutoff. This would be an alteration
of boundary conditions. The same sort of thing can occur
with interactor selection. Suppose that the decision tree
initially uses a boundary of seven interactors per dialog in
order to determine whether the screen is crowded. If there
are more than seven interactors, then the interactor
recommendations will reflect the need to conserve screen
space; otherwise, screen space conservation is not
considered. But if the interface designer favors unusually
small dialog windows, this boundary might not be
appropriate. It might be necessary to conserve space if there
are more than five interactors in a single dialog. This is the

kind of situation that would necessitate a shift in boundary
conditions.

The addition of a branch to the decision tree is necessary
when there is a relevant piece of information that the
decision tree did not consider. For example, suppose that
the original decision tree recommends edit fields for all
domain elements whose type is "string," irrespective of the
number of allowed values. However, the user interface
designer might take the number of allowed values into
account, favoring list boxes when the number of allowed
values is finite. The only way to correct the decision tree so
that it will accommodate the designer's preference is to add
a branch to take this discriminant into account.

ADAPTATION IN ACTION
Experiment 1
The adaptation algorithm was first applied to a small-scale
application interface for a hypothetical program: "The
Multi-User Banking Information Console." This is a small-
scale interface, with 22 interactors. It is designed to allow a
variety of users to view and control the money in a bank.
Users range from clients to tellers to the CEO. In this
experiment, an interface designer modified the
automatically generated suggestions. The designer was
constrained by certain features specific to the application,
and had stylistic preferences that were different from the
those reflected in the decision tree. The designer reviewed
the automated suggestions, and then modified them while
listing reasons for the modification. The adaptation
algorithm was then applied to alter the decision tree so as to
better conform to the designer's preferences.

The automation algorithm returns an ordered list of
recommended interactors, as shown on the screen shot in
figure 3. Errors are weighted: failure to recommend an
interactor that the designer felt was necessary was the
greatest error, recommending an interactor that the designer
considered unnecessary was of secondary importance, and
an incorrect ordering of recommendations was the least
important error. Based on these weights, an overall error

make_initial_recommendations();
record_user_selections();
loop {

make_recommendations();
count_errors();
if (errors = 0) break;
find_best_operation();
if (error_gain > min_threshold){
 apply_operation();
 next;
}
else break;

}

Figure 3: Screenshot of TIMM with ordered list of interactors

metric was developed that took into account the number of
errors and their severity. On this scale, the adaptation
algorithm was able to correct for 98.8% of the errors
originally indicated by the designer. Had the designer not
deliberately been slightly inconsistent, the algorithm would
have been able to correct for all of the error.

Of all of the errors committed by the original decision tree,
63% represent differences of opinion on matters of style. A
few stylistic questions came up many times, yielding the
high count. 24% of the errors were caused by the
incompleteness of the decision tree. Thus, we can expect
87% of the error correction in this case to be applicable and
useful for future projects by this interface designer. The
remaining 13% of the error correction involved
compensating for certain specific features of this particular
interface.

The experiment was deliberately designed to include
constraints that could not be accounted for by TIMM's
current set of discriminants. It was specified that the
customer user-type would have to access the interface
through an ATM, and therefore would not have be able to
use a mouse. Interactors that rely on mouse manipulation
were never chosen if the customer would have to utilize
them. TIMM had no way to account for this information
with its current set of discriminants. Nonetheless, the
algorithm was able to exploit accidental regularities in the
discriminants that it did have access to in order to account
for this feature. This is overfitting, and it would probably

diminish the algorithm’s performance on future design
projects. Solutions to the problem of overfitting will be
discussed in a later section.

Experiment 2

The second experiment is based on a portion of a real-world
user-interface designed for a medical application for one of
our clients. It is slightly larger, with 31 interactors. The
automatic suggestions made by TIMM were modified as
before, but the modifications were intended to reflect the
interface as it was actually designed.

Our first concern was to determine whether the adaptation
that took place in the banking example would be of use in
this experiment. In fact, even with the problem of
overfitting, the refined decision tree performed 16% better

 Experiment 1 Experiment 2

Number of interactors 22 31
Total error correction 98.8% 100%
Transferable error correction
(The percentage reduction of the
initial number of errors for the
opposite example when using an
initial decision tree trained on this
example)

16% 36%

Preventative error
correction with adjustment
for overfitting

23% 36%

Table 1: Adaptation performance on two experiments

than the original hand-crafted decision tree. When some of
the overfitting is corrected, as described below, the decision
tree performs 23% better than the original hand-crafted
decision tree. Regardless of whether the system was
"primed" with a refined decision tree, the adaptive
algorithm was able to correct 100% of the errors. 77% of
the error was due to an incomplete decision tree, and 23%
was due to designer preferences.

This example shows that refining the decision tree will
yield benefits for the user interface designer. When the
banking application was provided with an initial decision
tree trained on the data from the medical application, the
gains were even more marked: the refined decision tree
performed 36% better than the hand-crafted tree, and there
was no overfitting. The banking example was deliberately
designed in such a way as to bring about overfitting, but in
the real-world example, overfitting was not a problem.

ALGORITHM ISSUES
Complexity
The adaptive algorithm as described searches the entire
space of possible changes for the alteration to the decision
tree that would be most advantageous. One might question
whether such an exhaustive-search algorithm imposes too
high of a cost in terms of search time. In fact, the time
complexity of the algorithm only grows with the square of
the total number of cases. Given the present rate of growth
of available computing power, we do not foresee any
problems with the complexity of the algorithm.

Local Minima
The adaptive algorithm performs a greedy hill-climbing
search for the most immediately rewarding modification to
the decision tree. In other words, the algorithm does not
look for sequences of operations that might be beneficial;
rather, it looks ahead only one step, and then applies the
single operation that is most beneficial in the short term. In
theory, this could lead to problems of local minima. In this
case, a local minima would mean that the adaptive
algorithm had arrived at a state where no single adaptive
move would permit further improvement, but where a series
of adaptive moves might find the globally optimal solution.
Then the adaptive algorithm would fail to make the correct
modifications to the decision tree, leaving it in an imperfect
state. We acknowledge that this is a possible danger. But in
practice, local minima have never appeared in any of our
tests. The algorithm was able to correct 98.8% of the error
in the first example in this paper and 100% of the error in
the second example.

Overfitting
The most serious problem is the danger of overfitting to the
training data. As mentioned above, this occurred in one of
our test cases, resulting in somewhat diminished generality
of the adaptive changes. We propose three possible
solutions for this problem.

1. More discriminants. The more information we
can take into account, the less likely overfitting
will become. Further testing should point us
towards additional discriminants to be taken into
account. However, it should be noted that adding
discriminants can actually lead to more overfitting,
if they are not well-chosen. If a discriminant bears
no relation to the problem at hand, then it can
create the kind of accidental regularity that is often
responsible for overfitting. Moreover, additional
discriminants increase the size of the tree, making
it harder for the user to browse and increasing the
runtime of the adaptive algorithm. Therefore, new
discriminants should not be added haphazardly;
only discriminants that are likely to be useful much
of the time should be added.

2. A sensitivity threshold. This is to prevent the
adaptive algorithm from making any changes
unless a benefit greater than some threshold can be
achieved. The idea is that the adaptations that
result in overfitting are likely responses to one-
time idiosyncrasies, whereas adaptations that
correct several errors at once indicate general
features that are likely to be applicable in the
future. As mentioned above, our first attempts to
apply this approach met with some success. The
generality of the changes increased from 16% to
23%. There is a cost involved: the adaptive
algorithm no longer achieves anything near the
98.8% success it had on the training case.
Performance on the training example declines to
51%. The sensitivity threshold causes the
algorithm to pass over some useful adaptations as
well as the dangerous ones that the threshold was
meant to filter out. However, if the cases that lead
to these useful adaptations recur in later examples,
eventually the threshold will be overcome and the
necessary adaptations will be made.

3. User advice. Another approach would be to
simply ask the interface designer for input as to
whether and how the tree ought to be changed. The
algorithm would then describe the cases involved
and ask for advice. The interface designer could
recommend paying attention to a particular
discriminant, or the designer could simply advise
ignoring these cases altogether.

RELATED WORK
Several systems have attempted to automatically generate
user interfaces in a model-based environment. UIDE [1] is
one of the first model-based user interface design systems,
and it automatically selects interactors on the basis of data
type—one of the discriminants we consider here.
MECANO [5] generates form-based interfaces
automatically, and performs interactor selection by

considering several discriminants, including type,
cardinality, and the number of allowed values. TRIDENT
[12] introduces a comprehensive decision tree that takes
into account a broad set of discriminants. These systems
represent progress towards automated user interface design,
but they do not incorporate adaptation.

Quinlan has developed ID3 [10], an algorithm for decision
tree induction. ID3 is based on information theory, and it is
intended for batch learning problems that start from scratch
with a large number of examples. Our approach favors
theory-refinement and sensitivity, so ID3 was not an
acceptable choice as an induction algorithm. Maclin and
Shavlik present a theory-refinement algorithm that utilizes
user advice to minimize the amount of training time
necessary [4], but their algorithm is for connectionist
learning systems, which we have ruled out because of their
poor human-comprehensibility. We were unable to locate a
sensitive theory-refinement algorithm for decision tree
induction in the literature; ours may be one of the first.

Inference Bear [2] is a programming-by-demonstration
application that infers design specifics from user-generated
snapshots. Inference Bear uses adaptation to generate a
custom user interface by observing the behavior of the
interface designer. But whereas Inference Bear is designed
to infer application-specific design knowledge, our
approach seeks to induce and refine general principles of
user interface design. Every time a designer begins to
design an interface with Inference Bear, it starts afresh. In
contrast, the adaptive version of MOBI-D is smarter every
time it runs.

FUTURE WORK
The problem of overfitting merits further research. Of
particularly interest is the prospect of incorporating user
advice to improve the applicability of the adaptation
algorithm. Human designers learn better when taught, and
there is ample reason to believe that machine learning
would also benefit from perspicuous advice. We envision a
situation where the interface designer can set a flag in the
"preferences" indicating how often they wish to give
advice: never, sometimes, or always.

We also hope to apply the methodology described in this
paper to other aspects of model-based user-interface design:
dialog layout and application structure, for example.
MOBI-D provides a formal language to describe both of
these phases of design and we believe that adaptive
automation could be successful in these domains as well.
We also believe that the methodology described in the
paper could be applied to a variety of design problems
outside of user interface design, and we feel that future
research along these lines would be productive.

CONCLUSIONS
We believe that adaptation will be a necessary component
of any system that attempts to solve real-world design
problems. In this paper, we have presented an automated

system that incorporates adaptation to perform interactor
selection in user-interface design. Our system is
distinguished by the four features that make up the acronym
SURF: Sensitivity to a small number of examples,
Understandability to the interface designer, Refinement
instead of learning from scratch, and Focus on those aspects
of design that are particularly amenable to automation.
Preliminary experiments indicate that our adaptation
algorithm does provide significant gains in performance.
We believe that this methodology can be applied
successfully to other areas of user interface design in the
future.

ACKNOWLEDGEMENTS
We thank the reviewers for their careful reading and helpful
comments. We thank Hung-Yut Chen, Eric Cheng, James
J. Kim, Kjetil Larsen, David Maulsby, Justin Min, Dat
Ngoyen, Tunhow Ou, David Selinger, and Chung-Man Tam
for their work on the implementation and use of MOBI-D.

REFERENCES
1. Foley, J., et al., UIDE-An Intelligent User Interface

Design Environment, in Intelligent User Interfaces, J.
Sullivan and S. Tyler, Editors. 1991, Addison-Wesley.
p. 339-384.

2. Frank, M., Sukaviriya, P., and Foley, J. Inference Bear:
Designing Iinteractive Interfaces Through Before and
After Snapshots, in Proc of the ACM Symposium on
Designing Interactive Systems, pages 167-175, (Ann
Arbor, Michigan, August 23-25) 1995.

3. Janssen, C., Weisbecker, C., and Ziegler, J. Generating
User Interfaces from Data Models and Dialogue Net
Application, in Proc. of InterCHI'93. 1993: ACM Press.

4. Maclin, R. and Shavlik, J. Creating Advice-Taking
Reinforcement Learners. Machine Learning, 22:251-
281, 1996.

5. Puerta, A. R. The MECANO Project: Comprehensive
and Integrated Support for Model-Based Interface
Development, in Proc. of CADUI96: Computer-Aided
Design of User Interfaces. 1996. Numur, Belgium.

6. Puerta, A. R. A Model-Based Interface Development
Environment. IEEE Software, (14) 4, July/August 1997,
pp. 40-47.

7. Puerta, A.R., Cheng, E., Ou, T., and Min, J. MOBILE:
User-Centered Interface Building. CHI99: ACM
Conference on Human Factors in Computing Systems.
Pittsburgh, May 1999, in press.

8. Puerta, A.R. and Eisenstein, J. Towards a General
Computational Framework for Model-Based Interface
Development Systems. IUI99: International Conference
on Intelligent User Interfaces, Los Angeles, January
1999, in press.

9. Puerta, A.R., Eriksson, H., Gennari, J.H. and Musen,
M.A. Model-Based Automated Generation of User

Interfaces. In Proc. AAAI 94 (Seattle, July 31- August
1, 1994), AAAI Press, pp. 471-477.

10. Quinlan, J.R. Induction of Decision Trees. Machine
Learning, 1: 81-106, 1986.

11. Tam, R.C., Maulsby, D., and Puerta, A.R. U-TEL: A
Tool for Eliciting User Task Models from Domain
Experts. IUI98: International Conference on Intelligent
User Interfaces, San Francisco, January 1998, pp. 77-80.

12. Vanderdonckt, J. M. and Bodart, F. Encapsulating
Knowledge for Intelligent Automatic Interaction Objects
Selection, in Proc. of InterCHI'93. 1993: ACM Press.

13. Vanderdonckt, J. and Bodart, F. The "Corpus
Ergonomicus":A Comprehensive and Unique Source for
Human-Machine Interface Guidelines, in "Advances in
Applied Ergonomics", Proceedings of 1st International
Conference on Applied Ergonomics ICAE'96 (Istanbul,
21-24 May 1996), A.F. Ozok & G. Salvendy (Eds.),
USA Publishing, Istanbul - West Lafayette, 1996, pp.
162-169.

14. Vanderdonckt, J. Advice-Giving Systems for Selecting
Interaction Objects, in Proc. Of 1st Int. Workshop on
User Interfaces to Data Intensive Systems UIDIS ’99
(Edinburgh, 5-6 September 1999), N. Paton (ed.), IEEE
Computer Society Press, Los Alamitos, 1999, to appear.

