Polarized 3D: High-Quality Depth Sensing with Polarization Cues
Achuta Kadambi, Vage Taamazyan, Boxin Shi, and Ramesh Raskar
Camera Culture Group, MIT Media Lab

Contribution
- Low-cost depth sensing

Solution
- Exploiting normals from polarization to enhance the quality of a coarse depth map
- A physics-based framework, wherein the coarse depth map is used to resolve azimuthal ambiguity and correct for refractive distortion
- A spanning tree integration schemes, specifically designed for polarization normals, which uses the degree of polarization as a weighting parameter

Compare with other depth enhancement techniques

Verification
- Robustness to various lighting condition
- Indoor Lighting
- Disco Ball
- Outdoors

Results
- Uncontrolled lighting, complex object

Comparison with HQ Laser Scan
- Enhanced Kinect Depth
- Laser Scanner Depth

Take-home message: "Coarse depth map + normals from polarization" reconstructs 3D shape with various materials, under uncontrolled lighting condition, and with diffuse interreflection.