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Deep Learning on Graphs
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| ecture 3

e Machine learning on graphs: Overview
e Convolutional neural networks on graphs
e Message passing neural networks

e Recent developments & Applications
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Graph-structured data are pervasive

congestion in road junctions

preferences of individuals
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activities in brain regions
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Learning with graph-structured data
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graph-level classification
(supervised)

node-level classification
(semi-supervised)

graph clustering
(unsupervised)
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Learning with graph-structured data

fake news detection

traffic prediction

Growth

[antibiotic]
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Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019.

Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.

Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021.
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Classical ML vs Graph ML

Classical ML

Graph ML

-

regular domain
(real line, 2D grid)
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link prediction
graph classification

graph clustering
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How to incorporate graphs into learning?

Traditional machine learning on graphs
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e Limitations

- hand-crafted features or optimised embeddings, often focused on graph structure
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How to incorporate graphs into learning?
e Traditional machine learning on graphs

traditional ML
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e Limitations
- hand-crafted features or optimised embeddings, often focused on graph structure

- respect notion of “closeness” in the graph, but do not adapt to downstream tasks

8/62



How to incorporate graphs into learning?

e Traditional machine learning on graphs

Sl traditional ML
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e Limitations
- hand-crafted features or optimised embeddings, often focused on graph structure

- respect notion of “closeness” in the graph, but do not adapt to downstream tasks

- can incorporate additional node features, but in a mechanical way
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How to incorporate graphs into learning?

e Graph machine learning
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graph node features learned embeddings tasks

e Advantages

- naturally combine graph structure and node features in analysis and learning

= new tools: graph signal processing, graph neural networks
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How to incorporate graphs into learning?

e Graph machine learning

=S graph ML
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graph node features learned embeddings tasks

e Advantages
- naturally combine graph structure and node features in analysis and learning

= new tools: graph signal processing, graph neural networks

- embeddings can adapt to downstream tasks and be trained in end-to-end fashion

- offers more flexibility and enables “deeper” architectures and embeddings
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Graph signal processing

classical signal processing

- complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

- leads to Fourier transform

- enables convolution and filtering
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Graph signal processing

1.0

0.8

0.6
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0.2
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sensor
G.N=60 nodes, G.Ne=302 edges

E

igenvector u;

-0.4

classical signal processing

- complex exponentials provide
“building blocks” of 1D signal
(different oscillations or frequencies)

- leads to Fourier transform

- enables convolution and filtering

graph signal processing

- Laplacian eigenvectors provide
“building blocks” of graph signal
(different oscillation or frequencies)

- leads to graph Fourier transform

- enables convolution and filtering
on graphs
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Convolutional neural networks on graphs
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Convolutional neural networks on graphs

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected
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Convolutional neural networks on graphs

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

Input graph signals > Feature extraction - Classification - Output signals

e.g. bags of words Convolutional layers Fully connected layers e.g. labels

1

SRy

Graph signal filtering \*. 4 Graph coarsening
1. Convolution () '. 3. Sub-sampling
2. Non-linear activation % 4. Pooling

0=A1 <A< Am, o
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e Machine learning on graphs: Overview
e Convolutional neural networks on graphs
e Message passing neural networks

e Recent developments & Applications
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CNNSs exploit structure within data

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

checklist

convolution: translation equivariance

localisation: compact filters (independent of sample dimension)

multi-scale: compositionality

efficiency: O(NN) computational complexity

https://en.wikipedia.org/wiki/File:Typical cnn.png 13/62



https://en.wikipedia.org/wiki/File:Typical_cnn.png

CNNs on graphs?

checklist

convolution: how to define convolution? what about invariance?

localisation: what is the notion of locality?

multi-scale: how to down-sample on graphs?

efficiency: how to keep the computational complexity low?
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Convolution on graphs

classical convolution

time domain

(f*g)(t / ft—m7)g(r)dr

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 15/62
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Convolution on graphs

classical convolution

time domain

(f gt / 1t —7)g
4

frequency domain

(f*9)(w) = f(w) - §(w)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 15/62



Convolution on graphs

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain graph spectral domain

/\

(f*9)(w) = f(w) - §(w) (F+9)N) = (" £ og)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 15/62



Convolution on graphs

classical convolution convolution on graphs

time domain spatial (node) domain

frg=xgN)x"f=9(L)f

1)

graph spectral domain

Tro0= [ T f(t = T)g(r)dr

4

frequency domain

/\

(f *9)(w) = f(w) - §(w)

/\

(fxg)N) = (X" feog)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel
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Convolution on graphs

classical convolution convolution on graphs

time domain spatial (node) domain

frg= Xﬁ(A)XTf _[5)f convolution

1)

graph spectral domain

Tro0= [ T f(t = T)g(r)dr

4

frequency domain

= filtering

/\

(f *9)(w) = f(w) - §(w)

/\

(fxg)N) = (X" feog)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 15/62



A non-parametric filter

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

Bruna et al., “"Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 16/62



A non-parametric filter

Frg=xgN)x"f=9(L)f

4

learning a non-parametric filter:

0.6
0.4 4

Go(A) = diag(9), 0 € RN - 0,

0.0 4

- convolution expressed in the graph spectral domain
- no localisation in the spatial (node) domain

- computationally expensive

Bruna et al., “"Spectral networks and deep locally connected networks on graphs,” ICLR, 2014. 16/62



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 6,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 17/62



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =Y 0N, 0 € REH! —> Go(L) = Zej@
=0

j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 17/62



Powers of graph Laplacian

L* defines the k-neighborhood
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Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 18/62



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 0,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 19/62



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
§0(>\)=Zﬁj)\j, f c RET! - §9(L)229jl}j
5=0

7=0

- localisation within K-hop
neighbourhood

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 19/62



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
go(N) =D _0;X, 0 € RFH! ) Go(L) =3 6,17
J=0

j=0

- localisation within K-hop
neighbourhood

- Chebyshev approximation enables
efficient computation via recursive
multiplication with scaled Laplacian

2

AN—1

L L—1

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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A simplified parametric filter

normalised Laplacian
xg=vi(ANx! f=q(L . )
frg=x9(M)x" f=g(L)f L pirp-}
‘ — D 3(D-W)D"?
—I—-D WD 2 =1 — Wyorm

N

simplified parametric filter K1

normalised Laplacian

K
go(L) = ZHij ‘ =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)
K=1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 20/62



A simplified parametric filter

normalised Laplacian
xg=vi(ANx! f=q(L . )
frg=x9(M)x" f=g(L)f L pirp-}
‘ — D 3(D-W)D"?
—I—-D WD 2 =1 — Wyorm

N

simplified parametric filter K1

normalised Laplacian

K
go(L) = ZHij ‘ =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)

K:1 &:90:—61
@ -

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 20/62



A simplified parametric filter

normalised Laplacian

— va(Mv!L f = o(L
frg=x9(M)x" f=g(L)f L pirp-}

‘ — D 3(D—-W)D "3
—J—-D WD 2 =1 Wi

N

simplified parametric filter K1

normalised Laplacian

K
Go(L) =) ;L ) =0 0, (D WD 2)
=0
(localisation within 1-hop neighbourhood)

K=1

o = (90 = —81
mmmmm) ol +D WD 2)
renormalisation

‘ = oz(f)_%Wf?_%)

renormalisation

~ ~

W=W+1 D=D+1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 20/62



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter

ja(L) =a(I+ D 2WD"2)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/62



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+ D 2WD"2)

#

1
VPt

J

Yi = of;

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/62



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+D WD 3)

1 1
yz‘ZOémeOé\/dfi Z wz‘jﬁfj

7:(4,)€E

‘ unitary edge weights

1
yi:@fi+104 Z fi

j:(4,5)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/62



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) = a(l + D 2WD™?)

4

1 1

\/—] (2,5)€E \/_

‘ unitary edge weights

Yi = af;

1
inOéfi+ZOé Z fi

g:(4,7)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 21/62



Convolution on graphs - Remarks

e Convolution is defined via the graph spectral domain..

frg=xgMN)x" f=g(L)f
e ..but can be implemented in the spatial (node) domain
- simplified filter: y = go(L)f = a([)—%vf/[)—%)f

- interpretation: at each layer nodes exchange information in 1-hop neighbourhood

- more generally: receptive field size determined by degree of polynomial

22/62



Convolution on graphs - Remarks

e Convolution in classical signal processing relies on the shift operator

o0~ | B

Isufi et al., “Graph filters for signal processing and machine learning on graphs,” IEEE TSP, 2024. 23/62



Convolution on graphs - Remarks

e Convolution in classical signal processing relies on the shift operator

o= | R

e Idea: convolution via a graph shift operator (e.g., adjacency matrix)

Isufi et al., “Graph filters for signal processing and machine learning on graphs,” IEEE TSP, 2024. 23/62



Convolution on graphs - Remarks

e Convolution can also be interpreted as a weighted summation

o= [ s iR
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Convolution on graphs - Remarks

e Convolution can also be interpreted as a weighted summation

o= [ s iR

e |dea: convolution via a spatial weighted summation in graph domain

(*a)(w) = 3 1) g, v')
AN

relative importance of each node to v

(can be designed to achieve locality)

24/62



Pooling on graphs

Feature maps
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Pooling on graphs
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e pooling = downsampling on graphs, but how?
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Pooling on graphs

e pooling = downsampling on graphs, but how?

e natural idea: graph coarsening

25/62



Pooling on graphs

- coarsening is straightforward on
regular grids
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Pooling on graphs

- coarsening is straightforward on
o— regular grids

- not so much on irregular graphs
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Pooling on graphs

- coarsening is straightforward on

o— regular grids
- not so much on irregular graphs

- can be achieved via node clustering

= multi-level partitioning
= roughly fixed downsampling factor (e.g., 2)

= need for efficiency

26/62



Pooling on graphs

e pooling based on Graclus algorithm
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)

- adding artificial vertices to ensure two children for each node

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 27/62
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Pooling on graphs

e pooling based on Graclus algorithm
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Pooling on graphs

Go —» G1 —» G

e pooling based on Graclus algorithm
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)

- adding artificial vertices to ensure two children for each node

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 27/62



Pooling on graphs

Go —» G1 —» G

ol1[2]3Ta5T6[7][8Tolio[i1] = € R'?
ol11213T4T5

x\l/! ieu@

[Defferrard et al. 2016]

e pooling based on Graclus algorithm
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)

- adding artificial vertices to ensure two children for each node

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 27/62



Pooling on graphs

Go — G —» 0> -

1

2

7TsToliol1] z € R'?
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415
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e pooling based on Graclus algorithm

[Defferrard et al. 2016]

local greedy way of merging vertices: maximising w;;(1/d; + 1/d;)

adding artificial vertices to ensure two children for each node

- 1D grid pooling: [ max(0,1) max(4,5,6) max(8,9,10) ]

Dhillon et al.,

“Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007.
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Pooling on graphs

ol1[2]3Tal5]6]7]8oto11] = € R*?

0 1\1 ?‘3/4%?}6]1%6
x\l/zk }ER?’

[Defferrard et al. 2016]

e pooling based on Graclus algorithm
- local greedy way of merging vertices: maximising w;;(1/d; +1/d;)
- adding artificial vertices to ensure two children for each node
- 1D grid pooling: [ max(0,1) max(4,5,6) max(8,9,10) ]

- only based on graph (and no signal) information

Dhillon et al., “Weighted graph cuts without eigenvectors: A multilevel approach,” IEEE TPAMI, 2007. 27/62



CNNs on graphs: Graph classification

e ChebNet architecture

Graph
Ex: social, biological,
telecommunication graphs

reR"
|
.’L‘l:O c R™t=0

Input signal
on graphs

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 28/62



CNNs on graphs: Graph classification

e ChebNet architecture

O(K) parameters

3o
O(E.K) operations (GPUs) & 1330
by

Spectral Filters :% .
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91 =1 = RK 1 FY
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 28/62



CNNs on graphs: Graph classification

e ChebNet architecture

Vot 1=2
Relu activation G
Spectral Filters . Graph coarsening \j
O(K) parameters :/\‘ )bo Factor 2P
O(E.K) operations (GPUs o/ Pre-computed
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Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 28/62



CNNs on graphs: Graph classification

e ChebNet architecture

Relu activation

Spectral Filters Gf aph coarsening
O(K) parameters Factor 2P
O(E.K) operations (GPUs) Pre- ComPUfed

Poollng (GPUSs)
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on graphs (extract local stationary features on graphs)
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[ L Output signal
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Fully connected layers

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.
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CNNs on graphs: Node classification

e GCN architecture

Go+v) (L) (RGLU(%(m (L)f))

X =H

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 29/62



CNNs on graphs: Node classification

e GCN architecture

doce+ (L) (ReLU (G0 )

Hidden layer

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 29/62



CNNs on graphs: Node classification

e GCN architecture

Hidden layer

20

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 29/62



CNNs on graphs: Node classification

e GCN architecture

Hidden layer Hidden layer

e a e a

-
e
I

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 29/62



CNNs on graphs: Node classification

e GCN architecture

Hidden layer Hidden layer

e a e a

. 3

‘ J
20
o
by
i

+ N\

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 29/62



CNNs on graphs: Node classification

e GCN architecture

TJe v V) W nwv

0\9"903'0
= o(z+ o™/

L

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 29/62



Implementing CNNs on graphs

e Node-level task

- cross-entropy loss function for (semi-supervised) node classification

F
L::— }/lfanlf

/

set of labelled
(training) nodes

label prediction (final layer
node representation)
label groundtruth

- training by minimising loss function and making predictions on testing nodes

30/62



Implementing CNNs on graphs

e Node-level task

- cross-entropy loss function for (semi-supervised) node classification

F
L=— Ylfanlf

/

set of labelled
(training) nodes

label prediction (final layer
node representation)

label groundtruth

- training by minimising loss function and making predictions on testing nodes

e Factors influencing model behaviour
- what label distribution favours GCN in this task?

- what about perturbation of input graph topology?
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Implementing CNNs on graphs

e Edge-level task

- cross-entropy loss function for link prediction

F
L=— }/lfanlf

/

set of labelled
(training) edges

label prediction (produced by
final layer representations of pairs
label groundtruth of nodes via a similarity function)

- training by minimising loss function and making predictions on testing edges
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Implementing CNNs on graphs

e Graph-level task

- cross-entropy loss function for graph classification

F
[::— }/lfanlf

/

set of labelled
(training) graphs

label prediction (produced by
final layer representations of all
label groundtruth nodes via e.g. global pooling)

- training by minimising loss function and making predictions on testing graphs
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| ecture 3

e Machine learning on graphs: Overview
e Convolutional neural networks on graphs
e Message passing neural networks

e Recent developments & Applications
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GNNs - A historical timeline

GNN Spectral CNN PATCHY-SAN GCN GraphSAGE GAT CayleyNet GIN
Gori et al. Bruna et al. Niepert et al. Kipf and Welling Hamilton et al. Velickovié et al. Levie et al. Xu et al.

GNN Gated GNN ChebNet MPNN MoNet GN CNNs on graphs SGN
Scarselli et al. Li et al. Defferrard et al. Gilmer et al. Monti et al. Battaglia et al. Gama et al. Wu et al.

B spectral (GSP) approach [l spatial approach
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A look into invariance

e Permutation invariance: function invariant w.r.t. permutation (node
re-ordering)

(Vrd X
(O8]
e v3 .-1lll!!‘ EEEN
) U RN
() V4 5
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o v T
EEEE
v Us
2 Uy
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A look into invariance

e Permutation equivariance: function equivariant w.r.t. permutation
(permutation of input => same permutation of output)

U7
Uy
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X
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|44
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A look into invariance

e Permutation equivariance: function equivariant w.r.t. permutation
(permutation of input => same permutation of output)

U7 X |14 f(X7 W)
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A look into invariance

e Permutation equivariance: function equivariant w.r.t. permutation
(permutation of input => same permutation of output)

U7 X |14 f(X7 W)

v v 4 (F

1 3
RN RN
DN— =
v v5 T EREEEE
2 (W]
T f(PX,PWPh)

V7 PX PWP _ PI(X, W)

U1 (3 .8
U RN = EEEEEE

() Uy 5

e Spectral GNNs: gg¢(L) is permutation equivariant because it acts on
local neighbourhood and its behaviour is permutation invariant
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GNNs - A spatial approach

e Recall graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v
v'eV
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e Recall graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v
v'eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form
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GNNs - A spatial approach

e Recall graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v
v'eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form

U7 self information neighbour information

[+1
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JEN;
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GNNs - A spatial approach

e Recall graph convolution can also be defined in spatial (node) domain

via a graph shift operator ~ EEp S = Z 0,.S*x
via a spatial weighted summation » (x * g)( Z x(v
v'eV

e Common idea: nodes exchange information locally, which can be
summarised into a basic form

self information neighbour information

I+1 [ [
o (@ @ DD
JEN;

learnable parameters permutation invariant

local neighbourhood
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Message passing neural networks (MPNNs)

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 38/62



Message passing neural networks (MPNNs)

message function

hitl = @(hl hl
JEN;

- nodes exchange messages with local neighbours

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 38/62



Message passing neural networks (MPNNs)

update function message function

h,li+1 ,@hl hl

aggregator function

- nodes exchange messages with local neighbours

- each node updates its representation by aggregating
messages from neighbours

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 38/62



Message passing neural networks (MPNNs)

update function message function

h,li+1 ’@hl hl

aggregator function

- nodes exchange messages with local neighbours

- each node updates its representation by aggregating
messages from neighbours

- functions are differentiable and parameters are learned by
minimising loss of downstream task

- key difference between architectures: how nodes aggregate
information from neighbours and across layers

Gilmer et al., “Neural message passing for quantum chemistry,” ICML, 2017. 38/62



MPNNSs - A simple example

U1 U3 : u8
‘ 4 .
"'ii!l..-iill
U2 (! v5

weighted sum sum

hitl = hl Q@ hl
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MPNNSs - A simple example

one message passing layer

[h@4::%m§+994 J

welghted sum sum

hl+1—9lhl—|—9 Z hl
JEN;
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MPNNSs - A simple example

one message passing layer
i = 6phl + 61k,

(RS = Gbnk + 0+ B+ b))

welghted sum sum

hl+1—9lhl—|—9 Z hl
JEN;
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one message passing layer
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@;1 = 0 hs + 0L (RY + BY + AL + héD
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MPNNSs - A simple example

welghted sum sum

[+1 __

hitt = eghg +60 ) K

JEN;

one message passing layer
i = 6phl + 61k,
Aot = 0 hh + 0L (kL + R + AL)
Chz+1 _ LKL + 6.

(
1(
hitt = 0Lhk + 64 (R
(
(

+ hi)
+ h)
hitt = OLh + 64 (Y + Ry + AL 4+ RBb)

hl—|—hl—|—hl—|—th
hytt = 0phk + 01 ()

Aot = obnb + 6L (RY + hL + hL)
At = ohnk 4 64 bl

final output after L layers

Z = {hy,hy,h3 by, by he, hy hg}
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GraphSAGE

e |dea: sample neighbours from each hop of neighbourhood (i.e., building
a “computational” graph) for improved scalability and robustness

pitl = (w@M (R hl)

FJEN;

4

h§+1 _ g@' Concat(hf;, hé))
JEN;

1. Sample neighborhood 2. Aggregate feature information learnable parameters
from neighbors

sampled neighbours

Hamilton et al., “Inductive representation learning on large graphs,” NIPS, 2017. 40/62



GraphSAGE

e |dea: sample neighbours from each hop of neighbourhood (i.e., building
a “computational” graph) for improved scalability and robustness

e Concatenation of self and neighbour embeddings acts as implicit “skip

connections’ to prevent loss of self information

pitl = (w@M (R hl)

FJEN;

concatenation

-—y Ty
FEN;

1. Sample neighborhood 2. Aggregate feature information learnable parameters
f . L]
rom neighbors sampled neighbours

Hamilton et al., “Inductive representation learning on large graphs,” NIPS, 2017. 40/62



Graph attention network (GAT)

e l|dea: learn relative importance of neighbours in aggregation

pitl = ( P My(hl, ) )

JEN;

‘ relative importance

i = oo i+
FjEN;

learnable parameters

Velickovi¢ et al., “Graph attention networks,” ICLR, 2018. 41/62



Graph attention network (GAT)

e ldea: learn relative importance of neighbours in aggregation

e An attention function weighs importance of neighbours and computes

attention scores

Velickovi¢ et al.,

softmax

“Graph attention networks,”

ICLR, 2018.

pitl = ( P My(hl, ) )

JEN;

relative importance

oo @ SO
jEN;

learnable parameters

-y

attention function
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| ecture 3

e Machine learning on graphs: Overview
e Convolutional neural networks on graphs
e Message passing neural networks

e Recent developments & Applications
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Over-smoothing

e GCN implements low-pass filtering (which can lead to “over-smoothing”)

e |dea: combine low-pass and band-/high-pass filtering

(a) Input (b) Input
Low-pass | S Low-_pgs_s_ — Band-pass
: 1 : :_ r | |
a0 A U
I I |
H'=o(AH''0) @ ¥ 1 b L | H' =0 (U,H")
| |
LTS T Pt
| 1
L J_ - R —— |
Output Output
GCN Scattering GCN

Min et al., “Scattering GCN: Overcoming oversmoothness in graph convolutional networks,” NeurlPS, 2020. 43/62



Label homophily

e Heterophily of node labels poses a challenge

R
— /{X O/T

high homophily low homophily

Zhu et al., “Beyond homophily in graph neural networks: Current limitations and effective designs,” NeurlPS, 2020. 44 /62



Label homophily

e Heterophily of node labels poses a challenge

R
— /{X O/T

high homophily low homophily

e |dea:
- ego- and neighbour-embedding separation: ¥ = coMmve (x(*", aceR({rl Y :ue N(v)}))
- higher-order neighbourhoods: (" = cowsrne (x{* . acer({r{ ™" : ue Ni(v) }), AGGR({r(} " s u € Na(v) })....)

- combination of intermediate representations: r{™" :COMBINE< r) el rg’“)

Zhu et al., “Beyond homophily in graph neural networks: Current limitations and effective designs,” NeurlPS, 2020. 44 /62



Over-squashing

e Input graph may not be ideal for message passing (e.g., “over-squashing’)

(b) The bottleneck of graph neural networks

over-squashing caused by
bottlenecks

Alon and Yahav, “On the bottleneck of graph neural networks and its practical implications,” ICLR, 2021.
Topping et al., “Understanding over-squashing and bottlenecks on graphs via curvature,” ICLR, 2022. 45/62



Over-squashing

e Input graph may not be ideal for message passing (e.g., “over-squashing’)

e |dea: “rewiring’ as pre-processing step to mitigate over-squashing

(b) The bottleneck of graph neural networks

over-squashing caused by bottlenecks are linked to
bottlenecks negatively curved edges

Alon and Yahav, “On the bottleneck of graph neural networks and its practical implications,” ICLR, 2021.
Topping et al., “Understanding over-squashing and bottlenecks on graphs via curvature,” ICLR, 2022. 45/62



Adaptive message passing

e |dea: modifying the “computational” graph for adaptive message passing

(a) Classical MPNN (b) DRew (c) vDRew

Gutteridge et al., "“DRew: Dynamically rewired message passing with delay,” ICML, 2023. 46/62



Graph transformers

e |dea: build transformers on graphs by generalising GAT to global attention

f & =
~>{ Add & Norm )

Feed
Forward

7

A

N

N> | {Add & Norm )

Multi-Head
Attention

)

A
— J

\.

Positional @_@
Encoding

Input
Embedding

I

Inputs

positional
encodings
retaining
graph info

transformers graph transformers

Dwivedi and Bresson, “A generalization of transformer networks to graphs,” AAAI Workshop, 2021. 47/62



Long-range Interactions

e Which tasks require long-range interactions and how to measure them?

Dwivedi et al., “Long range graph benchmark,” NeurlPS, 2022.
Liang et al., “Towards quantifying long-range interactions in graph machine learning,” NeurlPS Workshop, 2025.
Bamberger et al., “On measuring long-range interactions in graph neural networks,” ICML, 2025. 48/62



Long-range Interactions

e Which tasks require long-range interactions and how to measure them?

graph classification node classification

Dwivedi et al., “Long range graph benchmark,” NeurlPS, 2022.
Liang et al., “Towards quantifying long-range interactions in graph machine learning,” NeurlPS Workshop, 2025.
Bamberger et al., “On measuring long-range interactions in graph neural networks,” ICML, 2025. 48/62



Long-range Interactions

e Which tasks require long-range interactions and how to measure them?

M
e X Y
Y

graph classification node classification
/ Distance dg(v, *) Influence I, \

% % -0
N\

PG

Distance dg(u, -) Influence I/,

/
k % % ) range measure

Dwivedi et al., “Long range graph benchmark,” NeurlPS, 2022.
Liang et al., “Towards quantifying long-range interactions in graph machine learning,” NeurlPS Workshop, 2025.
Bamberger et al., “On measuring long-range interactions in graph neural networks,” ICML, 2025. 48/62




LLMs for graph learning

e Can LLMs understand graph-structured data?

Graph G
Graph encoder
function: g
Prompt
REEije question: Q

Prompt
G describes a graph among nodes 0, 1, 2, 3, 4, 5, 6, 7, and 8.
In this graph:
Node 0 is connected to nodes 2 and 3.
Node 1 is connected to nodes 2 and 8.

6uestion: What is the degree of node 4?

LLM: f

Answer: A

Fatemi et al., “Talk like a graph: Encoding graphs for large language models,” ICLR, 2024.
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Graph learning for LLMs

e Can insights from graph learning help understand LLMs?

110 > — ~__ - Vi

1110 (L)
111 O\ - ~—— Vo
1111 O\ — V‘(SL)

1111. . .1 07
1111...11]0 (L)

L
Ivir’ = viilloo < €

(a) Representational Collapse (b) Over-squashing

Barbero et al., “Transformers need glasses! Information over-squashing in language tasks,” NeurlPS, 2024. 50/62



Application |: Drug discovery

Directed message

passing neural network
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Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.
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Application II: Odour perception

A B i

Structurally similar pair wlelslelslalalaby /\/\HI\OH : IO}\
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[} [}
EEEEEEEEEE |
muguet, fresh, muguet, fresh, )k W
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green, fruity

Perceptually similar pair . GoodScents . Both . Leffingwell

Molecular representations from

penultimate model layer EI:I:I]
>0 >

C GNN model training

citrus  creamy

baked spicy

clean alcoholic beefy

chocolate fruity

Lee et al., “A principal odor map unifies diverse tasks in olfactory perception,” Science, 2023. 52/62



Pati

Application Ill: Medical imaging

A\ AN e AL
\". s T B
Y Stain normalization

N

4 Tissue detection

AL o2
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9 Nuclei detection )

Preprocessing

Entity detection

-

Tissue graph
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/
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A

Cell GNN )

Hierarchical GNN

et al., “Hierarchical graph representations in digital pathology,” Medical Image Analysis, 2022.
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Application IV: Tratfic prediction

Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021. 54/62



Application IV: Tratfic prediction

Derrow-Pinion et al., “ETA prediction with graph neural networks in Google Maps,” CIKM, 2021. 54/62



Application V: Weather forecasting

a) Input weather state b) Predict the next state c) Roll out a forecast

GraphCast

Lam et al., “Learning skillful medium-range global weather forecasting,” Science, 2023. 55/62



Application VI: Fake news detection

Average tweets/URL
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Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019. 56/62



Application VII: Contact tracing

DeepTrace Algorithm

P, «---| Maximum-likelihood Estimator |

________________________________________

_ 5 <h2 € R™ !
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Contact Tracing ~ Input Graph Neural Network

Tan et al., “DeepTrace: Learning to optimize contact tracing in epidemic networks with graph neural networks,” IEEE TSIPN, 2025. 57/62



Application VIII: Contagion dynamics

©)
S i
® i Jatt
' e
@ T
Time
g X
=M Y
=}
G %
r "
x: o i -~
N ’ Q » f out
ﬂ iy Sty
\ -0 &’ > J
— (f,lj In-sample i .‘.A\.\. Out-of-sample
] --- ann ;I
--- KP-GNN i,
...... 7 U
64 VAR A - j]lI‘I! lr\‘ \.

—-=— Metapop.

Global incidence

4 -
2 -
(d)
0 T
Q> N
a» o

Global incidence (Metapop.)

Murphy et al., “Deep learning of contagion dynamics on complex networks,” Nature Communications,

2021.
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Application IX: Language modelling

| hope USA finds the [...] Most people who do ) O O—@
vaccine first. That should vaccine research are pretty O . X
put eurofags and good people, even if they aren't . O .
democrats to their place. all American or Republican. O . l
BERT layer WSGCN layer
. B 3 + - + -
parent post child post parent stance child stance
MLP classifier
’ [0.67 0.23 0.10] ‘

disagreement prediction

syrianconflict

foreignpolicy
nrxn geopolitics
The_Europe
. [ AmalaNetwork i £
europeannationalism The Donald Americanpohiticy act

AskThe Dona

i Mueller
w%ﬂ%ﬁﬁé%in PoliticalMemes
conservativecartoon el kebea
NSALeaks
liberalgunowners und alltheleft
NOWf%YG issouriPolitics

neveragainmoveme nt

ateCommunism
DéebateaCommunist

ideological modelling

communism

Lorge et al., “STEntConv: Predicting disagreement between reddit users with stance detection and a signed graph convolutional network,” LREC-Coling 2024.
Hofmann et al., “Modeling ideological salience and framing in polarized online groups with graph neural networks and structured sparsity,” NAACL, 2022.
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Application X: Stock market analysis

Encoder Decoder ﬂleconstruction Loss\ -
BCE | ROCAUC | AP

a(ﬂ @) . :
o--¢--0 Q. 0—=0
o beesder )| L § VS i :I 5
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market instability volatility forecasting

linear spillover

=== non-linear spillover
(O O0th-hop neighbor of IBM (target node itself)
© Ist-hop neighbor of IBM
@ 2nd-hop neighbor of IBM

Gorduza et al., “Understanding stock market instability via graph auto-encoders,” arXiv, 2022.
Zhang et al., “Forecasting realized volatility with spillover effects,” International Journal of Forecasting, 2024. 60/62



Deep learning on graphs - Summary

Fast-growing field that extends data analysis to non-Euclidean domain

Highly interdisciplinary: machine learning, signal processing, harmonic
analysis, network science, differential geometry, applied statistics

Promising directions

beyond convolutional models or MPNNSs
expressive power of graph ML models
robustness & generalisation & scalability
interpretability & causal inference
construction & refinement of initial graphs
optimisation & implementation issues

foundation models for graph-structured data
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any scientfic fields study data with an underlying
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Overview of deep learning
Deep learning refers o learning complicated concepts by building them from
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are
popular relizatons of such deep multlayer ierarchics. I the past few years, he growing.
power of unit (GPU)  the avail-
ability of large training data sets have allowed successfully training nural networks with many layers
‘and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks
specch recognition [2], 3] and machine translation [4] to image analysis and computer vision [S]-{11] (e 12]
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Representation Learning on Graphs: Methods and Applications

William L. Hamilton Rex Ying Jure Leskovec
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Department of Computer Scicnce
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Abstract

Machine lerning o graphs i an important and ubiguits sk with applications rangin from drug
The primary challenge in this domain i finding
@ way o rpresnt o encode,graph strcture so tht it ca be csity xploited by machine learming
‘models. Traditionally, machine learning approaches relied.

encoding structural information about a graph (e.. degree statistics or kema ﬁmttluyu). Towever,
recent years have seen a surge in approaches that automatically learn to encode graph structure into
low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality
reduction. Here we provide a conceptual review of key advancements in this area of representation
learning on graphs, including matrix based methods, random-walk based algorithms, and
graph convolutional networks. We review methods to embed individual nodes as well as approaches
10 embed entire (subjgraphs. In doing so, we develop a unified framework to describe these recent
approaches, and we highlight a number of important applications and directions for future work.

1 Introduction

Graphs are a ubiquitous data structure, employed exiensively within computer science and related filds. Social
networks, molecular graph structures, biological protein-protein networks, 1 of these
domains and many more can be readily modeled as graphs, which capture interactions (ic., edges) between
individual units (i.e., nodes). As a consequence of their ubiquity, graphs are the backbone of countless systems,
allowing relational knowledge about interacting entities to be efficiently stored and accessed [2].

However, graphs are not only useful as structured knowledge repositories: they also play a key role in
modern machine learning. Machine learning applications seek to make predictions, or discover new patterns,
using graph-structured data as feature information. For example, one might wish to classify the role of  protein
in a biological interaction graph [28], predict the role of a person in a collaboration network, recommend new
friends to a user in a social network [3], or predict new therapeutic applications of existing drug molecules,
whose structure can be represented as a graph [21]

Copyright 2017 IEEE. Personal use of this materil i permited. However, pernission to reprintepublish this materil for
derting or promotonl purposes o o resale or 7 or lists, or o0 reuse any
work in IEEE.
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A Comprehensive Survey on Graph
Neural Networks

Zonghan Wu®, Shirui Pan®, Member, IEEE, Fengwen Chen, Guodong Long®
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Abstract—Deep learning has revolutionized many machine
Jearing tasks in recent years, raning from image casifcation
and video processing to specch recognition and natural language
nderstandink. The data n these ucks are ypiealy eprescntca
in the Euclidean space. However, there s an ocreasing number
of applications, where data are generated from non-Euclidean
St sl 2 rpreemied  Sraphs with comples relaton-
ships and interdependency between objects. The complexity of
Praph data has imposed igaificast chalienges oa (he exisag
‘machine learning algorithms. Recently, many studies on extend-
ing docp leariog approsches for graph data have emerged.
n this article, we provide a comprehensive overview of graph
neural networks (GAN) i dnt mining and machine learning
Sekds. We propose » new taxonomy to divde the sateofhe-ar
tegories, namely, recurrent GNNs, convolu-
tional GNNs, graph autoencoders, and spatial-temporal GNNs.
We further discuss the applications of GNNs across various
‘domains and summarize the open-source codes, benchmark data
et and mod rauaton of G Final,we propos ptentia
research directions rapidly growin;

networks (RNNs) (7], and autoencoders [8]. The success
of deep learning in many domains is partially atributed to
the rapidly developing computational resources (¢.g., GPU),
the availability of big training data, and the effectiveness
of deep learning 1o extract latent representations from the
Euclidean data (e.g., images, text, and videos). Taking image
data as an example, we can represent an image as a regular
grid in the Euclidean space. CNN is able t0 exploit the shift-
invariance, local connectivity, and compositionality of image
data [9). As a result, CNNs can extract local meaningful
features that are shared with the entire data sets for various
image analyses

While deep learning effectively captures hidden patterns of
Euclidean data, there are an increasing number of applica-
tions, where data are represented in the form of graphs. For
example, in e-commerce, @ graph-based learning system can
exploit the interactions between users and products to make

ronvolllﬁon.l networks (GCNs), graph neural lewk: ((.N\:L
graph representation learning, network embedd

1. INTRODUCTION
HE recent success of neural networks has boosted

research on pattem recognition and data mining. Many
machine leaming sks, such s cbjec del:clmn 1. (21,
lation [3], [4], and speech 15, which

onee heavily relied on handerafted feature engineering to
extract informative feature sets, have recently been revolu-
tionized by various end-to-end deep learning paradigms, e.g.,
convolutional neural networks (CNNs) [6], recurrent neural
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highly accurate In chemistry, molecules
are modeled as graphs, and their bioactivity needs to be
identified for drug discove In a citation network, articles
are linked to each other via citationships, and they need to be
categorized into different groups. The complexity of graph data
has imposed significant challenges on the existing machine
learning algorithms. As graphs can be irregular, a graph may
have a variable size of unordered nodes, and nodes from a
graph may have a different number of neighbors, resulting in
some important operations (e.g.. convolutions) being easy to
compute in the image domain but difficult to apply to the graph
domain. Furthermore, a core assumption of existing machine
learning algorithms is that instances are independent of each
other. This assumption no longer holds for graph data because
each instance (node) is related 1o others by links of various
types. such as citations, friendships, and interactions.
Recently, there is increasing interest in extending deep
leaning approaches for graph data. Motivated by CNNs,
RNNs, and autoencoders from deep leaming, new generaliza-
tions and definitions of important operations have been rapidly
developed over the past few years to handle the complexity
of graph data. For example, a graph convolution can be
generalized from a 2-D convolution. As illustrated in Fig. 1,
an image can be considered as a special case of graphs,
where pixels are connected by adjacent pixels. Similar to 2-D
convolution, one may perform graph convolutions by taking
the weighted average of a node’s neighborhood information.
There are a limited number of existing reviews on the
topic of graph neural networks (GNNs). Using the term
geometric deep learning, Bronstein ef al. [9] give an overview
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Abstract

There has been a surge of recent interest in graph representation learning (GRL). GRL
methods have generally fallen into three main eategories, based on the availability of la-
beled data. The first, network embedding, focuses on learning unsupervised representations
of relational structure. The second, graph regularized neural networks, leverages graphs to
augment neural network losses with a regularization objective for semi-supervised learning.
The third, graph neural networks, aims to learn differentiable functions over discrete topolo-
gies with arbitrary structure. However, despite the popularity of these areas there has been
surprisingly little work on unifying the three paradigms. Here, we aim to bridge the gap
between network embedding, graph regularization and graph neural networks. We pro-
pose a comprehensive taxonomy of GRL methods, aiming to unify several disparate bodics
of work. Specifically, we propose the GrapiEDM framework, which generalizes popular
algorithms for semi-supervised learning (c.g. GraphSage, GCN, GAT), and unsupervised
learning (e.g. DeepWalk, node2vee) of graph representations into a single consistent ap-
proach. To illustrate the generality of GraprEDM, we fit over thirty existing methods
into this framework. We believe that this unifying view both provides a solid foundation
for understanding the intuition behind these methods, and enables future rescarch in the
arca.

ywords: Network Embedding, Graph Neural Networks, Geometric Deep Learning,
Manifold Learning, Relational Learning
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