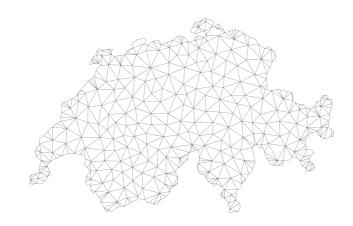
AIMS CDT - Signal Processing Michaelmas Term 2025

Xiaowen Dong

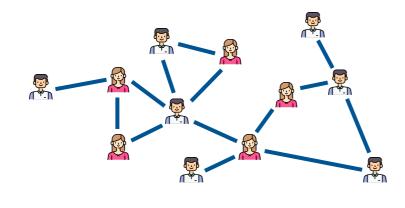
Department of Engineering Science

Introduction to Graphs Signal Processing

Networks are pervasive

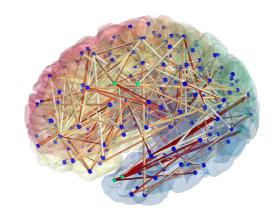


geographical network



social network

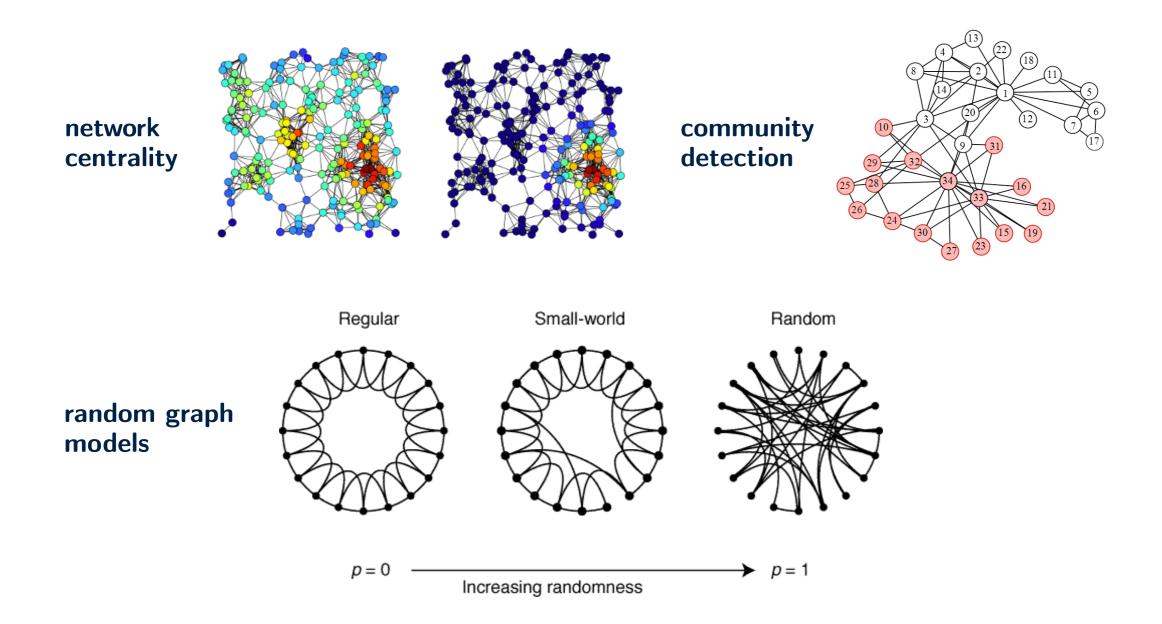
traffic network



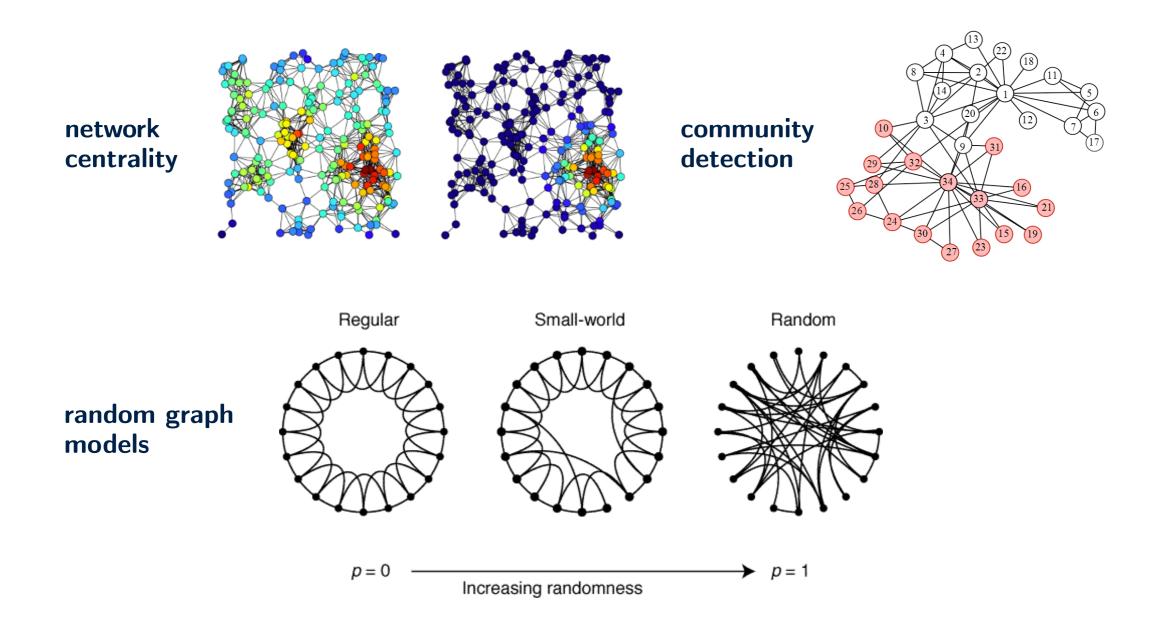
brain network

graphs provide mathematical representation of networks

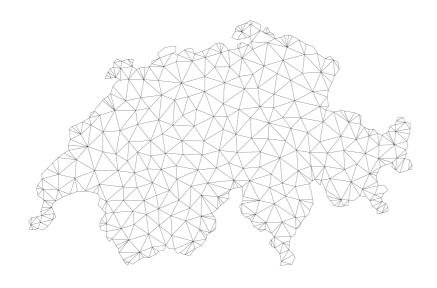
Network science



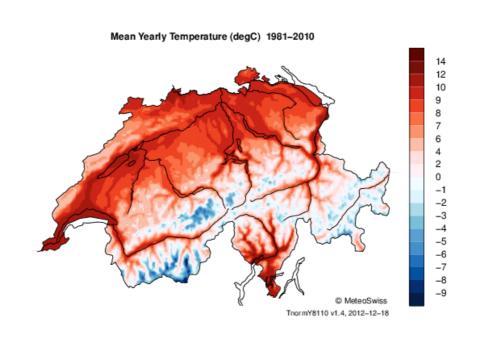
Network science



from edge attributes to node attributes from graphs to graph-structured data

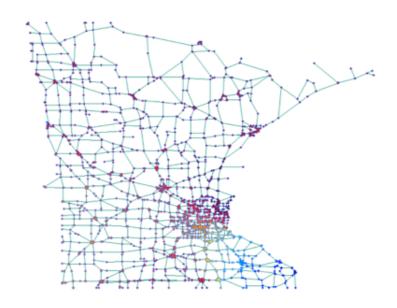


- nodes
 - geographical regions
- edges
 - geographical proximity between regions

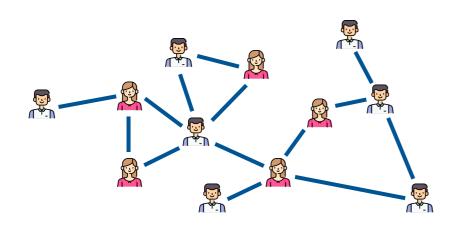


- nodes
 - geographical regions
- edges
 - geographical proximity between regions
- signal
 - temperature records in these regions

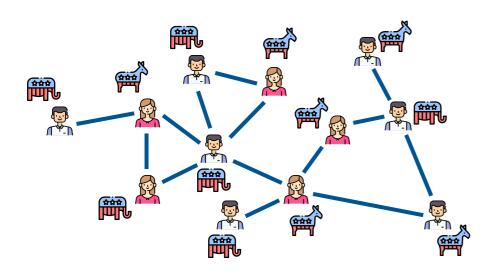
- nodes
 - road junctions
- edges
 - road connections



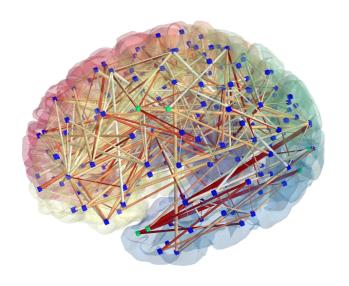
- nodes
 - road junctions
- edges
 - road connections
- signal
 - traffic congestion at junctions



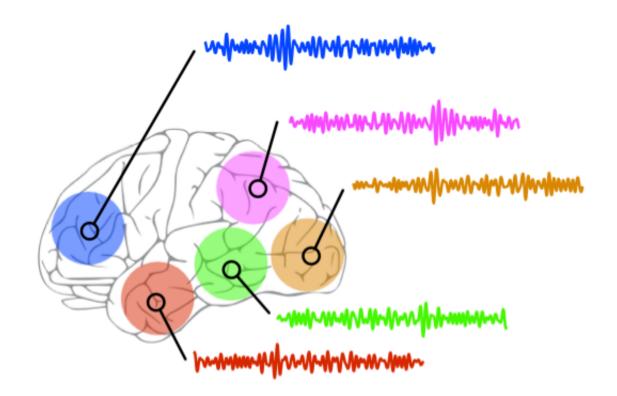
- nodes
 - individuals
- edges
 - friendship between individuals



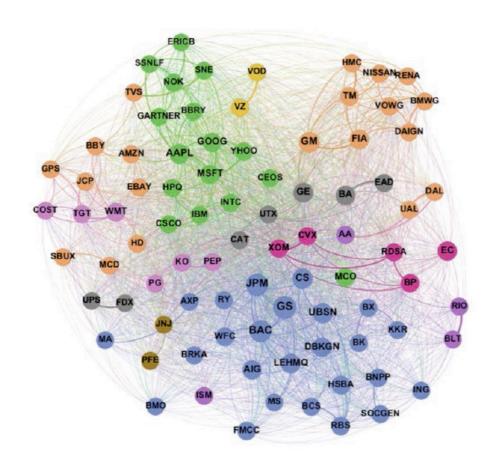
- nodes
 - individuals
- edges
 - friendship between individuals
- signal
 - political view



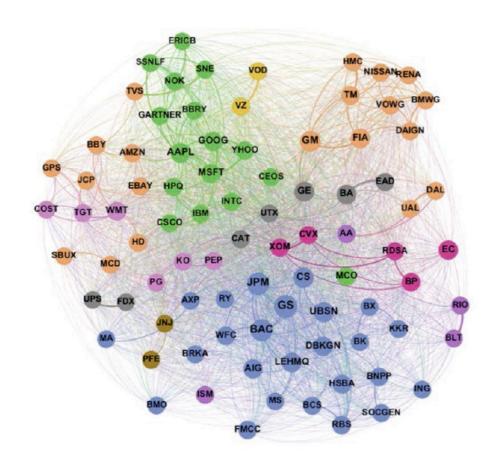
- nodes
 - brain regions
- edges
 - structural connectivity between brain regions



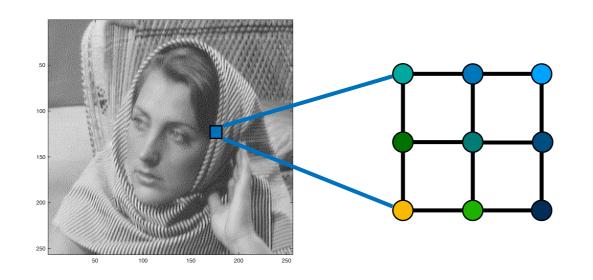
- nodes
 - brain regions
- edges
 - structural connectivity between brain regions
- signal
 - blood-oxygen-level-dependent
 (BOLD) time series



- nodes
 - companies
- edges
 - co-occurrence of companies in financial news

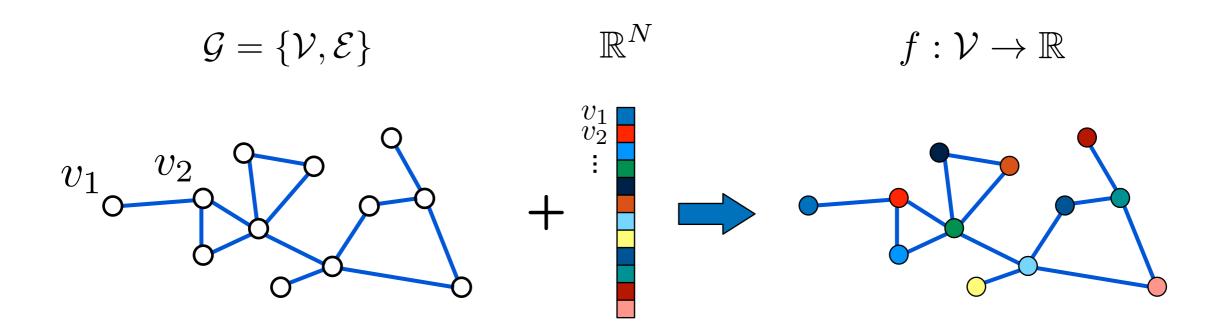


- nodes
 - companies
- edges
 - co-occurrence of companies in financial news
- signal
 - stock prices of these companies

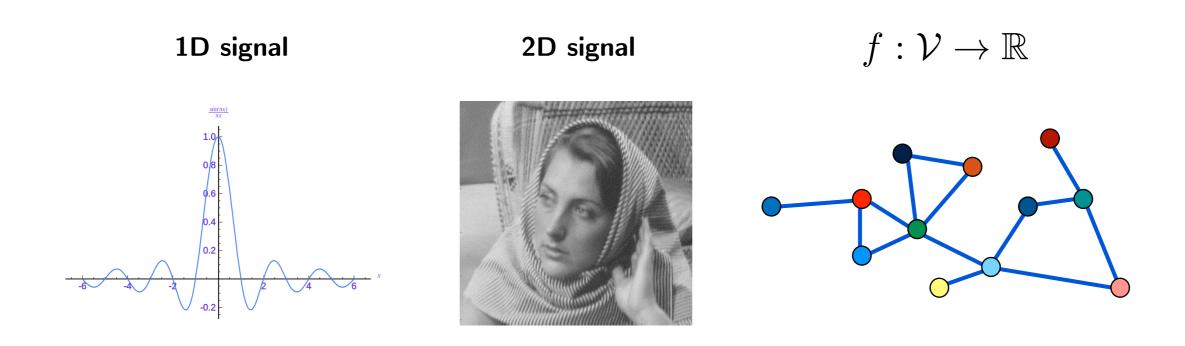


- nodes
 - pixels
- edges
 - spatial proximity between pixels
- signal
 - pixel values

Graph-structured data can be represented by graph signals



takes into account both structure (edges) and data (values at nodes)



how to generalise classical signal processing tools on irregular domains such as graphs?

Lecture 2

- Graph signal processing: Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Applications

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

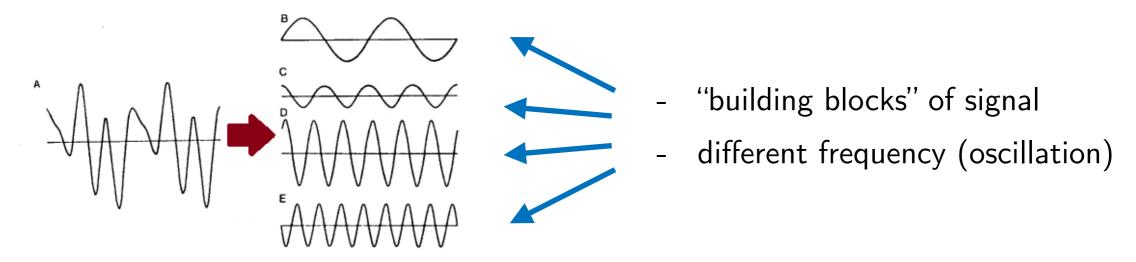
- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for signal analysis

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for signal analysis

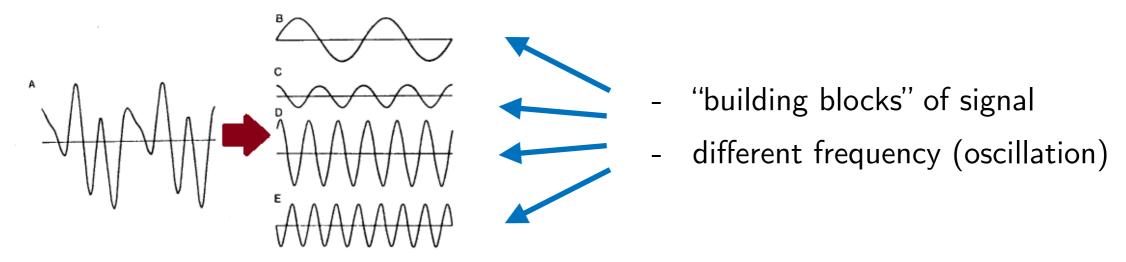
Classical Fourier transform provides frequency domain representation of signals



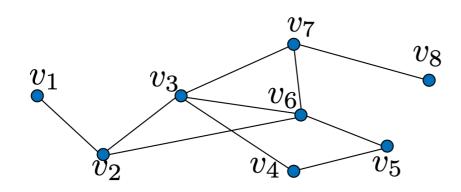
- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for signal analysis

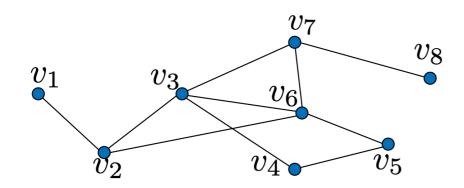
Classical Fourier transform provides frequency domain representation of signals



• What about a notion of frequency for graph signals?



$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

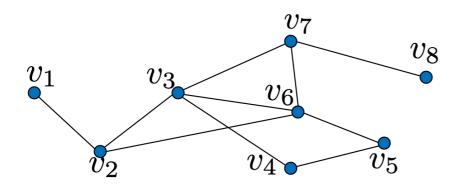


weighted and undirected graph:

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

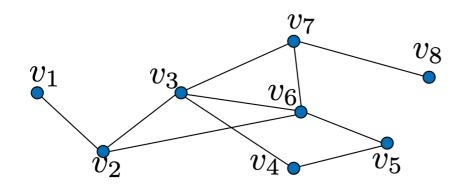
W



$$\mathcal{G} = {\mathcal{V}, \mathcal{E}}$$

$$D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$$

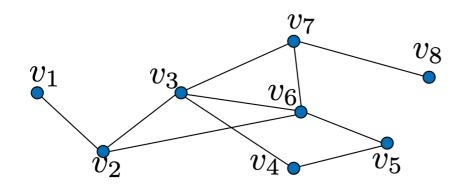
$$D \qquad \qquad D$$



$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

$$D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$$

$$L = D - W \qquad \text{equivalent to W!}$$

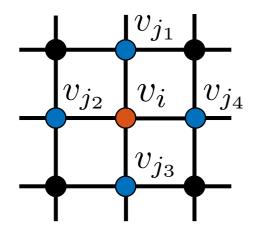


$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$
 $D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$
 $L = D - W$ equivalent to W!
 $L_{\operatorname{norm}} = D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$

Why graph Laplacian?

Why graph Laplacian?

- provides an approximation of the Laplace operator

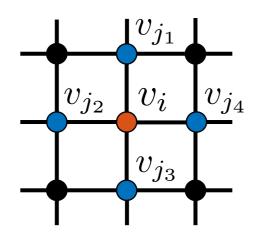


$$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$

standard 5-point stencil for approximating $-\nabla^2 f$

Why graph Laplacian?

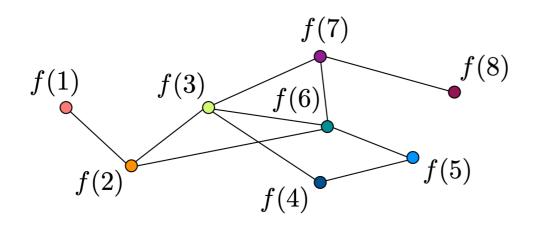
- provides an approximation of the Laplace operator



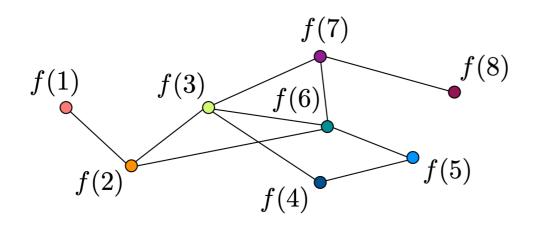
$$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$

standard 5-point stencil for approximating $-\nabla^2 f$

- converges to the Laplace-Beltrami operator (given certain conditions)
- provides a notion of "frequency" on graphs



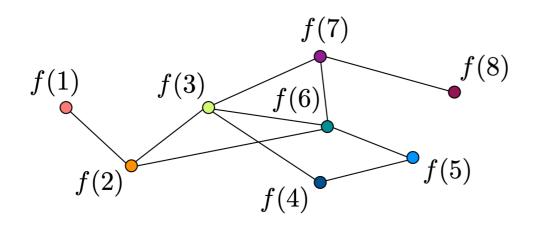
graph signal $f:\mathcal{V} o\mathbb{R}$



graph signal $f:\mathcal{V} o\mathbb{R}$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$



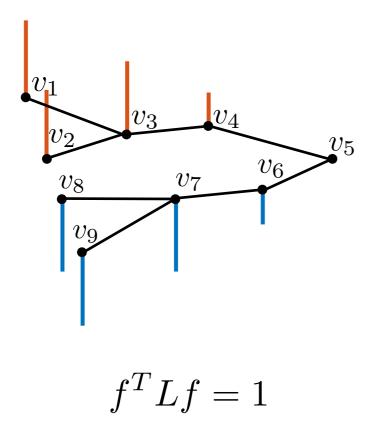
graph signal $f:\mathcal{V} o\mathbb{R}$

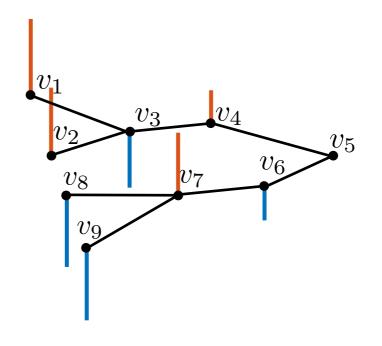
$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$

a measure of "smoothness"





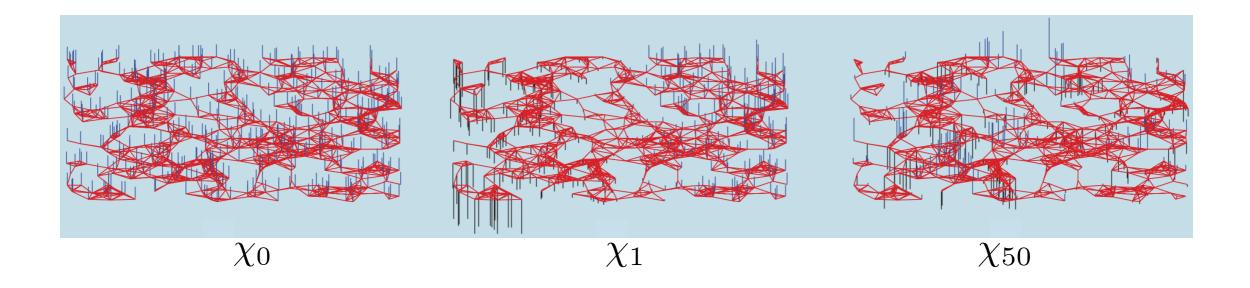
$$f^T L f = 21$$

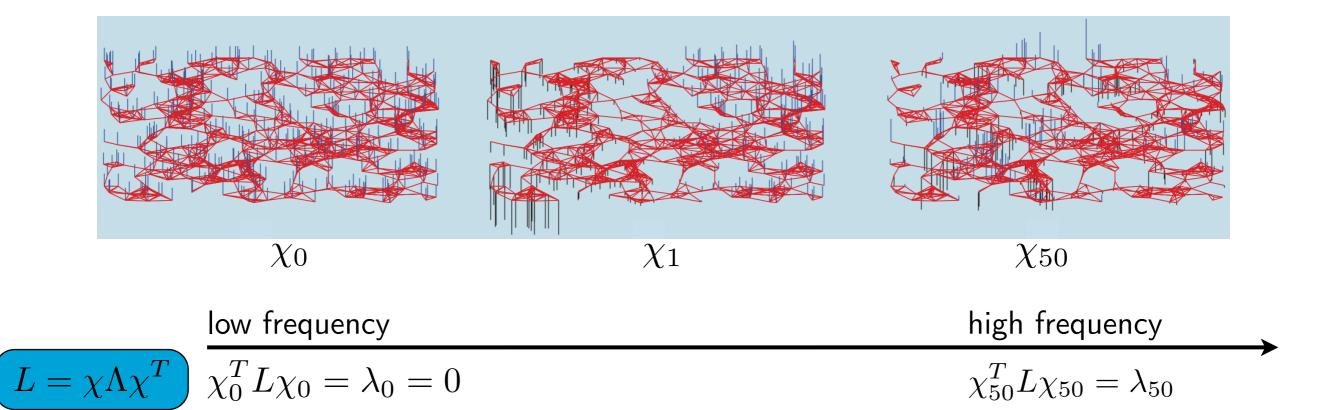
• L has a complete set of orthonormal eigenvectors: $L = \chi \Lambda \chi^T$

$$L = \begin{bmatrix} 1 & & & & \\ \chi_0 & \cdots & \chi_{N-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & & & 0 \\ & \ddots & & \\ 0 & & \lambda_{N-1} \end{bmatrix} \begin{bmatrix} & & & \chi_0^T & \\ & \ddots & \\ & & & \chi^T & \end{bmatrix}$$

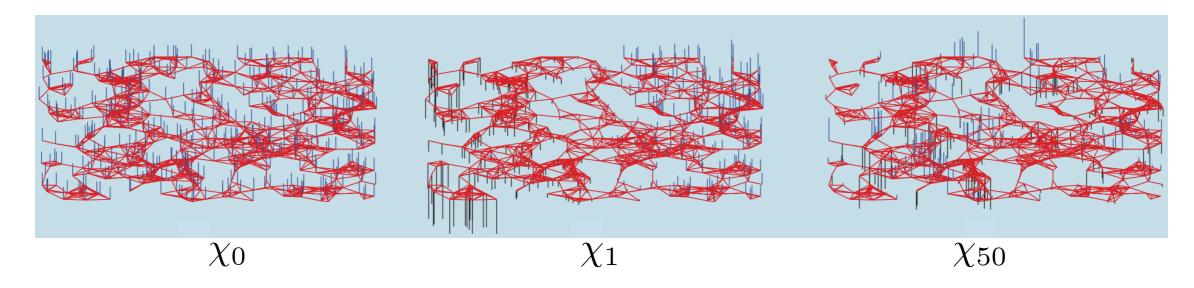
$$\chi \qquad \qquad \Lambda \qquad \qquad \chi^T$$

• Eigenvalues are usually sorted increasingly: $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_{N-1}$





• Eigenvectors associated with smaller eigenvalues have values that vary less rapidly along the edges



low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

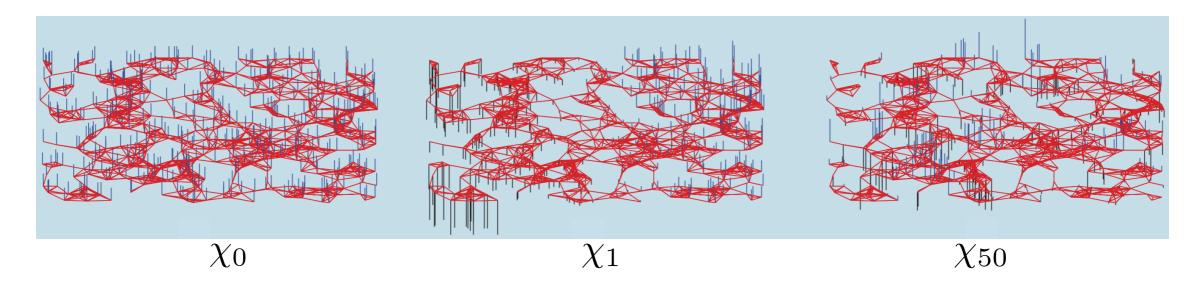
$$L = \chi \Lambda \chi^T$$
 $\chi_0^T L \chi_0 = \lambda_0 = 0$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} 1 & 1 & 1 \\ \chi_{0} & \cdots & \chi_{N-1} \end{bmatrix} f$$

19/58



low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

$$L = \chi \Lambda \chi^T$$
 $\chi_0^T L \chi_0 = \lambda_0 = 0$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} \chi_0 & \cdots & \chi_{N-1} \end{bmatrix}^T \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \cdots & \lambda_{N-1} \\ \text{low frequency} & \text{high frequency} \end{bmatrix}$$

• The Laplacian L admits the following eigendecomposition: $L\chi_\ell=\lambda_\ell\chi_\ell$

• The Laplacian L admits the following eigendecomposition: $L\chi_\ell=\lambda_\ell\chi_\ell$

one-dimensional Laplace operator: $abla^2$

eigenfunctions: $e^{j\omega x}$

Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$

The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $-\nabla^2$: graph Laplacian: L

eigenfunctions: $e^{j\omega x}$

$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega \qquad \qquad f(i) = \sum_{i=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

eigenvectors: χ_ℓ

$$f: V \to \mathbb{R}^N$$

$$f:V\to\mathbb{R}^N$$
 Classical FT:
$$\hat{f}(\omega)=\int{(e^{j\omega x})^*f(x)dx}$$
 Graph FT:
$$\hat{f}(\ell)=\langle\chi_\ell,f\rangle=\sum_{i=1}^N\chi_\ell^*(i)f(i)$$

$$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $-\nabla^2$: graph Laplacian: L

eigenfunctions: $e^{j\omega x}$

$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$

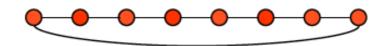
eigenvectors: χ_ℓ

$$f: V \to \mathbb{R}^N$$

Classical FT:
$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$
 Graph FT: $\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}^{*}(i) f(i)$

$$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

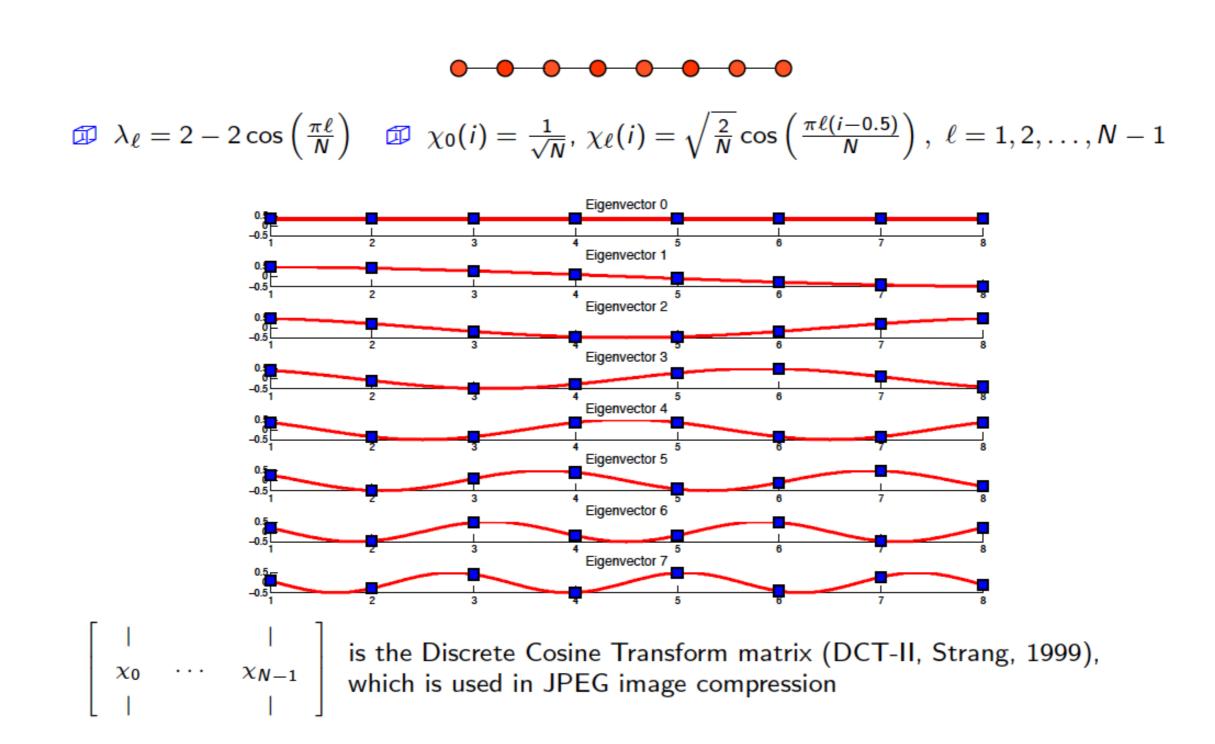
Graph Fourier transform: Special case 1



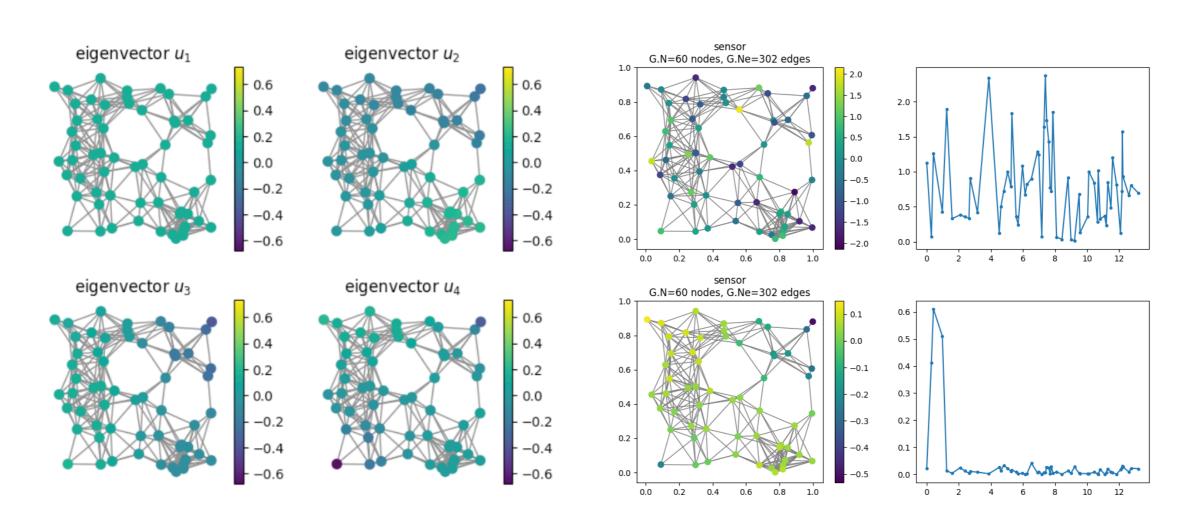
- (Unordered) Laplacian eigenvalues: $\lambda_{\ell} = 2 2\cos\left(\frac{2\ell\pi}{N}\right)$
- One possible choice of orthogonal Laplacian eigenvectors:

$$\chi_{\ell} = \left[1, \omega^{\ell}, \omega^{2\ell}, \dots, \omega^{(N-1)\ell}\right], \text{ where } \omega = e^{\frac{2\pi j}{N}}$$

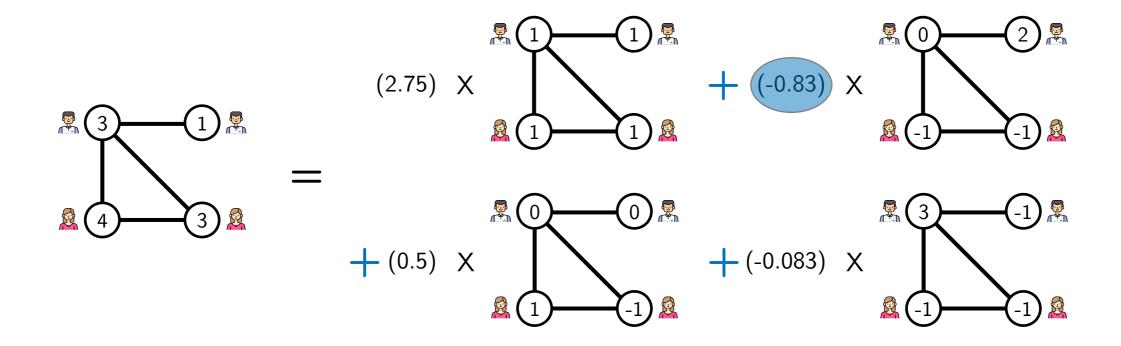
Graph Fourier transform: Special case 2



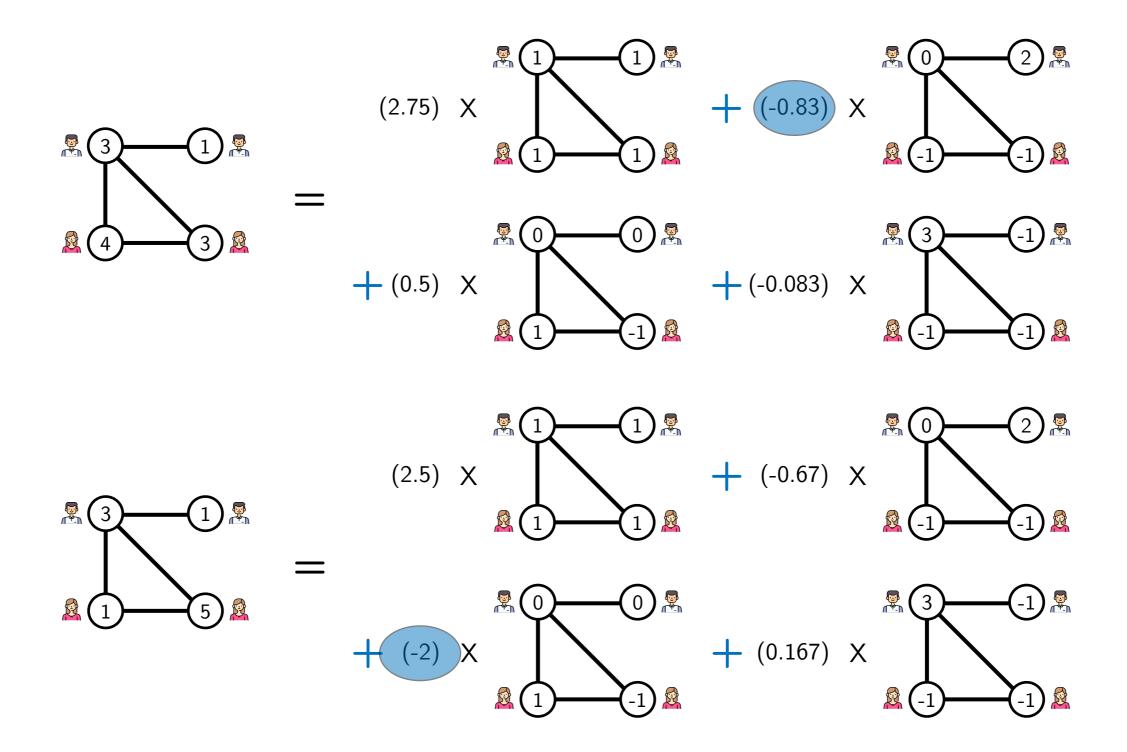
Example on a generic graph



Example on movie rating



Example on movie rating



Lecture 2

- Graph signal processing: Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Applications

Classical frequency filtering

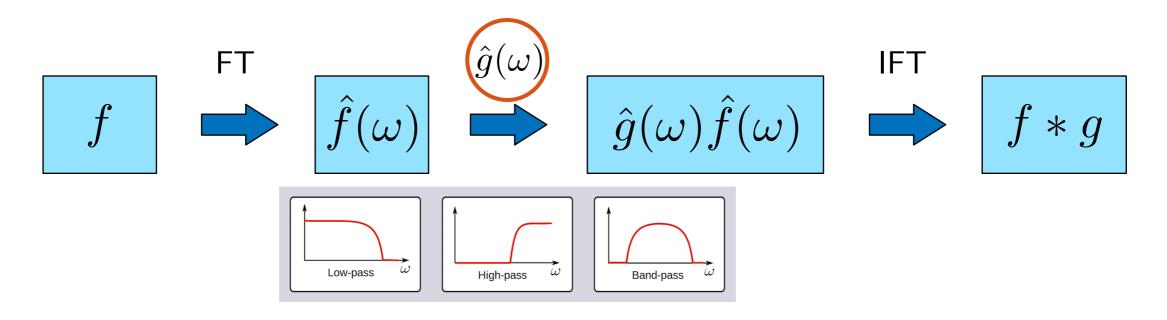
Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
 $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$

Classical frequency filtering

Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
 $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$

Classical frequency filtering

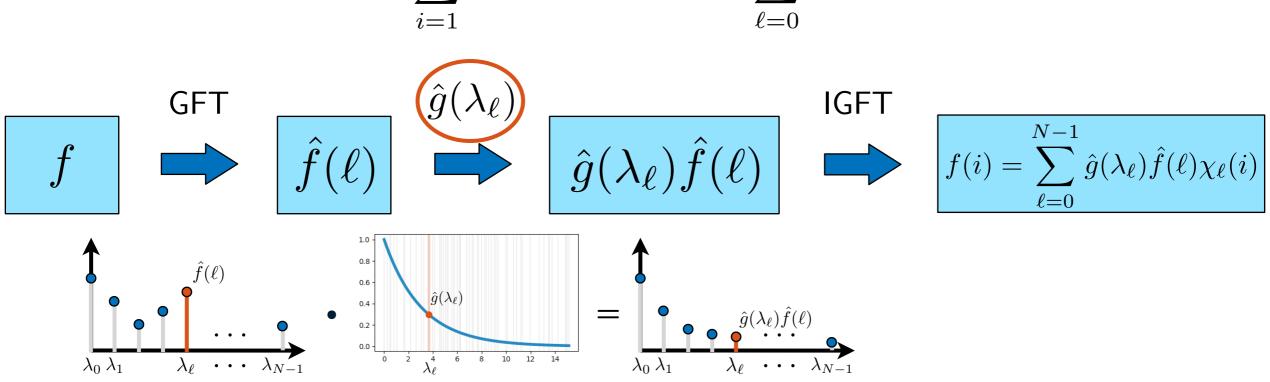
Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
 $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$



$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

$$f \qquad \qquad \hat{g}(\lambda_{\ell}) \qquad \qquad \hat{g}(\lambda_{\ell}) \qquad \qquad \hat{g}(\lambda_{\ell}) \qquad \qquad \hat{g}(\lambda_{\ell}) \hat{f}(\ell) \qquad \qquad \hat{f}(i) = \sum_{\ell=0}^{N-1} \hat{g}(\lambda_{\ell}) \hat{f}(\ell) \chi_{\ell}(i)$$

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

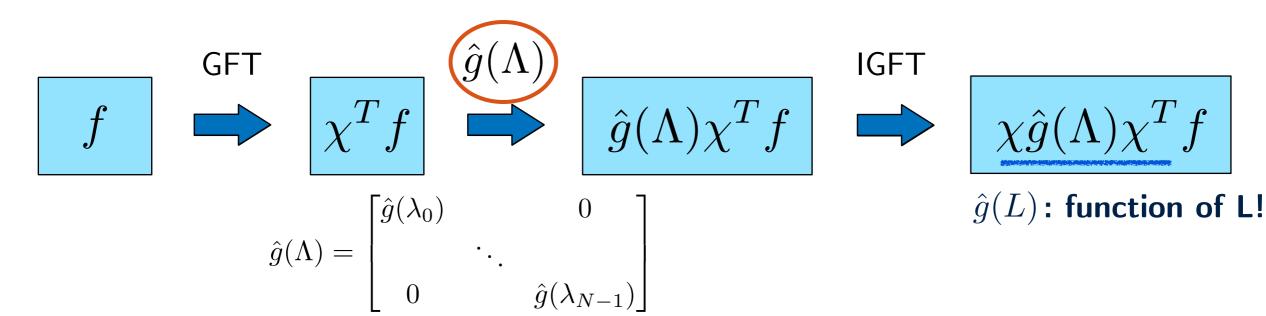


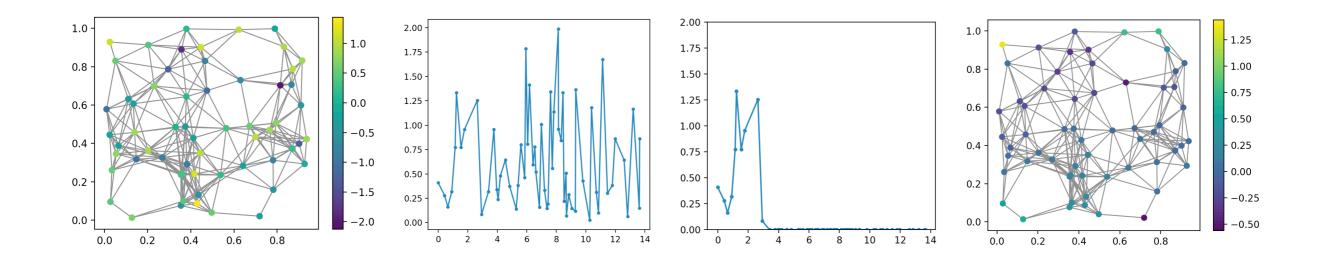
$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

$$f \qquad \qquad \widehat{g}(\Lambda) \qquad \qquad \widehat{g}(\Lambda) \chi^T f \qquad \qquad \widehat{g}(\Lambda) \chi^T f \qquad \qquad \widehat{g}(\Lambda) \chi^T f \qquad \qquad \widehat{g}(L) \colon \text{function of L!}$$

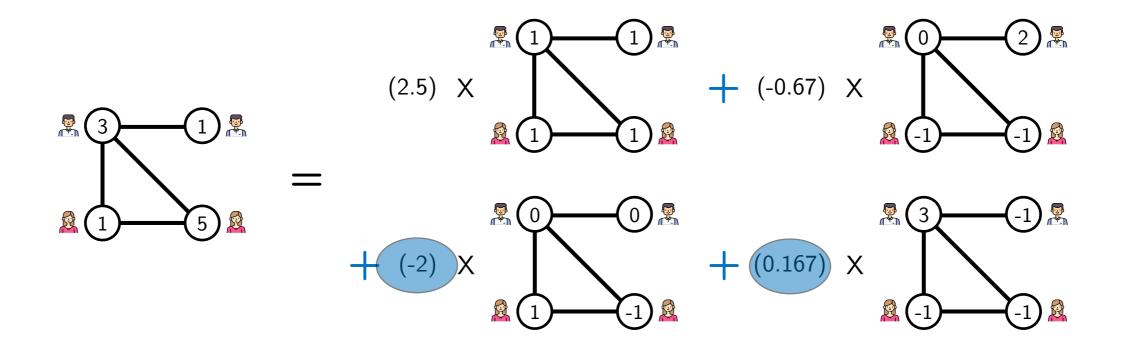
$$\hat{g}(\Lambda) = \begin{bmatrix} \hat{g}(\lambda_0) & 0 \\ \vdots \\ 0 & \hat{g}(\lambda_{N-1}) \end{bmatrix}$$

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

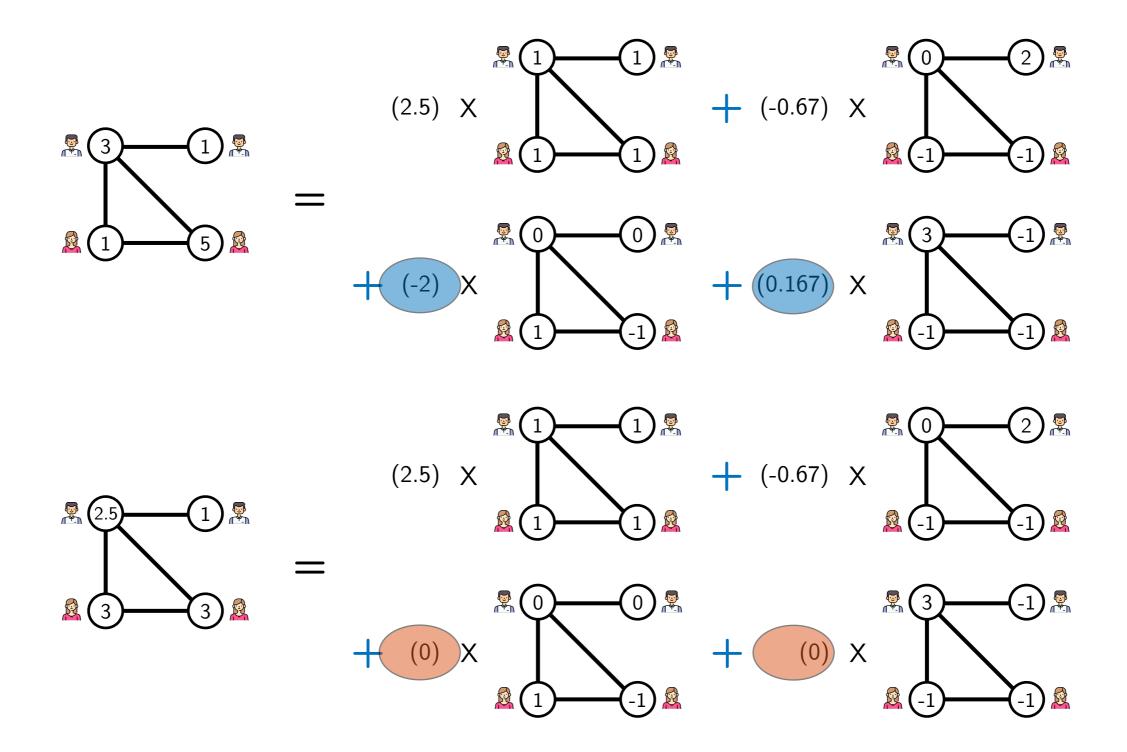




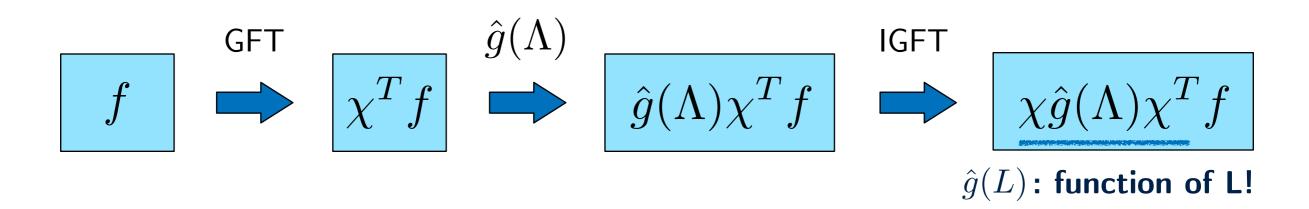
Example on movie rating



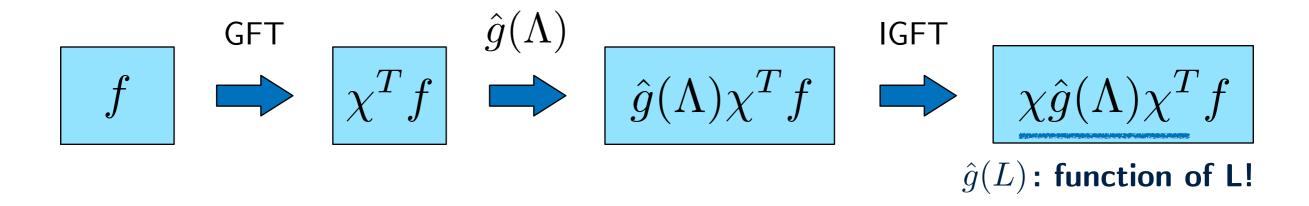
Example on movie rating



Filters can be designed as functions of graph Laplacian



Filters can be designed as functions of graph Laplacian

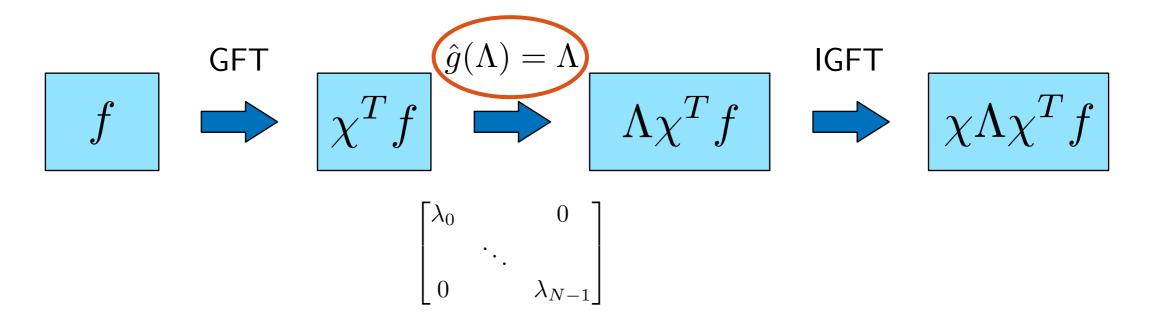


- Important properties can be achieved by properly defining $\hat{g}(L)$, such as localisation of filters
- Closely related to kernels and regularisation on graphs

Graph Laplacian revisited

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

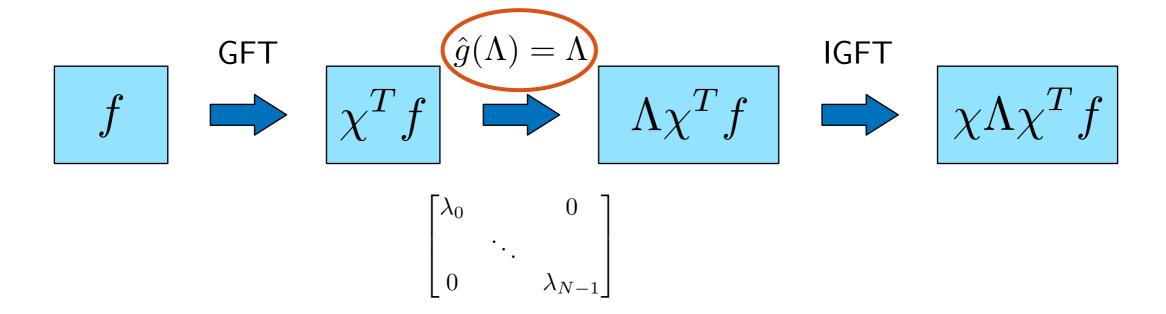
The Laplacian L is a difference operator: $Lf = \chi \Lambda \chi^T f$



Graph Laplacian revisited

$$\mathsf{GFT:} \quad \widehat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \widehat{f}(\ell) \chi_\ell(i)$$

The Laplacian L is a difference operator: $Lf = \chi \Lambda \chi^T f$



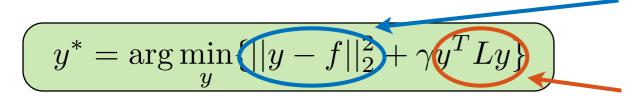
The Laplacian operator filters the signal in the spectral domain with a high-pass filter

The Laplacian quadratic form: $f^T L f = ||L^{\frac{1}{2}} f||_2^2 = ||\chi \Lambda^{\frac{1}{2}} \chi^T f||_2^2$

Problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0

$$y^* = \arg\min_{y} \{ ||y - f||_2^2 + \gamma y^T L y \}$$

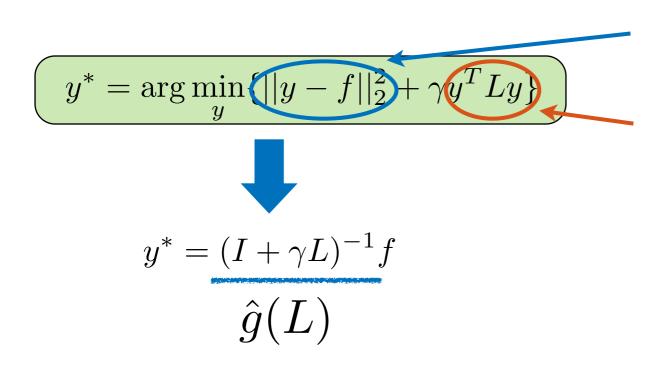
Problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0



data fitting term

"smoothness" assumption

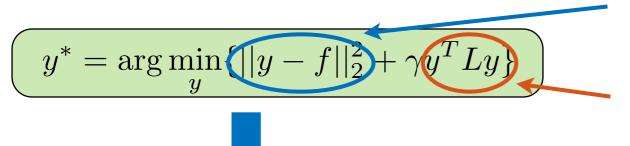
Problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0



data fitting term

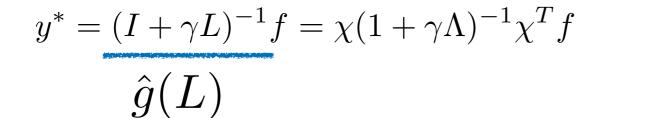
"smoothness" assumption

Problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0



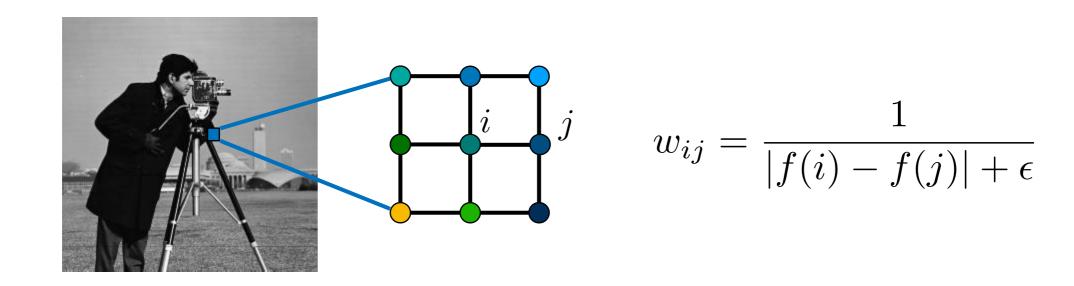
data fitting term

"smoothness" assumption

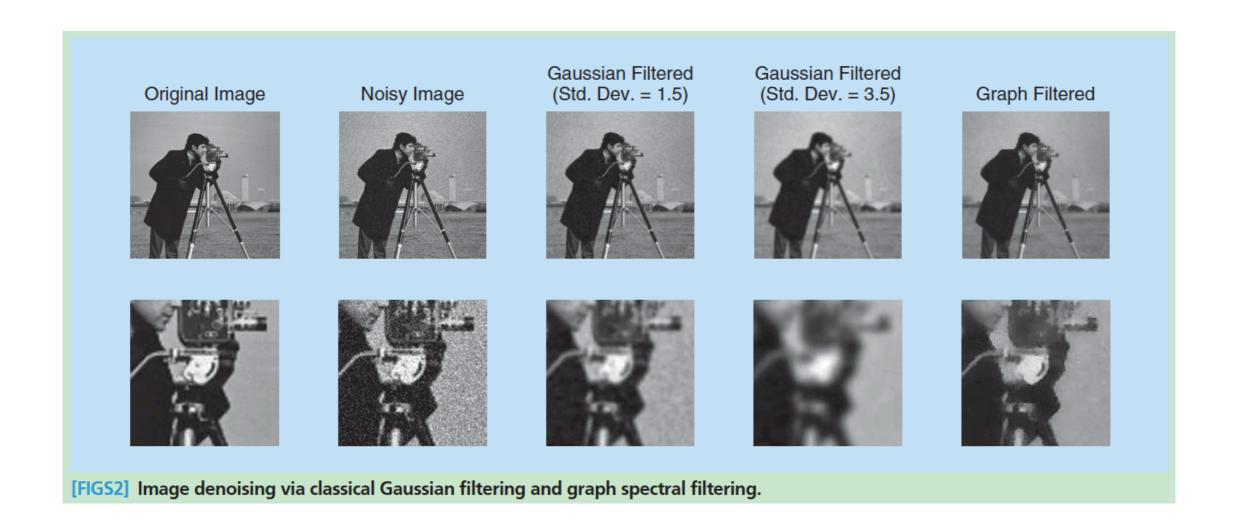


remove noise by low-pass filtering in graph spectral domain!

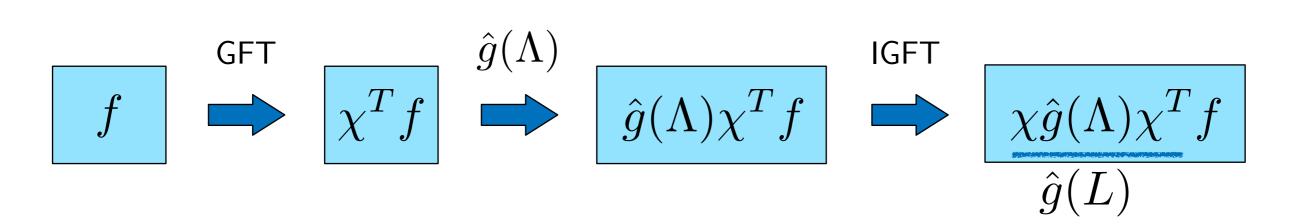
- Noisy image as observed noisy graph signal
- Regular grid graph (weights inversely proportional to pixel difference)



- Noisy image as observed noisy graph signal
- Regular grid graph (weights inversely proportional to pixel difference)



Graph filter design



smoothing/low-pass filtering: $\hat{g}(L) = (I + \gamma L)^{-1} = \chi (I + \gamma \Lambda)^{-1} \chi^T$ windowed kernel: windowed graph Fourier transform shifted and dilated band-pass filters: spectral graph wavelets $\hat{g}(sL)$

pre-defined filters

Graph filter design

smoothing/low-pass filtering: $\hat{g}(L) = (I + \gamma L)^{-1} = \chi (I + \gamma \Lambda)^{-1} \chi^T$

windowed kernel: windowed graph Fourier transform

shifted and dilated band-pass filters: spectral graph wavelets $\hat{g}(sL)$

pre-defined filters

adapted kernels: learn values of $\hat{g}(L)$ directly from data

parametric kernel:
$$\hat{g}(L) = \sum_{k=0}^K \theta_j L^k = \chi(\sum_{k=0}^K \theta_j \Lambda^k) \chi^T$$

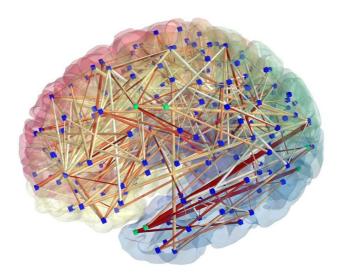
adaptive (learnable) filters

Lecture 2

- Graph signal processing: Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Applications

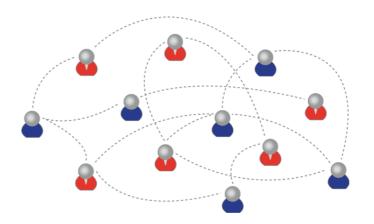
Why representation for graph signals?

image analysis (e.g., denoising, compression)



neuroscience (e.g., brain analysis)

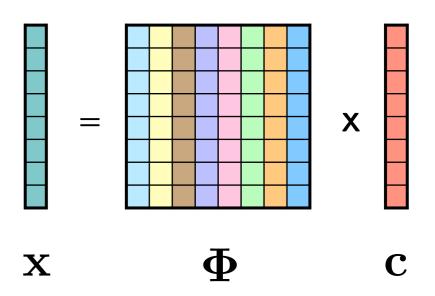
traffic analysis (e.g., mobility, congestion)



social network analysis (e.g., community, recommendation)

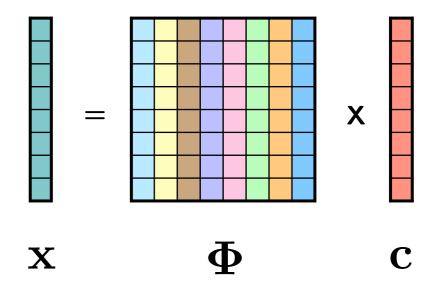
Classical vs Graph dictionaries

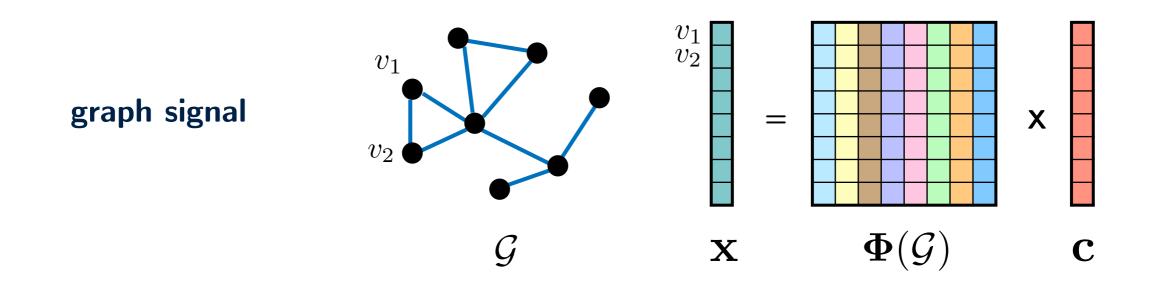
classical signal

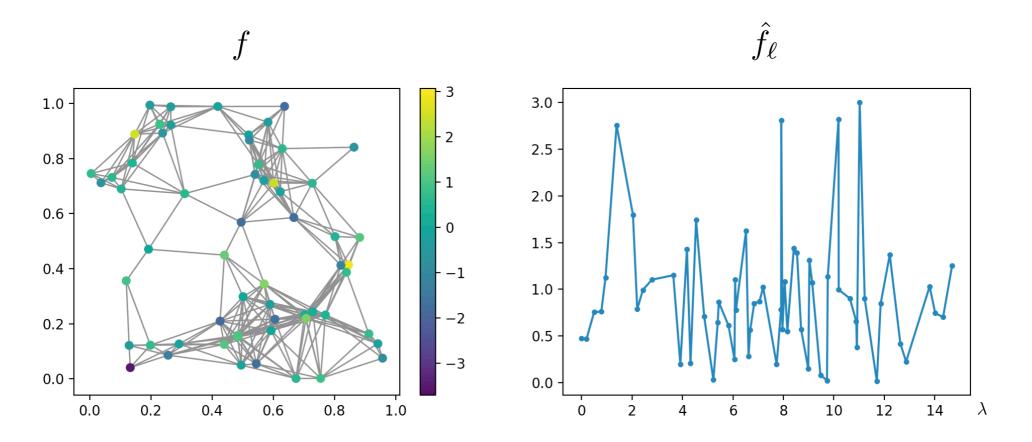


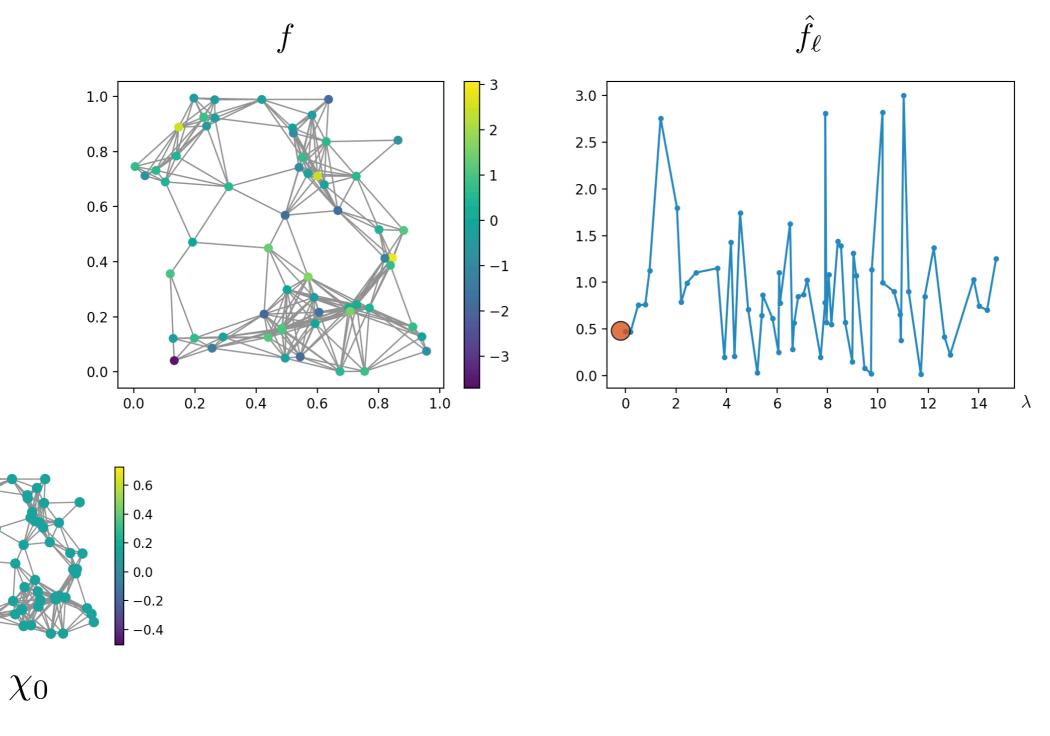
Classical vs Graph dictionaries

classical signal

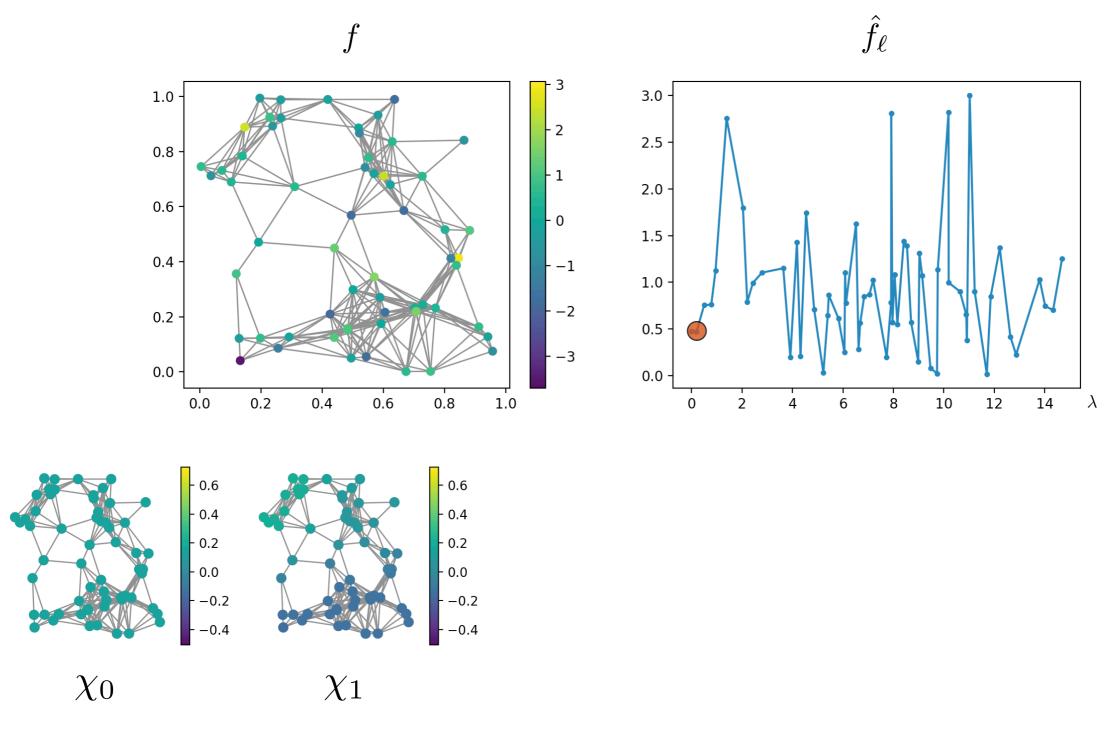




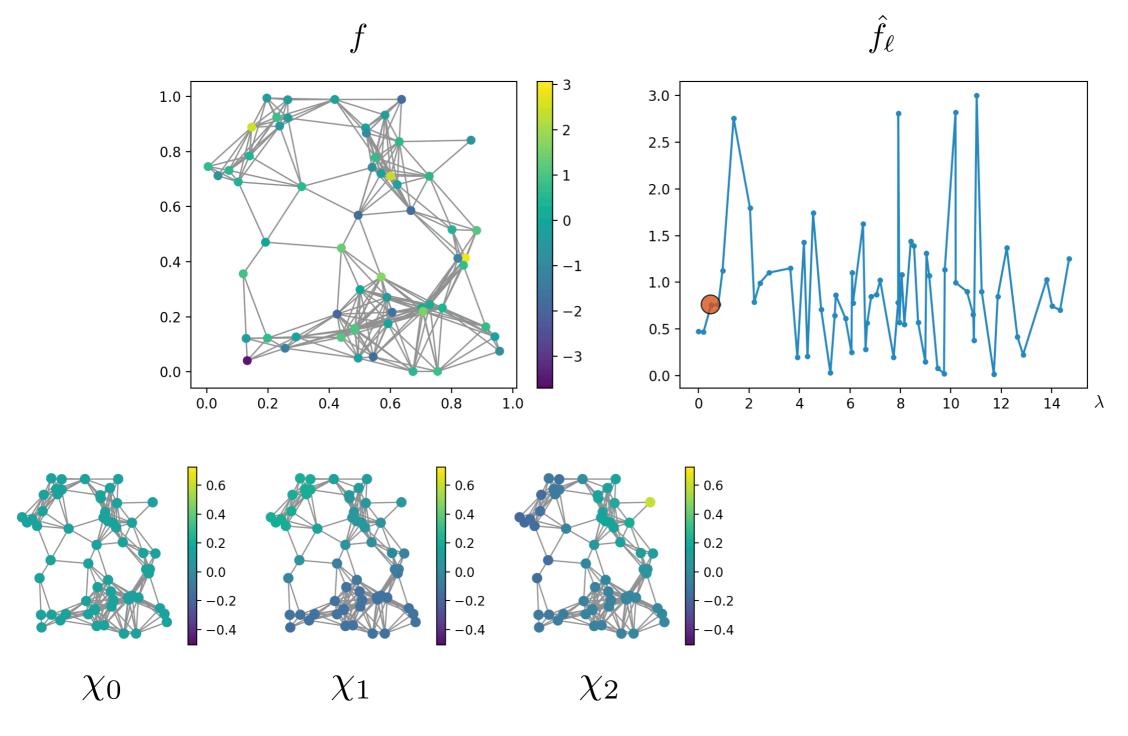




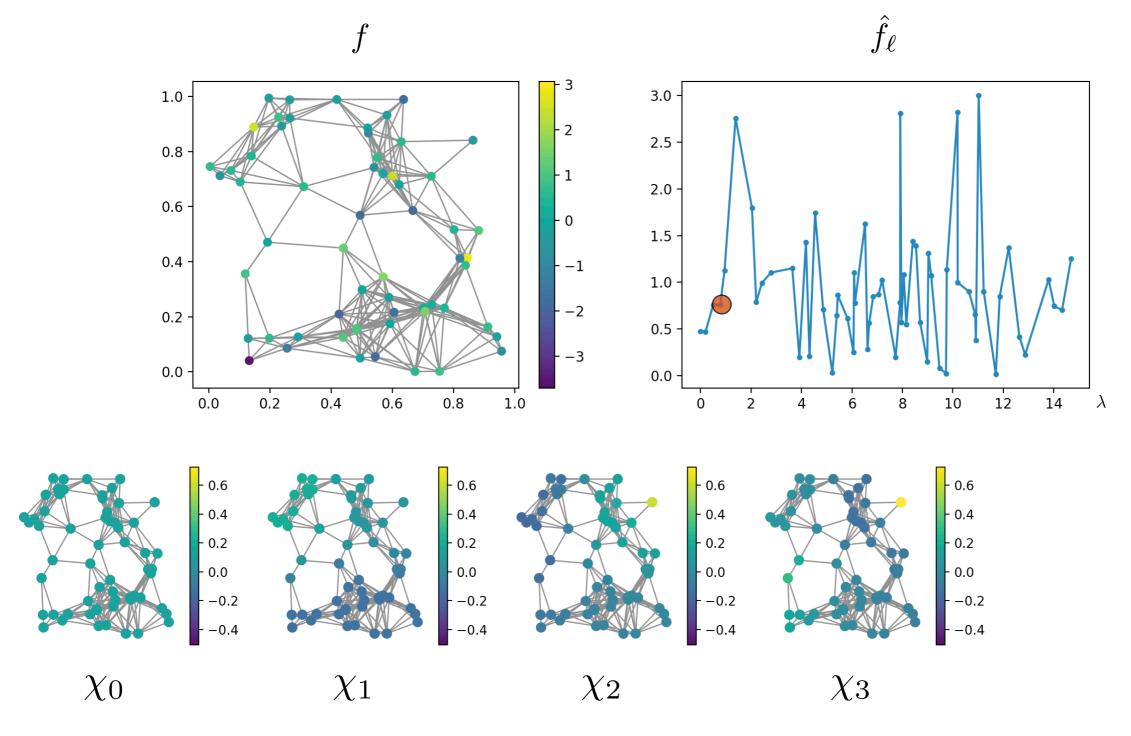
GFT atoms (corresponding to discrete frequencies)



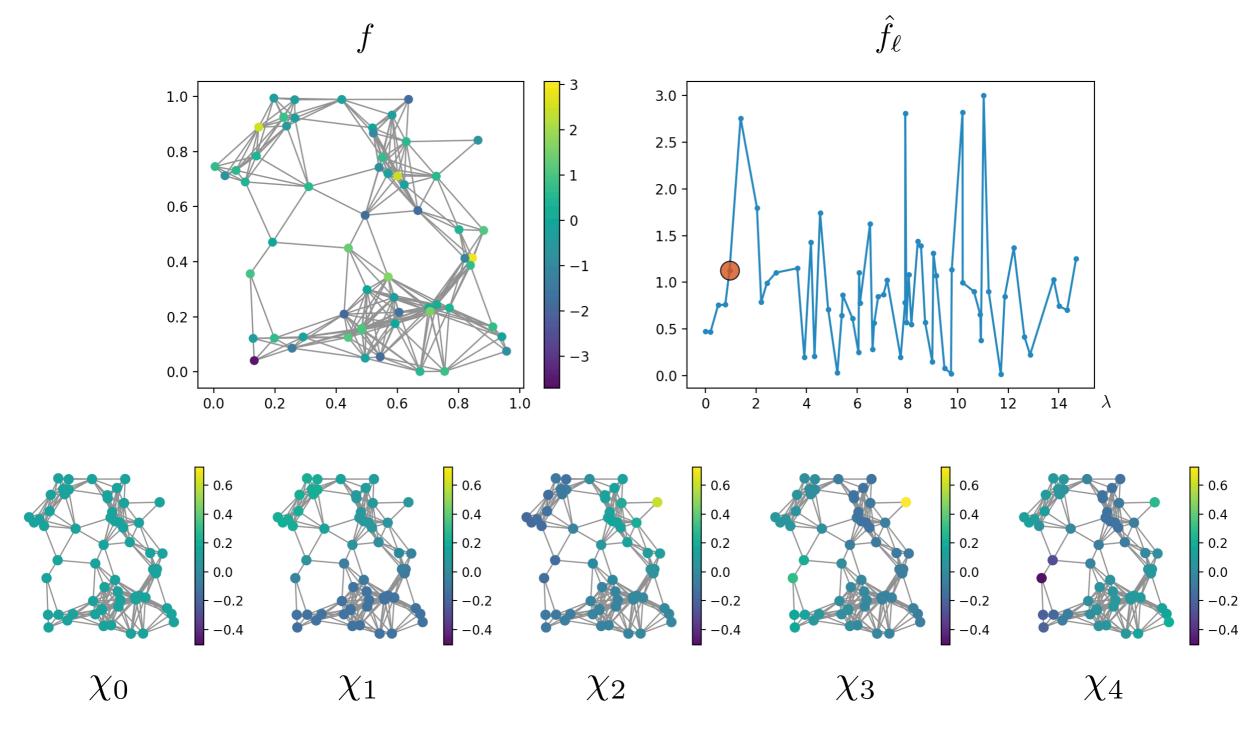
GFT atoms (corresponding to discrete frequencies)



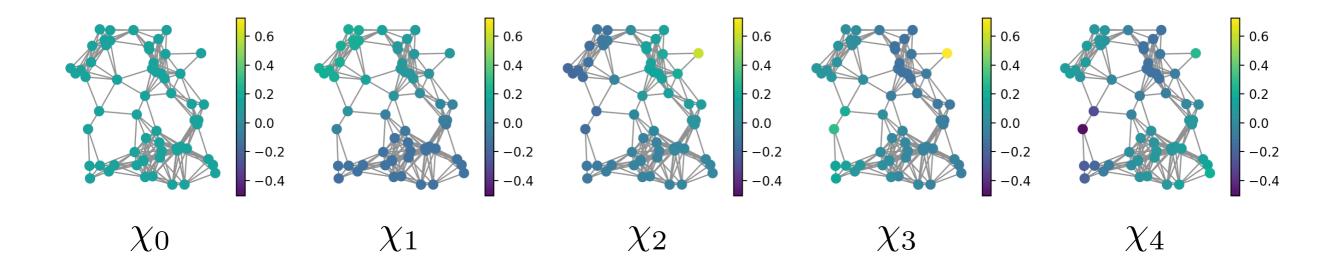
GFT atoms (corresponding to discrete frequencies)

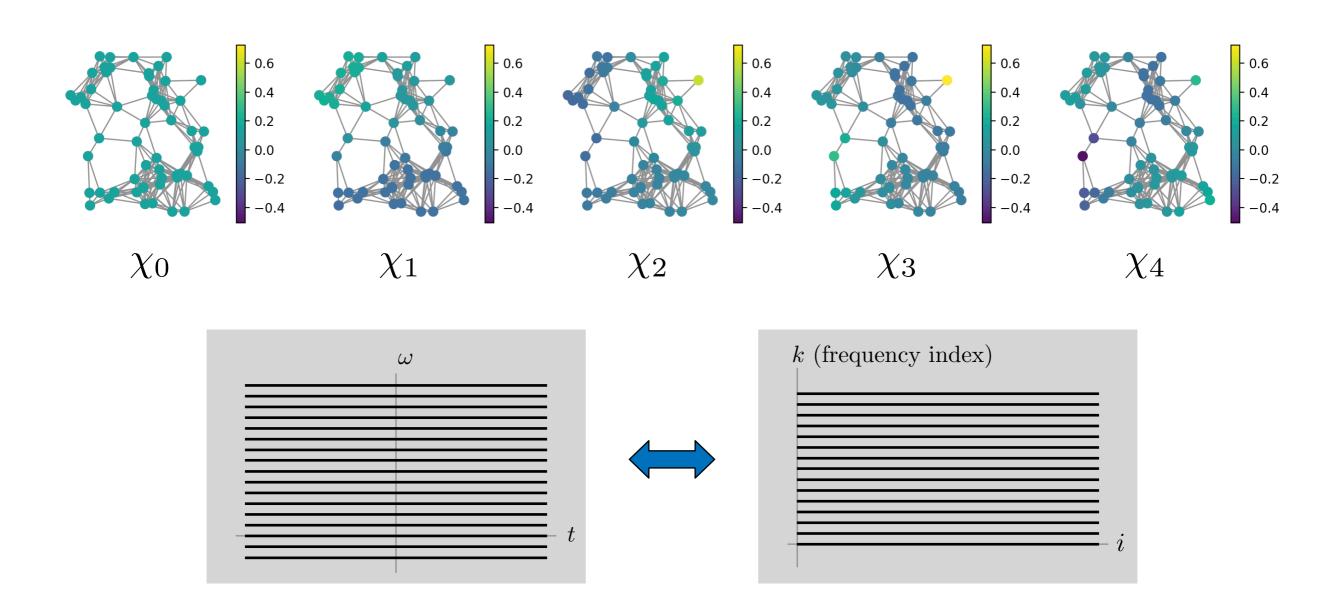


GFT atoms (corresponding to discrete frequencies)

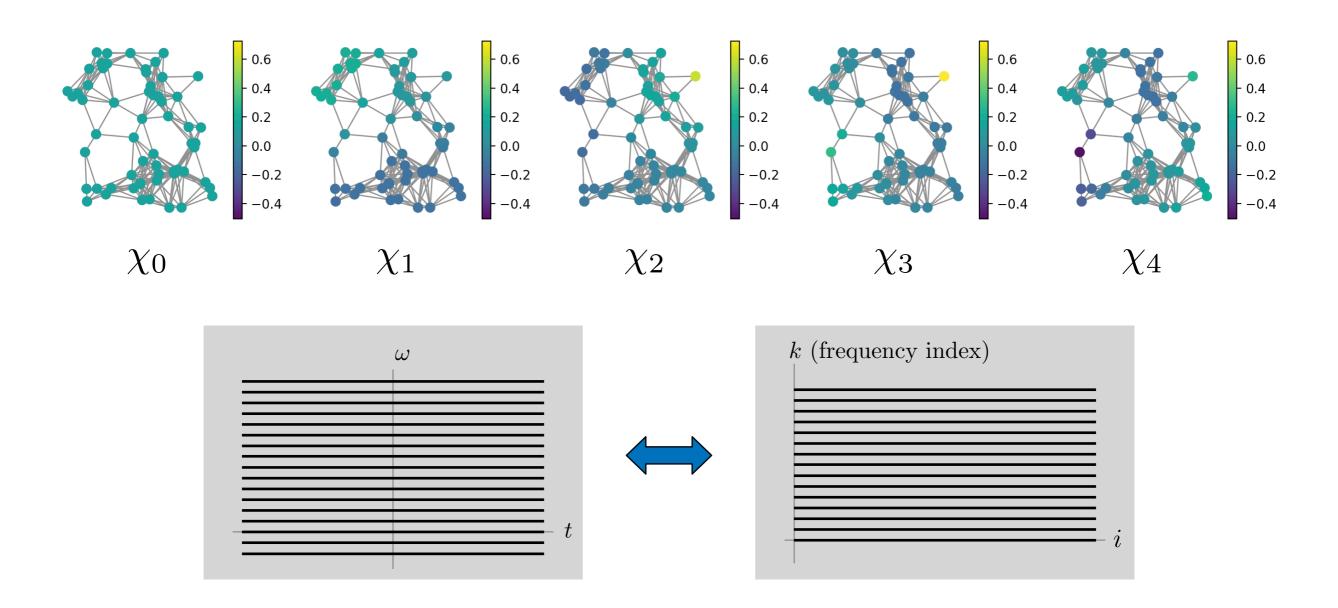


GFT atoms (corresponding to discrete frequencies)





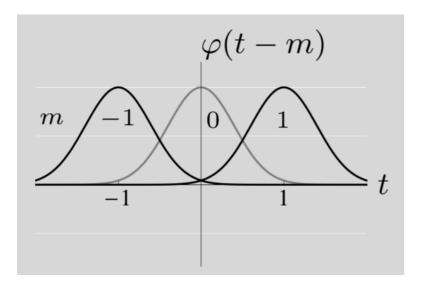
- like complex exponentials in classical FT, eigenvectors in GFT have global support

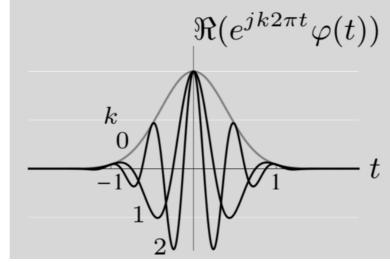


- like complex exponentials in classical FT, eigenvectors in GFT have global support
- can we design localised atoms on graphs?

Basic operations for graph signals

basic operations in Euclidean domain

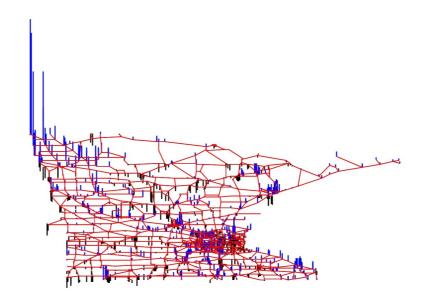




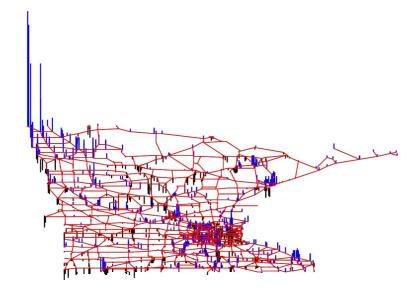


- recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items

Basic operations for graph signals

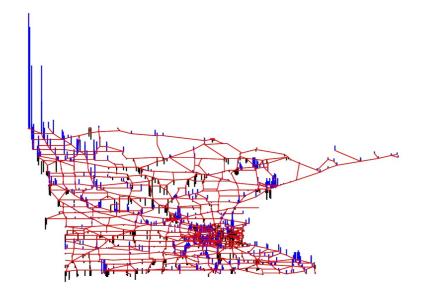


- recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items
- we need to define for graph signals the basic operations: convolution, shift and modulation



classical convolution

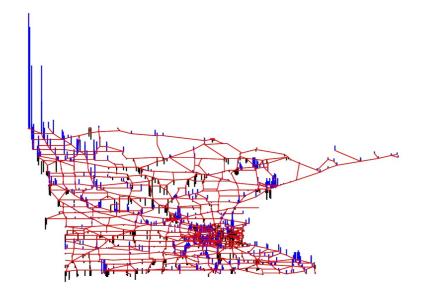
$$(f * g)(t) = \int_{-\infty}^{\infty} \underbrace{f(t - \tau)}g(\tau)d\tau$$



classical convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} \underbrace{f(t - \tau)}g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$



classical convolution

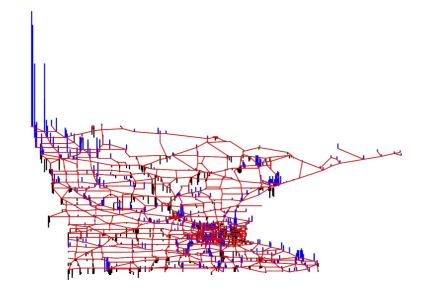
$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

graph convolution

multiplication in graph spectral domain

$$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$



classical convolution

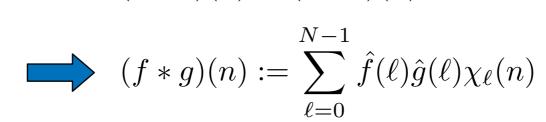
$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

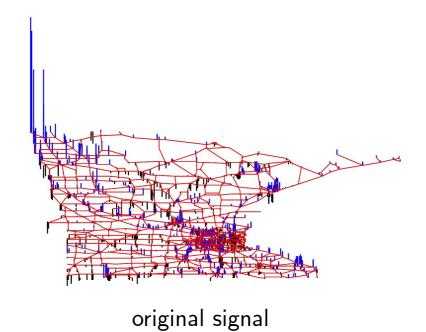
graph convolution

multiplication in graph spectral domain

$$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$



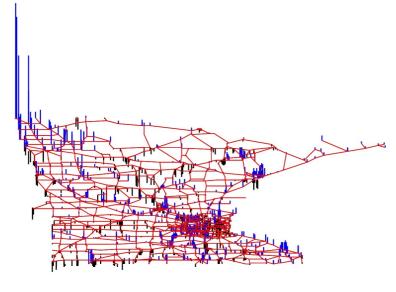
Vertex-domain shift



classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

Vertex-domain shift



original signal

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

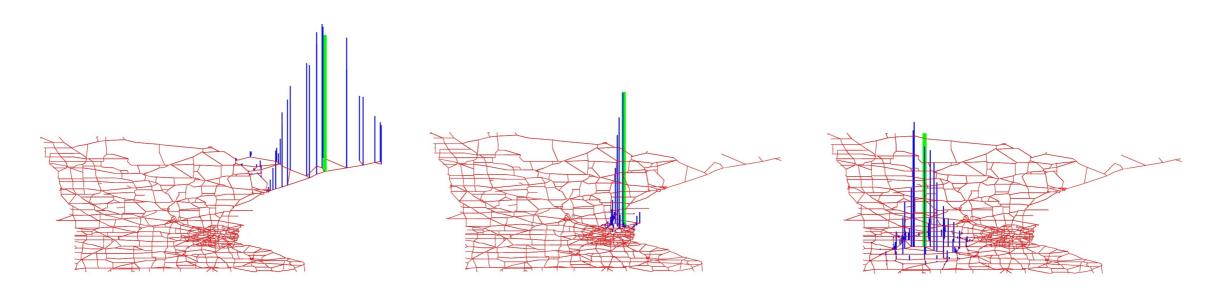
graph shift

convolution with a "delta" on graph

$$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$

$$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

Vertex-domain shift



shifted version of the signal to different centring vertex (in green)

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

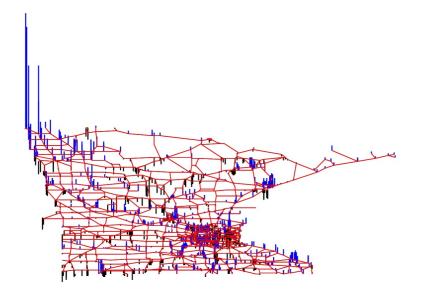
graph shift

convolution with a "delta" on graph

$$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$

$$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

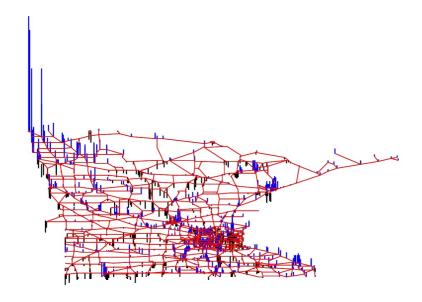
Frequency-domain shift (Modulation)



classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

Frequency-domain shift (Modulation)



classical modulation

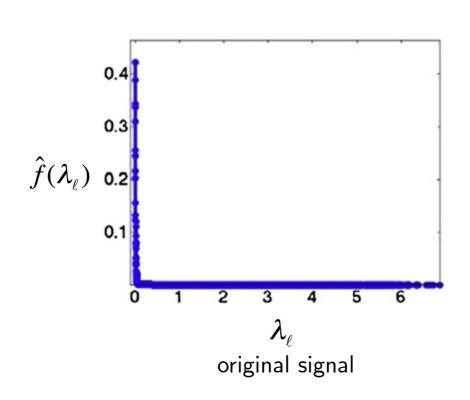
$$(M_{\xi}f)(t) := e^{j2\pi\xi t} f(t)$$

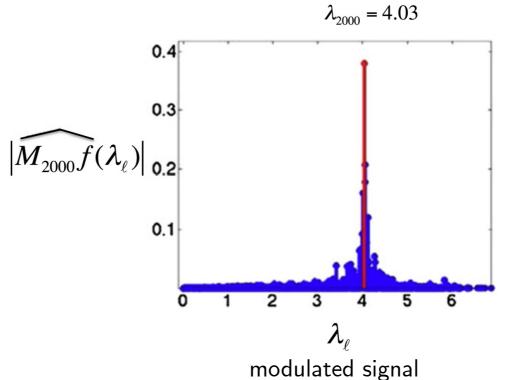
graph modulation

multiply by a graph Laplacian eigenvector

$$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$

Frequency-domain shift (Modulation)





classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

graph modulation

multiply by a graph Laplacian eigenvector

$$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi}T_ug)(t) = e^{j2\pi\xi t}g(t-u)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi}T_u g)(t) = e^{j2\pi\xi t}g(t-u)$$

windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$

windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$

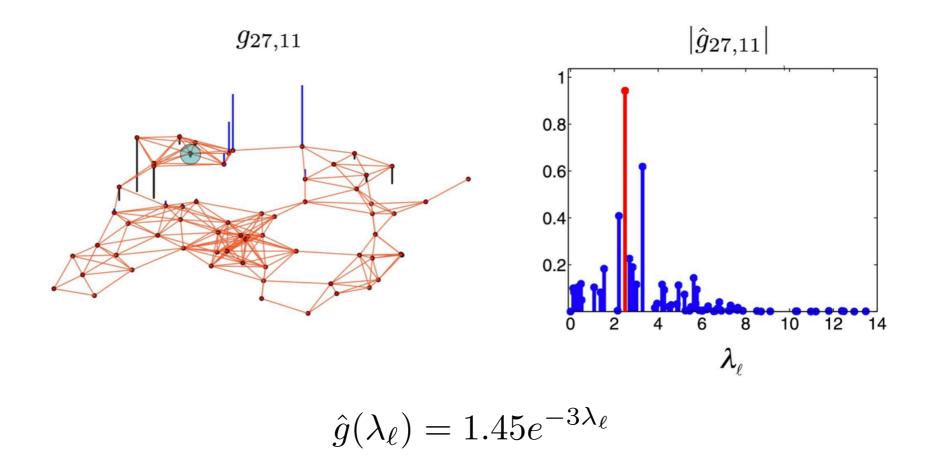
windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

windowed graph Fourier transform

$$Sf(i,k) := \langle f, g_{i,k} \rangle$$



Wavelets on graphs

 With the shift and scaling operators for graph signals we can define a spectral graph wavelet transform (SGWT)

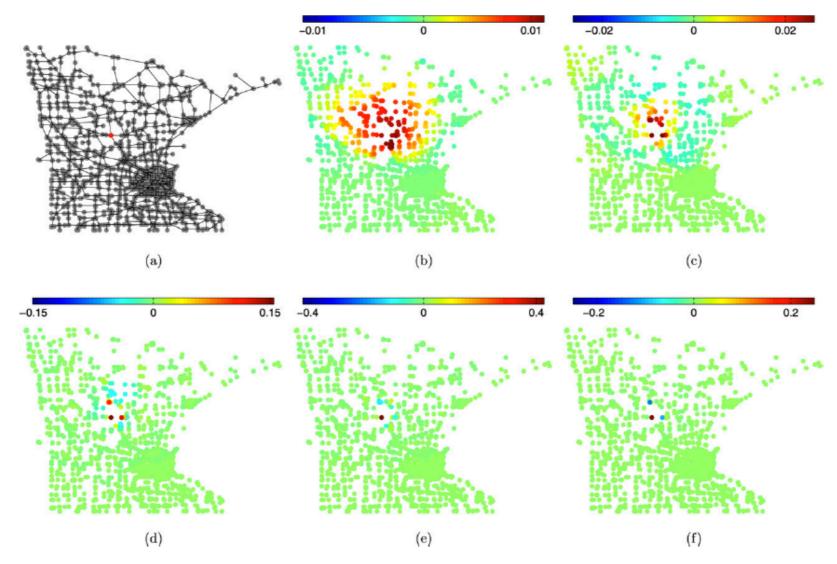


Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)–(f) wavelets, scales 1–4.

Wavelets on graphs

 With the shift and scaling operators for graph signals we can define a spectral graph wavelet transform (SGWT)

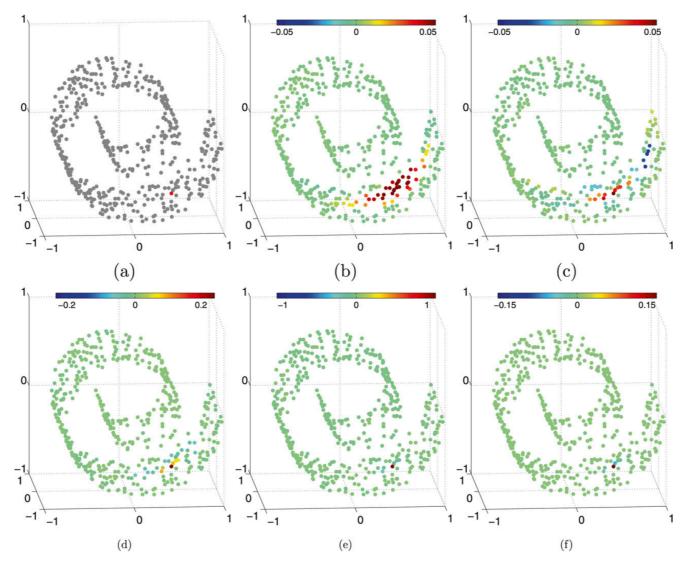


Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J=4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-(f) wavelets scales 1-4

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$= \sum_{\ell=0}^{N-1} \hat{g}(s\lambda_{\ell}) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$= \sum_{\ell=0}^{N-1} \hat{g}(s\lambda_{\ell}) \chi_{\ell}^{*}(i) \chi_{\ell}(n)$$

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

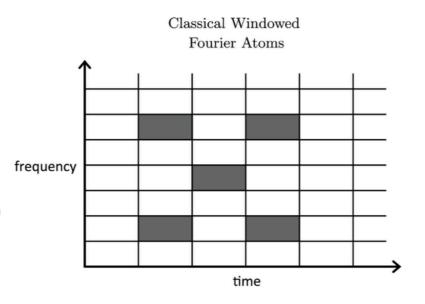
$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

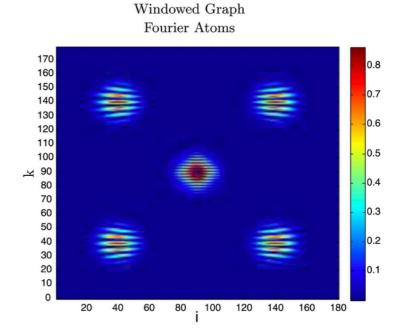
$$=\sum_{\ell=0}^{N-1}\hat{g}(s)(\chi_{\ell}^*(i)\chi_{\ell}(n))$$

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

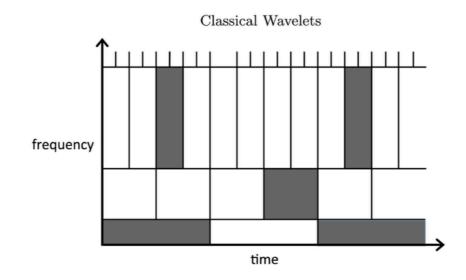
$$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

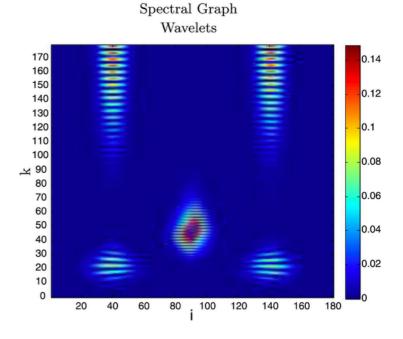


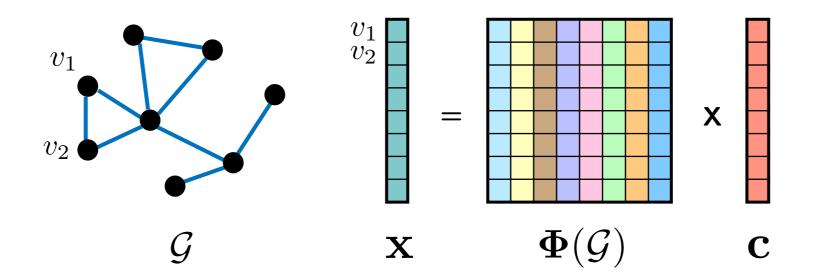


$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$=\sum_{\ell=0}^{N-1}\hat{g}(s)\chi_{\ell}^*(i)\chi_{\ell}(n)$$



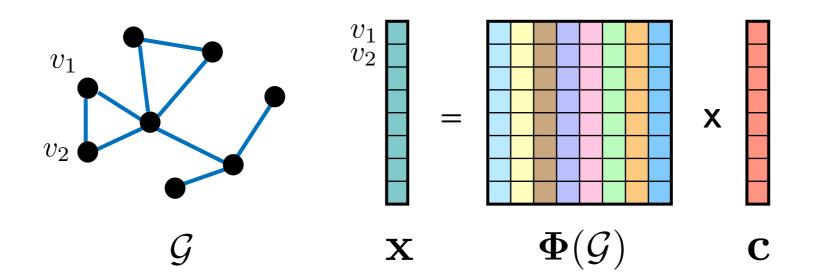




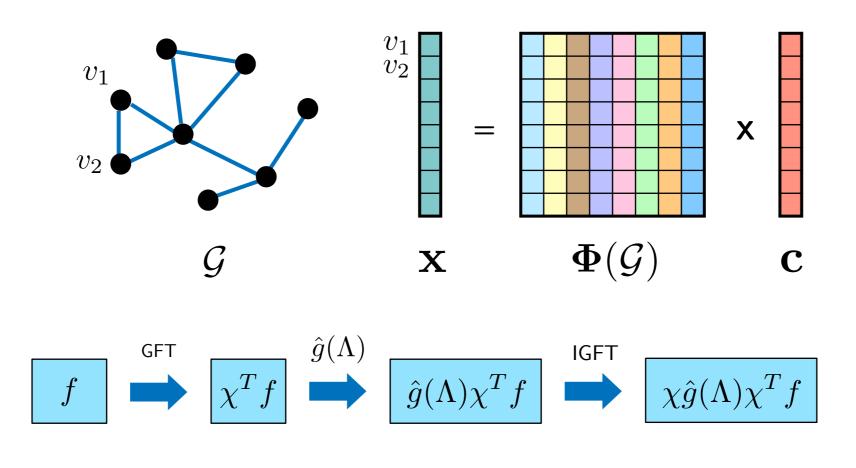
analytical graph dictionaries

 $\mathbf{\Phi}(\mathcal{G})$

examples: GFT, WGFT, SGWT



analytical graph dictionaries	$oldsymbol{\Phi}(\mathcal{G})$	examples: GFT, WGFT, SGWT
trained graph	$\mathbf{\Phi}(\mathcal{G},\mathbf{x})$	dictionary learning on graphs?

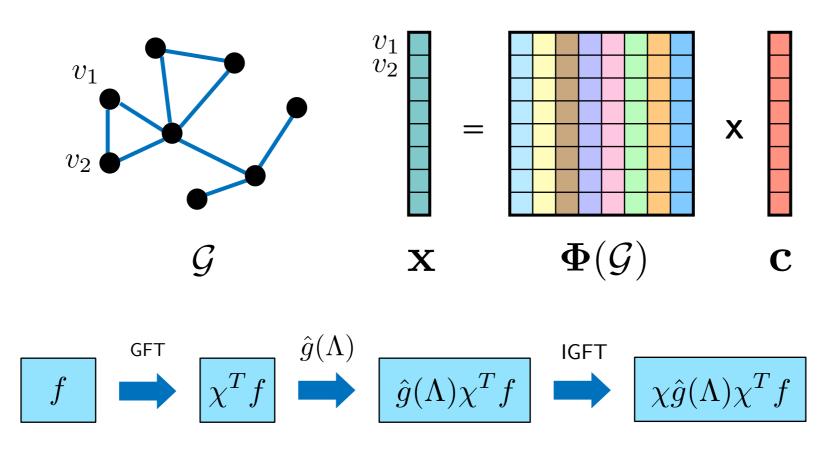


analytical graph dictionaries

$$\mathbf{\Phi}(\mathcal{G}) = \hat{g}(L) = \chi \hat{g}(\Lambda) \chi^{T}$$

trained graph dictionaries

 $\Phi(\mathcal{G}, \mathbf{x})$ dictionary learning on graphs?



analytical graph dictionaries

$$\Phi(\mathcal{G}) = \hat{g}(L) = \chi \hat{g}(\Lambda) \chi^{T}$$

trained graph dictionaries

$$\Phi(\mathcal{G}, \mathbf{x})$$
 learning $\hat{g}(\lambda)$ by adapting to \mathbf{x}

Dictionary learning on graphs

objective:

regularisation

$$\min_{\{\theta_i\}_{i=1}^s \in \mathbb{R}^{K+1}, C \in \mathbb{R}^{NS \times M}} ||X - DC||_F^2 + \underbrace{\mu \sum_{i=1}^s ||\theta_i||_F^2}$$

adaptation to data

subject to $D = [\chi \hat{g}_{\theta_1}(L)\chi^T \ \chi \hat{g}_{\theta_2}(L)\chi^T \ \cdots \ \chi \hat{g}_{\theta_s}(L)\chi^T]$

structured graph dictionaries

 $||c_m||_0 \le T_0 \quad (C = [c_1 \ c_2 \ \cdots c_M])$

sparsity constraint

Dictionary learning on graphs

objective:

regularisation

$$\min_{\{\theta_i\}_{i=1}^s \in \mathbb{R}^{K+1}, C \in \mathbb{R}^{NS \times M}} ||X - DC||_F^2 + \underbrace{\mu \sum_{i=1}^s ||\theta_i||_F^2}$$

adaptation to data

subject to $D = [\chi \hat{g}_{\theta_1}(L)\chi^T \ \chi \hat{g}_{\theta_2}(L)\chi^T \ \cdots \ \chi \hat{g}_{\theta_s}(L)\chi^T]$

structured graph dictionaries

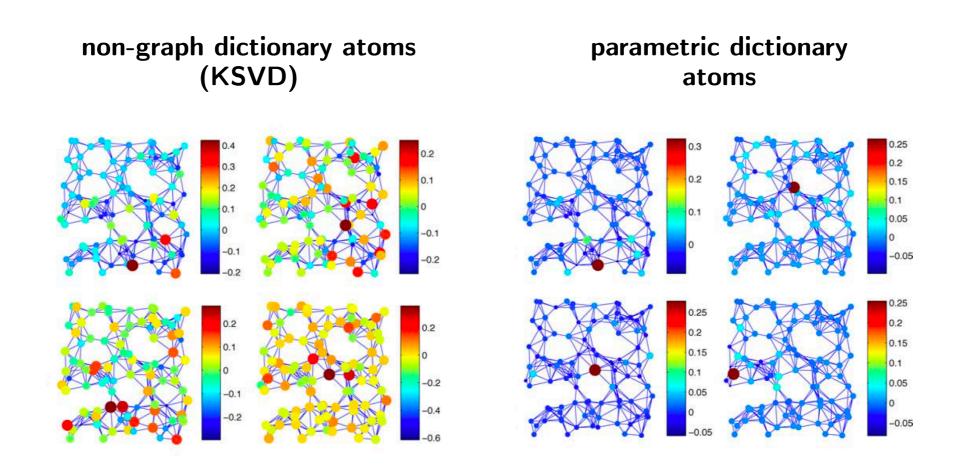
 $||c_m||_0 \le T_0 \quad (C = [c_1 \ c_2 \ \cdots c_M])$

sparsity constraint

solved by iterating between two steps:

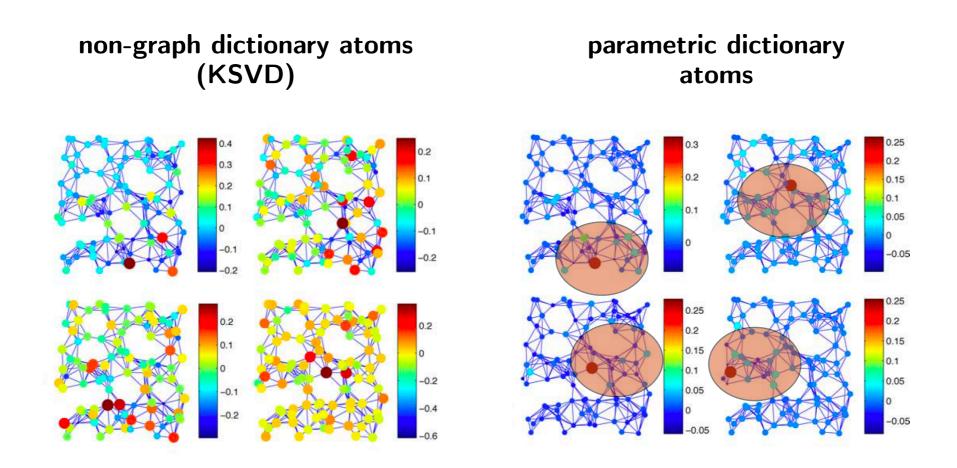
- sparse approximation: fixing D and solve for C
- dictionary update: fixing C and solve for D

Comparison with non-graph dictionaries



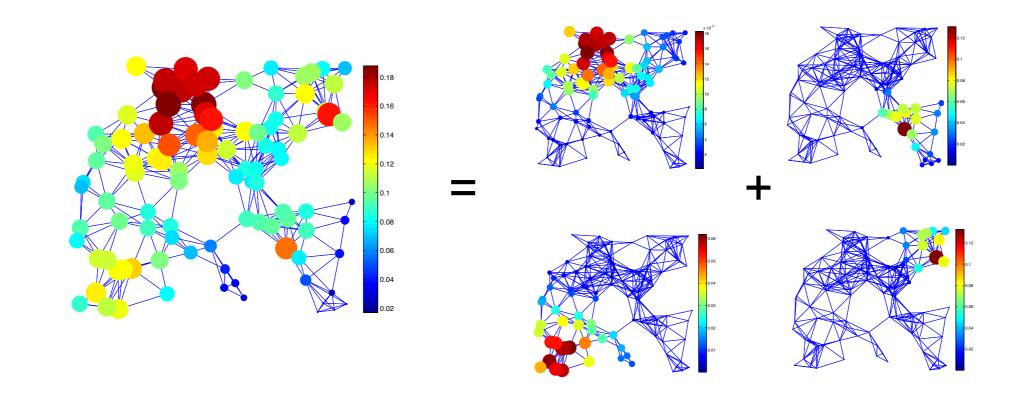
 non-graph dictionary atoms adapt to data but ignore the structure (hence are not localised)

Comparison with non-graph dictionaries



- non-graph dictionary atoms adapt to data but ignore the structure (hence are not localised)
- graph dictionary atoms adapt to data and can also be designed to be localised

Decomposition using parametric dictionary



- the dictionary atoms adapt to localised patterns in different regions of the graph

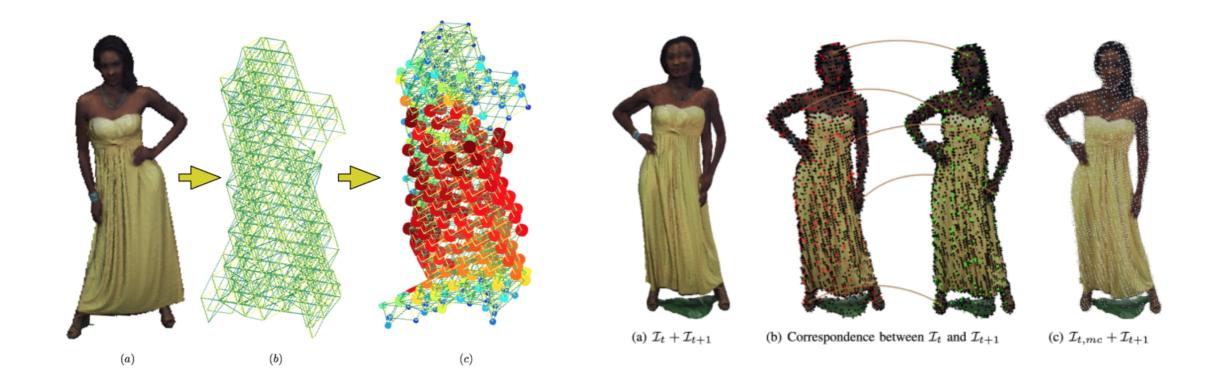
Graph dictionary design - Summary

- Analytical vs trained graph dictionaries
 - mathematical modelling of data on graphs
 - adaptation to data on graphs
- Both approaches focus on design or learning of the kernel function
 - shift, modulation, scaling, learning-based
- This lecture has focused on Laplacian spectrum based designs
 - other possibilities exist (e.g., purely vertex-domain designs)
- Connection with other fields
 - representation learning on graphs (e.g., node embedding)
 - deep learning on graphs

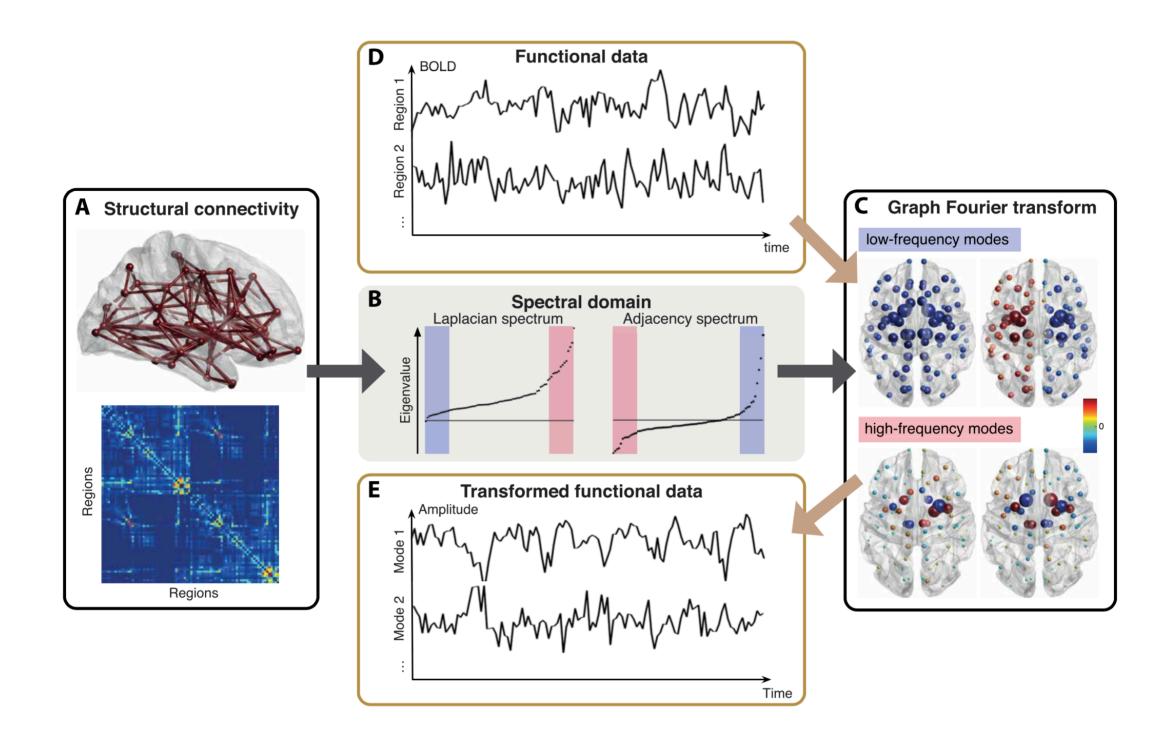
Lecture 2

- Graph signal processing: Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Applications

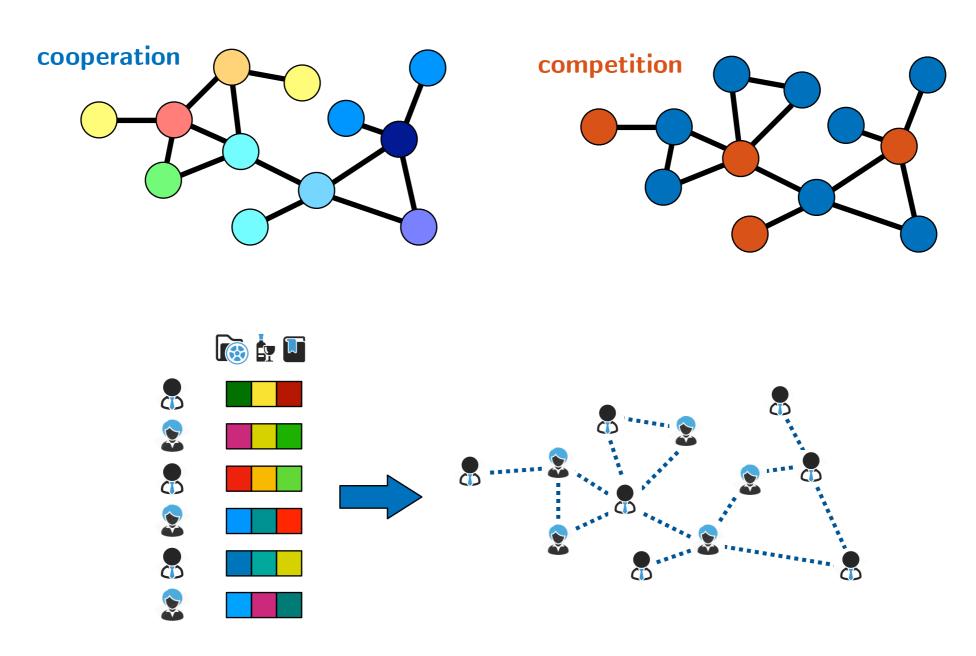
Application I: 3D point cloud analysis



Application II: Neuroscience



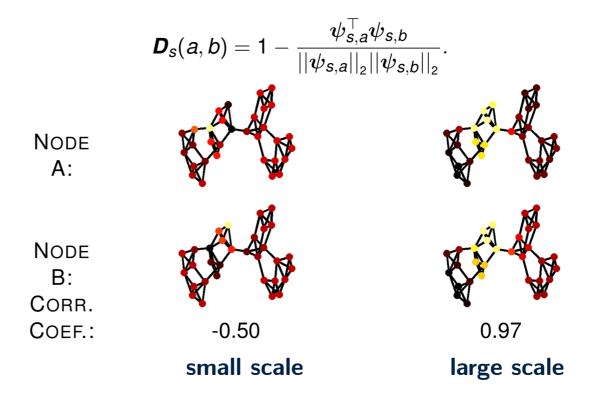
Application III: Inferring strategic relations



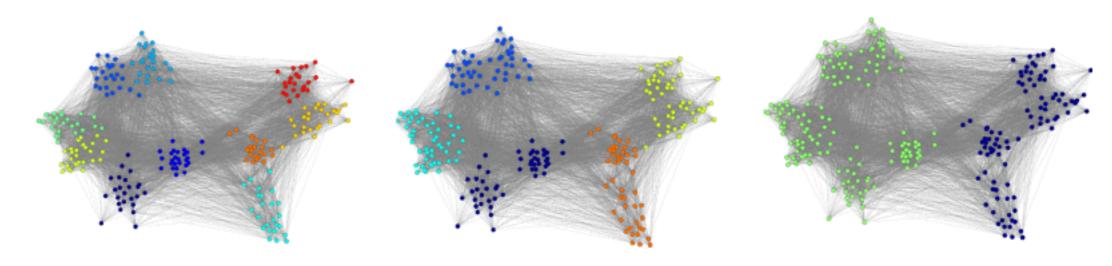
infer strategic relations from equilibrium actions

Application IV: Community detection

spectral graph wavelets at different scales:



multi-scale community detection:



Promising directions in GSP

- Mathematical models for graph signals
 - incorporating underlying physical processes
 - probabilistic modelling on graphs
 - how to handle temporal dynamics?
- Graph construction
 - how to infer graph topology given observed data?
- Implementation issues
 - fast graph Fourier transform
 - distributed processing
- Connection with other fields
 - complex networks and systems
 - deep learning on graphs
 - Bayesian modelling

References

The Emerging Field of Signal Processing on Graphs

Extending high-dimensional data analysis to networks and other irregular domains

Applied and Computational Harmonic Analysis

Vertex-frequency analysis on graphs $^{\dot{\alpha},\dot{\alpha}\dot{\alpha}}$

David I Shuman ^{a,*}, Benjamin Ricaud ^b, Pierre Vandergheynst ^{b,1}

Graph Signal Processing: Overview, Challenges, and Applications

This article presents methods to process data associated to graphs (graph signals) extending techniques (transforms, sampling, and others) that are used for conventional signals.

By Antonio Ortega[©], Fellow IEEE, Pascal Prossaed, Fellow IEEE, Jelena Kovačević, Fellow IEEE, José M. F. Moura[©], Fellow IEEE, and Pierre Vanderohetmst

Xiaowen Dong, Dorina Thanou, Laura Toni Michael Bronstein, and Pascal Frossard

Graph Signal Processing for Machine Learning

A review and new perspectives

Graph Signal Processing

History, development, impact, and outlook

Graph Filters for Signal Processing and Machine Learning on Graphs