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Introduction to
Graphs Signal Processing
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Networks are pervasive

geographical network

a~a '\
1 \

social network brain network

graphs provide mathematical representation of networks
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Network science

community
detection

network
centrality

Regular Small-world

random graph
models

Increasing randomness

Watts and Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, 1998.
Newman, “Networks: An introduction,” Oxford University Press, 2010. 4/58



Network science

community
detection

network
centrality

Regular Small-world

random graph
models

Increasing randomness

from edge attributes to node attributes
from graphs to graph-structured data

Watts and Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, 1998.
Newman, “Networks: An introduction,” Oxford University Press, 2010. 4/58



Graph-structured data are pervasive

e nodes
- geographical regions
e edges
- geographical proximity between
regions
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Graph-structured data are pervasive

e nodes
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between

| OO~

bodLUbbbbbl

regions

e signal
- temperature records in these

regions
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Graph-structured data are pervasive

e nodes
- road junctions

e edges
- road connections
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Graph-structured data are pervasive

| | e nodes
e edges
- road connections

-----

: e signal
N ey - traffic congestion at junctions
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Graph-structured data are pervasive

- e nodes
ﬂ%\l \ - individuals
ﬁ!h/l\\ y4 l/n% e edges
‘Il/ \l/\\ - friendship between individuals
2~ hed
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Graph-structured data are pervasive

o] _J -u- e nodes
v o \ \ . _ individuals
5 /\\ y4 Eﬁ/ﬁiﬁﬂ e edges
\ /\ / \ - friendship between individuals
ﬁiﬂ» /\ . e signal
(i oo - political view
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Graph-structured data are pervasive

e nodes
- brain regions

o edges
- structural connectivity between
brain regions

Richiardi et al., “Machine learning with brain graphs,” IEEE SPM, 2013. 8/58



Graph-structured data are pervasive

e nodes
- brain regions

e edges

[ C/MWMWW - structural connectivity between

brain regions

e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., "Machine learning with brain graphs,” IEEE SPM, 2013. 8/58



Graph-structured data are pervasive

cien
sl N VoD wcnw.
- o S e nodes
e@ia@@e Y o o - com pa n IeS
e w@wﬁﬁ.O./O ® * edges
*ee 0T 9 % » - co-occurrence of companies in

financial news

Wan et al., “Sentiment correlation in financial news networks and associated market movements,” Scientific Reports, 2021. 9/58



Graph-structured data are pervasive

E@B
‘@ NE vop =
o B e e nodes
GA@@ERQ%” g , Vad .
PO R e - companies
O aa W 2 ® cdges
® o«® 0 - co-occurrence of companies in
& o , ; financial news
@ i .
& @ .0 ® .... 1.. : e signal
g ® 0’.1‘?’"' - stock prices of these
LoeT g mpani
o ® ¢ ., companies
e s

Wan et al., “Sentiment correlation in financial news networks and associated market movements,” Scientific Reports, 2021. 9/58



Graph-structured data are pervasive

e nodes
- pixels

e edges
- spatial proximity between pixels

e signal

- pixel values
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Graph signal processing

e Graph-structured data can be represented by graph signals

= {V,¢} RY f:V—R

a2 -

takes into account both structure (edges) and data

(values at nodes)
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Graph signal processing

1D signal 2D signal f )Y —- R

how to generalise classical signal processing tools on
irregular domains such as graphs?
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| ecture 2

Graph signal processing: Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Applications
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Graph signal processing

e Main GSP approaches can be categorised into two families:
- vertex (spatial) domain designs

- frequency (graph spectral) domain designs
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Graph signal processing

e Main GSP approaches can be categorised into two families:

- vertex (spatial) domain designs

frequency (graph spectral) domain designs " ¥
) signal analysis
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Graph signal processing

Main GSP approaches can be categorised into two families:

vertex (spatial) domain designs

important for

- [frequency (graph spectral) domain designs]

signal analysis

e C(lassical Fourier transform provides frequency domain representation of
signals

TSN g0 - building blocks” of signal

\JA\IA\[[\V[\VA\/[’W AA;' - different frequency (oscillation)
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Graph signal processing

Main GSP approaches can be categorised into two families:

vertex (spatial) domain designs

important for

- (frequency (graph spectral) domain designsj

signal analysis

e C(lassical Fourier transform provides frequency domain representation of
signals

TSN g0 - building blocks” of signal

\]/\VA\[[\V/\VA\/[‘W AA;' - different frequency (oscillation)

e What about a notion of frequency for graph signals?

13/58



Graph Laplacian

weighted and undirected graph:

o G={V,¢&}

Ug
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Graph Laplacian
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Graph Laplacian
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Graph Laplacian
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Graph Laplacian

weighted and undirected graph:

g = {Vv 5}

D = diag(d(vy), -+ ,d(vn))
L=D—-—W equivalent to W!
Lyorm = D~ 2(D — W)D™ 2

000000 01000000 1 -1 0 0 0 0 0 0 :
000000 /10100100\ (—1 3 -1 0 0 -1 0 0\ e symmetric

400000 01010110 0 -1 4 -1 0 -1 -1 0

00200 00) 400101000} 10 0 -1 2 -10 0 0 o off-diagonal entries non-positive
002000 00010100 0 0 0 -1 2 -1 0 0

000400 01101010 0 -1 -1 0 -1 4 -1 0

000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
0000001 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)

3
=
~
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Graph Laplacian

Why graph Laplacian?
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Graph Laplacian

Why graph Laplacian?

- provides an approximation of the Laplace operator

(L)) = (4f() — fG1) — fG2) — f(Us) — f(Ga))/(6)?

standard 5-point stencil for approximating —V?f
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Graph Laplacian

Why graph Laplacian?

- provides an approximation of the Laplace operator

(L)) = (4f() — fG1) — fG2) — f(Us) — f(Ga))/(6)?

standard 5-point stencil for approximating —V?f

- converges to the Laplace-Beltrami operator (given certain conditions)

- provides a notion of “frequency’ on graphs

15/58



Graph Laplacian

graph signal f: )V — R

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/58



Graph Laplacian

graph signal f: )V — R

0 -1 -1 0 -1 4 -1 (6
0 0 -1 0 0 -1 1| | F(7
\o 0 0 0 0 0 -1 1) \f(s/

Lf(i) = Z Wi; (f (@) — £(5))

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/58



Graph Laplacian

graph signal f : ) — R

1 -1 0 0 0 0 0 O £(1) £(1) T/1 10 0 0 0 0 o0 £(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(Q)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 0 f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) £(5) 0 0 0 -1 2 -1 0 O F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 £(6)
o 0 -1 0 o -1 3 —1|/{re £(7) o 0 -1 0 0 -1 3 —1|{sm
\o 0 0 0 0 o 1 1) \f®) \/®)) \o 0 0o 0o o o -1 1) \ss)
N 1 N
_ T _ 2
L) = " Wi () = £(7) FILf =5 3 Wy (fG) = £(3))
J=1 i,j=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/58



Graph Laplacian
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = xyAx"

- X(?_-

T
Xy — -

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < Ay < ... < An_1
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Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



Graph Fourier transform

e AN s
(=
e
LN M2

\'SA\VAVi S
“{.V}YA, P>
< U

0
p,

X50
low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

e Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/58



raph Fourier transform
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X50
low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

graph Fourier transform:

FOO ={xe,f): [ Xo - Xai| f

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/58



raph Fourier transform

ra— =
\ =
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graph Fourier transform:
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/58



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e’/“"

Classical FT:

_ / (&%) f(x)da

fla)= o / F(w)e™= duw
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF
A N

Classical FT:  f(w) = / (&%) f(x)da Graph FT: f(£) = (x¢. f) = ZXZ(i)f(i)

fo) = 5 [ Fper o 1) = Y FOx
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF

Classical FT: f(w) = Ilteij)*uf(iﬁ)‘dﬂf ; Graph FT: f(f) = (X0, f) = Z XZ(@“f(Z)

1=1

N—-1

fo) = 5 [ Fper o fiy =Y o

=

20/58



Graph Fourier transform: Special case 1

e oo oo oo

m (Unordered) Laplacian eigenvalues: Ay =2 — 2 cos (2‘%)

m One possible choice of orthogonal Laplacian eigenvectors:

— 2mj
Xe = [1,we,w2£, - ,w(N 1)6] , Where w = e N
| |
B | xo --- xn_1 | isthe Discrete Fourier Transform (DFT) matrix
| |

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011.
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Graph Fourier transform: Special case 2

¥l )\g:2—2cos(%) 67 xo(i) = \/— XE()—\/7COS(M(';O'5)), r=1,2,...,.N—1

Eigenvector 0

X s . - - - s -

03 2 3 4 5 6 7 8
s Eigenvector 1

05 1 1 I t ‘.%—!

1 2 3 4

Eigenvector 2

0. —m - o

H— —r—-.—_ |

035 2 3 - ! 7 8

Eigenvector 3

6
e S o a— S
03, 2 0 5 o ;

Eigenvector 4

Eigenvector 5

?\ ,/'\-:gemecm;./_'\-
Eigenvector 7

-o:§\ /_’\1/’\! 4/!—'—\!

2 3 5 7 8

is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011. 22/58



Example on a generic graph

GFT: | 1

A

FOO) ={xe, f): [Xo 0 Xya| [

: . sensor
elgenveCtor Uy e|genveCtor Uz o G.N=60 nodes, G.Ne=302 edges
’ 2.0
0.6
15
0.8 - 2.0 1
0.4 10
0.2 0.6 - 05 1.5 4
0.0
0.0 0.4 - Lo \1\
—0.2 -0.5
0.2 -1.0 0.5
-0.4 s
-0.6 0.0 1 —2.0 0.0 4
00 02 04 06 08 10 0 2 4 6 8 10 12
sensor
1.0
0-6 0.1 0.6 4
0.4 > 00 054
0.2 06 1 -1 044
0.0 -0.2 0.3 1
0.4 -
-0.2 -0.3 0.2 1
0.2 -
-0.4 —-0.4 0.1 A
-0.6 00 05 00 ' A AN A aa A
00 02 04 06 08 10 0 2 4 6 8 0 12
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Example on movie rating

O amOL 2—@-A
(2.75) X k +X k
SO amOL K D& r D4
MO0 amOL
-+ (0.5) X k —+ (-0.083) X k
4 @) D) &
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Example on movie rating

LA 20—~
e IN @ [N
S 2O—0= O OF
eke 2@Q—O= 2G—00=
-+ (0.5) X k —+ (-0.083) X k
Hosmof 2 @O—D2
2.(1) (1) 8
AO—U

2.(0) (2) 2.
(2.5) X k -+ (-0.67) X k
2—Wea r a(—D=e
IO mOL
@x k -+ (0.167) X k
aO—0a a@O—0a

Q'
(<)
|
‘o
(<)
()
‘o
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| ecture 2

Graph signal processing: Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Applications
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Classical frequency filtering

Classical FT:  f(w) :/(ej“"’)*f(x)dx f(z) = %/f’(w)ejmdw
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Classical frequency filtering

Classical FT:

fw)

FT

=)

[y t@de f@) =5 [ fued

]ﬁ

(W)

g(w)

=)

(@) f(w)

IFT

=)

f*g

26/58



Classical frequency filtering

Classical FT:

f = [y e f@) =5 [ Feera

FT

=)

f(w)

=)

A

g(w)f(w)

I

Low-pass w

Y| IS =N

IFT

=)

f*g
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Graph spectral filtering

GFT: F(0) = (xe, f) = ng i)y =3 F(0)xei)
=0
GFT G(Ae) IGFT _
f ol mp | fo) m | g\)fE) = 0= i
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Graph spectral filtering

........
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Graph spectral filtering

X' f

[9(Mo)

il N

X9 f

R N R R R R RS

g(L): function of L!
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Graph spectral filtering

N-—-1

GFT: f(€)=<x£,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

¢=0

GFT @ IGFT

fo| = T gA)X" f | = xg(A)x f

[G(Mo) 0 ] g(L): function of L!

2.00 A 2.00 1.0

1.01

1.25
1.0 1.75— 1.75 4
Py | 1.00
0.8 05 1504 1.50 0.8
0.75
0.6 0.0 1.254 1.25 1 064
1.00 4 1.00 A 0.50
| N« —03 > 2
04 = 0.75 041 RSWE ) 0.25
¢ -1.0 0.00
) 0.50 1 i .
0.2 0.50 s
-15
0.25 1 0.25 - 0.25
0.0 A -2.0 0.00 - 0.00 0.0 A 0.50
00 02 04 06 08 o 2 4 6 8 10 12 14 "0 2 4 6 8 10 12 14 00 02 04 06 08
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Example on movie rating

O Ok 20—~
(25) X k —+ (-0.67) X k

S 2 O—04 a(—Da
k

8 ) &
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Example on movie rating

O amOL MO0 amOL:
(25) X lll..‘ 4+ (-067) X lll..‘
2O—D4 2@D—Da
ee ;

. Q—@* 2 G—=
@ [N\ @ [N\
20— 2 O—Ds

2Q—O* 2Q—O*
(2.5) X lll..b + (-067) X lII..b
YO OF 2D—D8
O—

2—A O amOL
+O k + @ x k
AO)—D) 4 AO—D) &
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Graph spectral filtering

o Filters can be designed as functions of graph Laplacian

GFT

X' f

g(A)
=)

gA)X" f

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003.

IGFT

=)

X9 ]

g(L): function of L!
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Graph spectral filtering

o Filters can be designed as functions of graph Laplacian

GFT

X' f

g(A)
=)

gA)X" f

IGFT

=)

X9 ]

g(L): function of L!

e Important properties can be achieved by properly defining §(L) , such

as localisation of filters

e Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003.
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Graph Laplacian revisited

GFT: f(6) = (xe, /) =) _x

The Laplacian L is a difference operator: Lf = yAx” f

GFT

T

N

1=1

¢ (0) ()

X' f

N-—-1

f(@) =Y FOxe(i)

=

Ax' f

IGFT

XA f

30/58



Graph Laplacian revisited

N

GFT: f(0) = (xe, f) = xi(i)f(i)

The Laplacian L is a difference operator: Lf = yAx! f

GFT

T

The Laplacian operator filters the signal in the spectral domain with a high-pass filter

1=1

X' f

N-—-1

¢=0

Ax' f

AN_1

f(@) =Y FOxe(i)

IGFT

The Laplacian quadratic form: fTLf = ||Lz f||2 = [|xAZxT f]|2

XA f

30/58



Example on signal denoising

GFT

f| =

X' f

i‘i
§=

gA)X" f

31/58



Example on signal denoising

GFT g(A) IGFT

o= ) = g(A)x | = (M) S

Problem: we observe a noisy graph signal f = yo+ n and wish to recover yg

[ Y = argm;n{||y — fll3 +vy" Ly} J

31/58



Example on signal denoising

GFT g(A) IGFT

o= ) = g(A)x | = (M) S

Problem: we observe a noisy graph signal f = yo+ n and wish to recover yg

— data fitting term

“smoothness’ assumption

31/58



Example on signal denoising

GFT g(A) IGFT

o= ) = g(A)x | = (M) S

Problem: we observe a noisy graph signal f = yo+ n and wish to recover yg

— data fitting term

y' =T +vL)"f
g(L)

“smoothness’ assumption

31/58



Example on signal denoising

GFT

f| =

X' f

g(A)
=)

gA)XTF | = xg(A)x f

Problem: we observe a noisy graph signal f = yo+ n and wish to recover yg

— data fitting term

$

y' = (I +L) " f =x(L+98) " f

g(L)

“smoothness’ assumption

in graph spectral domain!

remove noise by low-pass filtering

31/58



Example on signal denoising

e Noisy image as observed noisy graph signal

e Regular grid graph (weights inversely proportional to pixel difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 32/58



Example on signal denoising

e Noisy image as observed noisy graph signal

e Regular grid graph (weights inversely proportional to pixel difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013, 32/58



Graph filter design

GFT g(A) IGFT
T A T A T
fooom i = g(M)x S = xg(A)xC S
g(L)
smoothing/low-pass filtering: §(L) = (I +vL)™' = x(I +~vA) " *x*
windowed kernel: windowed graph Fourier transform E:f;lsefined

shifted and dilated band-pass filters: spectral graph wavelets §(sL)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 33/58



Graph filter design

GFT g(A) IGFT

o T G0N | g

smoothing/low-pass filtering: §(L) = (I +vL)™' = x(I +~vA) " *x*

windowed kernel: windowed graph Fourier transform E:;?:fmed
shifted and dilated band-pass filters: spectral graph wavelets §(sL)
adapted kernels: learn values of §(L) directly from data adaptive
K K learnable
parametric kernel: g(L) = Z@Lk = X(Z 0;A%)x" #ilters )
k=0 k=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 33/58



| ecture 2

Graph signal processing: Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Applications
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Why representation for graph signals?

image analysis (e.g.,
denoising, compression)

neuroscience (e.g.,
brain analysis)

Railway map of China

Colored lines showing CRH and other
high speed rail services
Last update: 2016-09-10

traffic analysis (e.g.,
mobility, congestion)

social network analysis (e.g.,
community, recommendation)

35/58



Classical vs Graph dictionaries

classical signal — X
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Classical vs Graph dictionaries

classical signal — X

graph signal — X

36/58



GFT provides a first graph dictionary
f fe

1.0 - 3.0 -
2 2.5
0.8 ' ’I
1 '2
2.0 -
0.6 - ,
0
1.5 -
0.4 -1 |
1.0 -
0.2 - -2 \
0.5 -
J
-3
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12 14 A
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GFT provides a first graph dictionary
f fe

1.0 A 3.0 -
2 2.5
0.8 1 ' ’I
1 |
2.0 1
0.6 1
0
1.5 1
0.4 -1 |
, 1.0 A
0.2 - ) :!-‘.";i»;i. = -2
| A 0-5 .
A _
-§\ I 3
0.0 1 0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12 14 A

GFT atoms (corresponding to discrete frequencies)

37/58



GFT provides a first graph dictionary

3.0 1

2
2.5 1 ’

|

1.5 1

L RN

0.0 A

X0 X1

GFT atoms (corresponding to discrete frequencies)
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GFT provides a first graph dictionary

X0 X1 X2

GFT atoms (corresponding to discrete frequencies)
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GFT provides a first graph dictionary

X0 X1 X2 X3

GFT atoms (corresponding to discrete frequencies)
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GFT provides a first graph dictionary

0.6
0.4
0.2
0.0
-0.2
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X0 X1 X2 X3 X4

GFT atoms (corresponding to discrete frequencies)
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GFT provides a first graph dictionary
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X0 X1 X2 X3 X4
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GFT provides a first graph dictionary

0.6 0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4 0.4
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W k (frequency index)

- like complex exponentials in classical FT, eigenvectors in GFT have global support
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GFT provides a first graph dictionary
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- like complex exponentials in classical FT, eigenvectors in GFT have global support

- can we design localised atoms on graphs?
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Basic operations for graph signals

basic operations in Euclidean domain

p(t —m) R(e?* (1)) p(27")

- recall that we used a set of structured functions (e.g.,
shifted and modulated) to produce localised items
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Basic operations for graph signals

recall that we used a set of structured functions (e.g.,
shifted and modulated) to produce localised items

- we need to define for graph signals the basic
operations: convolution, shift and modulation
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Convolution

classical convolution (f*g)(t) = / (T)dT

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 40/58



Convolution

classical convolution (f*g)(t) = / @g (7)dT
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Convolution

classical convolution (f*g)(t) = / @«; (7)dT

graph convolution multiplication in graph spectral domain

/\ ~

(fxg9)(A) = (fog)(A)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 40/58



Convolution

classical convolution (f*g)(t) = /_OO(T)dT
f(w) - §(w)

(f * g)(w) =

graph convolution multiplication in graph spectral domain

(Fg)(N) = (foi)(N)

N—-1

) (f*g)(n f(0)

£=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 40/58



Vertex-domain shift

original signal

classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 41/58



Vertex-domain shift

i
original signal
classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)
graph shift convolution with a “delta” on graph
(Tif)(n) = VN(f *6;)(n)

VE' S FOx; ()xe(n)
=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 41/58



Vertex-domain shift

e R
shifted version of the signal to different centring vertex (in green)
classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)
graph shift convolution with a “delta” on graph
(T;£)(n) := VN(f *8;)(n)
N—-1
= VN Y fO)xz(1)xe(n)
£=0
Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 41/58



Frequency-domain shift (Modulation)

classical modulation (Me f)(t) := €727 f(t)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 42/58



Frequency-domain shift (Modulation)

classical modulation (Me f)(t) := €727 f(t)

graph modulation multiply by a graph Laplacian eigenvector

(Mif)(n) :== VN f(n)xi(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 42/58



Frequency-domain shift (Modulation)

Ayogo =4.03

9

04
0.3
]A‘()Lg) 0.2

0.1

original signal modulated signal
classical modulation (Me f)(t) := €727 f(t)
graph modulation multiply by a graph Laplacian eigenvector

(Mif)(n) :== VN f(n)xi(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 42/58



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed

Fourier atom Gue(t) = (McTug)(t) = 7™ g(t — u)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 43/58



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed

Fourier atom Gue(t) == (MeTug)(t) = ej%gtg(t — u)
windowed graph
Fourier atom gik(n) == (MyT;g)(n)
N—-1
= Nxk(n) ) §(A)xi (D)xe(n)
¢=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 43/58



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed "
Fourier atom Gue(t) :

windowed graph .
Fourier atom gi,k(n) :

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 43/58



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed "
Fourier atom Gue(t) :

windowed graph .
Fourier atom gi,k(n) :

windowed graph Sf(i, k) == {f, gir)

Fourier transform

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 43/58



Windowed graph Fourier transform
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Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 44/58



Wavelets on graphs

e With the shift and scaling operators for graph signals we can define a

spectr

Hammond et al., “

al graph wavelet transform (SGWT)
R
=
: *ﬁ#;gﬁ. 5
(a) (b) (c)

(d) (e) (M)

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)-(f) wavelets, scales 1-4.

Wavelets on graphs via spectral graph theory,” ACHA, 2011.
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Wavelets on graphs

e With the shift and scaling operators for graph signals we can define a
spectral graph wavelet transform (SGWT)
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Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J =4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-
(f) wavelets, scales 1-4.

Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011. 45/58



WGFT vs SGWT atoms

WGFT atom

gi.k(n) := (MyT;g)(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 46/58



WGFT vs SGWT atoms

WGFT atom

gi.k(n) := (MyT;g)(n)
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WGFT vs SGWT atoms

WGFT atom

gik(n) = (MiTig)(n)

SGWT atom

i s(n) = (T;Dsg)(n)

= 3 alshoi (hlm
£=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 46/58



WGFT vs SGWT atoms

Classical Windowed

Fourier Atoms

WGFT atom 0 N

gik(n) = (MiTig)(n)

frequency

time

Classical Wavelets

SGWT atom LIl

v

is(n) := (TiDsg)(n)

frequency

time

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016.

Windowed Graph
Fourier Atoms
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From analytical to trained graph dictionaries

U1
V1 U2
= X
U2
g X $(G) C
analytical graph |
Jictionaries ®(G) examples: GFT, WGFT, SGWT
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From analytical to trained graph dictionaries

U1
V1 U2
= X
U2
g X $(G) C

analytical graph |
Jictionaries ®(G) examples: GFT, WGFT, SGWT
trained graph . . ,
dictionaries (IJ(Q, X) dictionary learning on graphs?
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From analytical to trained graph dictionaries

|
X

analytical graph . B e
dictionaries P(G) =g(L) =

trained graph (I>(g X)
)

. . - . - . 7
dictionaries dictionary learning on graphs?
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From analytical to trained graph dictionaries

|
X

analytical graph A o T
dictionaries (I)(g) o g(L) o

trained graph . . .
dictiona?iesp (I)(Q,X) M) lecarning §()\) by adapting to x
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Dictionary learning on graphs

objective: regularisation

min |X — DCOI|5 +
{Hi}le ERK+1 CeRNSXM

subject to D = [xde, (L)x" xGao,(L)x" -+ xgo.(L)x"]

emllo < T (C =12 - cuml)

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014.

adaptation to data

structured graph
dictionaries

sparsity constraint
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Dictionary learning on graphs

objective: regularisation

min | X — DC||3 + adaptation to data
{Gi}§:1€RK+1,C€RNSXM

T structured graph
] dictionaries

subject to D = [xge, (L)XT XG0, (L)XT - XGa, (L)X

eml|lo < T (C=lc1ca -+ enm)) sparsity constraint

solved by iterating between two steps:
= sparse approximation: fixing D and solve for C

= dictionary update: fixing C and solve for D

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 48/58



Comparison with non-graph dictionaries

non-graph dictionary atoms parametric dictionary
(KSVD) atoms

0.25
0.2
0.15
0.1
0.05

-0.05

0.25
0.2
0.15
01
0.05

-0.05

- non-graph dictionary atoms adapt to data but ignore
the structure (hence are not localised)

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 49/58



Comparison with non-graph dictionaries

non-graph dictionary atoms parametric dictionary
(KSVD) atoms

- non-graph dictionary atoms adapt to data but ignore
the structure (hence are not localised)

- graph dictionary atoms adapt to data and can also be
designed to be localised

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 49/58



Decomposition using parametric dictionary

s,

W

!
%

‘;/‘

g

- the dictionary atoms adapt to localised patterns in
different regions of the graph

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 50/58



Graph dictionary design - Summary

e Analytical vs trained graph dictionaries
- mathematical modelling of data on graphs
- adaptation to data on graphs

e Both approaches focus on design or learning of the kernel function
- shift, modulation, scaling, learning-based

e This lecture has focused on Laplacian spectrum based designs
- other possibilities exist (e.g., purely vertex-domain designs)

e Connection with other fields
- representation learning on graphs (e.g., node embedding)
- deep learning on graphs
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| ecture 2

Graph signal processing: Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Applications
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Application |: 3D point cloud analysis

(a) It + Ty+1 (b) Correspondence between Z; and Z; 1 (€) Zt.me + Le4+1
(a) (b) ()

Thanou et al., “Graph-based compression of dynamic 3D point cloud sequences,” IEEE TIP, 2016. 53/58



Application II: Neuroscience
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Huang et al., “A graph signal processing perspective on functional brain imaging,” Proceedings of the IEEE, 2018. 54/58



Application Ill: Inferring strategic relations

cooperation competition
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infer strategic relations from equilibrium actions

Leng et al., “Learning quadratic games on networks,” ICML, 2020. 55/58



Application IV: Community detection

spectral graph wavelets D.(a.b)—1— Yiatbsh
at different scales: 195 all.||1¥s.pll,

é‘ﬂ‘%
NODE /
A: @
NODE 5?
B Q

CORR.
COEF.: -0.50 0.97

small scale large scale

multi-scale community
detection:

Tremblay et al., “Graph wavelets for multiscale community mining,” IEEE TSP, 2014. 56/58



Promising directions in GSP

Mathematical models for graph signals

incorporating underlying physical processes
probabilistic modelling on graphs
how to handle temporal dynamics?

Graph construction

how to infer graph topology given observed data?

Implementation issues

fast graph Fourier transform
distributed processing

Connection with other fields

complex networks and systems
deep learning on graphs
Bayesian modelling
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to networks and other irregular domains

1 applicaticns ich as social, energy, tranportation, sensor,

been proposed to efficiently extract information from high-
b We with a brief discussi

and neuronal networks, high-dimensional data naturally
y y alopen
of signal proc and spectral
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to define graph spectral domains, which are the analogs to the
chssical frequency domain, and highlight the importance of
incorporating the irregular structures of graph data dormains
‘when processing signals on graphs. We then review methods to
generalize fundamental operations such as filtering, trunslation,
modulation, dilation, and downsampling to the graph setting
and survey the localized, multiscale transforms that have
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Graphs are generic data representation forms that are useful
for describing the geometric structures of data domains in
numerous applications, including social, energy, transporta-
ticn, sensor, and neuronal networks. The weight associated
with each edge in the graph often represents the similarity
between the two vertices it connects. The connectivities and
edge weights are cither dictated by the physics of the problem
at hand or inferred from the data. For instance, the edge
‘weight may be inversely proportional to the physical distance
between nodes in the network. The data cn these graphs can
be visualized as  finite collection of samples, with one ample
at each vertex in the graph. Collectively, we refer to these
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1. Introduction

In applications such as social networks, electricity networks, transportation networks, and sensor net-
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Graph Signal Processing:
Overview, Challenges, and

Applications

This article presents methods to process data associated to graphs (graph signals) extending
techniques (transforms, sampling, and others) that are used for conventional signals.

By AnTonio Orreaa”, Fellow IEEE, Pascal Frossaro, Fellow IEEE, JeLexa Kovadevié, Fellow IEEE,
Josg M. F. Moura', Fellow IEEE, anp Pierre VANDERGHEYNST

ABSTRACT | Research in graph signal processing (65P) aims
to develop tools for processing data defined on iegular graph
Inthi

Graphs offer the abilty to model such data and complex
interactions among them. For example, uoers on Twiter can be

asedgee Th

recently deveioped in GSP build on top of prior research in other

tooks, including methods for sampling. fitering or graph learning.
Next. we review progress in several application areas using GSP.

Fieving and frequency reeponse oo dara resing on graphs. It

aata i

KEYWORDS | Graph signal processing (GSP); network science
and graphs; sampling; signal processing

I. INTRODUCTION AND MOTIVATION

Data iz all around us, and massive amounts of it. Almost
‘every aspect of human life is now atalllev-

pled way.
‘mon umbrella i graph sgnal processng (GSP) (21, (3}

‘While the precise definition of  graph signal will be
given later in the paper, let us aszume for now that a graph
signalis ase of values residing on a et of nodes. These nodes
are connectad via (possibly weighted) edgee. At in clasicsl
signal procescing, such signals can stem from a variety of
domaine; unlike in clasicalsignal processing, however, the

els: from.

el a fair

the advent to our

through

bbby sieriliuur il i
financial and banking data, our social networks, mobility
e pace arasingprfrano e sy
— putinn
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geometric graphs, emall-world mph. ,mm.u gnph.

means that the data now recide on irregular and complex
hat do

Thes el etk with random connections (Exde
Rényi graphs), networks of brain neurons (small-world
graphe), social networks (scale-free graphe), and ohere.

processing, graph signals can have
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properties, such as smoothness, that need 1 be appropri-
ately defined. They can aleo be represented via basic atoms
and can have a spectral representation. In particular, the
graph Fourier transform allows us to develop the intuition
gathered in the classical etting and extend it t graphs; we
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e S

IGNAL PROCESSING:

GRAPH Si
FOUNDATIONS AND EMERGING DIRECTIONS

Graph Signal Processing for Machine Learning

A review and new perspectives

ization of large-scale structured data, especially those related

to complex domains, such as networks and graphs, are one
of the key questions in modern machine learning. Graph signal
processing (GSP), a vibrant branch of signal processing models
and algorithms that aims at handling data supported on graphs,
opens new paths of research to address this challenge. In this ar-
ticle, we review a P con-
cepts and tools, such as graph filters and transforms, o the devel-
opment of novel machine learning algorithms. In particular, our

-I- processing. analysis, and visual-

al emcw:y and enhancing model interpretability. Furthermore,
GSP

bt ———
‘matics and signal processing on one side and machine learning
G

complex data analyss i the modern age.

Introduction

interactive systems, such as biological, social, and financial
networks, become largely available. In parallel, the past few
decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and
analysis. Networks have an intrinsic structure that conveys
very specific properties 10 data, eg., interdependencies be-

These

properties are traditionally captured by mathematical repre-
sentations such as graphs.

new -
oping fast. Let us consider, for example, a network of protein-—

at every point in time. Some typical tasks in network biology
related to this type of data are 1) discovery of key genes (via
protein grouping) affected by the infection and 2) prediction
of how the host organism reacts (in terms of gene expression)

10535668/200202065E TEEESGHALPROCESSNG MIGATIE | omrbr 2020 | n
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Graph Signal Processing

History, development, impact, and outlook

ignal processing (SP) excels at analyzing, processing, and
iferingifomatio defined over gt (i contin
ous, later di fomains such as time or space. Indeed,
the last 75 years < have shown how P has made an lmpicl in
areas such as communications, acoustics, sensing, image
processing, and control, to name a few. With the digitaliza-
ton of the modern word and he i increasing pervasiveness of
data-collection mechanisms, information of interest in current
applications oftentimes arises in non-Euclidean, irregular do-
mains. Graph SP (GSP) generalizes SP tasks to signals hvmg

a weighted graph. Graphs are versatile, able to model mgm
lar interactions, easy to interpret, and endowed with a corpus
of mathematical results, rendering them natural candidates to
serve as the basis for a theory of processing signals in more
iregular domains.

“The term graph signal processing was coined a decade ago
in the seminal works of [1]. 2]. 3], and [4]. Since these papers
were published, GSP-related problems have drawn significant
attention, not only within the SP community 5] but also in
machine learning (ML) venues, where research in graph-based
learning has increased significantly [6]. Graph signals are well-
suited 1o model measurements/information/lata. associated
with (indexed by) a set where 1) the elements of the set belong
to the same class (regions of the cerebral cortex, members of
a social network, weather stations across a continent):; 2) there.
existsa i ity infl
or association among the different elements of that set; and 3)
the strength of such a relation among the pairs of elements is
not homogeneous. In some scenarios, the supporting graph is
a physical, technological, social, information, or biological net-
work where the links can be explicitly observed. In many other
cases, the graph is implicit, capturing some notion of depen-
dence or similarity across nodes, and the links must be inferred
from the data themselves. As a result, GSP is a broad frame-
work ical SP methods, ool
and algorithms 10 application domains of the modern techno-
logical world, including social, transportation, communication,
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Index Terms—Graph slgn.n processing, graph machine learning,
graph convolution, fiter identification, graph fiter banks and
lets, graph neural networks, distributed processing, eollabo-
atve fiering, grapirbused image procesing, mesh procesiog,
*, clouds, lopuogy dentfcation, spectral clusteing, matix
Eompleton, sraph Gavssan

1. INTRODUCTION
Filters are information processing architectures that preserve
only the relevant content of the input for the task at hand.
In signal processing (SP), filtering preserves specific spectral
content of input signals and is a common building block in
domains including audio, speech, radar, communication, and
multimedia [1]. In machine leaming (ML), filtering is used to
extract relevant pattems from the data.or as an inductive bias for
building neural networks (2. For instance, principal component
analysis (PCA) can be seen as a low-pass filter in the correlation
matrix, where only the parts of the data contributing to the
directions of the largest variance are preserved [3]. Likewise,
the success of convolutional neural networks (CNNs) can be
attributed to the convolutional flters used in each layer, allowing
for easier training and scalability, as well as exploiting structural
invariances in the data (2], [4].

Conventional filtering applies to signals defined on Euclidean
domains, but cannot be directly applied to iregular data struc-
tures arising in biological, financial, social, economic, pow
waer, scnsor, and mult agen networks, among athers (3, (6]
Graph filters are information processing architectures tailored to
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iph- d data, generalizing the conventional Euclidean
counterparts.

Graph filters have many similarities with conventional ones;
they are lincar, shift invariant, parametric functions of the input,
they enjoy a spectral interpretation via the spectral graph theory
[7), and their spectral design boils down to function fitting (8],
[9]. However, striking differences also arise from the new graph
medium; e.g, graph filters are equivariant to permutations in
the support, can be implemented distributively, and can have
more generalized forms such as node varying (8] or edge
varying [10]. Due to the wide variety of network-based data
and the flexibility of graphs to represent irregular structures,
sraph fiers are used in myriad SP taks (signal reconstruction,

, image di and
ML tasks (semi-supervised and unsupervls:d o
complotin, Gantsi process rogrestions, e wel a5 Fobotce,
‘point clouds, Intemnet of Things, biology, and vision applications.

Early formaisms of graph filters find their roots in the 1990's
in mesh processing [11], [12]. In the 2000's, graph flters were
used in ML applicaions, ety 3s graph kemnls (13, (14,
and e on in graph-bused imag processing 151, (16

SP viewpoint, graph wavelets [17], [18] can be
as the first instances. The tutorial article [19] helped pmwd:

Coemmankies, cocourging s sigual processing reseuchoes
to readily dive into problems involving network-based data and
develop new filter methods derived from first principles, inspired
from the more familiar Euclidean setting. Simultaneously, a
specialization of the algebraic signal processing framework [20]
10 the graph domain paved the way for a structured mathematical
framework of graph filtering [21], [22]. More recently, with the
advent of graph neursl networks (GNN), gaph fiers ply 3
fundamental role as the key component to leam representations
rom raph based data (23] 127]

Despite the caly oot of graph fieing, and s span cross
different applications — often developed in an interdisciplinary
fashion — there is no comprehensive, point-of-entry reference

for new researchers interested in cithe jamental
research or exploring applications related to SP and ML, or
both. This article has been designed to target this need, thus
providing an extensive, principled overview of the fundamental
aspects of graph filtering research, as well as highlighting the
‘main application areas in both SP and ML. A number of valuable:

tutorials and overviews on graph signal processing (GSP) and
GNN that are worth discussing have been written since [19].
‘The survey in (5] and book [28] provide excellent starting points
on graph convolutional filtering and its links to the broader field
of GSP. Since the focus of these works is on the fundamentals

book chapter [29] pmwd:s more detail on filter design strategies
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