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Logistics

e lectures
- Monday-Thursday 10.00-12.30 ©OIEB
- slides: http://www.robots.ox.ac.uk/“xdong/teaching.html

e Lab sessions
- Monday-Thursday 14.00-17.00 @EH

- notes: http://www.robots.ox.ac.uk/“xdong/teaching.html

- demonstrators

Yin-Cong Zhi (yin-cong.zhi©ndph.ox.ac.uk)

Scott le Reux (scott.leroux®@wolfson.ox.ac.uk)

Ning Zhang (ning.zhang@some.ox.ac.uk)

Jacob Bamberger (jacob.bamberger@some.ox.ac.uk)

e Questions & Comments: xdong@robots.ox.ac.uk
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Overview

e |ecture 1: Introduction to signal processing
- time-frequency analysis, filtering, Fourier & wavelet transforms, dictionary learning

- Lab 1: Signal and image processing

e Lecture 2: Introduction to graph signal processing
- graph Fourier transform, filtering & convolution, representation of graph signals

- Lab 2: Graph signal processing

e Lecture 3: Deep learning on graphs
- convolutional neural networks on graphs, message passing neural networks

- Lab 3: Graph neural networks

e Lecture 4: Bayesian modelling of graph-structured data
- Gaussian processes on graphs, Bayesian optimisation of graph-based functions

- Lab 4: Gaussian processes on graphs
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Resources

Textbooks
o Vetterli et al. Foundations of signal processing. Signal Processing

Cambridge University Press, 2014. Available at
http: //www.fourierandwavelets.org

e Kovacevi¢ et al. Fourier and wavelet signal
processing. Available at
http://www.fourierandwavelets.org

e Ortega. Introduction to graph signal processing.
Cambridge University Press, 2022.

o

(] M()RG/\N&CK;\\ POOL PUBLISHERS
e
|

: ‘(&?( Graph l |

e Hamilton. Graph representation learning. Morgan & Representation

Claypool Publishers, 2020. Available at https:// . &f‘(\ Learning
www.cs.mcgill.ca/“wlh/grl book/ }? RN \é
i,

‘» Intr(;ductibr;t
"\* GraphSignal
Resources = Processing

Antonio Ortega

William L. Hamilton

e https://web.media.mit.edu/~xdong/resource.html

o https://github.com/naganandy/graph-based-deep-learning-literature
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Introduction to
Signal Processing
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L ecture 1

e Introduction & Basic concepts and tools
e A historical overview of signal representation techniques

e Applications & Discussion
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Historical notes
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Video Mail News and Virtual Dharshan

Morse code (1830s) electronic communication (today)
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Modern signal processing applications

Sound Waves Electrical Voltage Binary Data

- Effects

- Filters

- Conversion
- etc...

Digital Processing

Mic

\’@puter

ADC

DAC

Analogue Digital

speech processing

Signal
amplification Feature
and digitizing extraction

Electrical Voltage Sound Waves

Speaker

Analogue

EEG

EEG signal classification

‘oooooooooooo
FEEDBACK

Classification }

Recognized
command

image denoising

Velocity (km/s)
2 4 6 8 10 12 14

Transitions

MANTLE

E 2000

= &= D"-LAYER

-%. OUTER CORE

@ 4000 |-

()]
INNER CORE

6000

seismology

8/66



Signal types

continuous time discrete

amplitude  continuous

discrete
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Analogue vs Digital signal processing

e Many signals of practical interest are analogue: e.g., speech, seismic,

radar, and sonar signals

e Analogue signal processing systems are based on analogue equipment:
e.g., channel vocoder

e Dramatic advance of digital computing moves the

trend towards digital systems
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Signal processing as linear processes

input > L > output
system

amplification/attenuation, filtering, (un-)mixing, etc.

e Linear time-invariant (LTI) system whose input-output characteristics can

be defined by

- impulse response in time domain

- transfer function in frequency domain

e There is an invertible mapping between time- and frequency-domain

representations
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Time-domain analysis - Convolution

e Convolution allows the evaluation of the output signal from an linear

time-invariant (LTI) system, given its impulse response and input signal

0(t)

LTI
system

A

A

g(t)

>
t
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Time-domain analysis - Convolution

e Convolution allows the evaluation of the output signal from an linear
time-invariant (LTI) system, given its impulse response and input signal

A
(1) ) om g(t)
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t t
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Time-domain analysis - Convolution

e Convolution allows the evaluation of the output signal from an linear
time-invariant (LTI) system, given its impulse response and input signal

A
(1) ) om g(t)
system /\
> >
t t
A A
1
50t =7) = e 59t =7)

1 > I\VQ’

e Evaluate system output for

- input: succession of impulse functions (which generate weighted impulse responses)

- output: sum of the effect of each impulse function
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Time-domain analysis - Convolution
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Time-domain analysis - Convolution

A x(t)
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Time-domain analysis - Convolution
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Time-domain analysis - Convolution

S
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Time-domain analysis - Convolution

T{xmdﬂa(t) > om >
1 )

- this gives the convolution integral
o
Z{x Virtg(t — 7) =P / 2(r)g(t — 7)dr
0

- system output is convolution of input and impulse response
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Time-domain analysis - Convolution

T{xmdﬂa(t) > om >
1 )

- this gives the convolution integral
o
Z{x Virtg(t — 7) =P / 2(r)g(t — 7)dr
0

- system output is convolution of input and impulse response

- impulse response characterises the system in time domain
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Frequency-domain analysis

e Consider the following LTI system

z(t) =" —— | gt) | —> y(t)

y(t) = / =) (1) dr = &t G(jw)

— OO

- e?“is an eigenfunction of an LTI system with eigenvalue G(jw), which is the
Fourier transform of the impulse response ¢(t)
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Frequency-domain analysis

e Consider the following LTI system

z(t) =" —— | gt) | —> y(t)

y(t) = / =) (1) dr = &t G(jw)

— OO

- e?“is an eigenfunction of an LTI system with eigenvalue G(jw), which is the
Fourier transform of the impulse response ¢(t)

- G(jw), the frequency response, characterises the system in frequency domain
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Fourier transform

e Fourier transform (FT) and inverse FT

X(jw) = / z(t)e Ivtdt x(t) = %/ X (jw)el“ dw
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Fourier transform

e Fourier transform (FT) and inverse FT

X(jw) = /OO z(t)e 7wt dt x(t) = % /_OO X (jw)e?tdw

— OO

e FT of output is multiplication of FT of input and frequency response

X(jw) » Gjw) > Y (jw) = Gjw) X (jw)
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Fourier transform

e Fourier transform (FT) and inverse FT

X(jw) = /OO r(t)e 79t dt

— OO

1 [~ -
x(t) = %/ X (jw)el“tdw

e FT of output is multiplication of FT of input and frequency response

X (jw) >

G(jw)

e System output via inverse FT

> Y (jw) = G(jw) X (jw)
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Fourier series

Fourier series (FS) for periodic signal

Amplitude fundamental .
frequency fo= 1/T0
Time (seconds) = + + / /

o0
; fundamental
CU(t) — E Cn 6327rnf0t period

n=—oo

Amplitude

Amplitude

1 To/2 |
Amplitude Cn — / x(t)e—_ﬂwnfotdt
N 1o —To/2

Frequency
(Hz)
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Fourier series

e Fourier series (FS) for periodic signal

Amplitude fundamental .
frequency fo = 1/T0
Time (seconds) = + + / /
o0

; fundamental
CU(t) — E Cn 6'727rn‘f0t period

n=—oo

Amplitude

Amplitude

1 To/2 .
Amplitude Cn / ﬂf(t)e_jzwnfotdt

e N To J_r, /2
Frequency

(Hz)

e When the period approaches infinity, the spectrum becomes continuous
leading to FT for aperiodic signal (previous slide)
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Time domain vs Frequency domain

e Theorem

Convolution in time domain is equivalent to multiplication in frequency
domain, i.e.,

y(t) = g(t) » z(t) = FH{Y (jw) = G(jw) X (jw)}

e Proof F{g(t)xx(t)} = // (t — 7)x(T)dre /¥ dt

/ w(r)e T dr Flg(t))
— Flg(H))Fle(t))
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Time domain vs Frequency domain

e Theorem

Convolution in time domain is equivalent to multiplication in frequency
domain, i.e.,

y(t) = g(t) = F H{Y (jw) = G(jw) X (jw)}

* (1)
e Proof F{g(t)*xx(t)} = /Q (t —7)x }e‘jwtdt
- [

r)e T dr F{g(t)}

= Flg(t);Fix(t);
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Time domain vs Frequency domain

e Theorem

Convolution in time domain is equivalent to multiplication in frequency
domain, i.e.,

y(t) = g(t) » z(t) = FH{Y (jw) = G(jw) X (jw)}
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Time domain vs Frequency domain

e Theorem

Convolution in time domain is equivalent to multiplication in frequency
domain, i.e.,

y(t) = g(t) » z(t) = FH{Y (jw) = G(jw) X (jw)}

e Proof F{g(t)xx(t)} = // (t — 7)x(T)dre /¥ dt

/ w(r)e T dr Flg(t)}
— Flg(H))Fle(t))

This allows us to move losslessly between time and frequency domains,

choosing whichever is the easier to work with
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Frequency filtering

e Filtering as input-output relationship

>

filter

>

g(t)

> output

impulse response

>

G(jw)

> (1)

frequency response

> Y (jw)
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Frequency filtering

e Filters are frequency-selective linear systems

- low-pass: extract average or eliminate high-frequency fluctuations

- high-pass: follow small-amplitude high-frequency perturbations in presence of much
larger slowly-varying component

Gl

low-pass band-pass high-pass
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Frequency filtering

o Filters are frequency-selective linear systems

- low-pass: extract average or eliminate high-frequency fluctuations

- high-pass: follow small-amplitude high-frequency perturbations in presence of much
larger slowly-varying component

original low-pass filtered high-pass filtered
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Frequency filtering

e Filters are frequency-selective linear systems

- low-pass: extract average or eliminate high-frequency fluctuations

- high-pass: follow small-amplitude high-frequency perturbations in presence of much
larger slowly-varying component

original low-pass filtered high-pass filtered
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Frequency filtering

Fourier transform: (w) = / (7Y f(p)dz f(x) = % / F(w) e dus

21/66



Frequency filtering

Fourier transform: (w) = / (7Y f(p)dz f(x) = % / F(w) e dus

21/66



Frequency filtering

Fourier transform: f(w)

FT

T

= [y s@ds g = o [ fwerds

JE

(W)
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Frequency filtering

Fourier transform: f(w)

FT

T

= [y s@ds g = o [ fwerds

JE

(W)

g(w)

=)

(@) f(w)
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Frequency filtering

Fourier transform: f(w)

FT

T

= [y s@ds g = o [ fwerds

JE

(W)

g(w)

=)

(@) f(w)

IFT

=)

f*g
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Frequency filtering

Fourier transform: (w) = / (7Y f(p)dz f(x) = % / F(w) e dus

FT

f | =

I

J*g
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Frequency filtering

Fourier transform: J(w) = / () f(2)de  f(z) = — /

fo| = | f(w)
=

Ggw)fw)| = | fxg

Fw

High-pass

Low-pass

Takeaway: signal processing (filtering) requires two considerations

- find a good representation (e.g., via Fourier transform) of the signal

- design (or learn) appropriate filters (note that filtering = convolution!)
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L ecture 1

e Introduction & Basic concepts and tools
e A historical overview of signal representation techniques

e Applications & Discussion
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What is good representation of a signal?

e Sum of delta functions in time or space (sampling domain)

- good for display or playback

- not good for analysis (e.g., denoising, compression)

23/66



What is good representation of a signal?

e Representation often involves transformation of the signal into a new

domain where signal characteristics are revealed

- example: Fourier coefficients reveal rate of change of the signal

 cos(ayt)
SN N,
\VAAVARR

F {cos(w,t)}

[ .

0 +w,
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What is good representation of a signal?

e Representation often involves transformation of the signal into a new

domain where signal characteristics are revealed

- example: Fourier coefficients reveal rate of change of the signal

 cos(ayt)
SN N,
\VAAVARR

F {cos(w,t)}

[ .

0 +w,

e Usefulness of the representation depends on the analysis goal

- which may vary but all shares the core desire for simplification
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Example: Denoising

10 I
— Original Signal
- Denoised Signal

0 200 400 600 800 1000 1200

goal: recover signal from noisy observation
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Example: Compression

original JPEG 2000 (10% in size) JPEG 2000 (1% in size)

goal: compress signal without sacrificing quality
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Example: Recognition

samples true “causes” PCA ICA sparse coding KSVD

goal: capture true “causes’ of signal

Tosi¢ and Frossard, “Dictionary learning,” IEEE SPM, 2011. 27/66



Signal representation via dictionaries

signal dictionary coefficients
= X
X P = o 1 -+ PN_1] C
“atoms”
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Signal representation via dictionaries
e Complete dictionaries

synthesis
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e Complete dictionaries

synthesis analysis
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Signal representation via dictionaries

e Complete dictionaries

synthesis analysis
) )
x P c o' x |
\—/ \—/

Y es,  emuix

equivalent for complete and biorthogonal dictionaries
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Signal representation via dictionaries

e Complete dictionaries

synthesis analysis
) )
x P c i x |
\—/ \—/

B

equivalent for complete and biorthogonal dictionaries
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Signal representation via dictionaries
e Overcomplete (redundant) dictionaries

synthesis
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Signal representation via dictionaries
e Overcomplete (redundant) dictionaries
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Signal representation via dictionaries

e Overcomplete (redundant) dictionaries

synthesis ) analysis )
= X X =
X P T
< o x

&
[x:@c:zncnqbn} { a, = ¢l x j

not equivalent for overcomplete dictionaries
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Signal representation via dictionaries

Two sources of dictionary design
- mathematical modelling of data (transforms/analytic dictionaries)

- a set of realisations of data (learned dictionaries)
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1960s: Fourier basis and DFT

discrete
Fourier
transform

!
—

- recall the LTI system

x(t) E— g(?t) —> y(?)
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- recall the LTI system

x(t) ﬁ@-’ g(?t) —> y(?)
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1960s: Fourier basis and DFT

discrete
Fourier
transform

!

1960s t::>

- recall the LTI system

Fourier basis functions (real part)

04— [ — w0 TN

L \ L / L 1
1 1.5 2 2.5 3 3.5 4

)
__ jw(t—T1) Fourier basis diagonalises
y(t) o / € g(T)dT G(w) convolution operator
— 0
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1960s: Fourier basis and DFT

discrete discrete
Fourier cosine
transform transform

Vo

1960s 1974 i:j>

- Fourier basis describes a signal in terms of its global frequency content and hence
is good at representing uniformly smooth signals
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1960s: Fourier basis and DFT

discrete discrete
Fourier cosine
transform transform

!

!

1960s

1974 >

Fourier basis describes a signal in terms of its global frequency content and hence

is good at representing uniformly smooth signals

discrete Fourier transform (DFT) provides an orthogonal dictionary: [qbn(k) — ej%w”k}

1 1 1 1 1
( ‘B[(l)] \ (1 W ow?2 w3 WN—I\ i[(l’] \
x[ ] 1 1 W2 W4 W6 WN—2 [ ] . o
(2] = N 1 w3 Wo wo . WwN-3 X[2] with W = 6‘7 N
\ x[N.— 1] ) \ 1 WwN-1 jyN-2 ppN-3 W ) \ X[N— 1] /

fast Fourier transform (FFT) reduces complexity from O(N?) to O(NlogN)

33/66



1960s: Fourier basis and DFT

discrete discrete
Fourier cosine
transform transform

!

!

1960s

1974 >

Fourier basis describes a signal in terms of its global frequency content and hence
is good at representing uniformly smooth signals

discrete Fourier transform (DFT) provides an orthogonal dictionary: [qbn(k) — ej%w”k}

(a0 N (1w e s o | X0
zll] lrower owr we L wne X1 o
x[?] =Nl wr oo owe o owr o w3 X:[Q] with W =e/ N
\ [N —1] ) \ 1 WwN-1 jyN-2 ppN-3 W ) \ X[N —1] /

fast Fourier transform (FFT) reduces complexity from O(N?) to O(NlogN)

can be made into a real transform called discrete cosine transform (DCT)
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The need for sparsity

discrete discrete
Fourier cosine
transform transform

|
—

- projection onto a fixed subset of DFT/DCT atoms leads to compaction

X R~ Z (Tl'x)®,,

neSk
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The need for sparsity

discrete discrete
Fourier cosine
transform transform

Vo

1960s 1974 >

- projection onto a fixed subset of DFT/DCT atoms leads to compaction
X R Z (Tl'x)®,,
neSk

- from compaction (simplicity) to sparsity: signal as linear combination of a few atoms

- sparsity requires shift from linear to nonlinear approximation

X~ @Ck ¢k > subset of atoms
(different for each x)
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The need for sparsity

discrete discrete
Fourier cosine
transform transform

P

1960s 1974 >

projection onto a fixed subset of DFT/DCT atoms leads to compaction
X R Z (Tl'x)®,,
neSk

- from compaction (simplicity) to sparsity: signal as linear combination of a few atoms

- sparsity requires shift from linear to nonlinear approximation

X~ @Ck ¢k > subset of atoms
(different for each x)

- sparsity requires localisation: atoms with concentrated support

- allow more flexible representations based on local characteristics

- limit effects of irregularities (a main source of large coefficients)
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Time-frequency representation

time localisation

W 1 0O
[y = 2/ tla(t)|=dt
o J2l2 /-
1 > 3
A, = t— )| (t)|2dt
X (w)]? t t (H'CUHQ /_OO( :ut) ‘x( )’ )
v
(t)]?

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 35/66



Time-frequency representation

time localisation

w 1 00
[ = 2/ tla(t)|=dt
o J2l[2 )
1 > 3
A, = t— )| (t)|2dt
X (w)]? t t (H'CUHQ ’/_OO( :ut) ‘x( )’ )
v
(t)]?

frequency localisation

1 - G ... <

Ay = (QW“lxuz /_Oo(w_:“f)QlX(w)‘Zdw)

1
2

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 35/66



Time-frequency representation

time localisation

W 1 /OO
Mt _ 2
Ly = Hae(t)|“dt
IV (2] — o
2A¢ 1 00 1
1 A= / (t — o)l (t) )
2 G — t 5|
2(¢) A

frequency localisation

time-frequency tile 1 o© 5
(Heisenberg box) Hf :[27'(" ] 2]/ WEX(W)‘}]!W

time-frequency

e ay = (gt | X @R

2m||z|[* J o

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 35/66



Time-frequency representation

Heisenberg’'s uncertainty principle

w
1
it Let z € £*(R), then A Ay > =
oAy M :
20
X (w)]* y
N
z(£)|°

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 36/66



Time-frequency representation

Heisenberg’s uncertainty principle

w
1
i Let z € £*(R), then A Ay > =
2N ~ :
2 ¢
examples
|X(w)|2 !
N
jz(£)|°
FT

FT

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 36/66



Time-frequency representation

e Consider three basic operations

shift in time

Mt
o
:_l
lo

X (w)]?

y(t) = x(t —to)

FTd

Y(w) =e 79 X (w)

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 37/66



Time-frequency representation

e Consider three basic operations

shift in time shift in frequency

it Mt
s | i

W 2 T iwo
X ()] . X t
Y D N
j(t)]? j(t)[*
y(t) = a(t — to) (1) = ot
FTd FTd

Y(w) = e 7 X (w) Y(w) =X(w— wp)

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.
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Time-frequency representation

e Consider three basic operations

shift in time shift in frequency

it Mt
b1 M g
[ [
- > wo
to Rl i i
S~ .
X (w) 2 t X ()™ t
v - _\/
J(t)]* 2 (t)[?

y(t) = *°ra(t)

FTd

Y(w) = X(w— wp)

y(t) = x(t —to)

FTd

Y(w) =e 79 X (w)

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.

scaling in time
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~
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Time-frequency representation

e Consider three structured sets of functions

shift in time

b [
]
~ [
o [i]

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 38/66



Time-frequency representation

e Consider three structured sets of functions

shift in time shift in frequency
m /—1 0 1 e
0
1 1 t ~1 1 t
1
2
W , W
2 [
W
o, 1 III¢ ’
e s S o A R o R —t1 t
m-2 -1 (¢ 1 2 -1 []
-2 [

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.
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Time-frequency representation

e Consider three structured sets of functions

shift in time shift in frequency scaling in time
14
m /—1 0 1 1
0
1 1 t OUU t = i L
2
] o g
2 [ —1
to 1 Eﬂtwo 0 i
-k L [l-msiimm e
e s S o A R o R 0tz t t
m-2 -1 (¢ 1 2 -1 []
-2 [

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 38/66



Time-frequency representation

time shift and modulation

(m, k)

1.2

(0,

0)

Orm(t) = 280 (t —mty) k,meZ

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.
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Time-frequency representation

time shift and modulation time shift and scaling
W (m7 k) w (m, l)
2,3 . - . O O O O O I O I I Y
(1,2)
i i i _ - - 02.0 - -
) ) ) ) <—1.1) :
X —_ (00| 1 t
Pr.m(t) = 7™M p(t —mty) k,m e Z O1.m(t) = o(a™'t —mty) ,meZ

gp(a_l(t — malto))

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 39/66



1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S

1960s 1974 1970s-80s

- Fourier basis functions (complex exponentials) are not localised in time
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1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S

1960s 1974 1970s-80s >

- Fourier basis functions (complex exponentials) are not localised in time

- consider a set of shifted and modulated versions of a low-pass function

Orm(t) = et o(t —mty) k,meZ

(m, k)

(0,0)
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1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S

1960s 1974  1970s-80s >

- example: consider a box function | 1, for |t| < i
and to =1, wg =27 Pr.m(t) = ejk%t@(t —m), o(t) = ’ N
0, otherwise.
k=0 k=1 k=2
©Yo0,—1, $0,0, $0,1 $1,—1, P1,0, P1,1 $2,—1, ¥2,0, P2,1

1
T

0 ANA L LR
T T T

Basis functions (real parts only).

|®o,m (w)] |[@1,m (w)] |@2,m (w)]

w w

-2r 2n 4m 6nm -2r 2n 4m 671 -2r 2n 4nm 6nm

Magnitudes of the Fourier transform.

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014. 41/66



1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R
—

- we can define the following transform

Xpom = / T(t) 0, (t)dt = / x(t)(t — mtg)e 7Fwot gt

— o0 — o0
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1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

Voo
Cowes e e

- we can define the following transform

Xpom = / T(t) 0, (t)dt = / x(t)(t — mtg)e 7Fwot gt

— o0 — o0

= = [ oson= [t
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1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R
—

- we can define the following transform

Xpom = / T(t) 0, (t)dt = / x(t)(t — mtg)e 7Fwot gt

— o0 — o0

= = [ sons [ )

- applying time-localised window to the signal before taking Fourier transform:
windowed or short-time Fourier transform (STFT)
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1970s-80s: STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R
—

- we can define the following transform

Xpom = / T(t) 0, (t)dt = / x(t)(t — mtg)e 7Fwot gt

— o0 — o0

= = [ sons [ )

- applying time-localised window to the signal before taking Fourier transform:
windowed or short-time Fourier transform (STFT)

- Gaussian window achieves localisation in frequency: Gabor transform

- STFT maps a 1-D function into a 2-D function (overcomplete)

42/66



DCT vs STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R
—

- discrete STFT generally provides an overcomplete dictionary

Rubinstein et al., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010. 43/66



DCT vs STFT

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R
—

- discrete STFT generally provides an overcomplete dictionary

STFT

’

Rubinstein et al., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010. 43/66



1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R T T

wavelet
transform

1960s 1974 1970s-80s  1980s >

- STFT atoms have fixed time-frequency resolution

(0,0)

[ ]
'
’
)
~
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- STFT atoms have fixed time-frequency resolution

wavelet
transform

- often times a multiresolution representation is needed to capture various scales in
natural signals
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1980s: Wavelet transform

discrete discrete short-time
. ) . wavelet
Fourier cosine Fourier
transform
transform transform transform
1960s 1974 1970s-80s 1980s

- consider a set of shifted and scaled versions of a band-pass function

@l,m(t)

p(a™"t — mitg) = ¢

(m, 1)

~ 5:._1)

t — maltg

[,m e Z
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1980s: Wavelet transform

discrete discrete
Fourier cosine
transform transform transform

!

Vo

short-time
Fourier

wavelet
transform

1960s 1974

1970s-80s

- consider a set of shifted and scaled versions of a band-pass function

Spl,m(t)

p(a™"t — mitg) = ¢

t — ma't
e Y ILmez

al

—> good time resolution (short-term)

» good frequency resolution (long-term)
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R T T

wavelet
transform

1960s 1974 1970s-80s 1980s

- consider a set of shifted and scaled versions of a band-pass function

t —mat
e Y ILmez

P1m () = p(a™"t — mtg) = ¢ o

Piet Mondrian (1921)
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R T T

wavelet
transform

1960s 1974 1970s-80s 1980s >
- example: consider a square wave ¢ ol (1, for0<t<gy;
function and tg =1, a =2 Prm(t) = ¢(T)> p(t) =4 -1, for 5 <t<ly
L0, otherwise.
0=-1 (=0 (=1
P—-1,-15, P-1,0, P-1,1 ¥0,-15 0,0, $0,1 $1,-1, $1,0, P11

o

il U SRy

Basis functions.

|P—1,m (w)] |P0,m (w |P1,m (w)]

mij

-8 —47r -8n —-4n -8n —4n 4 8

S

Magnitudes of the Fourier transform.

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.

46,66



1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- consider a more general function and define the following transform

wavelet
transform
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- consider a more general function and define the following transform

- the prototype function ¥(t)

wavelet
transform

- has a compact support (small or “-let"”)

- is band-pass with zero mean (“wave"): / Y(t)dt =0
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- consider a more general function and define the following transform

- the prototype function ¥(t)

wavelet
transform

- has a compact support (small or “-let"”)

- is band-pass with zero mean (“wave"): / Y(t)dt =0

- this is called the continuous wavelet transform (CWT)

- CWT maps a 1-D function into a 2-D function (overcomplete)
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R T T

wavelet
transform

1960s 1974 1970s-80s  1980s >

- examples of prototype function (mother wavelet)

Haar Morlet Derivative of Gaussian = Marr (Mexican hat)

1.5

‘ ‘ ‘ ‘ ‘ ‘ ‘
‘— Haar wavelet - wavelet — Mexican hat wavelet ‘

i
ol |
Ar 1 At 1 Ar 1 Ar

15 . . . . . . . 15 . . . . . . . 5 . . . . . . . 15

. T T . . . T T T T
— Morlet wavelet = order 1 Gaussian wavelet
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R T T

wavelet
transform

1960s 1974 1970s-80s  1980s >

- CWT is an overcomplete transform; however, we can design an orthogonal wavelet
transform through a multiresolution analysis

(27t — k)

AT I RN I
1 t — 2lm 1 __ I I : JL
Vim(t) = —=1( —) S e T
| 5 e L
design principle L
- form nested multiresolution spaces jw""zlw{ ‘
using scaling function ¢ [P,
. . il l .
- obtain wavelets 1 by difference JuU b
between nested subspaces T ) A | m T
1 U -1 —‘ ) -1 [ -1 f
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- this leads to the discrete wavelet transform (DWT) which provides an

wavelet
transform

orthogonal dictionary
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- this leads to the discrete wavelet transform (DWT) which provides an

wavelet
transform

orthogonal dictionary

Approximation Coefficients
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1980s: Wavelet transform

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

SR T A
—

- this leads to the discrete wavelet transform (DWT) which provides an

wavelet
transform

orthogonal dictionary

Approximation Coefficients Horizontal Detail Coefficients

20 20 Fi

40 40
60 60
80 80
of 100

120 120

40 60 80 100 120

Diagonal Detail Coefficients
20 Fh
40
60
80

100

120

60 80 100 120

100 120

- DWT is behind the JEPG 2000 image compression standard
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DCT vs STFT vs DWT

discrete discrete short-time
. . . wavelet
Fourier cosine Fourier
transform
transform transform transform

SR T A
-----------------’>

- comparison of the dictionaries we looked at so far

DCT STFT

T ;
NEENNNNN EAESEEEES
NEONNMMN NEERNEAEN
.
EAERSNEEN

Rubinstein et al., “Dictionaries for sparse representation modeling,” Proceedings of the IEEE, 2010. 51/66



Transform /analytic dictionary design

discrete
Fourier
transform transform transform

!

discrete short-time

) , wavelet
cosine Fourier

transform

ool

1960s

1974 1970s-80s 1980s

summary

modelling data by a simpler class of mathematical functions
+ smooth functions (DFT, DCT)

¢ piecewise-smooth functions (wavelets)

desired properties

+ localisation (STFT, wavelets)

+ multiresolution (wavelets)

+ adaptivity (wavelet packets)

fast implementation is usually available

limited expressiveness
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A paradigm shift in dictionary design

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

R T T

wavelet
transform

1960s 1974 1970s-80s 1980s

HEEEEEEE
I
X

Lt 1 [1

orthogonal atoms
complete dictionary

all signals use all atoms
dense coefficients

mathematical modelling

< LI LI 01111

o LLL T T I T 111

non-orthogonal atoms
overcomplete dictionary

different signals use different atoms
sparse coefficients

adaptation to data realisations
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An illustrative example

e Modelling assumption: Each data point is a combination of only a few
(sparse) fundamental elements, i.e., dictionary atoms
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An illustrative example

e Modelling assumption: Each data point is a combination of only a few
(sparse) fundamental elements, i.e., dictionary atoms

Signals Dictionary Coefficients
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Dictionary learning via sparse coding

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S T T T

wavelet sparse
transform  coding

1960s 1974 1970s-80s 1980s 1996

- the dictionary learning problem can be formulated as

[ min ||x — ®c| 2 + Allells j
P.c

= sparse approximation: given @ , solve for c via Lasso

= dictionary update: given c, update ® via gradient descent

Olshausen and Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, 1996.
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Dictionary learning via sparse coding

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S T T T

wavelet sparse
transform  coding

1960s 1974 1970s-80s 1980s 1996

- the dictionary learning problem can be formulated as

[ min ||x — ®c| 2 + Allells ]
P.c

= sparse approximation: given @ , solve for c via Lasso

= dictionary update: given c, update ® via gradient descent

- works at patch level for efficiency

- does not necessarily find global optimum

Olshausen and Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, 1996.
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Dictionary learning via sparse coding

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S T T T

wavelet sparse
transform  coding

1960s 1974  1970s-80s  1980s 1996 >

- the dictionary learning problem can be formulated as

[ min ||x — ®c| 2 + Allells ]
P.c

= sparse approximation: given @ , solve for c via Lasso

= dictionary update: given c, update ® via gradient descent

- works at patch level for efficiency
- does not necessarily find global optimum

- trained atoms are remarkably similar to mammalian simple-cell receptive fields

Olshausen and Field, “Emergence of simple-cell receptive field properties by learning a sparse code for natural images,” Nature, 1996. 55/66



Dictionary learning via sparse coding
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Olshausen et al., “ “Learning real and complex overcomplete representations from the statistics of natural images,” SPIE, 2009. 56/66



Dictionary learning via sparse coding
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Olshausen et al., “ “Learning real and complex overcomplete representations from the statistics of natural images,” SPIE, 2009. 56/66



Dictionary learning

discrete discrete short-time
Fourier cosine Fourier
transform transform transform

S S S S S S

wavelet sparse K-SVD doub!e
transform  coding sparsity

1960s 1974 1970s-80s 1980s 1996 2006 2010

- summary
= learning representations directly from data realisations
= desired properties

¢ overcompleteness
¢ sparse representations
+ efficiency in training

= may be combined with analytical dictionary design

» trained dictionary with structures (e.g., parametric dictionary learning via

double sparsity)
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L ecture 1

e Introduction & Basic concepts and tools
e A historical overview of signal representation techniques

e Applications & Discussion
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Application |: Signal denoising

10 I
— Original Signal
- Denoised Signal

-10 | | | | |
0 200 400 600 800 1000 1200

denoising using the order 4 symlet wavelets
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Application |l: Image compression

original JPEG 2000 (10% in size) JPEG 2000 (1% in size)

compression using the Cohen-Daubechies-Feauveau wavelets
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Application lll: Image reconstruction

Learned reconstruction Haar reconstructionOverComplete DCT reconstruction
Average # coeffs: 4.0202 Average # coeffs: 4.7677 Average # coeffs: 4.7694
MAE: 0.012977 MAE: 0.022833 MAE: 0.015719

50 % missing pixels RMSE: 0.029204 RMSE: 0.071107 RMSE: 0.037745

TPy oot o P P
E7 A A AR TN frad T Y
Ay ” RS R e

'y

Learned reconstruction Haar reconstructionOverComplete DCT reconstruction

Average # coeffs: 3.5623 Average # coeffs: 3.9747 Average # coeffs: 4.0539
MAE: 0.020035 MAE: 0.032831 MAE: 0.025001
RMSE: 0.055643 RMSE: 0.097571 RMSE: 0.063086

Aharon et al., “K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation,” IEEE TSP, 2006. 61/66



Application IV: Image restoration

Mairal et al., “Sparse representation for color image restoration,” IEEE TIP, 2008. 62/66



Connection with machine learning

e Dictionary learning vs Deep learning

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

< L1t 1 {11

https://en.wikipedia.org/wiki/File: Typical cnn.png

o LU LTI 1111
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Connection with machine learning

e Dictionary learning vs Deep learning

- both extract feature representations from data realisations

< L1t 1 {11

o LU LTI 1111

Feature maps

Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/File: Typical cnn.png
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Connection with machine learning

e Dictionary learning vs Deep learning

- both extract feature representations from data realisations

- both apply sparsifying operations such as shrinkage or rectified linear units

< L1t 1 {11

o LU LTI 1111

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

https://en.wikipedia.org/wiki/File: Typical cnn.png
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Connection with machine learning

e Dictionary learning vs Deep learning
- both extract feature representations from data realisations

- both apply sparsifying operations such as shrinkage or rectified linear units

- the former often leads to shallow representations while the latter to hierarchical

representations (via multi-layered convolution and pooling)

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

< L1t 1 {11

https://en.wikipedia.org/wiki/File: Typical cnn.png

o LU LTI 1111
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Connection with machine learning

e Dictionary learning vs Deep learning
- both extract feature representations from data realisations

- both apply sparsifying operations such as shrinkage or rectified linear units

- the former often leads to shallow representations while the latter to hierarchical
representations (via multi-layered convolution and pooling)
- the former is mainly for reconstruction/approximation (similar to autoencoders)

while the latter is widely used for classification

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

< L1t 1 {11

https://en.wikipedia.org/wiki/File: Typical cnn.png

o LU LTI 1111
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Dictionary-inspired deep architectures

e Scattering transform

7
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Bruna and Mallat, “Invariant scattering convolution networks,” IEEE TPAMI, 2013. 64/66



Dictionary-inspired deep architectures

e Multi-layer convolutional sparse coding

&% ————
s ——
3 e
e
g S
> S ————
—————
———— S
+3 ————
¢ ——
- —————
3 ————
———
———— 3
—_— — :
_—— :
e ———— 3
e
—— 3
ck — — 3
R —-—_—a%
- —
e ————— S
133 e —————
L
s —
= ~

Papyan et al., “Theoretical foundations of deep learning via sparse representations,” IEEE SPM, 2018. 65/66
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Dictionaries for Sparse
Representation Modeling

Digital sampling can display signals, and it should be possible to expose a large part
of the desired signal information with only a limited signal sample.

By RON RUBINSTEIN, Student Member IEEE, ALFRED M. BRUCKSTEIN, Member IEEE, AND

MiICHAEL ELAD, Senior Member IEEE

ABSTRACT | Sparse and redundant representation modeling of
data assumes an ability to describe signals as linear combina-
tions of a few atoms from a pre-specified dictionary. As such,
the choice of the dictionary that sparsifies the signals is crucial
for the successof this model. In general, the choice of a proper
dictionary can be done using one of two ways: i) building a
sparsifying dictionary based on a mathematical model of the
data, or ii) learning a dictionary to perform best on a training
set. In this paper we describe the evolution of these two
paradigms. As manifestations of the first approach, we cover
topics such as wavelets, wavelet packets, contourlets, and
curvelets, allaiming toexploit 1-D and. i

time. This representation, while convenient for the pur-
poses of display or playback, is mastly inefficient for anal-
ysis tasks. Signal processing techniques commonly require
more meaningful representations which capture the useful
h istics of the signal—for r ition, the repre-
sentation should highlight salient features; for denaising,
the representation should efficiently separate signal and
noise; and for compression, the representation should
capture a large part of the signal with only a few coeffi-
cients. Interestingly, in many cases these seemingly differ-
ent goals align, sharing a core desire for simplification.

for constructing effective dictionaries for signals and images.
Dictionary learning takes a different route, attaching the
dictionary to a set of examples it is supposed to serve. From
the seminal work of Field and Olshausen, through the MOD, the
K-SVD, the Generalized PCA and others, this paper surveys the
various options such training has to offer, up to the most recent
contributions and structures.

KEYWORDS | Dictionary learning: harmonic analysi
approximation; signal representation; sparse coding; sparse
representation

I. INTRODUCTION
The process of digitally sampling a natural signal leads toits
representation as the sum of Delta functions in space or
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p ga signal involves the choice of a dictionary,
which is the set of elementary signals—or atoms—used to
decompose the signal. When the dictionary forms a basis,
every signal is uniquely represented as the linear combi-
nation of the dictionary atoms. In the simplest case the
dictionary is orthogonal, and the representation coeffi-
cients can be computed as inner products of the signal and
the atoms; in the non-orthogonal case, the coefficients are
the inner products of the signal and the dictionary inverse,
also referred to as the bi-orthogonal dictionary.

For years, orth 1 and bi-orthogonal di
were dominant due to their mathematical simplicity. How-
ever, the weakness of these dictionari ly their
limited expressi lly ighed their sim-

plicity. This led to the development of newer overcomplete
dictionaries, having more atoms than the dimensions of the
signal, which promised to represent a wider range of signal
phenomena.

The move to overcomplete dictionaries was done cau-
tiously, in an attempt to minimize the loss of favorable
properties offered by orthogonal transforms. Many dictio-
naries formed tight frames, which ensured that the repre-
sentation of the signal as alinear combination of the atoms
could still be identified with the inner products of the
signal and the dictionary. Another approach, manifested by

Vol 98, No. 6, June 2010 | ProceeDINGs oF THE IEEE 1045

Ivana Tosit and Pascal Frossard

Dictionary Learning

What is the right

representation for my signal?
.., Reductig
- fit ds n
mension? tho
me

9 uge amounts of high-dimensional
information are captured every second
by diverse natural sensors such as the
eyes or ears, as well as artificial sensors

I like cameras or microphones. This

information is largely redundant in two main aspects: it
often contains multiple correlated versions of the same
physical world and each version is usually densely sampled
by generic sensors. The relevant information about the
underlying processes that cause our observations is generally of
much reduced dimensionality compared to such recorded data sets.
The extraction of this relevant information by identifying the generat-
ing causes within classes of signals is the central topic of this article. We
present methods for determining the proper representation of data sets by means of
reduced dimensionality subspaces, which are adaptive to both the characteristics of the signals and the
processing task at hand. These representations are based on the principle that our observations can be
described by a sparse subset of atoms taken from a redundant dictionary, which represents the causes of
our observations of the world. We describe methods for learning dictionaries that are appropriate for the
representation of given classes of signals and multisensor data. We further show that dimensionality
reduction based on dictionary representation can be extended to address specific tasks such as data analy-
sis or classification when the learning includes a class separability criteria in the objective function. The
benefits of dictionary learning clearly show that a proper understanding of causes underlying the sensed
world is key to task-specific jon of relevant i ion in high-dis jonal data sets.

©DGMAL STOCK & LUSHAX

'WHAT IS THE GOAL OF DIMENSIONALITY REDUCTION?

Natural and artificial sensors are the only tools we have for sensing the world and gathering information
about physical processes and their causes. These sensors are usually not aware of the physical process
underlying the phenomena they “see,” hence they often sample the information with a higher rate than
the effective dimension of the process. However, to store, transmit or analyze the processes we observe,
we do not need such abundant data: we only need the information that is relevant to understand the
causes, to reproduce the physical processes, or to make decisions. In other words, we can reduce the
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Representation Learning:
A Review and New Perspectives

Yoshua Bengio, Aaron Courville, and Pascal Vincent

Abstract—The success of machine learning algorithms generally depends on data representation, and we hypothesize that this is
because different representations can entangle and hide more or less the different explanatory factors of variation behind the data.

Although specific domain knowledge can be used to help design

leaming with iors can also be used, and the

quest for Alis motivating the design of more powerful

such priors. This paper reviews

g
recent work in the area of unsupervised feature leaming and deep learning, covering advances in probabilistic models, autoencoders,
manifold leaming, and deep networks. This motivates longer term unanswered questions about the appropriate objectives for learning

good for (i.e., inference), and the i ions between
leaming, density estimation, and manifold leaming.
Index Terms—Deep leaming, representation leaming, feature leaming, ised leaming, machine, 3

neural nets

1 INTRODUCTION

'HE performance of machine learning methods is heavily

dependent on the choice of data representation (or
features) on which they are applied. For that reason, much
of the actual effort in deploying machine learning algo-
rithms goes into the design of preprocessing pipelines and
data transformations that result in a representation of the
data that can support effective machine learning. Such
feature engineering is important but labor intensive and
highlights the weakness of current learning algorithms:
Their inability to extract and organize the discriminative
information from the data. Feature engineering is a way to
take advantage of human ingenuity and prior knowledge to
compensate for that weakness. To expand the scope and
ease of applicability of machine learning, it would be highly
desirable to make learning algorithms less dependent on
feature engineering so that novel applications could be
constructed faster, and more importantly, to make progress
toward artificial intelligence (AI). An Al must fundamen-
tally understand the world around us, and we argue that this
can only be achieved if it can learn to identify and
disentangle the underlying explanatory factors hidden in
the observed milieu of low-level sensory data.

This paper is about representation learning, i.e., learning
representations of the data that make it easier to extract
useful information when building classifiers or other
predictors. In the case of probabilistic models, a good
representation is often one that captures the posterior
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distribution of the underlying explanatory factors for the
observed input. A good representation is also one that is
useful as input to a supervised predictor. Among the
various ways of learning representations, this paper focuses
on deep learning methods: those that are formed by the
composition of multiple nonlinear transformations with
the goal of yielding more abstract—and ultimately more
useful—representations. Here, we survey this rapidly
developing area with special emphasis on recent progress.
We consider some of the fundamental questions that have
been driving research in this area. Specifically, what makes
one representation better than another? Given an example,
how should we compute its representation, i.e., perform
feature extraction? Also, what are appropriate objectives for
learning good representations?

2  WHY SHouLD WE CARE ABOUT LEARNING
REPRESENTATIONS?

Representation learning has become a field in itself in the
machine learning community, with regular workshops at
the leading conferences such as NIPS and ICML, and a new
conference dedicated to it, ICLR,' sometimes under the
header of Deep Learning or Feature Learning. Although depth
is an important part of the story, many other priors are
interesting and can be conveniently captured when the
problem is cast as one of learning a representation, as
discussed in the next section. The rapid increase in scientific
activity on representation learning has been accompanied
and nourished by a remarkable string of empirical successes
both in academia and in industry. Below, we briefly
highlight some of these high points.

2.1 Speech Recognition and Signal Processing
Speech was one of the early applications of neural
networks, in particular convolutional (or time-delay) neural
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