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A Journey into Graph Representation Learning



Overview of the Lecture
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GRL: an encoder-decoder 
framework 

What is GRL and what 
are the tasks of interest?

ℝd

Relational data and 
inductive bias  

Why is relational data 
prominent and where? 

Message passing neural 
networks 

Message passing paradigm and 
graph neural network 

architectures

Expressive power of MPNNs 

1-WL algorithm for graph 
isomorphism testing



Relational Data
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Knowledge Graphs
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Knowledge graphs: Graph-structured data models, storing relations (e.g., isFriendOf) between 
entities (e.g., Alice, Bob) and thereby capture structured knowledge. 



Biomedical Data: Molecular Scale
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Molecules (Rao et al, 2013): Figure shows the molecule structure of 
NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).

Molecular scale: Small molecule drugs can be represented as graphs relating their constituent atoms and 
chemical bonding structure. Complex molecules, such as proteins can be represented as graphs capturing 
spatial and structural relationships between their amino acid residues.



Biomedical Data: Intermediary Scale
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Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): Genes are shown as nodes 
and PPIs as edges connecting the nodes. Schizophrenia-associated genes are shown as dark blue 
nodes, novel interactors as red color nodes and known interactors as blue color nodes. Red edges are 
the novel interactions, whereas blue edges are known interactions.

Intermediary scale: An interactome defines a set of molecular interactions in a particular cell — They can 
be represented as graphs, e.g., protein–protein interaction graphs. 



Biomedical Data: Abstract Scale
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PharmGKB (Hewett et al., 2002): Abstract, complex relationships among the objects, 
including ‘expresses’, as in ‘a gene expresses a protein’:  different relationships.600+

Abstract scale: KGs can represent the complex relationships between drugs, side effects, diagnosis, 
associated treatments, and test results etc.



Social Networks
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Social networks: Entities (e.g., individuals, groups, organizations) interacting with other 
entities on social platforms.



Computer Vision: Scene Graphs
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Scene graphs (Johnson et al., 2015): A scene as a graph.



Road Networks
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Traffic networks: An excerpt of the London Tube of Zone 1, showing different lines.



Programs: Dependency Graphs
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Program dependency graphs (Allamanis, 2021): Figure shows a Python 
program and its dependencies represented as a graph.



Plethora of Applications
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drug repurposing, protein engineering 
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Plethora of Applications

12

Drug Discovery 

Target identification, property prediction, 
drug repurposing, protein engineering 

Protein Folding 

How do amino acids fold to form 
proteins?

Jet Classification 

What is the original object that gave rise 
to the jet? 

Recommender Systems 

Realistic recommendations for users

Visual Question Answering 

Answering questions about scenes

Traffic Forecasting 

Estimating Times of Arrivals 



Graph Representation Learning
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Graph Machine Learning

14

Functions over graphs, or nodes, necessarily relate to graph properties, which carry valuable 
information: needs to be taken into account adequately. 

Idea: Define similarity measures for nodes/graphs, and then use for the optimization task.

Node degrees? 

Contains an odd-length cycle? 

Minimum vertex cover size 1, 2?

BB



What Kind of Graphs?
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Context: Simple, undirected, unweighted graphs  attributed with node features.  

• : Set of vertices/nodes 

• : Set of edges 

• : Node feature matrix, which stores a feature vector  for each node . 
domain-specific attributes, or node degrees, or simply one-hot encodings.

G = (V, E, X)

V

E ⊆ V × V

X ∈ ℝd×V xu = X[u]⊤ u

0.5

0.4

0.3

1

0.2 1

0.9



What Kind of Representations?
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Representations: We can represent the graph in terms of its adjacency matrix and feature matrix: 

•  is the adjacency matrix of a graph . 

•  is a feature matrix of a graph  where  is the embedding dimensionality. 

• We sometimes write  instead of .

A G = (V, E)

X ∈ ℝ|V|×d G = (V, E) d

G = (A, X) G = (V, E, X)

x1 x2

x4x3

A

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

x1 x2 x3 x4

x1

x2

x3

x4



What Kind of Functions?
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Node-level functions:  

 

 

 

Unary functions ( )

f(G) : V → 𝔹

f(G) : V → ℝ

f(G) : V → ℝd

k = 1

f
Graph-level functions: 

 

 

 

Graph functions ( )

f(G) → 𝔹

f(G) → ℝ

f(G) → ℝd

k = 0

Edge-level functions: 

 

 

 

Binary functions ( )

f(G) : V2 → 𝔹

f(G) : V2 → ℝ

f(G) : V2 → ℝd

k = 2

Consider -ary functions , which define, for every node attributed graph , a mapping 
of the form .

k f G = (V, E, X)
f(G) : Vk → 𝔻



Graph Isomorphism
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A B C

D FE

G
A B C

D FE

H



Graph Isomorphism
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Isomorphism: Two graphs   and  with node features are isomorphic if 
there exists a bijection between the node sets  and  such that 

 if and only if  for all ,  

and   

 for all . 

G = (VG, EG, XG) H = (VH, EH, XG)
VG VH

(u, v) ∈ EG ( f(u), f(v)) ∈ EH u, v ∈ VG

XG[u] = XH[ f(u)] u ∈ VG

A B C

D FE

G
A B C

D FE

H



Inductive Bias: Invariance and Equivariance
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Invariance: A function  over graphs is permutation-invariant if for all isomorphic graphs  it holds 
that , i.e., the function  does not depend on the ordering of the nodes in the graph. 

Equivariance: A function  over graph nodes  is permutation-equivariant if for every 
graph  and, for every permutation  of , it holds that , i.e., the output of  is 
permuted in a consistent way when we permute the nodes in the graph.

f G, H
f(G) = f(H) f

f f(G) : V → ℝ|V|

G π V f(G)(Vπ) = f(G)(V )π f

A B C

D FE

G
A B C

D FE

H



An Encoder-Decoder Perspective

20

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌
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20

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Goal: Embedding nodes, edges, graphs, along with their features, and use these embeddings for predicting 
node-level, edge-level, or graph-level properties.  

Intuition: Nodes/edges/graphs with “similar properties” should have representations closer to each other 
than nodes/edges/graphs with “dissimilar properties”.



An Encoder-Decoder Perspective
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Training: Let  be a similarity measure between the nodes  and suppose: 

                                                   

Optimization: , i.e., minimize the reconstruction loss.

S[u, v] u, v

𝙴𝚗𝚌 : V → ℝd 𝙳𝚎𝚌 : ℝd × ℝd → ℝ+

∀u, v ∈ V : 𝙳𝚎𝚌(𝙴𝚗𝚌(u), 𝙴𝚗𝚌(v)) = 𝙳𝚎𝚌(zu, zv) ∼ S[u, v]

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌



An Encoder-Decoder Perspective

22

Graph representation learning tasks: Various node/edge/graph level tasks are of interest.  

Node-level: Node classification/clustering/regression 

Edge-level: Link prediction, knowledge graph completion 

Graph-level: Graph classification/clustering/regression/generation

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌



Shallow Node Embeddings
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An Encoder-Decoder Perspective
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Encoder and Decoder: Let  be a similarity measure between the nodes  and suppose: 

                                                   

Shallow encoder: A lookup function , where  is a matrix of -dimensional embeddings. 

Unsupervised: We do not use node labels or features and the resulting embeddings are task-independent! 

S[u, v] u, v

𝙴𝚗𝚌 : V → ℝd 𝙳𝚎𝚌 : ℝd × ℝd → ℝ+

𝙴𝚗𝚌(𝚟) = Z[v]⊤ Z : ℝ|V|×d d

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌



Optimization

25

Optimization: Given a dataset , minimize the loss: 

                    , 

where  (e.g., mean-squared error), measures the discrepancy between  and .

D = {(ui, vi) ∣ 1 ≤ i ≤ n}

∑
(u,v)∈D

f(𝙳𝚎𝚌(zu, zv), S[u, v])

f : ℝ × ℝ → ℝ 𝙳𝚎𝚌(zu, zv) S[u, v]

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌



Characterizing a Node Embedding Model
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Idea: Node embedding models produce an embedding vector for each node such that nodes with similar 
properties are in close proximity to one another in the embedding space.  

Intuition: Two nodes are similar if their neighbourhoods are similar according to some notion of neighbourhood. 

(1) What kind of decoder?      (2) What kind of node/graph similarity?         (3) Which loss function?

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌



Matrix Factorization Approaches: Inner Product
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Decoder: Similarity between two nodes is proportional to the 
dot product of their embeddings: 

 

Loss: 

 

Mapping back to the matrix  of node embeddings, reveals 
the connection to matrix factorization:  

 . 

𝙳𝚎𝚌(zu, zv) = z⊤
u zv

ℒ = ∑
(u,v)∈D

∥𝙳𝚎𝚌(zu, zv) − S(u, v)∥2
2

Z

ℒ ≈ ∥ZZ⊤ − S∥2
2

S ≈ ZZ⊤



Matrix Factorization Approaches: Inner Product
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In its simplest form, we can set   and minimise 

 

This objective approximately recovers the graph:  

 .  

To capture multi-hops, we can set a similarity defined over: 

. 

Decoder (i.e., any pairwise similarity) and accordingly the 
target similarity (neighbourhood overlap measures) can vary…

S = A

ℒ = ∑
(u,v)∈D

∥𝙳𝚎𝚌(zu, zv) − A(u, v)∥2
2

ℒ ≈ ∥ZZ⊤ − A∥2
2

A[u, v], …, Ak[u, v]

A ≈ ZZ⊤



Other Approaches

29

Similarity: In terms of generalizations of other matrices, i.e., the graph Laplacian. 

Decode: We can decode differently, i.e., based on the -distance: .  

Random walk approaches: Models such as DeepWalk and node2vec, inspired by word2vec.

L2 𝙳𝚎𝚌(zu, zv) = ∥zu − zv∥2
2

x1 x2

x4x3

A

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

x1 x2 x3 x4

x1

x2

x3

x4

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

D

x1 x2 x3 x4

x1

x2

x3

x4

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

L = D − A

x1

x2

x3

x4

x1 x2 x3 x4



Beyond Shallow Embeddings
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The embeddings of the nodes do not share any 
parameters, i.e., hard to model dependencies.

It is hard to capture certain structural 
similarities, e.g.,  and .u1 u10

v

u2

u1

u4

u3

G
u8

u10 u9

u5 u7 Transductive: No embeddings for 
new nodes, unseen during training

Node/graph-level features cannot be 
utilised effectively.

Hard to capture graph-level, global 
properties, hence worse on graph-level tasks.

Stronger encoder to 
capture dependencies?

Inductive models?

Better capturing global 
properties?

Encoder which can 
incorporate node features?

Better encoder to capture 
structural properties?



Message Passing Neural Networks
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v

u2

u1

u4

u3

G
u8

u10 u9

u5 u7

Goal: Designing neural architectures satisfying the desired desiderata!



Message Passing Neural 
Networks

32



Message Passing Neural Networks
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Message passing neural networks (MPNNs) capture popular GNNs (Gilmer et al., 2017). 

Idea: Iteratively update initial node features with the information received from their respective neighborhoods. 

Notation: The representation of  at iteration  is , i.e., the initial representation is .u ∈ V t h(t)
u h(0)

u = xu = X[u]⊤



Message Passing Neural Networks

34

Given a graph , an MPNN iteratively computes  for every node :G = (V, E, X) h(t)
u u ∈ V

h(0)
u = xu, initialize

m(t)
u = ψ(t)(h(t−1)

u , {{h(t−1)
v ∣ v ∈ N(u)}}), aggregate

h(t)
u = ϕ(t)(h(t−1)

u , m(t)
u ), update/combine



Message Passing Neural Networks
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Given a graph , an MPNN iteratively computes  for every node :G = (V, E, X) h(t)
u u ∈ V

h(0)
u = xu, initialize

m(t)
u = ψ(t)(h(t−1)

u , {{h(t−1)
v ∣ v ∈ N(u)}}), aggregate

h(t)
u = ϕ(t)(h(t−1)

u , m(t)
u ), update/combine

 and  can be any differentiable function!ϕ(t) ψ(t)non-linearity

message

mean, sum, max, ...



Message Passing Neural Networks
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Given a graph , an MPNN defines  the features , and iteratively updates them: 

 

where   and  are differentiable functions.

G = (V, E, X) ∀u ∈ V h(0)
u = xu

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}})),

ϕ(t) ψ(t)



Message Passing Neural Networks

36

You may encounter variations, where a message computation function  is defined w.r.t the source node: 

 

Remark: The function  typically depends on the neighborhood - hard to decouple  from . Following 
a common convention, we view the message computation as part of aggregation.

msg

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)({{msg(h(t−1)
u , h(t−1)

v ) ∣ v ∈ N(u)}})),

msg msg ψ(t)



Message Passing Neural Networks
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B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3 
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least  
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2
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A A

E

D

B

C

E

F

B

D

F

C

B

C

t = 3 t = 0t = 1t = 2

= h(0)
𝖡

= h(0)
𝖢

= h(0)
𝖡

= h(0)
𝖤

= h(0)
𝖥

= h(0)
𝖢

= h(0)
𝖣

= h(0)
𝖥



Message Passing Neural Networks
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The -th iteration is the -th layer of the MPNN, since each iteration can be seen as an “unrolling” of the 
network. The #layers defines the depth, and the embedding dimensionality the width of the network.

i i

A A

E

D

B

C

E

F

B

D

F

C

B

C

t = 3 t = 0t = 1t = 2

= h(0)
𝖡

= h(0)
𝖢

= h(0)
𝖡

= h(0)
𝖤

= h(0)
𝖥

= h(0)
𝖢

= h(0)
𝖣

= h(0)
𝖥



Message Passing Neural Networks
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Node-level final representation: The final node representations are denoted as . 

Graph-level final representation: A final graph embedding  for a graph  through a mapping from the 
multiset of all the node embeddings  to  known as relational pooling (Murphy et al., 2019). 

Common choices are sum, or mean, which are normalized, e.g., w.r.t. number of the nodes.

zu = h(k)
u

zG G
{{zu1

…zun
}} zG



Deriving a Basic Graph Neural Network Model
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h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
= ϕ(t)(h(t−1)

u , ∑
v∈N(u)

h(t−1)
v )

= σ(W(t)
self h

(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )

Model design space is very large: many possible choices for aggregate and update.

: sumaggregate

: linear transformations 
with a nonlinearity at the end
update



The Basic Graph Neural Network Model

41

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v + b(t))

W(t)
self, W(t)

neigh ∈ ℝd(t)×d(t−1): element-wise 
non-linearity
σ

ψ = sum aggregation

 

bias term

b(t) ∈ ℝd(t)

ϕ = update



Message Passing With Self-Loops

42

Message passing: Define an aggregate function which treats the source node also as a neighbor: 

              

Self-loop: This can be thought as (implicitly) adding self-loops to the nodes, hence the name.

h(t)
u = ψ(t)({{h(t−1)

v ∣ v ∈ N(u)}} ∪ {{h(t−1)
u }})



Message Passing With Self-Loops

42

Message passing: Define an aggregate function which treats the source node also as a neighbor: 

              

Self-loop: This can be thought as (implicitly) adding self-loops to the nodes, hence the name.

h(t)
u = ψ(t)({{h(t−1)

v ∣ v ∈ N(u)}} ∪ {{h(t−1)
u }})

Basic model: Note that this further simplifies the base model: 

                      

Expressivity: This limits the expressivity since the information coming from the node’s neighbor's 
cannot be differentiated from the information from the node itself.

h(t)
u = σ(W(t) ∑

v∈N(x)

h(t−1)
v + h(t−1)

u )



A Limitation of Message Passing

43

Problem: The presented message passing approach is local: no information flows across disjoint subgraphs.  

Remark: Pooling yields a graph embedding, which is global, but there is still no communication between 
disjoint subgraphs during message passing, so the node embeddings are “blind” to disjoint subgraphs.  

Solution: Global feature computation, or global readout, on each layer of the MPNN (Battaglia et al., 2018).

B A C

D FE



Message Passing with Global Readout
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B A C

D FE

The representation  for each node  is iteratively updated with the information received from its neighborhood 
as well as a global feature vector as:  

 

where  is a differentiable function, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}), γ(t)(h(t−1)
u , {{h(t−1)

w ∣ w ∈ G}})),

γ(t) γ(t)



Message Passing with Global Readout

44

B A C

D FE

An instance of generalized message 
passing (Battaglia et al., 2018)

The representation  for each node  is iteratively updated with the information received from its neighborhood 
as well as a global feature vector as:  

 

where  is a differentiable function, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}), γ(t)(h(t−1)
u , {{h(t−1)

w ∣ w ∈ G}})),

γ(t) γ(t)
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B A C

D FE

An instance of generalized message 
passing (Battaglia et al., 2018)

A difference in the expressive power 
of MPNNs (Barcelo et al., 2020).

The representation  for each node  is iteratively updated with the information received from its neighborhood 
as well as a global feature vector as:  

 

where  is a differentiable function, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}), γ(t)(h(t−1)
u , {{h(t−1)

w ∣ w ∈ G}})),

γ(t) γ(t)
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G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

The learned embeddings can be used for many graph machine learning task, e.g., graph/node classification, 
graph/node regression, graph/node clustering, depending how they are learned.
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2005 … 2014 2015 2016 2017 2018 2019 2020 2021

GGNN  
(Li et al., 2016)

PPGN  
(Maron et al., 2019)

Original GNN  
  (Gori et al., 2005)

Tree LSTM  
(Tai et al., 2015)

GIN  
(Xu et al., 2019)

Structure2Vec 
(Dai et al., 2016)

ChebNet  
(Defferrard et al., 2016)

Relation Nets  
(Santoro et al., 2017)

Spectral CNN 
(Bruna et al., 2014)

GCN 
(Kipf et al., 2017)

GraphSAGE 
(Hamilton et al., 2017)

MPNNs 
  (Gilmer et al., 2017)

k-GNNs 
(Morris et al., 2019)

GNN-RNI 
(Sato et al., 2021)  
(Abboud et al., 2021)

RGCN 
(Schlichtkrull et al., 2018)

2022

NBFNets  
(Zhu et al., 2021)

GRAIL 
(Teru et al., 2020)

VGAE 
(Kipf &Welling, 2016)

GAT  
(Velickovic et al., 2018)

2023

C-MPNNs  
(Huang et al., 2023)

NodePiece  
(Galkin et al., 2022)

Graph  
Transformers  

(Dwiwedi et al., 2021)

Over-smoothing 
     (Li et al., 2018)

Graphormer  
(Ying et al., 2021)

Exphormer  
(Shirzad et al., 2023)

Over-squashing 
   (Alon et al., 2021)Logical  

Expressiveness 
(Barcelo et al., 2020)

GraphGPS  
(Rampášek et al., 2022)
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The base GCN model (Kipf et al., 2017) can be seen as a self-loop message passing approach:

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u)N(v) )

Sum aggregation over degree-normalized features

Self-loop approach: single parameter 
matrix with a non-linearity

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v ) Very similar to the basic 

self-loop approach

What is the 
connection to 
convolutions?
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h(t)
u = σ(W(t)

selfh
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )

H(t) = σ(H(t−1)W(t)
self + A H(t−1)W(t)

neigh): Node 
representations at layer 
H(t) ∈ ℝ|VG|×d

t

AdjacencyIdentity 

Node-level

Graph-level
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Filter: The layers apply a , combined with some weight matrices and a non-linearity.  Ã = I + A

h(t)
u = σ(W(t)

selfh
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )

H(t) = σ(H(t−1)W(t)
self + A H(t−1)W(t)

neigh): Node 
representations at layer 
H(t) ∈ ℝ|VG|×d

t

AdjacencyIdentity 

Node-level

Graph-level
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Intuitively, in the base GCN model: 

•  enables messaging between neighbors and with node’s self representation through the identity. 

• Node’s own embedding is treated identically to messages from other nodes: self-loops.

Ãsym

H(t) = σ(Ãsym H(t−1)W(t)) h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u)N(v) )

(D + I)− 1
2 (I + A)(D + I)− 1

2

GCN applies filters based on the 
symmetric normalized adjacency 
matrix, ensures values: [0,1]

GCN is a local, first-order approximation of spectral 
graph convolution based on Chebyshev polynomials.
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Learning Aggregation
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Goal: Learn to aggregate non-uniformly across neighbors? 

Idea: Use attention as a means to non-uniformly aggregate over the neighborhood.  

Background: Attention models obtained strong results in, e.g., machine translation (Bahdanau et al., 2015).

∑
v∈N(u)

h(t−1)
v ∑

v∈N(u)

Wh(t−1)
v∑

v∈N(u)∪{u}

h(t−1)
v

N(u)N(v)

Fixed aggregation: sum
Sum aggregation with 
learnable transformation 
matrix on features

Fixed aggregation: sum over 
degree-normalized features
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Attention: Allocate different weights to distinct inputs, based on 
their relevance to the learned task. 

Transformer (Vaswani et al., 2017): Figure shows attention weights 
for the word ‘making’ encoding “making more difficult”. 

Breaking uniformity: Attend to more relevant tokens, rather than 
uniformly considering all possible tokens.  

Graph attention: A node can benefit from weighing the relative 
importance of its neighbors.



Attention over Graphs
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Neighborhood attention: Richer weighing of a node’s neighbors, which results in potentially more 
descriptive and task-specific aggregation schemes.  

Idea: Learn an attention weight for each neighbor, which yields weighted aggregation functions.

R

Y
Example: Classify all nodes 
connected to a red node as true 
and every other node as false. 

This task relies only to 
the fact that a node 
has a red neighbor.
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Graph attention networks (GAT) (Velickovic et al., 2018) use a weighted sum aggregation, with a 
pairwise node attention mechanism during message passing (using a self-loop approach): 

      , 

where   is the attention weight on a node  with respect to a source node . 

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

α(u,v) h(t−1)
v )

αu,v v ∈ N(u) ∪ {u} u

R

Y
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h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

α(u,v) h(t−1)
v )

Update: linear transformation 
combined with non-linearity

Aggregate: Weighted 
sum based on attention

αu,v =
exp(eu,v)

∑v′ ∈N(u) exp(eu,v′ 
)

eu,v = LeakyReLU(a⊤[Whu ⊕ Whv])

eu,v = LeakyReLU(h⊤
u Whv)

GAT

Bilinear

eu,v = a⊤LeakyReLU(W[hu ⊕ hv]) GATv2

GAT applies and  consecutively 
and these can be collapsed into single 
linear layer!  

GATv2 (Brody et al., 2022) avoids by 
first applying the non-linearity.

a⊤ W
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• Learn  attention weights  for the nodes . 

• Concatenate resulting  node representations  for each node : 

  

k αu,v,1, …, αu,v,k u, v

k hu[1], …, hu[k] u

hu = hu[1] ⊕ … ⊕ hu[k]

R

Y

Transformer: Multiple attention heads 
to compute attention weights between 
all pairs of positions in the input.  

Coincides with GAT using multi-head 
attention on a fully connected graph.

Multi-head attention: Learn multiple, 
distinct, independently parametrized 
attention weights.



Graph Isomorphism Networks

58



A Closer Look at Aggregation
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Question: What is the impact of different choices of aggregation on the discrimination ability of GNNs? 

Task: Input graph with node types red, green and yellow, where the features are the RGB values.  

Setup: Consider a red node to analyze how different functions aggregate neighbor messages.

T S
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Sum: Can discern between neighborhoods based on their sizes, but it can lead to false equality.  

Example: Sum cannot distinguish between a 2-yellow and a red-green neighborhood.

T S



A Closer Look at Aggregation
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Mean: Useful for bounding the range of aggregate messages, but cannot recognize multiplicities. 

Example: 2-red or 3-red neighbours are indifferent, as the mean operation eliminates cardinality.

T S



A Closer Look at Aggregation
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Max: Highlights a relevant element, but limited in discriminative ability.  

Example: Considering red < yellow < green, green is answer for any neighborhood involving 
at least 1 green node.

T S



Aggregation and Expressiveness
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Observation: An aggregation function must distinguish between distinct neighborhoods, and return different 
results given different neighborhood multisets. 

Injective: The aggregation function must be injective relative to the neighborhood.  

Expressive power: MPNNs are at their maximal expressiveness with injective functions (Xu et al.,2019).

T S
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(Xu et al., 2019)
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(Xu et al., 2019)
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T S

Graph isomorphism networks (GINs) (Xu et al., 2019) update the representation  for each node  as:  

  

…and GIN layers are injective.

hu u ∈ V

h(t)
u = MLP((1 + ϵ) ⋅ h(t−1)

u , ∑
v∈N(u)

h(t−1)
v )
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G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Graph representation learning with strong relational inductive bias 

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )
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G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Learned parameters are independent of graph size 

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )
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G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Applies to variable-size graphs 

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )
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G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′ 

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

What is the expressive power? 

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )



A Journey into Model 
Representation Capacity
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Model Representation Capacity

72

Expressive power: Capacity of a model (e.g., neural network) to approximate functions.  

Feedforward networks: MLPs can approximate any continuous function  on a compact domain: for any 
such function, there is a parameter configuration for an MLP, corresponding to an approximation of the 
function (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989).

f

f
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Expressive Power in the World of Graphs: One way of characterizing the expressive power would be 
through graph distinguishability. Learn graph embeddings ,  for graphs  and : 

    if and only if   is isomorphic to 

zG zH G H

zG = zH G H
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Expressive Power in the World of Graphs: One way of characterizing the expressive power would be 
through graph distinguishability. Learn graph embeddings ,  for graphs  and : 

    if and only if   is isomorphic to 

zG zH G H
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Problem: Contains graph isomorphism 
testing, an NP-intermediate problem, 
where the best algorithm requires quasi-
polynomial time (Babai, 2016).



Model Representation Capacity

73

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be 
through graph distinguishability. Learn graph embeddings ,  for graphs  and : 

    if and only if   is isomorphic to 

zG zH G H

zG = zH G H

Problem: Contains graph isomorphism 
testing, an NP-intermediate problem, 
where the best algorithm requires quasi-
polynomial time (Babai, 2016).

Question: Where do MPNNs 
stand in graph distinguishability?



A Tale of Two Graphs 
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Problem: Any MPNN will learn identical representations for the graphs  and . 

MPNNs cannot distinguish between two triangles and a 6-cycle: severe limitation for graph classification! 

Predictions for these graphs will be identical regardless of the function we are trying to learn!  

Is this only a problem for graph classification?

G1 G2

G1 G2
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G1 G2

Separator: A node is a separator node if it has two neighbors which are non-adjacent to one another.  

Input: Consider the graph  that is the disjoint union of the graphs  and . 

Node classification task: Classify the nodes of  as separator or non-separator.  

An MPNN randomly predicts all nodes to be separator nodes, or all of them as non-separator nodes.

G G1 G2

G
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Separator: A node is a separator node if it has two neighbors which are non-adjacent to one another.  

Input: Consider the graph  that is the disjoint union of the graphs  and . 

Node classification task: Classify the nodes of  as separator or non-separator.  

An MPNN randomly predicts all nodes to be separator nodes, or all of them as non-separator nodes.

G G1 G2

G

All nodes are non-separator



A Tale of Two Graphs

75

G1 G2

Separator: A node is a separator node if it has two neighbors which are non-adjacent to one another.  

Input: Consider the graph  that is the disjoint union of the graphs  and . 

Node classification task: Classify the nodes of  as separator or non-separator.  

An MPNN randomly predicts all nodes to be separator nodes, or all of them as non-separator nodes.

G G1 G2

G

All nodes are separatorAll nodes are non-separator
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Color Refinement
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Color refinement is a simple and effective algorithm for graph isomorphism testing: 

1. Initialization: All nodes in a graph are initialized to their initial colors. 

2. Refinement: All nodes are re-colored depending on their current color and the colors in their neighborhoods. 

3. Stop: Terminate when the coloring stabilizes.
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YY B

YY R

B

YY B

YY R

B

Two graphs: Node color classes differ for these graphs - color refinement can distinguish…
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Given a graph , and a set  of colors, we define a coloring function over the nodes of the graph:  

  

Each such  colors the nodes of the graph and hence induces a partition of  into node color classes.  

G = (V, E) C

λ : VG ↦ C

λ VG
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Refinement: A coloring  refines a coloring , denoted as , if for any  the following holds:   

 implies   

Equivalence: A coloring  is equivalent to a coloring , denoted as , if and only if  and .

λ λ′ λ ⪯ λ′ u, v ∈ VG

λ(u) = λ(v) λ′ (u) = λ′ (v)

λ λ′ λ ≡ λ′ λ ⪯ λ′ λ′ ⪯ λ
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We respect the following notation:  

• We can apply this function to different graphs, and therefore we will write  instead of . 

• We also need to refer to different coloring functions (at different iterations), which will be denoted by .

λ(G)(u) λ(u)

λ(t)(G)(u)
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Input: A graph  with an initial coloring . 

1. Initialization: All nodes  are initialized to their initial colors . 

2. Refinement: All nodes  are recursively re-colored: 

, 

where double-braces denote a multiset, and  bijectively maps any pair (composed of a color and a 
multiset of colors) to a unique color. 

3. Stop: The algorithm terminates at iteration , where  is the minimal integer satisfying: 

.

G = (VG, EG) λ(0)(G) : VG → C

u ∈ VG λ(0)(G)(u)

u ∈ VG

λ(i+1)(G)(u) = τ(λ(i)(G)(u), {{λ(i)(G)(v) ∣ v ∈ N(u))}})
τ

j j

∀u, v ∈ VG : λ( j+1)(G)(u) = λ( j+1)(G)(v) if and only if λ( j)(G)(u) = λ( j)(G)(v)



Color Refinement: Graph-Level
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To apply the color refinement algorithm for isomorphism testing, we need graph-level colors: 

   

Colour refinement can then be used to distinguish graphs. In particular, we can state the following: 

 and  are non-isomorphic iff   for stable colorings  and .

λ(t)(G) = τ({{λ(t)(G)(u) ∣ u ∈ VG}})

G H λ(t)(G) ≠ λ(t′ )(H) λ(t) λ(t′ )

A B C

D FE

G
A B C

D FE

H
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A B C

D FE

G
A B C

D FE

H

Soundness: Color refinement is sound for non-isomorphism checking: whenever it returns yes for two 
graphs  and , they are non-isomorphic. 

Incompleteness: Colour refinement is incomplete for non-isomorphism checking: even if  and  
agree in every color class size in the stable coloring, the graphs might not be isomorphic.

G H

G H
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1-dimensional Weisfeiler Lehman algorithm (1-WL): A popular algorithm for graph isomorphism testing. 

1-WL is very similar to color refinement, where the refinement considers both neighbors and non-neighbors: 

 

Remark: 1-WL and color refinement coincide on the graph-level:  

 and 

wl(i+1)
1 (G)(u) = τ(wl(i)1 (G)(u), {{wl(i)1 (G)(v) ∣ v ∈ N(u))}}, {{wl(i)1 (G)(v) ∣ v ∈ VG∖N(u)}})

wl(t)1 (G1) ≠ wl(t)1 (G2) λ(t)(G1) ≠ λ(t)(G2)

u v

G1 G2
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1-dimensional Weisfeiler Lehman algorithm (1-WL): A popular algorithm for graph isomorphism testing. 

1-WL is very similar to color refinement, where the refinement considers both neighbors and non-neighbors: 

 

Remark: They are different when we look at node-level refinements on different graphs: 

 while 

wl(i+1)
1 (G)(u) = τ(wl(i)1 (G)(u), {{wl(i)1 (G)(v) ∣ v ∈ N(u))}}, {{wl(i)1 (G)(v) ∣ v ∈ VG∖N(u)}})

wl(t)1 (G1)(u) ≠ wl(t)1 (G2)(v) λ(t)(G1)(u) = λ(t)(G2)(v)

u v

G1 G2



Expressive Power of MPNNs

88



Color Refinement: Example

89

YY B

YY R

B

YY B

YY R

B

Color refinement and MPNNs aggregate information from the neighborhoods and update accordingly: 

 

MPNN layers are feature maps over graphs:  and , we have the mapping   

Taking this perspective, we can view  as an abbreviation of .

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
∀G ∀t, 1 ≤ t ≤ L h(t)(G) : V → ℝd

h(t)
u h(t)(G)(u)
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Color refinement and MPNNs aggregate information from the neighborhoods and update accordingly: 

 h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
λ(i+1)(G)(u) = τ(λ(i)(G)(u), {{λ(i)(G)(v) ∣ v ∈ N(u))}})
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YY B

YY R

B

YY B

YY R

B

Can we view the rounds of the color refinement algorithm as the layers of an MPNN?  

 h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
λ(i+1)(G)(u) = τ(λ(i)(G)(u), {{λ(i)(G)(v) ∣ v ∈ N(u))}})
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Theorem ([Morris et al., 2019, Xu et al., 2019]). Consider any MPNN that consists of  message-passing layers: 

 

Given a graph  with only discrete input features , we have that 

 only if the nodes  and  in  have different labels after  iterations of the 1-WL algorithm.

k

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
G = (V, E, X) h(0)

u = xu ∈ ℤd

h(k)
u ≠ h(k)

v u v G k
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MPNNs are at most as powerful as the 1-WL test: 

• If the 1-WL algorithm assigns the same label to two nodes, then any MPNN will also assign the 
same embedding to these two nodes.  

• If the 1-WL test cannot distinguish between two graphs, then an MPNN is also incapable of 
distinguishing between these two graphs. 
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Theorem ([Morris et al., 2019, Xu et al., 2019]). Given a graph , there exists an MPNN such that 

 if and only if the two nodes  and  in  have the same label after  iterations of the 1-WL 
algorithm. In particular, the basic MPNN model is as powerful as 1-WL:            

                            

G = (V, E, X)
h(k)

u = h(k)
v u v G k

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v )
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A Journey into Graph Representation Learning 

• Inductive learning via MPNNs. 

• Expressiveness limitations are at the origin of many other problems. 

• Expressiveness studies: uniformity conditions are necessary. 

• Other limitations: related to information bottlenecks.
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