
AIMS, Guest Lecture, Oxford Michaelmas Term, 2023/2024

 İsmail İlkan Ceylan

1

A Journey into Graph Representation Learning

Overview of the Lecture

2

GRL: an encoder-decoder
framework

What is GRL and what
are the tasks of interest?

ℝd

Relational data and
inductive bias

Why is relational data
prominent and where?

Message passing neural
networks

Message passing paradigm and
graph neural network

architectures

Expressive power of MPNNs

1-WL algorithm for graph
isomorphism testing

Relational Data

3

Knowledge Graphs

4

Knowledge graphs: Graph-structured data models, storing relations (e.g., isFriendOf) between
entities (e.g., Alice, Bob) and thereby capture structured knowledge.

Biomedical Data: Molecular Scale

5

Molecules (Rao et al, 2013): Figure shows the molecule structure of
NSAID drugs. “Me" is an abbreviation for "methyl" (CH3).

Molecular scale: Small molecule drugs can be represented as graphs relating their constituent atoms and
chemical bonding structure. Complex molecules, such as proteins can be represented as graphs capturing
spatial and structural relationships between their amino acid residues.

Biomedical Data: Intermediary Scale

6

Excerpt from Schizophrenia interactome (Ganapathiraju et al, 2016): Genes are shown as nodes
and PPIs as edges connecting the nodes. Schizophrenia-associated genes are shown as dark blue
nodes, novel interactors as red color nodes and known interactors as blue color nodes. Red edges are
the novel interactions, whereas blue edges are known interactions.

Intermediary scale: An interactome defines a set of molecular interactions in a particular cell — They can
be represented as graphs, e.g., protein–protein interaction graphs.

Biomedical Data: Abstract Scale

7

PharmGKB (Hewett et al., 2002): Abstract, complex relationships among the objects,
including ‘expresses’, as in ‘a gene expresses a protein’: different relationships.600+

Abstract scale: KGs can represent the complex relationships between drugs, side effects, diagnosis,
associated treatments, and test results etc.

Social Networks

8

Social networks: Entities (e.g., individuals, groups, organizations) interacting with other
entities on social platforms.

Computer Vision: Scene Graphs

9

Scene graphs (Johnson et al., 2015): A scene as a graph.

Road Networks

10

Traffic networks: An excerpt of the London Tube of Zone 1, showing different lines.

Programs: Dependency Graphs

11

Program dependency graphs (Allamanis, 2021): Figure shows a Python
program and its dependencies represented as a graph.

Plethora of Applications

12

Plethora of Applications

12

Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Plethora of Applications

12

Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Protein Folding

How do amino acids fold to form
proteins?

Plethora of Applications

12

Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Protein Folding

How do amino acids fold to form
proteins?

Jet Classification

What is the original object that gave rise
to the jet?

Plethora of Applications

12

Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Protein Folding

How do amino acids fold to form
proteins?

Jet Classification

What is the original object that gave rise
to the jet?

Recommender Systems

Realistic recommendations for users

Plethora of Applications

12

Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Protein Folding

How do amino acids fold to form
proteins?

Jet Classification

What is the original object that gave rise
to the jet?

Recommender Systems

Realistic recommendations for users

Visual Question Answering

Answering questions about scenes

Plethora of Applications

12

Drug Discovery

Target identification, property prediction,
drug repurposing, protein engineering

Protein Folding

How do amino acids fold to form
proteins?

Jet Classification

What is the original object that gave rise
to the jet?

Recommender Systems

Realistic recommendations for users

Visual Question Answering

Answering questions about scenes

Traffic Forecasting

Estimating Times of Arrivals

Graph Representation Learning

13

Graph Machine Learning

14

Functions over graphs, or nodes, necessarily relate to graph properties, which carry valuable
information: needs to be taken into account adequately.

Idea: Define similarity measures for nodes/graphs, and then use for the optimization task.

Node degrees?

Contains an odd-length cycle?

Minimum vertex cover size 1, 2?

BB

What Kind of Graphs?

15

Context: Simple, undirected, unweighted graphs attributed with node features.

• : Set of vertices/nodes

• : Set of edges

• : Node feature matrix, which stores a feature vector for each node .
domain-specific attributes, or node degrees, or simply one-hot encodings.

G = (V, E, X)

V

E ⊆ V × V

X ∈ ℝd×V xu = X[u]⊤ u

0.5

0.4

0.3

1

0.2 1

0.9

What Kind of Representations?

16

Representations: We can represent the graph in terms of its adjacency matrix and feature matrix:

• is the adjacency matrix of a graph .

• is a feature matrix of a graph where is the embedding dimensionality.

• We sometimes write instead of .

A G = (V, E)

X ∈ ℝ|V|×d G = (V, E) d

G = (A, X) G = (V, E, X)

x1 x2

x4x3

A

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

x1 x2 x3 x4

x1

x2

x3

x4

What Kind of Functions?

17

Node-level functions:

Unary functions ()

f(G) : V → 𝔹

f(G) : V → ℝ

f(G) : V → ℝd

k = 1

f
Graph-level functions:

Graph functions ()

f(G) → 𝔹

f(G) → ℝ

f(G) → ℝd

k = 0

Edge-level functions:

Binary functions ()

f(G) : V2 → 𝔹

f(G) : V2 → ℝ

f(G) : V2 → ℝd

k = 2

Consider -ary functions , which define, for every node attributed graph , a mapping
of the form .

k f G = (V, E, X)
f(G) : Vk → 𝔻

Graph Isomorphism

18

A B C

D FE

G
A B C

D FE

H

Graph Isomorphism

18

Isomorphism: Two graphs and with node features are isomorphic if
there exists a bijection between the node sets and such that

 if and only if for all ,

and

 for all .

G = (VG, EG, XG) H = (VH, EH, XG)
VG VH

(u, v) ∈ EG (f(u), f(v)) ∈ EH u, v ∈ VG

XG[u] = XH[f(u)] u ∈ VG

A B C

D FE

G
A B C

D FE

H

Inductive Bias: Invariance and Equivariance

19

Invariance: A function over graphs is permutation-invariant if for all isomorphic graphs it holds
that , i.e., the function does not depend on the ordering of the nodes in the graph.

Equivariance: A function over graph nodes is permutation-equivariant if for every
graph and, for every permutation of , it holds that , i.e., the output of is
permuted in a consistent way when we permute the nodes in the graph.

f G, H
f(G) = f(H) f

f f(G) : V → ℝ|V|

G π V f(G)(Vπ) = f(G)(V)π f

A B C

D FE

G
A B C

D FE

H

An Encoder-Decoder Perspective

20

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

An Encoder-Decoder Perspective

20

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Goal: Embedding nodes, edges, graphs, along with their features, and use these embeddings for predicting
node-level, edge-level, or graph-level properties.

Intuition: Nodes/edges/graphs with “similar properties” should have representations closer to each other
than nodes/edges/graphs with “dissimilar properties”.

An Encoder-Decoder Perspective

21

Training: Let be a similarity measure between the nodes and suppose:

Optimization: , i.e., minimize the reconstruction loss.

S[u, v] u, v

𝙴𝚗𝚌 : V → ℝd 𝙳𝚎𝚌 : ℝd × ℝd → ℝ+

∀u, v ∈ V : 𝙳𝚎𝚌(𝙴𝚗𝚌(u), 𝙴𝚗𝚌(v)) = 𝙳𝚎𝚌(zu, zv) ∼ S[u, v]

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌

An Encoder-Decoder Perspective

22

Graph representation learning tasks: Various node/edge/graph level tasks are of interest.

Node-level: Node classification/clustering/regression

Edge-level: Link prediction, knowledge graph completion

Graph-level: Graph classification/clustering/regression/generation

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌

Shallow Node Embeddings

23

An Encoder-Decoder Perspective

24

Encoder and Decoder: Let be a similarity measure between the nodes and suppose:

Shallow encoder: A lookup function , where is a matrix of -dimensional embeddings.

Unsupervised: We do not use node labels or features and the resulting embeddings are task-independent!

S[u, v] u, v

𝙴𝚗𝚌 : V → ℝd 𝙳𝚎𝚌 : ℝd × ℝd → ℝ+

𝙴𝚗𝚌(𝚟) = Z[v]⊤ Z : ℝ|V|×d d

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌

Optimization

25

Optimization: Given a dataset , minimize the loss:

 ,

where (e.g., mean-squared error), measures the discrepancy between and .

D = {(ui, vi) ∣ 1 ≤ i ≤ n}

∑
(u,v)∈D

f(𝙳𝚎𝚌(zu, zv), S[u, v])

f : ℝ × ℝ → ℝ 𝙳𝚎𝚌(zu, zv) S[u, v]

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌

Characterizing a Node Embedding Model

26

Idea: Node embedding models produce an embedding vector for each node such that nodes with similar
properties are in close proximity to one another in the embedding space.

Intuition: Two nodes are similar if their neighbourhoods are similar according to some notion of neighbourhood.

(1) What kind of decoder? (2) What kind of node/graph similarity? (3) Which loss function?

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

ℝd

zu1
zu8

…𝙴𝚗𝚌 𝙳𝚎𝚌

Matrix Factorization Approaches: Inner Product

27

Decoder: Similarity between two nodes is proportional to the
dot product of their embeddings:

Loss:

Mapping back to the matrix of node embeddings, reveals
the connection to matrix factorization:

 .

𝙳𝚎𝚌(zu, zv) = z⊤
u zv

ℒ = ∑
(u,v)∈D

∥𝙳𝚎𝚌(zu, zv) − S(u, v)∥2
2

Z

ℒ ≈ ∥ZZ⊤ − S∥2
2

S ≈ ZZ⊤

Matrix Factorization Approaches: Inner Product

28

In its simplest form, we can set and minimise

This objective approximately recovers the graph:

 .

To capture multi-hops, we can set a similarity defined over:

.

Decoder (i.e., any pairwise similarity) and accordingly the
target similarity (neighbourhood overlap measures) can vary…

S = A

ℒ = ∑
(u,v)∈D

∥𝙳𝚎𝚌(zu, zv) − A(u, v)∥2
2

ℒ ≈ ∥ZZ⊤ − A∥2
2

A[u, v], …, Ak[u, v]

A ≈ ZZ⊤

Other Approaches

29

Similarity: In terms of generalizations of other matrices, i.e., the graph Laplacian.

Decode: We can decode differently, i.e., based on the -distance: .

Random walk approaches: Models such as DeepWalk and node2vec, inspired by word2vec.

L2 𝙳𝚎𝚌(zu, zv) = ∥zu − zv∥2
2

x1 x2

x4x3

A

0 1 1 1
1 0 1 0
1 1 0 1
1 0 1 0

x1 x2 x3 x4

x1

x2

x3

x4

3 0 0 0
0 2 0 0
0 0 3 0
0 0 0 2

D

x1 x2 x3 x4

x1

x2

x3

x4

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 2

L = D − A

x1

x2

x3

x4

x1 x2 x3 x4

Beyond Shallow Embeddings

30

The embeddings of the nodes do not share any
parameters, i.e., hard to model dependencies.

It is hard to capture certain structural
similarities, e.g., and .u1 u10

v

u2

u1

u4

u3

G
u8

u10 u9

u5 u7 Transductive: No embeddings for
new nodes, unseen during training

Node/graph-level features cannot be
utilised effectively.

Hard to capture graph-level, global
properties, hence worse on graph-level tasks.

Stronger encoder to
capture dependencies?

Inductive models?

Better capturing global
properties?

Encoder which can
incorporate node features?

Better encoder to capture
structural properties?

Message Passing Neural Networks

31

v

u2

u1

u4

u3

G
u8

u10 u9

u5 u7

Goal: Designing neural architectures satisfying the desired desiderata!

Message Passing Neural
Networks

32

Message Passing Neural Networks

33

Message passing neural networks (MPNNs) capture popular GNNs (Gilmer et al., 2017).

Idea: Iteratively update initial node features with the information received from their respective neighborhoods.

Notation: The representation of at iteration is , i.e., the initial representation is .u ∈ V t h(t)
u h(0)

u = xu = X[u]⊤

Message Passing Neural Networks

34

Given a graph , an MPNN iteratively computes for every node :G = (V, E, X) h(t)
u u ∈ V

h(0)
u = xu, initialize

m(t)
u = ψ(t)(h(t−1)

u , {{h(t−1)
v ∣ v ∈ N(u)}}), aggregate

h(t)
u = ϕ(t)(h(t−1)

u , m(t)
u), update/combine

Message Passing Neural Networks

34

Given a graph , an MPNN iteratively computes for every node :G = (V, E, X) h(t)
u u ∈ V

h(0)
u = xu, initialize

m(t)
u = ψ(t)(h(t−1)

u , {{h(t−1)
v ∣ v ∈ N(u)}}), aggregate

h(t)
u = ϕ(t)(h(t−1)

u , m(t)
u), update/combine

 and can be any differentiable function!ϕ(t) ψ(t)non-linearity

message

mean, sum, max, ...

Message Passing Neural Networks

35

Given a graph , an MPNN defines the features , and iteratively updates them:

where and are differentiable functions.

G = (V, E, X) ∀u ∈ V h(0)
u = xu

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}})),

ϕ(t) ψ(t)

Message Passing Neural Networks

36

You may encounter variations, where a message computation function is defined w.r.t the source node:

Remark: The function typically depends on the neighborhood - hard to decouple from . Following
a common convention, we view the message computation as part of aggregation.

msg

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)({{msg(h(t−1)
u , h(t−1)

v) ∣ v ∈ N(u)}})),

msg msg ψ(t)

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

A

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

A

B

C

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

A A

E

D

B

C

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

A A

E

D

B

C

E

F

B

D

F

C

B

C

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

A A

E

D

B

C

E

F

B

D

F

C

B

C

= h(0)
𝖡

= h(0)
𝖢

= h(0)
𝖡

= h(0)
𝖤

= h(0)
𝖥

= h(0)
𝖢

= h(0)
𝖣

= h(0)
𝖥

Message Passing Neural Networks

37

B A C

D E

F

A graph (left) and an illustration of message passing on this graph with respect to the target node A for 3
iterations (right). Directed arrows depict the messages, and yellow boxes denote aggregation. At least
iterations are needed to get information from all nodes, i.e., F will not pass any messages to A with .

3
k = 2

A A

E

D

B

C

E

F

B

D

F

C

B

C

t = 3 t = 0t = 1t = 2

= h(0)
𝖡

= h(0)
𝖢

= h(0)
𝖡

= h(0)
𝖤

= h(0)
𝖥

= h(0)
𝖢

= h(0)
𝖣

= h(0)
𝖥

Message Passing Neural Networks

38

A A

E

D

B

C

E

F

B

D

F

C

B

C

t = 3 t = 0t = 1t = 2

= h(0)
𝖡

= h(0)
𝖢

= h(0)
𝖡

= h(0)
𝖤

= h(0)
𝖥

= h(0)
𝖢

= h(0)
𝖣

= h(0)
𝖥

Message Passing Neural Networks

38

The -th iteration is the -th layer of the MPNN, since each iteration can be seen as an “unrolling” of the
network. The #layers defines the depth, and the embedding dimensionality the width of the network.

i i

A A

E

D

B

C

E

F

B

D

F

C

B

C

t = 3 t = 0t = 1t = 2

= h(0)
𝖡

= h(0)
𝖢

= h(0)
𝖡

= h(0)
𝖤

= h(0)
𝖥

= h(0)
𝖢

= h(0)
𝖣

= h(0)
𝖥

Message Passing Neural Networks

39

Node-level final representation: The final node representations are denoted as .

Graph-level final representation: A final graph embedding for a graph through a mapping from the
multiset of all the node embeddings to known as relational pooling (Murphy et al., 2019).

Common choices are sum, or mean, which are normalized, e.g., w.r.t. number of the nodes.

zu = h(k)
u

zG G
{{zu1

…zun
}} zG

Deriving a Basic Graph Neural Network Model

40

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
= ϕ(t)(h(t−1)

u , ∑
v∈N(u)

h(t−1)
v)

= σ(W(t)
self h

(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Model design space is very large: many possible choices for aggregate and update.

: sumaggregate

: linear transformations
with a nonlinearity at the end
update

The Basic Graph Neural Network Model

41

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v + b(t))

W(t)
self, W(t)

neigh ∈ ℝd(t)×d(t−1): element-wise
non-linearity
σ

ψ = sum aggregation

bias term

b(t) ∈ ℝd(t)

ϕ = update

Message Passing With Self-Loops

42

Message passing: Define an aggregate function which treats the source node also as a neighbor:

Self-loop: This can be thought as (implicitly) adding self-loops to the nodes, hence the name.

h(t)
u = ψ(t)({{h(t−1)

v ∣ v ∈ N(u)}} ∪ {{h(t−1)
u }})

Message Passing With Self-Loops

42

Message passing: Define an aggregate function which treats the source node also as a neighbor:

Self-loop: This can be thought as (implicitly) adding self-loops to the nodes, hence the name.

h(t)
u = ψ(t)({{h(t−1)

v ∣ v ∈ N(u)}} ∪ {{h(t−1)
u }})

Basic model: Note that this further simplifies the base model:

Expressivity: This limits the expressivity since the information coming from the node’s neighbor's
cannot be differentiated from the information from the node itself.

h(t)
u = σ(W(t) ∑

v∈N(x)

h(t−1)
v + h(t−1)

u)

A Limitation of Message Passing

43

Problem: The presented message passing approach is local: no information flows across disjoint subgraphs.

Remark: Pooling yields a graph embedding, which is global, but there is still no communication between
disjoint subgraphs during message passing, so the node embeddings are “blind” to disjoint subgraphs.

Solution: Global feature computation, or global readout, on each layer of the MPNN (Battaglia et al., 2018).

B A C

D FE

Message Passing with Global Readout

44

B A C

D FE

The representation for each node is iteratively updated with the information received from its neighborhood
as well as a global feature vector as:

where is a differentiable function, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}), γ(t)(h(t−1)
u , {{h(t−1)

w ∣ w ∈ G}})),

γ(t) γ(t)

Message Passing with Global Readout

44

B A C

D FE

An instance of generalized message
passing (Battaglia et al., 2018)

The representation for each node is iteratively updated with the information received from its neighborhood
as well as a global feature vector as:

where is a differentiable function, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}), γ(t)(h(t−1)
u , {{h(t−1)

w ∣ w ∈ G}})),

γ(t) γ(t)

Message Passing with Global Readout

44

B A C

D FE

An instance of generalized message
passing (Battaglia et al., 2018)

A difference in the expressive power
of MPNNs (Barcelo et al., 2020).

The representation for each node is iteratively updated with the information received from its neighborhood
as well as a global feature vector as:

where is a differentiable function, and all aggregate functions are typical candidates also for .

hu u ∈ V

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}), γ(t)(h(t−1)
u , {{h(t−1)

w ∣ w ∈ G}})),

γ(t) γ(t)

Encoder-Decoder

45

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

The learned embeddings can be used for many graph machine learning task, e.g., graph/node classification,
graph/node regression, graph/node clustering, depending how they are learned.

Graph Neural Networks

46

2005 … 2014 2015 2016 2017 2018 2019 2020 2021

GGNN
(Li et al., 2016)

PPGN
(Maron et al., 2019)

Original GNN
 (Gori et al., 2005)

Tree LSTM
(Tai et al., 2015)

GIN
(Xu et al., 2019)

Structure2Vec
(Dai et al., 2016)

ChebNet
(Defferrard et al., 2016)

Relation Nets
(Santoro et al., 2017)

Spectral CNN
(Bruna et al., 2014)

GCN
(Kipf et al., 2017)

GraphSAGE
(Hamilton et al., 2017)

MPNNs
 (Gilmer et al., 2017)

k-GNNs
(Morris et al., 2019)

GNN-RNI
(Sato et al., 2021)
(Abboud et al., 2021)

RGCN
(Schlichtkrull et al., 2018)

2022

NBFNets
(Zhu et al., 2021)

GRAIL
(Teru et al., 2020)

VGAE
(Kipf &Welling, 2016)

GAT
(Velickovic et al., 2018)

2023

C-MPNNs
(Huang et al., 2023)

NodePiece
(Galkin et al., 2022)

Graph
Transformers

(Dwiwedi et al., 2021)

Over-smoothing
 (Li et al., 2018)

Graphormer
(Ying et al., 2021)

Exphormer
(Shirzad et al., 2023)

Over-squashing
 (Alon et al., 2021)Logical

Expressiveness
(Barcelo et al., 2020)

GraphGPS
(Rampášek et al., 2022)

Graph Convolutional Networks

47

Graph Convolutional Networks

48

The base GCN model (Kipf et al., 2017) can be seen as a self-loop message passing approach:

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u)N(v))

Sum aggregation over degree-normalized features

Self-loop approach: single parameter
matrix with a non-linearity

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v) Very similar to the basic

self-loop approach

What is the
connection to
convolutions?

Revisiting the Basic Model

49

h(t)
u = σ(W(t)

selfh
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

H(t) = σ(H(t−1)W(t)
self + A H(t−1)W(t)

neigh): Node
representations at layer
H(t) ∈ ℝ|VG|×d

t

AdjacencyIdentity

Node-level

Graph-level

Revisiting the Basic Model

49

Filter: The layers apply a , combined with some weight matrices and a non-linearity. Ã = I + A

h(t)
u = σ(W(t)

selfh
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

H(t) = σ(H(t−1)W(t)
self + A H(t−1)W(t)

neigh): Node
representations at layer
H(t) ∈ ℝ|VG|×d

t

AdjacencyIdentity

Node-level

Graph-level

Graph Convolutional Networks

50

Intuitively, in the base GCN model:

• enables messaging between neighbors and with node’s self representation through the identity.

• Node’s own embedding is treated identically to messages from other nodes: self-loops.

Ãsym

H(t) = σ(Ãsym H(t−1)W(t)) h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

h(t−1)
v

N(u)N(v))

(D + I)− 1
2 (I + A)(D + I)− 1

2

GCN applies filters based on the
symmetric normalized adjacency
matrix, ensures values: [0,1]

GCN is a local, first-order approximation of spectral
graph convolution based on Chebyshev polynomials.

Graph Attention Networks

51

Learning Aggregation

52

Goal: Learn to aggregate non-uniformly across neighbors?

Idea: Use attention as a means to non-uniformly aggregate over the neighborhood.

Background: Attention models obtained strong results in, e.g., machine translation (Bahdanau et al., 2015).

∑
v∈N(u)

h(t−1)
v ∑

v∈N(u)

Wh(t−1)
v∑

v∈N(u)∪{u}

h(t−1)
v

N(u)N(v)

Fixed aggregation: sum
Sum aggregation with
learnable transformation
matrix on features

Fixed aggregation: sum over
degree-normalized features

Attention

53

Attention: Allocate different weights to distinct inputs, based on
their relevance to the learned task.

Transformer (Vaswani et al., 2017): Figure shows attention weights
for the word ‘making’ encoding “making more difficult”.

Breaking uniformity: Attend to more relevant tokens, rather than
uniformly considering all possible tokens.

Graph attention: A node can benefit from weighing the relative
importance of its neighbors.

Attention over Graphs

54

Neighborhood attention: Richer weighing of a node’s neighbors, which results in potentially more
descriptive and task-specific aggregation schemes.

Idea: Learn an attention weight for each neighbor, which yields weighted aggregation functions.

R

Y
Example: Classify all nodes
connected to a red node as true
and every other node as false.

This task relies only to
the fact that a node
has a red neighbor.

Graph Attention Networks

55

Graph attention networks (GAT) (Velickovic et al., 2018) use a weighted sum aggregation, with a
pairwise node attention mechanism during message passing (using a self-loop approach):

 ,

where is the attention weight on a node with respect to a source node .

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

α(u,v) h(t−1)
v)

αu,v v ∈ N(u) ∪ {u} u

R

Y

Graph Attention Networks

56

h(t)
u = σ(W(t) ∑

v∈N(u)∪{u}

α(u,v) h(t−1)
v)

Update: linear transformation
combined with non-linearity

Aggregate: Weighted
sum based on attention

αu,v =
exp(eu,v)

∑v′ ∈N(u) exp(eu,v′
)

eu,v = LeakyReLU(a⊤[Whu ⊕ Whv])

eu,v = LeakyReLU(h⊤
u Whv)

GAT

Bilinear

eu,v = a⊤LeakyReLU(W[hu ⊕ hv]) GATv2

GAT applies and consecutively
and these can be collapsed into single
linear layer!

GATv2 (Brody et al., 2022) avoids by
first applying the non-linearity.

a⊤ W

Graph Attention Networks

57

• Learn attention weights for the nodes .

• Concatenate resulting node representations for each node :

k αu,v,1, …, αu,v,k u, v

k hu[1], …, hu[k] u

hu = hu[1] ⊕ … ⊕ hu[k]

R

Y

Transformer: Multiple attention heads
to compute attention weights between
all pairs of positions in the input.

Coincides with GAT using multi-head
attention on a fully connected graph.

Multi-head attention: Learn multiple,
distinct, independently parametrized
attention weights.

Graph Isomorphism Networks

58

A Closer Look at Aggregation

59

Question: What is the impact of different choices of aggregation on the discrimination ability of GNNs?

Task: Input graph with node types red, green and yellow, where the features are the RGB values.

Setup: Consider a red node to analyze how different functions aggregate neighbor messages.

T S

A Closer Look at Aggregation

60

Sum: Can discern between neighborhoods based on their sizes, but it can lead to false equality.

Example: Sum cannot distinguish between a 2-yellow and a red-green neighborhood.

T S

A Closer Look at Aggregation

61

Mean: Useful for bounding the range of aggregate messages, but cannot recognize multiplicities.

Example: 2-red or 3-red neighbours are indifferent, as the mean operation eliminates cardinality.

T S

A Closer Look at Aggregation

62

Max: Highlights a relevant element, but limited in discriminative ability.

Example: Considering red < yellow < green, green is answer for any neighborhood involving
at least 1 green node.

T S

Aggregation and Expressiveness

63

Observation: An aggregation function must distinguish between distinct neighborhoods, and return different
results given different neighborhood multisets.

Injective: The aggregation function must be injective relative to the neighborhood.

Expressive power: MPNNs are at their maximal expressiveness with injective functions (Xu et al.,2019).

T S

Aggregation and Expressiveness

64

(Xu et al., 2019)

Aggregation and Expressiveness

65

(Xu et al., 2019)

Graph Isomorphism Networks

66

T S

Graph isomorphism networks (GINs) (Xu et al., 2019) update the representation for each node as:

…and GIN layers are injective.

hu u ∈ V

h(t)
u = MLP((1 + ϵ) ⋅ h(t−1)

u , ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

67

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Graph representation learning with strong relational inductive bias

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

68

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Learned parameters are independent of graph size

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

69

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

Applies to variable-size graphs

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Graph Representation Learning

70

G = (V, E)

u2

u1

u4

u3

u5

u6

u7

u8

ℝd

zu1
zu8

…𝙴𝚗𝚌
u′ 1

G′

u′ 2

u′ 4

u′ 3

u′ 5

u′ 6

u′ 7

u′ 8

𝙳𝚎𝚌

What is the expressive power?

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

A Journey into Model
Representation Capacity

71

Model Representation Capacity

72

Expressive power: Capacity of a model (e.g., neural network) to approximate functions.

Feedforward networks: MLPs can approximate any continuous function on a compact domain: for any
such function, there is a parameter configuration for an MLP, corresponding to an approximation of the
function (Cybenko, 1989; Funahashi, 1989; Hornik et al., 1989).

f

f

Model Representation Capacity

73

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be
through graph distinguishability. Learn graph embeddings , for graphs and :

 if and only if is isomorphic to

zG zH G H

zG = zH G H

Model Representation Capacity

73

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be
through graph distinguishability. Learn graph embeddings , for graphs and :

 if and only if is isomorphic to

zG zH G H

zG = zH G H

Problem: Contains graph isomorphism
testing, an NP-intermediate problem,
where the best algorithm requires quasi-
polynomial time (Babai, 2016).

Model Representation Capacity

73

Expressive Power in the World of Graphs: One way of characterizing the expressive power would be
through graph distinguishability. Learn graph embeddings , for graphs and :

 if and only if is isomorphic to

zG zH G H

zG = zH G H

Problem: Contains graph isomorphism
testing, an NP-intermediate problem,
where the best algorithm requires quasi-
polynomial time (Babai, 2016).

Question: Where do MPNNs
stand in graph distinguishability?

A Tale of Two Graphs

74

Problem: Any MPNN will learn identical representations for the graphs and .

MPNNs cannot distinguish between two triangles and a 6-cycle: severe limitation for graph classification!

Predictions for these graphs will be identical regardless of the function we are trying to learn!

Is this only a problem for graph classification?

G1 G2

G1 G2

A Tale of Two Graphs

75

G1 G2

Separator: A node is a separator node if it has two neighbors which are non-adjacent to one another.

Input: Consider the graph that is the disjoint union of the graphs and .

Node classification task: Classify the nodes of as separator or non-separator.

An MPNN randomly predicts all nodes to be separator nodes, or all of them as non-separator nodes.

G G1 G2

G

A Tale of Two Graphs

75

G1 G2

Separator: A node is a separator node if it has two neighbors which are non-adjacent to one another.

Input: Consider the graph that is the disjoint union of the graphs and .

Node classification task: Classify the nodes of as separator or non-separator.

An MPNN randomly predicts all nodes to be separator nodes, or all of them as non-separator nodes.

G G1 G2

G

All nodes are non-separator

A Tale of Two Graphs

75

G1 G2

Separator: A node is a separator node if it has two neighbors which are non-adjacent to one another.

Input: Consider the graph that is the disjoint union of the graphs and .

Node classification task: Classify the nodes of as separator or non-separator.

An MPNN randomly predicts all nodes to be separator nodes, or all of them as non-separator nodes.

G G1 G2

G

All nodes are separatorAll nodes are non-separator

Graph Isomorphism and Color
Refinement

76

Color Refinement

77

Color refinement is a simple and effective algorithm for graph isomorphism testing:

1. Initialization: All nodes in a graph are initialized to their initial colors.

2. Refinement: All nodes are re-colored depending on their current color and the colors in their neighborhoods.

3. Stop: Terminate when the coloring stabilizes.

Color Refinement: Example

78

YY B

YY R

B

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

(1,{{2}}) (1,{{2}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

(1,{{2}}) (1,{{2}})

(3,{{4, 5}}) (3,{{2, 4}})

Color Refinement: Example

78

YY B

YY R

B

11 2

33 4

5

KK L

PM N

Q

(Y,{{B}}) (Y,{{B}})

(Y,{{R, B}}) (Y,{{R, B}})

(R,{{Y,Y,B,B}})

(B,{{Y,Y,Y,R}})

(B,{{R, Y}})

(1,{{2}}) (1,{{2}})

(3,{{4, 5}}) (3,{{2, 4}})

(2,{{1,1,3,4}})

(4,{{2,3,3,5}})

(5,{{3, 4}})

Color Refinement: Example

79

YY B

YY R

B

YY B

YY R

B

Two graphs: Node color classes differ for these graphs - color refinement can distinguish…

Color Refinement

80

Given a graph , and a set of colors, we define a coloring function over the nodes of the graph:

Each such colors the nodes of the graph and hence induces a partition of into node color classes.

G = (V, E) C

λ : VG ↦ C

λ VG

Color Refinement

81

Refinement: A coloring refines a coloring , denoted as , if for any the following holds:

 implies

Equivalence: A coloring is equivalent to a coloring , denoted as , if and only if and .

λ λ′ λ ⪯ λ′ u, v ∈ VG

λ(u) = λ(v) λ′ (u) = λ′ (v)

λ λ′ λ ≡ λ′ λ ⪯ λ′ λ′ ⪯ λ

Color Refinement

82

We respect the following notation:

• We can apply this function to different graphs, and therefore we will write instead of .

• We also need to refer to different coloring functions (at different iterations), which will be denoted by .

λ(G)(u) λ(u)

λ(t)(G)(u)

Color Refinement

83

Input: A graph with an initial coloring .

1. Initialization: All nodes are initialized to their initial colors .

2. Refinement: All nodes are recursively re-colored:

,

where double-braces denote a multiset, and bijectively maps any pair (composed of a color and a
multiset of colors) to a unique color.

3. Stop: The algorithm terminates at iteration , where is the minimal integer satisfying:

.

G = (VG, EG) λ(0)(G) : VG → C

u ∈ VG λ(0)(G)(u)

u ∈ VG

λ(i+1)(G)(u) = τ(λ(i)(G)(u), {{λ(i)(G)(v) ∣ v ∈ N(u))}})
τ

j j

∀u, v ∈ VG : λ(j+1)(G)(u) = λ(j+1)(G)(v) if and only if λ(j)(G)(u) = λ(j)(G)(v)

Color Refinement: Graph-Level

84

To apply the color refinement algorithm for isomorphism testing, we need graph-level colors:

Colour refinement can then be used to distinguish graphs. In particular, we can state the following:

 and are non-isomorphic iff for stable colorings and .

λ(t)(G) = τ({{λ(t)(G)(u) ∣ u ∈ VG}})

G H λ(t)(G) ≠ λ(t′)(H) λ(t) λ(t′)

A B C

D FE

G
A B C

D FE

H

Color Refinement

85

A B C

D FE

G
A B C

D FE

H

Soundness: Color refinement is sound for non-isomorphism checking: whenever it returns yes for two
graphs and , they are non-isomorphic.

Incompleteness: Colour refinement is incomplete for non-isomorphism checking: even if and
agree in every color class size in the stable coloring, the graphs might not be isomorphic.

G H

G H

1-WL Algorithm for Graph Isomorphism Testing

86

1-dimensional Weisfeiler Lehman algorithm (1-WL): A popular algorithm for graph isomorphism testing.

1-WL is very similar to color refinement, where the refinement considers both neighbors and non-neighbors:

Remark: 1-WL and color refinement coincide on the graph-level:

 and

wl(i+1)
1 (G)(u) = τ(wl(i)1 (G)(u), {{wl(i)1 (G)(v) ∣ v ∈ N(u))}}, {{wl(i)1 (G)(v) ∣ v ∈ VG∖N(u)}})

wl(t)1 (G1) ≠ wl(t)1 (G2) λ(t)(G1) ≠ λ(t)(G2)

u v

G1 G2

1-WL Algorithm for Graph Isomorphism Testing

87

1-dimensional Weisfeiler Lehman algorithm (1-WL): A popular algorithm for graph isomorphism testing.

1-WL is very similar to color refinement, where the refinement considers both neighbors and non-neighbors:

Remark: They are different when we look at node-level refinements on different graphs:

 while

wl(i+1)
1 (G)(u) = τ(wl(i)1 (G)(u), {{wl(i)1 (G)(v) ∣ v ∈ N(u))}}, {{wl(i)1 (G)(v) ∣ v ∈ VG∖N(u)}})

wl(t)1 (G1)(u) ≠ wl(t)1 (G2)(v) λ(t)(G1)(u) = λ(t)(G2)(v)

u v

G1 G2

Expressive Power of MPNNs

88

Color Refinement: Example

89

YY B

YY R

B

YY B

YY R

B

Color refinement and MPNNs aggregate information from the neighborhoods and update accordingly:

MPNN layers are feature maps over graphs: and , we have the mapping

Taking this perspective, we can view as an abbreviation of .

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
∀G ∀t, 1 ≤ t ≤ L h(t)(G) : V → ℝd

h(t)
u h(t)(G)(u)

Color Refinement: Example

90

YY B

YY R

B

YY B

YY R

B

Color refinement and MPNNs aggregate information from the neighborhoods and update accordingly:

 h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
λ(i+1)(G)(u) = τ(λ(i)(G)(u), {{λ(i)(G)(v) ∣ v ∈ N(u))}})

Color Refinement: Example

91

YY B

YY R

B

YY B

YY R

B

Can we view the rounds of the color refinement algorithm as the layers of an MPNN?

 h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
λ(i+1)(G)(u) = τ(λ(i)(G)(u), {{λ(i)(G)(v) ∣ v ∈ N(u))}})

An Upper Bound for Expressiveness of MPNNs

92

Theorem ([Morris et al., 2019, Xu et al., 2019]). Consider any MPNN that consists of message-passing layers:

Given a graph with only discrete input features , we have that

 only if the nodes and in have different labels after iterations of the 1-WL algorithm.

k

h(t)
u = ϕ(t)(h(t−1)

u , ψ(t)(h(t−1)
u , {{h(t−1)

v ∣ v ∈ N(u)}}))
G = (V, E, X) h(0)

u = xu ∈ ℤd

h(k)
u ≠ h(k)

v u v G k

An Upper Bound for Expressiveness of MPNNs

93

MPNNs are at most as powerful as the 1-WL test:

• If the 1-WL algorithm assigns the same label to two nodes, then any MPNN will also assign the
same embedding to these two nodes.

• If the 1-WL test cannot distinguish between two graphs, then an MPNN is also incapable of
distinguishing between these two graphs.

A Lower Bound for Expressiveness of MPNNs

94

Theorem ([Morris et al., 2019, Xu et al., 2019]). Given a graph , there exists an MPNN such that

 if and only if the two nodes and in have the same label after iterations of the 1-WL
algorithm. In particular, the basic MPNN model is as powerful as 1-WL:

G = (V, E, X)
h(k)

u = h(k)
v u v G k

h(t)
u = σ(W(t)

self h
(t−1)
u +W(t)

neigh ∑
v∈N(u)

h(t−1)
v)

Summary and Outlook

95

Graphs and inductive
biases

Relational data

Graph representation
learning

Encoder decoder

Message passing neural
networks

GCN, GAT, GIN

Expressive power of
GNNs

1-WL

Summary and Outlook

95

A Journey into Graph Representation Learning

• Inductive learning via MPNNs.

• Expressiveness limitations are at the origin of many other problems.

• Expressiveness studies: uniformity conditions are necessary.

• Other limitations: related to information bottlenecks.

Graphs and inductive
biases

Relational data

Graph representation
learning

Encoder decoder

Message passing neural
networks

GCN, GAT, GIN

Expressive power of
GNNs

1-WL

96

References
• Ganapathiraju, M. K., Thahir, M., Handen, A., Sarkar, S. N., Sweet, R. A., Nimgaonkar, V. L., Loscher, C. E., Bauer, E. M., &

Chaparala, S. (2016). Schizophrenia interactome with 504 novel protein-protein interactions. NPJ schizophrenia, 2, 16012.

• Rao, P.P., Kabir, S.N., & Mohamed, T.S. (2010). Nonsteroidal Anti-Inflammatory Drugs (NSAIDs): Progress in Small Molecule
Drug Development. Pharmaceuticals, 3, 1530 - 1549.

• J. Johnson, R. Krishna, M. Stark, L. Li, D. A. Shamma, M. S. Bernstein, L. Fei-Fei. Image Retrieval using Scene Graphs, CVPR,
2015.

• Allamanis, Miltiadis, Graph Neural Networks on Program Analysis. 2021.

• Ganapathiraju, M. K., Thahir, M., Handen, A., Sarkar, S. N., Sweet, R. A., Nimgaonkar, V. L., Loscher, C. E., Bauer, E. M., &
Chaparala, S. (2016). Schizophrenia interactome with 504 novel protein-protein interactions. NPJ schizophrenia, 2, 16012.

• Hewett M, Oliver DE, Rubin DL, et al. Pharmgkb: the pharmacogenetics knowledge base. Nucleic Acids Res 2002;30(1):163–5.

• B. Weisfeiler and A. Lehman. A reduction of a graph to a canonical form and an algebra arising during this reduction. Nauchno-
Technicheskaya Informatsia, 1968.

97

References

• J. Gilmer, S.S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. 2017. Neural message passing for Quantum chemistry. ICML,
2017.

• R.L.Murphy, B. Srinivasan, V.A. Rao, and B. Ribeiro, Relational Pooling for Graph Representations. ICML, 2019.

• Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vin´ıcius Flores Zambaldi, Mateusz Malinowski,
Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar Gulc¸ehre, H. Francis Song, Andrew J. Ballard, Justin
Gilmer, George E. Dahl, Ashish ¨ Vaswani, Kelsey R. Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess, Daan
Wierstra, Pushmeet Kohli, Matthew Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive biases, deep
learning, and graph networks. CoRR, abs/1806.01261, 2018.

• P. Barcelo, E. Kostylev, M. Monet, J. Perez, J. Reutter, and J. Silva. The logical expressiveness of graph neural networks. ICLR,
2020.

• T. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. ICLR, 2017.

• M. D. Zeiler, R. Fergus. Visualizing and Understanding Convolutional Networks, ECCV, 2014.

98

References
• Y. Li, D. Tarlow, M. Brockschmidt, and R.S. Zemel. Gated graph sequence neural networks. ICLR, 2016.

• P. Velickovic, G. Cucurull, A. Casanova, A. Romero,P. Lio, and Y. Bengio. Graph attention networks. ICLR 2018.

• Shaked Brody, Uri Alon, Eran Yahav. How Attentive are Graph Attention Networks? ICLR 2022.

• Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need. NIPS, 2017.

• K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural networks? ICLR, 2019.

• W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. NIPS, 2017.

• J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message passing for quantum chemistry. ICML, 2017.

• M.Defferrard, X. Bresson, P. Vandergheynst, Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering. NIPS,
2016.

• J. Bruna, W. Zaremba, A. Szlam, Y. LeCun. Spectral Networks and Locally Connected Networks on Graphs. ICLR, 2014.

• Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. AAAI,
2018.

99

References
• K. S. Tai, R. Socher, and C. D. Manning. Improved semantic representations from tree-structured long short-term memory networks.

IJCNLP, 2015.

• H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for structured data. ICML, 2016.

• A. Santoro, D. Raposo, D.G.T.Barrett, M. Malinowski, R. Pascanu, P.W. Battaglia, and T. Lillicrap. A simple neural network
module for relational reasoning. NIPS, 2017.

• R.L. Murphy, B. Srinivasan, V.A. Rao, and B. Ribeiro. Relational Pooling for Graph Representations. ICML, 2019.

• H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. Provably powerful graph networks. NeurIPS, 2019.

• C. Morris, M. Ritzert, M. Fey, W. Hamilton,J. E. Lenssen, G. Rattan, and M. Grohe. Weisfeiler and Leman go neural: Higher-order
graph neural networks. AAAI, 2019.

• W. Hamilton, R. Ying, and J. Leskovec. Representation learning on graphs: Methods and applications. IEEE Data Eng. Bull., 2017.

• R. Sato, M. Yamada, and H. Kashima. Random features strengthen graph neural networks. SDM, 2021.

• R. Abboud, İ. İ. Ceylan, M. Grohe, T. Lukasiewicz, The Surprising Power of Graph Neural Networks with Random Node
Initialization, IJCAI, 2021

100

References
• M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. IJCNN, 2005.

• F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, G. Monfardini. The graph neural network model. IEEE Trans. Neural Networks
20(1):61–80, 2009.

• Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural
networks, 2(5):359–366, 1989.

• Uri Alon, Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical Implications, ICLR, 2021.

• Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for semi-supervised learning. AAAI,
2018.

• Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. ICLR,
2015.

• M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van den Berg, I. Titov, M. Welling, Modeling Relational Data with Graph Convolutional
Networks, ESWC, 2018.

• K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. Representation learning on graphs with jumping knowledge
networks. In ICML, 2018.

101

References
• Komal K. Teru, Etienne G. Denis, and William L. Hamilton. 2020. Inductive relation prediction by subgraph reasoning. ICML.

• Zhu, Zhaocheng and Zhang, Zuobai and Xhonneux, Louis-Pascal and Tang, Jian. Neural bellman-ford networks: A general graph
neural network framework for link prediction, NeurIPS 2021.

• Mikhail Galkin, Etienne Denis, Jiapeng Wu, William L. Hamilton. NodePiece: Compositional and Parameter-Efficient Representations
of Large Knowledge Graphs, ICLR 2023.

• Xingyue Huang‚ Miguel Romero Orth‚ İsmail İlkan Ceylan and Pablo Barcelo. A Theory of Link Prediction via Relational
Weisfeiler−Leman on Knowledge Graphs, NeurIPS 2023.

• Vijay Prakash Dwivedi, Xavier Bresson, Graph Transformer, DLG Workshop at AAAI 2021.

• Chengxuan Ying, Tinade Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, Tie-Yan Liu, Do Transformers Really
Perform Bad for Graph Representation? NeurIPS 2021.

• Ladislav Rampášek, Mikhail Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, Dominique Beaini. Recipe for a General,
Powerful, Scalable Graph Transformer. NeurIPS 2022.

• H Shirzad, A Velingker, B Venkatachalam, DJ Sutherland, AK Sinop. EXPHORMER: Sparse Transformers for Graphs. ICML 2023.

