AIMS CDT - Signal Processing Michaelmas Term 2023

Xiaowen Dong

Department of Engineering Science

Introduction to Graphs Signal Processing

Networks are pervasive

geographical network

social network

traffic network

brain network

graphs provide mathematical representation of networks

- vertices
 - geographical regions
- edges
 - geographical proximity between regions

- vertices
 - geographical regions
- edges
 - geographical proximity between regions
- signal
 - temperature records in these regions

- vertices
 - road junctions
- edges
 - road connections

- vertices
 - road junctions
- edges
 - road connections
- signal
 - traffic congestion at junctions

- vertices
 - individuals
- edges
 - friendship between individuals

- vertices
 - individuals
- edges
 - friendship between individuals
- signal
 - personal interest

- vertices
 - brain regions
- edges
 - structural connectivity between brain regions

- vertices
 - brain regions
- edges
 - structural connectivity between brain regions
- signal
 - blood-oxygen-level-dependent
 (BOLD) time series

Graph-structured data are everywhere

- nodes
 - pixels
- edges
 - spatial proximity between pixels
- signal
 - pixel values

Graph signal processing

 Graph-structured data can be represented by signals defined on graphs or graph signals

takes into account both structure (edges) and data (values at nodes)

Graph signal processing

 Graph-structured data can be represented by signals defined on graphs or graph signals

how to generalise classical signal processing tools (e.g. convolution) on irregular domains such as graphs?

Graph signal processing

- Graph signals provide a nice compact format to encode structure within data
- Generalisation of classical signal processing tools can greatly benefit analysis of such data
- Numerous applications: Transportation, biomedical, social, economic network analysis
- An increasingly rich literature
 - classical signal processing
 - algebraic and spectral graph theory
 - computational harmonic analysis
 - machine learning

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Convolutional neural networks on graphs
- Applications

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Convolutional neural networks on graphs
- Applications

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for signal analysis

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for signal analysis

Classical Fourier transform provides frequency domain representation of signals

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for signal analysis

Classical Fourier transform provides frequency domain representation of signals

• What about a notion of frequency for graph signals?

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

weighted and undirected graph:

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

W

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

$$D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$$

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$

$$D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$$

$$L = D - W \qquad \text{equivalent to W!}$$

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$
 $D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$
 $L = D - W$ equivalent to W!
 $L_{\operatorname{norm}} = D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$

Why graph Laplacian?

Why graph Laplacian?

- provides an approximation of the Laplace operator

$$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$

standard 5-point stencil for approximating $-\nabla^2 f$

Why graph Laplacian?

- provides an approximation of the Laplace operator

$$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$

standard 5-point stencil for approximating $-\nabla^2 f$

- converges to the Laplace-Beltrami operator (given certain conditions)
- provides a notion of "frequency" on graphs

graph signal $f:\mathcal{V} o\mathbb{R}$

graph signal $f:\mathcal{V} o\mathbb{R}$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$

graph signal $f:\mathcal{V} o\mathbb{R}$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$\begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$

a measure of "smoothness"

$$f^T L f = 21$$

• L has a complete set of orthonormal eigenvectors: $L = \chi \Lambda \chi^T$

$$L = \begin{bmatrix} 1 & & & & \\ \chi_0 & \cdots & \chi_{N-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & & & 0 \\ & \ddots & & \\ 0 & & \lambda_{N-1} \end{bmatrix} \begin{bmatrix} & & & \chi_0^T & \\ & \ddots & \\ & & & \chi^T & \end{bmatrix}$$

$$\chi \qquad \qquad \Lambda \qquad \qquad \chi^T$$

• Eigenvalues are usually sorted increasingly: $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_{N-1}$

Graph Fourier transform

Graph Fourier transform

• Eigenvectors associated with smaller eigenvalues have values that vary less rapidly along the edges

low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

$$L = \chi \Lambda \chi^T$$
 $\chi_0^T L \chi_0 = \lambda_0 = 0$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} 1 & 1 & 1 \\ \chi_{0} & \cdots & \chi_{N-1} \end{bmatrix} f$$

low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

$$L = \chi \Lambda \chi^T$$
 $\chi_0^T L \chi_0 = \lambda_0 = 0$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} \chi_0 & \cdots & \chi_{N-1} \end{bmatrix}^T \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \cdots & \lambda_{N-1} \\ \text{low frequency} & \text{high frequency} \end{bmatrix}$$

• The Laplacian L admits the following eigendecomposition: $L\chi_\ell=\lambda_\ell\chi_\ell$

• The Laplacian L admits the following eigendecomposition: $L\chi_\ell = \lambda_\ell \chi_\ell$

one-dimensional Laplace operator: $-\nabla^2$

eigenfunctions: $e^{j\omega x}$

Classical FT:
$$\hat{f}(\omega) = \int {(e^{j\omega x})^* f(x) dx}$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$

The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $-\nabla^2$: graph Laplacian: L

eigenfunctions: $e^{j\omega x}$

$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega \qquad \qquad f(i) = \sum_{i=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

eigenvectors: χ_ℓ

$$f:V\to\mathbb{R}^N$$

$$f:V\to\mathbb{R}^N$$
 Classical FT:
$$\hat{f}(\omega)=\int{(e^{j\omega x})^*f(x)dx}$$
 Graph FT:
$$\hat{f}(\ell)=\langle\chi_\ell,f\rangle=\sum_{i=1}^N\chi_\ell^*(i)f(i)$$

$$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $-\nabla^2$: graph Laplacian: L

eigenfunctions: $e^{j\omega x}$

$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$

eigenvectors: χ_ℓ

$$f: V \to \mathbb{R}^N$$

Classical FT:
$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$
 Graph FT: $\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}^{*}(i) f(i)$

$$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

Two special cases

- (Unordered) Laplacian eigenvalues: $\lambda_\ell = 2 2\cos\left(\frac{2\ell\pi}{N}\right)$
- One possible choice of orthogonal Laplacian eigenvectors:

$$\chi_{\ell} = \left[1, \omega^{\ell}, \omega^{2\ell}, \dots, \omega^{(N-1)\ell}\right], \text{ where } \omega = e^{\frac{2\pi j}{N}}$$

Two special cases

Example on a general graph

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Convolutional neural networks on graphs
- Applications

Classical frequency filtering

Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
 $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$

Classical frequency filtering

Classical FT:
$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$
 $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$

Classical frequency filtering

Classical FT:
$$\hat{f}(\omega) = \int{(e^{j\omega x})^* f(x) dx} \qquad f(x) = \frac{1}{2\pi} \int{\hat{f}(\omega) e^{j\omega x} d\omega}$$

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

$$\mathsf{GFT:} \quad \widehat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \widehat{f}(\ell) \chi_\ell(i)$$

f

$$\mathsf{GFT:} \quad \widehat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \widehat{f}(\ell) \chi_\ell(i)$$

$$\text{GFT: } \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

$$\text{GFT} \qquad \qquad \hat{f}(\ell) \qquad \qquad \hat{f}($$

$$\text{GFT: } \hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}^{*}(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

$$\hat{g}(\lambda_{\ell}) \hat{f}(\ell)$$

$$\hat{$$

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

Graph transform/dictionary design

 Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian!

Graph transform/dictionary design

 Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian!

- Important properties can be achieved by properly defining $\hat{g}(L)$, such as localisation of atoms
- Closely related to kernels and regularisation on graphs

problem: we observe a noisy graph signal $f=y_0+\eta$ and wish to recover y_0

$$y^* = \arg\min_{y} \{ ||y - f||_2^2 + \gamma y^T L y \}$$

problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0

data fitting term

"smoothness" assumption

problem: we observe a noisy graph signal $f=y_0+\eta$ and wish to recover y_0

data fitting term

"smoothness" assumption

problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0

data fitting term

"smoothness" assumption

remove noise by low-pass filtering in graph spectral domain!

- noisy image as observed noisy graph signal
- regular grid graph (weights inversely proportional to pixel value difference)

29/60

- noisy image as observed noisy graph signal
- regular grid graph (weights inversely proportional to pixel value difference)

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Convolutional neural networks on graphs
- Applications

Classical vs. Graph dictionaries

classical signal

Classical vs. Graph dictionaries

classical signal

vertex domain

GFT atoms (corresponding to discrete frequencies)

- like complex exponentials in classical FT, eigenvectors in GFT have global support

- like complex exponentials in classical FT, eigenvectors in GFT have global support
- can we design localised atoms on graphs?

Basic operations for graph signals

basic operations in Euclidean domain

- recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items

Basic operations for graph signals

- recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items
- we need to define for graph signals the basic operations of convolution, shift, modulation

classical convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} \underbrace{f(t - \tau)} g(\tau) d\tau$$

classical convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} \underbrace{f(t - \tau)}g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

classical convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

graph convolution

multiplication in graph spectral domain

$$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$

classical convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

graph convolution

multiplication in graph spectral domain

$$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$

Vertex-domain shift

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

Vertex-domain shift

original signal

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

graph shift

convolution with a "delta" on graph

$$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$

$$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

Vertex-domain shift

shifted version of the signal to different centring vertex (in green)

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

graph shift

convolution with a "delta" on graph

$$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$

$$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

Modulation

classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

Modulation

classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

graph modulation

multiply by a graph Laplacian eigenvector

$$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$

Modulation

classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

graph modulation

multiply by a graph Laplacian eigenvector

$$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi}T_{u}g)(t) = e^{j2\pi\xi t}g(t-u)$$

39/60

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi}T_u g)(t) = e^{j2\pi\xi t}g(t-u)$$

windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$

windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT)

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$

windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

windowed graph Fourier transform

$$Sf(i,k) := \langle f, g_{i,k} \rangle$$

39/60

Wavelets on graphs

 With the shift and scaling operators for graph signals we can define a spectral graph wavelet transform (SGWT)

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)–(f) wavelets, scales 1–4.

Wavelets on graphs

 With the shift and scaling operators for graph signals we can define a spectral graph wavelet transform (SGWT)

Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J=4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-(f) wavelets scales 1-4

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$= \sum_{\ell=0}^{N-1} \hat{g}(s\lambda_{\ell}) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$=\sum_{\ell=0}^{N-1}\hat{g}(s\lambda_{\ell})\chi_{\ell}^{*}(i)\chi_{\ell}(n)$$

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$=\sum_{\ell=0}^{N-1}\hat{g}(s)\chi_{\ell}(i)\chi_{\ell}(n)$$

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$=\sum_{\ell=0}^{N-1}\hat{g}(s)\chi_{\ell}^*(i)\chi_{\ell}(n)$$

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Convolutional neural networks on graphs
- Applications

classical convolution

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

30	3	2_2	1	0
02	0_2	1_0	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

classical convolution

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

30	3	2_2	1	0
02	0_2	1_0	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

classical convolution

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

frequency domain

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

30	3	2_2	1	0
0_2	0_2	1_0	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

classical convolution

convolution on graphs

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

frequency domain

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

graph spectral domain

$$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$

classical convolution

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

frequency domain

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$

convolution on graphs

spatial (node) domain

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

graph spectral domain

$$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$

classical convolution

time domain

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

frequency domain

$$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$

convolution on graphs

spatial (node) domain

$$f*g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$
 convolution = filtering

graph spectral domain

$$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$

A parametric filter

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1} \qquad \qquad \hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$

A parametric filter

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

what do powers of graph Laplacian capture?

Powers of graph Laplacian

L^k defines the k-neighborhood

Localization: $d_{\mathcal{G}}(v_i, v_j) > K$ implies $(L^K)_{ij} = 0$

(slide by Michaël Deferrard)

A parametric filter

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1} \qquad \qquad \hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

A parametric filter

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

parametric filter as polynomial of Laplacian

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_j \lambda^j, \ \theta \in \mathbb{R}^{K+1} \qquad \qquad \hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$

- convolution is expressed in the graph spectral domain
- localisation within K-hop neighbourhood

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

(localisation within 1-hop neighbourhood)

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$

(localisation within 1-hop neighbourhood)

$$\alpha = \theta_0 = -\theta_1$$

$$= \alpha (I + D^{-\frac{1}{2}} W D^{-\frac{1}{2}})$$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$

(localisation within 1-hop neighbourhood)

$$\alpha = \theta_0 = -\theta_1$$

$$= \alpha (I + D^{-\frac{1}{2}} W D^{-\frac{1}{2}})$$

renormalisation

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$

$$y_i = \alpha f_i + \alpha \frac{1}{\sqrt{d_i}} \sum_{j:(i,j)\in\mathcal{E}} w_{ij} \frac{1}{\sqrt{d_j}} f_j$$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$

$$y_i = \alpha f_i + \alpha \frac{1}{\sqrt{d_i}} \sum_{j:(i,j)\in\mathcal{E}} w_{ij} \frac{1}{\sqrt{d_j}} f_j$$

unitary edge weights

$$y_i = \alpha f_i + \frac{1}{4} \alpha \sum_{j:(i,j)\in\mathcal{E}} f_j$$

$$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$

simplified parametric filter

$$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$

$$y_i = \alpha f_i + \alpha \frac{1}{\sqrt{d_i}} \sum_{j:(i,j)\in\mathcal{E}} w_{ij} \frac{1}{\sqrt{d_j}} f_j$$

unitary edge weights

$$y_i = \alpha f_i + \frac{1}{4} \alpha \sum_{j:(i,j)\in\mathcal{E}} f_j$$

30	3,	22	1	0
0_2	0_2	1_{0}	3	1
30	1,	2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

$$\hat{g}_{\theta^{(k+1)}}(L)\Big(\mathrm{ReLU}(\hat{g}_{\theta^{(k)}}(L)f)\Big)$$

$$\hat{g}_{\theta^{(k+1)}}(L)\Big(\mathrm{ReLU}(\hat{g}_{\theta^{(k)}}(L)f)\Big)$$

52/60

Input

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Representation of graph signals
- Convolutional neural networks on graphs
- Applications

Application I: 3D point cloud analysis

Application II: Community detection

spectral graph wavelets at different scales:

multi-scale community detection:

55/60

Application III: Neuroscience

Application IV: Drug discovery

Application V: Fake news detection

The spread of true and false news online

Twitter buys Al startup founded by Imperial academic to tackle fake news

Application VI: Traffic prediction

References

David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst

The Emerging Field of Signal Processing on Graphs

Extending high-dimensional data analysis to networks and other irregular domains

Applied and Computational Harmonic Analysis

David I Shuman ***, Benjamin Ricaud b, Pierre Vandergheynst b,1

A Comprehensive Survey on Graph Neural Networks

Zonghan Wu[©], Shirui Pan[©], Member, IEEE, Fengwen Chen, Guodong Long[©], Chengqi Zhang[©], Senior Member, IEEE, and Philip S. Yu, Life Fellow, IEEE

Graph Signal Processing: Overview, Challenges, and Applications

techniques (transforms, sampling, and others) that are used for conventional signals.

By Antonio Ortega 0 , Fellow IEEE, Pascal Frostard, Fellow IEEE, Jelena Kovačević, Fellow IEEE, José M. F. Moura 0 , Fellow IEEE, and Pierre Vandergheynst

GRAPH SIGNAL PROCE

Graph Signal Processing for Machine Learning

