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Introduction to
Graphs Signal Processing
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Networks are pervasive

geographical network
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social network brain network

graphs provide mathematical representation of networks
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Graph-structured data are pervasive

e vertices
- geographical regions
e edges
- geographical proximity between
regions
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Graph-structured data are pervasive

e vertices
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between
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regions

e signal
- temperature records in these

regions
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Graph-structured data are pervasive

e vertices
- road junctions

e edges
- road connections
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Graph-structured data are pervasive

| | e vertices
e edges
- road connections

-----

: e signal
N ey - traffic congestion at junctions
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Graph-structured data are pervasive

° e vertices
c?:\g “ - individuals
i el
c/“’\@ - friendship between individuals
ST T2
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Graph-structured data are pervasive

® vertices
- individuals

e edges

- friendship between individuals

e signal
- personal interest
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Graph-structured data are pervasive

e vertices
- brain regions

e edges
- structural connectivity between
brain regions
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Graph-structured data are pervasive

e vertices
- brain regions

e edges

[ C/MWMWW - structural connectivity between

brain regions

e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., "Machine learning with brain graphs,” IEEE SPM, 2013. 7/60



Graph-structured data are everywhere

e nodes
- pixels

e edges
- spatial proximity between pixels

e signal

- pixel values
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Graph signal processing

e Graph-structured data can be represented by signals defined on graphs or
graph signals

G={VE&} RN f:V—-R
vy
_|_

=)

takes into account both structure (edges) and
data (values at nodes)
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Graph signal processing

o Graph-structured data can be represented by signals defined on graphs or
graph signals

1D signal 2D signal f )Y —- R

how to generalise classical signal processing tools (e.g. convolution)
on irregular domains such as graphs?
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Graph signal processing

e Graph signals provide a nice compact format to encode structure within
data

e Generalisation of classical signal processing tools can greatly benefit
analysis of such data

e Numerous applications: Transportation, biomedical, social, economic
network analysis

e An increasingly rich literature
- classical signal processing
- algebraic and spectral graph theory
- computational harmonic analysis

- machine learning
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Outline

Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Convolutional neural networks on graphs

Applications
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Outline

e Graph signal processing (GSP): Basic concepts
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Two paradigms

e Main GSP approaches can be categorised into two families:
vertex (spatial) domain designs

frequency (graph spectral) domain designs
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Two paradigms

e Main GSP approaches can be categorised into two families:

- vertex (spatial) domain designs

frequency (graph spectral) domain designs "
) signal analysis
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Two paradigms

e Main GSP approaches can be categorised into two families:

- vertex (spatial) domain designs

important for

- [frequency (graph spectral) domain designs)

signal analysis

e C(lassical Fourier transform provides frequency domain representation of
signals

SN g0 - building blocks” of signal

\]/\VA\[[\V/\VA\/[‘W AA;' - different frequency (oscillation)
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Two paradigms

e Main GSP approaches can be categorised into two families:

vertex (spatial) domain designs

important for

- [frequency (graph spectral) domain designs)

signal analysis

e C(lassical Fourier transform provides frequency domain representation of
signals

SN g0 - building blocks” of signal

\]/\VA\[[\V/\VA\/[‘W AA;' - different frequency (oscillation)

e What about a notion of frequency for graph signals?
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Graph Laplacian

weighted and undirected graph:

o G={V,¢&}

Ug
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Graph Laplacian
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Graph Laplacian
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Graph Laplacian
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Graph Laplacian

weighted and undirected graph:

g = {Vv 5}

D = diag(d(vy), -+ ,d(vn))
L=D—-—W equivalent to W!
Lyorm = D~ 2(D — W)D™ 2

000000 01000000 1 -1 0 0 0 0 0 0 :
000000 /10100100\ (—1 3 -1 0 0 -1 0 0\ e symmetric

400000 01010110 0 -1 4 -1 0 -1 -1 0

00200 00) 400101000} 10 0 -1 2 -10 0 0 o off-diagonal entries non-positive
002000 00010100 0 0 0 -1 2 -1 0 0

000400 01101010 0 -1 -1 0 -1 4 -1 0

000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
0000001 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)

3
=
~
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Graph Laplacian

Why graph Laplacian?
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Graph Laplacian

Why graph Laplacian?

- provides an approximation of the Laplace operator

(L)) = (4f() — fG1) — fG2) — f(Us) — f(Ga))/(6)?

standard 5-point stencil for approximating —V?f
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Graph Laplacian

Why graph Laplacian?

- provides an approximation of the Laplace operator

(L)) = (4f() — fG1) — fG2) — f(Us) — f(Ga))/(6)?

standard 5-point stencil for approximating —V?f

- converges to the Laplace-Beltrami operator (given certain conditions)

- provides a notion of “frequency’ on graphs

15/60



Graph Laplacian

graph signal f: )V — R

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/60



Graph Laplacian

graph signal f: )V — R

0 -1 -1 0 -1 4 -1 (6
0 0 -1 0 0 -1 1| | F(7
\o 0 0 0 0 0 -1 1) \f(s/

Lf(i) = Z Wi; (f (@) — £(5))

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/60



Graph Laplacian

graph signal f : ) — R

1 -1 0 0 0 0 0 O £(1) £(1) T/1 10 0 0 0 0 o0 £(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(Q)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 0 f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) £(5) 0 0 0 -1 2 -1 0 O F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 £(6)
o 0 -1 0 o -1 3 —1|/{re £(7) o 0 -1 0 0 -1 3 —1|{sm
\o 0 0 0 0 o 1 1) \f®) \/®)) \o 0 0o 0o o o -1 1) \ss)
N 1 N
_ T _ 2
L) = " Wi () = £(7) FILf =5 3 Wy (fG) = £(3))
J=1 i,j=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 16/60



Graph Laplacian
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = xyAx"

- X(?_-

T
Xy — -

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < Ay < ... < An_1
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Graph Fourier transform
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Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.



Graph Fourier transform

e AN s
(=
e
LN M2

\'SA\VAVi S
“{.V}YA, P>
< U

0
p,

X50
low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

e Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/60



raph Fourier transform

ra A=A N
\ /=

PN N\
N> S
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<29
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SR o

X50
low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

graph Fourier transform:

FOO ={xe,f): [ Xo - Xai| f

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/60



raph Fourier transform

ra— =
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e St
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X 50

low frequency high frequency S
ngxO =X =0 XgoLX5o = As0

graph Fourier transform:

|
f(g):<Xg,f>I XO XN—I ]‘E -

T)

AOAT A2 A3 A+ 0 AN

low frequency high frequency

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 19/60



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy

one-dimensional Laplace operator: —V/?

$

eigenfunctions: e’/“"

Classical FT:

_ / (&%) f(x)da

fla)= o / F(w)e™= duw
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF
A N

Classical FT:  f(w) = / (&%) f(x)da Graph FT: f(£) = (x¢. f) = ZXZ(i)f(i)

fo) = 5 [ Fper o 1) = Y FOx
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Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxy = Ayxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF

Classical FT: f(w) = Ilteij)*uf(iﬁ)‘dﬂf ; Graph FT: f(f) = (X0, f) = Z XZ(@“f(Z)

1=1

N—-1

fo) = 5 [ Fper o fiy =Y o

=

20/60



Two special cases

S

m (Unordered) Laplacian eigenvalues: Ay =2 — 2 cos (2‘%)

m One possible choice of orthogonal Laplacian eigenvectors:

— 2mj
Xe = [l,we,w%, e ,w(N 1)6] , Where w = e N
| |
B | xo --- xn_1 | isthe Discrete Fourier Transform (DFT) matrix

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011.

21/60



Two special cases

wil )\g:2—2cos(%) 0 xo(/) = ﬁ Xg(i):\/%cos(“e(';o's)), (=1,2,...,N—1

Eigenvector 0

. n n . . n n n

03 2 3 4 5 6 7 8
0 Eigenvector 1

05 1 1 I t ‘.%—!

1 2 3 4

Eigenvector 2

X — —— y

H— —r—-.f |
035 2 3 - ! 7 8

Eigenvector 3

6
°'¥\!-\_! —— n Y
-85, 2 r : 5 -

Eigenvector 4

Eigenvector 5

?\ ,/'\-:gemecm:./_'\,
Eigenvector 7

-o:§\~ /_!\1/’\! 4/!—'—\!

2 3 5 7 8

is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011. 22/60



Example on a general graph

GFT: | 1

A

FOO) ={xe, f): [Xo 0 Xya| [

: . sensor
elgenveCtor Uy e|genveCtor Uz o G.N=60 nodes, G.Ne=302 edges
’ 2.0
0.6
15
0.8 - 2.0 1
0.4 10
0.2 0.6 - 05 1.5 4
0.0
0.0 0.4 - Lo \1\
—0.2 -0.5
0.2 -1.0 0.5
-0.4 s
-0.6 0.0 1 —2.0 0.0 4
00 02 04 06 08 10 0 2 4 6 8 10 12
sensor
1.0
0-6 0.1 0.6 4
0.4 > 00 054
0.2 06 1 -1 044
0.0 -0.2 0.3 1
0.4 -
-0.2 -0.3 0.2 1
0.2 -
-0.4 —-0.4 0.1 A
-0.6 00 05 00 ' A AN A aa A
00 02 04 06 08 10 0 2 4 6 8 0 12
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Outline

e Graph signal processing (GSP): Basic concepts

e Graph spectral filtering: Basic tools of GSP
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Classical frequency filtering

Classical FT:  f(w) :/(ej“"’)*f(x)dx f(z) = %/f’(w)ejmdw
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Classical frequency filtering

Classical FT:

fw)

FT

=)

[y t@de f@) =5 [ fued

]ﬁ

(W)

g(w)

=)

(@) f(w)

IFT

=)

f*g

25/60



Classical frequency filtering

Classical FT:

fw)

FT

[y t@de f@) =5 [ fued

=)

Jﬁ

(W)

=)

(@) f(w)

[ [T

IFT

=)

f*g

25/60



Graph spectral filtering

GFT: f(0) = {xe, f) = ZXE FG) =" FO)xe(i)

26/60



Graph spectral filtering

GFT: f(€)=<x£,f>=ZxZ(i)f(i) FG@) = f(O)xe(i)

1.01

1.0
0.8 0.5
0.6 1 0.0
0.4 - ‘T\\v/'ll// -0.5

-1.0
0.2 1

-15
0.0 A -2.0

26/60



Graph spectral filtering

N N-—-1

GFT: f(6) = {xes f) =D _xi (@) f(@)  f() = ) f(O)xe(d)

1=1 ¢=0

GFT

fo o= | f)

1.0 2.00
1.0
, 1.75 1
0.8 1 )
0-5 1'50_
0.6 1 0.0 1.2541
0.5 1.00 -
7/ —VU.
41 W4
04 {i_ 0.75 1
-1.0
0.50 -
0.2 1
-15 0.25 1
0.0 -2.0 0.00
0.0 0.2 0.4 0.6 0.8 0 2 4 6 8 10 12 14

26/60



Graph spectral filtering

N

GFT: f(0) = (xe, f) =Y x5 (i) (i)

GFT

1=1

0.0

(€)xe(2)

26/60



Graph spectral filtering

N N-—-1

2.00

1.75 A1

1.50 1

1.25 4

1.00 A
0.75 A
0.50 A
0.25 A L
0.00

0 2 4 6 8 10 12 14

26/60



Graph spectral filtering

N

GFT: f(0) = (xe, f) =Y x5 (i) (i)

GFT

1=1

0.0

2.00

1.50 A
1.25 4
1.00 A1
0.75 1

0.50 A

0.25 A L
0.00 ~— T

1.01

0.8 1

0.6

0.4 1

0.2 1

0.0 A

1.25
1.00
%74
\\Y, 0.75
ANV ‘ 0.50
g \'/:wr IS5\
i U/ %\
| = \?‘(’Ji\i‘ﬂs!’(/é /i 0.00
TR /\
"“\%{7/
W 0.25
P
0.50
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral

filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

Smola and Kondor, “Kernels and regularization on graphs”, COLT, 2003.

IGFT

Xg(A)x" f

SR IS R AR

g(L): function of L!
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Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral

filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

Xg(A)x

SR IS R AR

g(L): function of L!

e Important properties can be achieved by properly defining g(L) , such
as localisation of atoms

e Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs’, COLT, 2003.
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A practical example

GFT

T

X' f

S\i
§=

gA)X" f
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +n and wish to recover

[ Y = argm;n{||y — fll3 +vy" Ly} J

28/60



A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

“smoothness’ assumption
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A practical example

GFT g(A) IGFT

foome xf m | gA)x f | xGg(A)x S

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

y = +yL)"'f
g(L)

“smoothness’ assumption

28/60



A practical example

GFT g(A) IGFT

f| = ' f = | gAY f| = Wf

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

y =T +~vL) " f =x(T+~yA) "N f remove noise by low-pass filtering

N in graph spectral domain!
g(L)

“smoothness’ assumption

28/60



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 29/60



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013, 29/60



Outline

e Graph signal processing (GSP): Basic concepts
e Graph spectral filtering: Basic tools of GSP

e Representation of graph signals

30/60



Classical vs. Graph dictionaries

classical signal — X
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Classical vs. Graph dictionaries

classical signal — X

graph signal — X

31/60



GFT provides a first graph dictionary

f:V—=~R

vertex domain
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GFT provides a first graph dictionary

f:V—=~R

vertex domain

frequency (graph spectral) domain

> A
A0ATA2A3 4 A A6 ATAS

32/60



GFT provides a first graph dictionary
f fe

1.0 - 3.0 -
2 2.5
0.8 ' ’I
1 '2
2.0 -
0.6 - ,
0
1.5 -
0.4 -1 |
1.0 -
0.2 - -2 \
0.5 -
J
-3
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12 14 A

33/60



GFT provides a first graph dictionary
f fe

1.0 A 3.0 -
2 2.5
0.8 1 ' ’I
1 |
2.0 1
0.6 1
0
1.5 1
0.4 -1 |
, 1.0 A
0.2 - ) :!-‘.";i»;i. = -2
| A 0-5 .
A _
-§\ I 3
0.0 1 0.0 1
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 12 14 A

GFT atoms (corresponding to discrete frequencies)

33/60



GFT provides a first graph dictionary

3.0 1

2
2.5 1 ’

|

1.5 1

L RN

0.0 A

X0 X1

GFT atoms (corresponding to discrete frequencies)

33/60



GFT provides a first graph dictionary

X0 X1 X2

GFT atoms (corresponding to discrete frequencies)

33/60



GFT provides a first graph dictionary

X0 X1 X2 X3

GFT atoms (corresponding to discrete frequencies)

33/60



GFT provides a first graph dictionary

0.6
0.4
0.2
0.0
-0.2

-0.4

X0 X1 X2 X3 X4

GFT atoms (corresponding to discrete frequencies)

33/60



GFT provides a first graph dictionary

0.6 0.6
0.4 0.4
0.2 ‘ 0.2
0.0 ,/' 0.0
-0.2 _ ".\;\ ‘,l‘ -0.2

= .4, '
~0.4 - \“Ii\\\!@"/ ~0.4

X0 X1 X2 X3 X4

34/60



GFT provides a first graph dictionary

0.6 0.6 0.6 0.6 0.6

0.4 0.4 0.4 0.4 0.4

\ 0.2 \ 0.2 0.2 \ 0.2 0.2

N\ q 0.0 N\ < 0.0 0.0 N C 0.0 0.0
”'\‘\ I‘ 0.2 b > l‘ 0.2 0.2 b > l‘ 0.2 0.2

?\. ) ‘;/ .,//‘v \\“ —V. ?“‘;’ 4 !‘v \\\ —VU. — Y. _ ?\‘ :;/ .,//‘r \\\ —V. —U.
Qﬂ‘\"/ ~0.4 gg!{&"/ ~0.4 ~0.4 - Qﬂ‘\"/ ~0.4 ~0.4

W k (frequency index)

- like complex exponentials in classical FT, eigenvectors in GFT have global support

34/60



GFT provides a first graph dictionary

0.6 | 0.6
- I
0.4 7, il 0.4
0.2 “n.. \A\ 0.2
0.0 \ / 0.0
0.2 \ 2P l‘ 0.2
e = 1l e
~0.4 - '“”@%u% ~0.4

- like complex exponentials in classical FT, eigenvectors in GFT have global support

- can we design localised atoms on graphs?

k (frequency index)

e

\

l’.‘
' “u",‘.
¥ "J"“. %

7 A
Y -gs\!ﬁ“ /

i!l

¥
N\

»,

%
!

/
\

0.6
0.4
0.2
0.0
-0.2

-0.4

34/60



Basic operations for graph signals

basic operations in Euclidean domain

p(t —m) R(e?* (1)) p(27")

- recall that we used a set of structured functions (e.g.,
shifted and modulated) to produce localised items

35/60



Basic operations for graph signals

recall that we used a set of structured functions (e.g.,
shifted and modulated) to produce localised items

- we need to define for graph signals the basic operations
of convolution, shift, modulation

35/60



Convolution

classical convolution (f*g)(t) = / (T)dT

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 36/60



Convolution

classical convolution (f*g)(t) = / @g (7)dT

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 36/60



Convolution

classical convolution (f*g)(t) = / @«; (7)dT

graph convolution multiplication in graph spectral domain

/\ ~

(fxg9)(A) = (fog)(A)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 36/60



Convolution

classical convolution (f*g)(t) = /_OO(T)dT
f(w) - §(w)

(f * g)(w) =

graph convolution multiplication in graph spectral domain

(Fg)(N) = (foi)(N)

N—-1

) (f*g)(n f(0)

£=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 36/60



Vertex-domain shift

original signal

classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 37/60



Vertex-domain shift

i
original signal
classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)
graph shift convolution with a “delta” on graph
(Tif)(n) = VN(f *6;)(n)

VE' S FOx; ()xe(n)
=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 37/60



Vertex-domain shift

e R
shifted version of the signal to different centring vertex (in green)
classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)
graph shift convolution with a “delta” on graph
(T;£)(n) := VN(f *8;)(n)
N—-1
= VN Y fO)xz(1)xe(n)
£=0
Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 37/60



Modulation

classical modulation (Me f)(t) := €727 f(t)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 38/60



Modulation

classical modulation (Me f)(t) := €727 f(t)

graph modulation multiply by a graph Laplacian eigenvector

(Mif)(n) :== VN f(n)xi(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 38/60



Modulation

Ayogo =4.03

original signal modulated signal
classical modulation (Me f)(t) := €727 f(t)
graph modulation multiply by a graph Laplacian eigenvector

(Mif)(n) :== VN f(n)xi(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 38/60



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed

Fourier atom Gue(t) = (McTug)(t) = 7™ g(t — u)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 39/60



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed
Fourier atom

windowed graph
Fourier atom gzk(n) = (M Tig)(n)
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Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed 4
Fourier atom Gue(t) == (McTug)(?) @\D

windowed graph .
Fourier atom gik(n) :
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Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can define a
windowed graph Fourier transform (WGFT)

classical windowed 4
Fourier atom Gue(t) == (McTug)(?) @\E

windowed graph .
Fourier atom gik(n) :

windowed graph Sf(i, k) == {f, gir)

Fourier transform

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 39/60



Windowed graph Fourier transform
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Wavelets on graphs

e With the shift and scaling operators for graph signals we can define a
spectral graph wavelet transform (SGWT)

H ] [ . H ]
-0.01 0 0.01 -0.02 0 0.02
-
% 1:&"' b 4
e 4%, -
‘o‘.3 Lo
(a) (b) ()
[ ] [ B ]
-0.15 0 015 -0.4 0 0.4 -0.2 0 0.2

(d) (e) (f)

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)-(f) wavelets, scales 1-4.

Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011. 41/60



Wavelets on graphs

e With the shift and scaling operators for graph signals we can define a
spectral graph wavelet transform (SGWT)
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Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J =4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-
(f) wavelets, scales 1-4.
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WGFT vs SGWT atoms

WGFT atom

gi.k(n) := (MyT;g)(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 43/60



WGFT vs SGWT atoms

WGFT atom

gi.k(n) := (MyT;g)(n)
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WGFT vs SGWT atoms

WGFT atom

gik(n) = (MiTig)(n)

SGWT atom

i s(n) = (T;Dsg)(n)

= 3 alshoi (lm
£=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 43/60



WGFT vs SGWT atoms

Classical Windowed

Fourier Atoms

WGFT atom 0 N

gik(n) = (MiTig)(n)

frequency

time

Classical Wavelets

SGWT atom LIl

v

is(n) := (TiDsg)(n)

frequency

time

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016.
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Outline

Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Convolutional neural networks on graphs
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Convolution on graphs (revisited)

classical convolution

time domain

(f gt / 1t —7)g

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 45/60
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Convolution on graphs (revisited)

classical convolution

time domain

(f gt / 1t —7)g
4

frequency domain

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 45/60



Convolution on graphs (revisited)

classical convolution convolution on graphs

time domain

(f gt / 1t —7)g
4

frequency domain graph spectral domain

/\

(f*9)(w) = f(w) - §(w) (F+9)N) = (" £ og)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel
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Convolution on graphs (revisited)

classical convolution convolution on graphs

time domain : spatial (node) domain
e = [ fe-ngmdr i Frg=xa@N"f =g(D)f

3 %

frequency domain E graph spectral domain
. G
(f*9)(w) = f(w) - §(w) L (frg ) = (X eg) (M)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel
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Convolution on graphs (revisited)

classical convolution convolution on graphs

time domain spatial (node) domain

frg= Xﬁ(A)XTf _[3)f convolution

1)

graph spectral domain

Tro0= [ T f(t = T)g(r)dr

4

frequency domain

= filtering

/\

(f *9)(w) = f(w) - §(w)

/\

(fxg)N) = (X" feog)(N)

https://towardsdatascience.com /intuitively-understanding-convolutions-for-deep-learning-1f6f42faeel 45/60



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 6,17

j=0 j=0

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 46/60



A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =Y 0N, 0 € REH! —> Go(L) = Zej@
=0

j=0

what do powers of graph Laplacian capture?

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 46/60



Powers of graph Laplacian

L* defines the k-neighborhood
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A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K
go(N) =D _0;X, 0 € RFH! =) Go(L) =3 0,17

j=0 j=0
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A parametric filter

Frg=xgN)x"f=9(L)f

4

parametric filter as polynomial of Laplacian

K K
Go(N) =) _0;M, 0 € RFH! ) Go(L) = 0,1
J=0

i=0

- convolution is expressed in the
graph spectral domain

- localisation within K-hop
neighbourhood

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 48/60



A simplified parametric filter

Frg=xgM)x"f=g(L)f

simplified parametric filter

K
go(L) =) 6,L ) =0 0, (D WD 2)
=0

(localisation within 1-hop neighbourhood)

K=1

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 49/60
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K
go(L) =) 6,L ) =0 0, (D WD 2)
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(localisation within 1-hop neighbourhood)
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A simplified parametric filter

Frg=xgM)x"f=g(L)f

simplified parametric filter

K
go(L) = Zﬁij — =00l — (D ZWD?)
j=0

(localisation within 1-hop neighbourhood)

K=1

o = (90 = —61
mmmmm) ol +D WD 2)

renormalisation

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter

ja(L) =a(I+ D 2WD"2)

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 50/60



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+ D 2WD"2)

#

1
VPt

J

Yi = of;

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 50/60



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) =a(I+D WD 3)

1 1
yz‘ZOémeOé\/dfi Z wz‘jﬁfj

7:(4,)€E

‘ unitary edge weights

1
yi:@fi+104 Z fi

j:(4,5)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 50/60



A simplified parametric filter

Frg=xgN)x"f=9(L)f

4

simplified parametric filter
ja(L) = a(l + D 2WD™?)

4

1 1

\/—] (2,5)€E \/_

‘ unitary edge weights

Yi = af;

1
inOéfi+ZOé Z fi

g:(4,7)€E

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 50/60



CNN on graphs: Graph classification

G=G"°
/

Graph
Ex: social, biological,
telecommunication graphs

Input signal
on graphs

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 51/60



CNN on graphs: Graph classification

O(K) parameters

e
O(E.K) operations (GPUs) & f: @0
e

=0
G=G f\géKl

Spectral Filters :%

/
Graph
Ex: social, biological, :\40 [0
telecommunication graphs m A
| ’
‘ =0 noF1
1'=0 ¢ R™M=0 g € R
91 = RK 1 Fy
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016.



CNN on graphs: Graph classification

Relu activation =2

'

O(K) parameters p Factor 2P

O(E.K) operations (GPUs) Pre- Computed
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1 Poolmg (GPUs)

_ 1=0
G=G E gpxcs

Spectral Filters gju Graph coarsening

A
/ \
F R
“— »

A A
/ \ / \
WA

Graph

Ex: social, biological, ;5.\ g :I\;I)
telecommunication graphs e/
l

/1IN 7N 7T

o}
/\
/ \
/ \
/ \
[ Y

| e
‘ =0 n()Fl =1 anl Lo I
=0 < R™=0 r,  €R r— eR p 2
9'=1 ¢ RK1 11 ny = ng/2M
Input signal Graph convolutional layers
on graphs (extract local stationary features on graphs)

Defferrard et al., “Convolutional neural networks on graphs with fast localized spectral filtering,” NIPS, 2016. 51/60



CNN on graphs: Graph classification

Spectral Filters
O(K) parameters
O(E.K) operations (GPUs)

Relu activation ==

Gl— 1 P
Graph coarsening 3\\j

Factor 2P
Pre- computed
% Poolmg (GPUS)

“/j e O
:,1\\
T,

/IN 71N /1N
)

) ® ¢ Output signal
Graph . o T Class labels
Ex: social, biological, ~ n
telecommunication graphs ) y - ]R ¢
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CNN on graphs: Node classification

Goe+v (L) (RGLU@@(k) (L)f))

X =H

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 52/60



CNN on graphs: Node classification

Gorn (L) (ReLU (GRNEND)

Hidden layer

T
AN

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 52/60



CNN on graphs: Node classification

Hidden layer

2

20

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 52/60



Hidden layer

-~

\i

~

Hidden layer

CNN on graphs: Node classification

I

~

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017.
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CNN on graphs: Node classification

Hidden layer Hidden layer

s 2 r A

. N
‘ J
20
20

i
+ 3

Kipf and Welling, “Semi-supervised classification with graph convolutional networks,” ICLR, 2017. 52/60
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Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tools of GSP
Representation of graph signals

Convolutional neural networks on graphs

Applications
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Application |: 3D point cloud analysis

(a) It + Ty+1 (b) Correspondence between Z; and Z; 1 (€) Zt.me + Le4+1
(a) (b) ()

Thanou et al., “Graph-based compression of dynamic 3D point cloud sequences,” IEEE TIP, 2016. 54/60



Application |I: Community detection

spectral graph wavelets D.(a.b)—1— Yiatbsh
at different scales: 195 all.||1¥s.pll,

é‘ﬂ‘%
NODE /
A: @
NODE 5?
B Q
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COEF.: -0.50 0.97

small scale large scale

multi-scale community
detection:

Tremblay et al., “Graph wavelets for multiscale community mining,” IEEE TSP, 2014. 55/60



Application Ill: Neuroscience

/ . ™~
D L BOLD Functional data
<
S
o
()
o
(aV}
| =
S
(@)
()
é ) T 4 - A
A Structural connectivity C Graph Fourier transform
time low-frequency modes
J 1 i ]
| $o8os%  Lokies
Spectral domain ‘e Se oalE IV &
Laplacian spectrum Adjacency spectrum ] , “ d
A 1 | o (2 O ‘ ) <
] .Q_""’,'Og 2 9% Pge.
[0} '_,. . fe Ve o e ‘¢ o‘
§ e . 9‘0..9‘0 9’::‘0
: : ; g ny Ngws
— high-frequency modes j°
f- . . @ .
= 'E Transformed functional dat A L SA R B e
S ransformed functional data ol A %" R o o @ %"
2 Amplitude .‘sa & ? oJ % 2
- e 88 Wl .
g 2 ‘...“o o1V » 3 "O‘D v
§ ’ ‘(‘.. .»} p > %c L ¢
1‘ } b‘ .‘, .‘. } b As,
\ y ‘; \ J
e}
o
=
\ }ime)

Huang et al., “A graph signal processing perspective on functional brain imaging,” Proceedings of the IEEE, 2018. 56/60



Application IV: Drug discovery

&
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b

[antibiotic]
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Al discovers antibiotics to treat drug-resistant _ .
diseases  ppm owew 4 e o D ru:g Discovery
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antibiotic using Al

Stokes et al., “A deep learning approach to antibiotic discovery,” Cell, 2020.

57/60



Application V: Fake news detection
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Vosoughi et al., “The spread of true and false news online,” Science, 2018.
Monti et al., “Fake news detection on social media using geometric deep learning,” ICLR Workshop, 2019. 58/60



Application VI: Tratfic prediction

Google Maps ETA Improvements Around the World
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The Emerging Field
of Signal Processing
on Graphs

Extending high-dimensional data analysis
to networks and other irregular domains

1 applicaticns sich as social, energy, transportation, sensor,

been proposed to effciently extract information from high-

and neuronal networks, high-dimensional data naturally

reside on the verti is The emergis o

of signal processing cn graphs mergs s algebraic and spectral

graph theoretic concepts with computational harmenic anal-  INTRODUCTION

‘yiis to process such signals on graphs. In this tutorial overview,
i " of the area, discuss di

to define graph spectral domains, which are the analogs to the
classical frequency domain, and highlight the importance of
the irregular structures of graph data domains

and survey the localized, multiscale transforms that have

Dl Ot it M LESOP 302 255001
Dt of bt S4ped 613

phs are generic data representation forms that are useful
for describing the geometric structures of data domains in
numerous applications, including social, energy, transporta-
tion, sensor, and neuronal networks. The weight associated
with each edge in the graph often represents the similarity
between the two vertices it connects. The connectivities and
edge weights are either dictated by the physics of the problem
at hand or inferred from the data. For instance, the edge
weight may be inversely proportional to the physical distance
between nodes in the network. The data on these graphs can
be visualized s a finite collection of samples, with one ample
at each vertex in the graph. Collectively, we refer to these
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Michael M. Bronstein, Joan Bruna, Yann LeCun,
Athur Szlam, and Pierre Vandergheynst

any scientific fields study data with an underlying
structure that is non-Euclidean. Some examples
include social networks in computational social sci-
ences, sensor networks in communications, func-  &-

tional networks in brain imaging, regulatory networks in

genetics, and meshed surfaces in computer graphics. In

‘many applications, such geometric data are large and com-

plex (in the case of social networks, on the scale of billions)

and are natural targets for machine-leaming techniques.

In particular, we would like (o use deep neural networks,

which have recently proven to be powerful tools for a broad

range of problems from computer vision, natural-linguage
ing, and audio analysis. However, these tools have

proce:
been most
erid-like structure and in cases where the invariances of these
structures are built into networks used (o model them.
Geometric deep learning is an umbrella term for emerging

mod-
els to non-Euclidean domains, such as graphs and manifolds. The
article is o overview different examples of geometric

deep-learning problems and present available solutions, key difficul-

purpose of th

ties, applications, and future research directions in this nascent field. / \

Overview of deep learning

Deep learning refers to learning complicated concepts by building them from
simpler ones in a hierarchical or multilayer manner. Arificial

neural networks are

popular realizations of such deep multilayer hierarchics. In the past few years, the growing
hi unit (GPU)-based computers and the avail-

powe X c
ability of large training data sets have allowed successfully training neural networks with many layers
and degrees of freedom (DOF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from -

speech recogition 2], [3] and machine translation [4] to image analysis and computer

n [S]-{11] (see [12]

Geometric Deep Learning -

Going beyond Euclidean data
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One of the key
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‘Communicated by Patrick Flandrin graph setting. Our apy

the area processing on graphs is to design

.y challenges in of signal
dictionaries and transform methods to identify and exploit structure in signals
on weighted graphs.
structure of the underlying graph data domain. In this paper, we generalize one
of the most important signal processing tools

to firs

o do so, we need o account for the intrinsic geometric

~ windowed Fourier analysis — to the
generalized cor

proach is to first define volution, translation,

and modulation operators for signals on graphs, and explore related properties such

anslation and

dulation
Spectral graph theory
Localization
Clustering

that vary along a pat

as the localization of translated and modulated graph kernels. We then use these
operators o define a windowed graph Fourier transform, enabling vertex-frequency
analysis. When we apply this transform to o signal with frequency components.

th graph, the resulting spectrogram matches our intuition from
classical diserete-time signal processing. Yet, our construction is fully generalized
and can be applied to analyze signals on any undirected,

X ted, weighted graph.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

In applications such as social networks, electricity networks, transportation networks, and sensor net-
works, data naturally reside on the vertices of weighted graphs. Moreover, weighted graphs are a flexible
tool that can be used to describe similarities between data points in statistical learning problems, func-

tional connecti
topologically-complex data domains.

hetween different regions of the brain, and the geometric structures of countless other
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A Comprehensive Survey on Graph
Neural Networks
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Abstract—Deep learning has revolutionized many machine
learning tasks in recent years, ranging from image classification
and video processing to specch recognition and natural language
understanding, The data in these tasks are typically represented
in the Euclidean space. However, there is an increasing number
of applications, where data are generated from non-Euclidean
domains and are represented as graphs with complex relation-
ships and interdependency between objects. The complexity of
graph data has imposed significant challenges on the existing
machine learning algorithms. Recently, many studies on extend-
ing deep learning approaches for graph data have emerged.
In this article, we provide a comprehensive overview of graph
neural networks (GNNs) in data mining and machine learning

ids. We propose a new taxonomy to divide the state-of-the-art
GNNs into four categories, namely, recurrent GNNs, convolu-
tional GNNs, graph autoencoders, and spatial-temporal GNNs.
We further discuss the applications of GNNs across vari
domains and summarize the open-source codes, benchmark data
sets, and model evaluation of GNNs. Finally, we propose potenti

i ing field.

networks (RNNs) (7], and autoencoders [8]. The success
of deep learning in many domains is partially attributed to
the rapidly developing computational resources (¢.g., GPU),
the availability of big training data, and the effectiveness
of deep leaming 1o extract latent representations from the
Euclidean data (e.g., images. text, and videos). Taking image
data as an example, we can represent an image as a regular
grid in the Euclidean space. CNN is able o exploit the shift-
invariance, local connectivity, and compositionality of image
data [9]. As a result, CNNs can extract local meaningful
features that are shared with the entire data sets for various
image analyses.

While deep leaming effectively captures hidden patterns of
Euclidean data, there are an increasing number of applica-
tions, where data are represented in the form of graphs. For
example, in e-commerce, a graph-based learning system can
exploit the interactions between users and products to make

), graph neural networks (GN
graph representation learning, network embedding.

1. INTRODUCTION
HE recent success of neural networks has boosted
research on pattern recognition and data mining. Many

machine learning tasks, such as object detection (1], [2],

machine translation [3], (4], and speech recognition [5], which

once heavily relied on handerafted feature engineering to
extract informative feature sets, have recently been revolu-

tionized by various end-to-end deep learning paradigms, e.g.,

convolutional neural networks (CNNs) [6], recurrent neural
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highly accurate In chemistry, molecules
are modeled as graphs, and their bioactivity needs to be
identified for drug discovery. In a citation network, articles
are linked 10 each other via citationships, and they need to be
categorized into different groups. The complexity of graph data
has imposed significant challenges on the existing machine
learning algorithms. As graphs can be irregular, a graph may
have a variable size of unordered nodes, and nodes from a
graph may have a different number of neighbors, resulting in
some important operations (e.g.. convolutions) being easy to
compute in the image domain but difficult (o apply to the graph
domain. Furthermore, a core assumption of existing machine
learning algorithms is that instances are independent of each
other. This assumption no longer holds for graph data because
each instance (node) is related to others by links of various
types, such as citations, friendships, and interactions.
Recently, there is increasing interest in extending deep
learning approaches for graph data. Motivated by CNNs,
RNNs, and autoencoders from deep learning, new generaliza-
tions and definitions of important operations have been rapidly
developed over the past few years o handle the complexity
of graph data. For example, a graph convolution can be
generalized from a 2-D convolution. As illustrated in Fig. 1,
an image can be considered as a special of graphs,
where pixels are connected by adjacent pixels. Similar to 2-D
convolution, one may perform graph convolutions by taking
the weighted average of a node’s neighborhood information.
There are a limited number of existing reviews on the
topic of graph neural networks (GNNs). Using the term
geometric deep learning, Bronstein et al. [9] give an overview

A republicationedisisibution reuires IEEE permission
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Graph Signal Processing:
Overview, Challenges, and

Applications

This article presents methods to process data associated to graphs (graph signals) extending
techniques (transforms, sampling, and others) that are used for conventional signals.

By Antonio Orreca””, Fellow IEEE, Pascal Frossaro, Fellow IEEE, Jeiena Kovadevié, Fellow IEEE,
José M. F. Moura®, Fellow IEEE, anp Pierre VANDERGHEYNST

ABSTRACT | Research in graph signal processing (65P) aims
to develop tools for processing data defined on irregular graph
domai

Graphs offer the abilty to model such data and complex
interactions among them. For exampl, uoerz on Twiter can be

asedgee.

 developed top of pr

ofgradu

tooks, including methods for sampling. filtering, o graph learning.
Next. we review progres in sevral appication aras using GSP.
fhos ; : logical

itering, and frequency recponce o dara resding o graphs. It

cata, i

KEYWORDS | Graph signal processing (GSP): network science
and graphs; sampling; signal processing

I. INTRODUCTION AND MOTIVATION
Data s all around us, and massive amounts of it. Almost
every aspect of human life is now being recorded at alllev-
el

pled way.
mon umbrellaiz graph sgnal procesing (GSP) (2}, 3}

While the precice definiion of a graph signal will be
given later in the paper, let us assume for now that  graph
signalis a et ofvalues recding on st of nodes. These nodes
are connected via (poseibly weighted) edgee. As in classical
signal procesing, such signals can stem from a variety of
‘domains; unlike in clazsical signal procesting, however, the

cells starting with the advent of fluorescent markers, to our
perzonal daa through health monitoring devices and appz,
financial and banking data, our social networks, mobility
and traffic patterns, marketing preferences, fads, and many

ferent ypec of nerwork that theze nodes reprecent.

“Typical graph that are used to represent common real-
‘world data include Erdés-Rényi graphs, ring graphs, random
geometric graphs, emallworld graphs, powerlaw graphs,

means that the data now reside on irregular and complex
structures that do not lend themselves to standard tools.

e matamonio ortagagoptsc ecd.

Fatsena sk,

Dl Cect e 10.1109/PROC 20182820326

‘Theee model nerworke with random connections (Erdée—
Rényi graphe), networks of brain neurons (small-world
graphs), social networks (scale-free graphs), and others.

‘A in classical signal processing, graph signals can have
properties, such as smoothnes, that need t be appropri-
ately defined. They can alzo be represented via basic atoms.
and can have a spectral reprecentation. In particular, the
graph Fourier transform allows us o develop the incuition
gathered in the clasical setting and extend it to graphs; we
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Graph Signal Processing for Machine Learning
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A review and new perspectives

ationof |
to complex domains, such as networks and graphs, are one
o the key questions in modern machine learning. Graph signal
processing (GSP), a vibrant branch of signal processing models
and algorithms that aims at handling data supported on graphs,
opens new Inthisar-
ticle, we revi
‘cepts and tools, such as graph filters and transforms, o the devel-
‘opment of novel machine leaming algorithms. In particular, our

Tm effective representation, processing, analysis, and visual-

alefficiency, and enhancing model interpretability. Furthermore,
GsP

techniques that may serve as a bridge between applied mathe-
matics and signal processing on one side and machine learning
ind network Crass

‘complex data analysis in the modern age.

Introduction

Welive in a connected society. Data collected from large-scale
interactive systems, such as biological, social, and financial
networks, become largely available. In parallel, the past few
decades have seen a significant amount of interest in the ma-
chine learning community for network data processing and
analysis. Networks have an intrinsic structure that conveys
very specific properties o data, e, interd be-

These
properties are traditionally captured by mathematical repre-
sentations such as graphs.

In this context, new trends and challenges have been devel-
‘oping fast. Let us consider, for exampl, a network of protein—

at every point in time. Some typical tasks in network biology
related to this type of data are 1) discovery of key genes (via
protein grouping) affected by the infection and 2) prediction
‘of how the host organism reacts (in terms of gene expression)
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