# AIMS CDT - Signal Processing Michaelmas Term 2023 Xiaowen Dong Department of Engineering Science # Introduction to Graphs Signal Processing ## Networks are pervasive geographical network social network traffic network brain network graphs provide mathematical representation of networks - vertices - geographical regions - edges - geographical proximity between regions - vertices - geographical regions - edges - geographical proximity between regions - signal - temperature records in these regions - vertices - road junctions - edges - road connections - vertices - road junctions - edges - road connections - signal - traffic congestion at junctions - vertices - individuals - edges - friendship between individuals - vertices - individuals - edges - friendship between individuals - signal - personal interest - vertices - brain regions - edges - structural connectivity between brain regions - vertices - brain regions - edges - structural connectivity between brain regions - signal - blood-oxygen-level-dependent (BOLD) time series #### Graph-structured data are everywhere - nodes - pixels - edges - spatial proximity between pixels - signal - pixel values ## Graph signal processing Graph-structured data can be represented by signals defined on graphs or graph signals takes into account both structure (edges) and data (values at nodes) #### Graph signal processing Graph-structured data can be represented by signals defined on graphs or graph signals how to generalise classical signal processing tools (e.g. convolution) on irregular domains such as graphs? #### Graph signal processing - Graph signals provide a nice compact format to encode structure within data - Generalisation of classical signal processing tools can greatly benefit analysis of such data - Numerous applications: Transportation, biomedical, social, economic network analysis - An increasingly rich literature - classical signal processing - algebraic and spectral graph theory - computational harmonic analysis - machine learning #### Outline - Graph signal processing (GSP): Basic concepts - Graph spectral filtering: Basic tools of GSP - Representation of graph signals - Convolutional neural networks on graphs - Applications #### Outline - Graph signal processing (GSP): Basic concepts - Graph spectral filtering: Basic tools of GSP - Representation of graph signals - Convolutional neural networks on graphs - Applications - Main GSP approaches can be categorised into two families: - vertex (spatial) domain designs - frequency (graph spectral) domain designs - Main GSP approaches can be categorised into two families: - vertex (spatial) domain designs - frequency (graph spectral) domain designs important for signal analysis - Main GSP approaches can be categorised into two families: - vertex (spatial) domain designs - frequency (graph spectral) domain designs important for signal analysis Classical Fourier transform provides frequency domain representation of signals - Main GSP approaches can be categorised into two families: - vertex (spatial) domain designs - frequency (graph spectral) domain designs important for signal analysis Classical Fourier transform provides frequency domain representation of signals • What about a notion of frequency for graph signals? $$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$ weighted and undirected graph: $$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$ $$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$ W $$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$ $$D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$$ $$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$ $$D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$$ $$L = D - W \qquad \text{equivalent to W!}$$ $$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$ $D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$ $L = D - W$ equivalent to W! $L_{\operatorname{norm}} = D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$ Why graph Laplacian? #### Why graph Laplacian? - provides an approximation of the Laplace operator $$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$ standard 5-point stencil for approximating $-\nabla^2 f$ #### Why graph Laplacian? - provides an approximation of the Laplace operator $$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$ standard 5-point stencil for approximating $-\nabla^2 f$ - converges to the Laplace-Beltrami operator (given certain conditions) - provides a notion of "frequency" on graphs graph signal $f:\mathcal{V} o\mathbb{R}$ graph signal $f:\mathcal{V} o\mathbb{R}$ $$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$ $$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$ graph signal $f:\mathcal{V} o\mathbb{R}$ $$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & -1 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$ $$\begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$ $$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$ $$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$ a measure of "smoothness" $$f^T L f = 21$$ • L has a complete set of orthonormal eigenvectors: $L = \chi \Lambda \chi^T$ $$L = \begin{bmatrix} 1 & & & & \\ \chi_0 & \cdots & \chi_{N-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & & & 0 \\ & \ddots & & \\ 0 & & \lambda_{N-1} \end{bmatrix} \begin{bmatrix} & & & \chi_0^T & \\ & \ddots & \\ & & & \chi^T & \end{bmatrix}$$ $$\chi \qquad \qquad \Lambda \qquad \qquad \chi^T$$ • Eigenvalues are usually sorted increasingly: $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_{N-1}$ # Graph Fourier transform #### Graph Fourier transform • Eigenvectors associated with smaller eigenvalues have values that vary less rapidly along the edges low frequency high frequency $$L = \chi \Lambda \chi^T$$ $$L = \chi \Lambda \chi^T$$ $\chi_0^T L \chi_0 = \lambda_0 = 0$ $$\chi_{50}^T L \chi_{50} = \lambda_{50}$$ #### graph Fourier transform: $$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} 1 & 1 & 1 \\ \chi_{0} & \cdots & \chi_{N-1} \end{bmatrix} f$$ low frequency high frequency $$L = \chi \Lambda \chi^T$$ $$L = \chi \Lambda \chi^T$$ $\chi_0^T L \chi_0 = \lambda_0 = 0$ $$\chi_{50}^T L \chi_{50} = \lambda_{50}$$ #### graph Fourier transform: $$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} \chi_0 & \cdots & \chi_{N-1} \end{bmatrix}^T \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \cdots & \lambda_{N-1} \\ \text{low frequency} & \text{high frequency} \end{bmatrix}$$ • The Laplacian L admits the following eigendecomposition: $L\chi_\ell=\lambda_\ell\chi_\ell$ • The Laplacian L admits the following eigendecomposition: $L\chi_\ell = \lambda_\ell \chi_\ell$ one-dimensional Laplace operator: $-\nabla^2$ eigenfunctions: $e^{j\omega x}$ Classical FT: $$\hat{f}(\omega) = \int {(e^{j\omega x})^* f(x) dx}$$ $$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$ The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$ one-dimensional Laplace operator: $-\nabla^2$ : graph Laplacian: L eigenfunctions: $e^{j\omega x}$ $$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$ $$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega \qquad \qquad f(i) = \sum_{i=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$ eigenvectors: $\chi_\ell$ $$f:V\to\mathbb{R}^N$$ $$f:V\to\mathbb{R}^N$$ Classical FT: $$\hat{f}(\omega)=\int{(e^{j\omega x})^*f(x)dx}$$ Graph FT: $$\hat{f}(\ell)=\langle\chi_\ell,f\rangle=\sum_{i=1}^N\chi_\ell^*(i)f(i)$$ $$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$ The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$ one-dimensional Laplace operator: $-\nabla^2$ : graph Laplacian: L eigenfunctions: $e^{j\omega x}$ $$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$ $$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$$ eigenvectors: $\chi_\ell$ $$f: V \to \mathbb{R}^N$$ Classical FT: $$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$ Graph FT: $\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}^{*}(i) f(i)$ $$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$ #### Two special cases - (Unordered) Laplacian eigenvalues: $\lambda_\ell = 2 2\cos\left(\frac{2\ell\pi}{N}\right)$ - One possible choice of orthogonal Laplacian eigenvectors: $$\chi_{\ell} = \left[1, \omega^{\ell}, \omega^{2\ell}, \dots, \omega^{(N-1)\ell}\right], \text{ where } \omega = e^{\frac{2\pi j}{N}}$$ #### Two special cases #### Example on a general graph #### Outline - Graph signal processing (GSP): Basic concepts - Graph spectral filtering: Basic tools of GSP - Representation of graph signals - Convolutional neural networks on graphs - Applications # Classical frequency filtering Classical FT: $$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$ $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$ ## Classical frequency filtering Classical FT: $$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$ $f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega$ ## Classical frequency filtering Classical FT: $$\hat{f}(\omega) = \int{(e^{j\omega x})^* f(x) dx} \qquad f(x) = \frac{1}{2\pi} \int{\hat{f}(\omega) e^{j\omega x} d\omega}$$ $$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$ $$\mathsf{GFT:} \quad \widehat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \widehat{f}(\ell) \chi_\ell(i)$$ f $$\mathsf{GFT:} \quad \widehat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \widehat{f}(\ell) \chi_\ell(i)$$ $$\text{GFT: } \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$ $$\text{GFT} \qquad \qquad \hat{f}(\ell) \hat{f}($$ $$\text{GFT: } \hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}^{*}(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$ $$\hat{g}(\lambda_{\ell}) \hat{f}(\ell)$$ $$\hat{$$ $$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$ # Graph transform/dictionary design Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian! # Graph transform/dictionary design Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian! - Important properties can be achieved by properly defining $\hat{g}(L)$ , such as localisation of atoms - Closely related to kernels and regularisation on graphs problem: we observe a noisy graph signal $f=y_0+\eta$ and wish to recover $y_0$ $$y^* = \arg\min_{y} \{ ||y - f||_2^2 + \gamma y^T L y \}$$ problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover $y_0$ data fitting term "smoothness" assumption problem: we observe a noisy graph signal $f=y_0+\eta$ and wish to recover $y_0$ data fitting term "smoothness" assumption problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover $y_0$ data fitting term "smoothness" assumption remove noise by low-pass filtering in graph spectral domain! - noisy image as observed noisy graph signal - regular grid graph (weights inversely proportional to pixel value difference) 29/60 - noisy image as observed noisy graph signal - regular grid graph (weights inversely proportional to pixel value difference) #### Outline - Graph signal processing (GSP): Basic concepts - Graph spectral filtering: Basic tools of GSP - Representation of graph signals - Convolutional neural networks on graphs - Applications ## Classical vs. Graph dictionaries classical signal ## Classical vs. Graph dictionaries classical signal vertex domain GFT atoms (corresponding to discrete frequencies) - like complex exponentials in classical FT, eigenvectors in GFT have global support - like complex exponentials in classical FT, eigenvectors in GFT have global support - can we design localised atoms on graphs? ## Basic operations for graph signals #### basic operations in Euclidean domain - recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items ## Basic operations for graph signals - recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items - we need to define for graph signals the basic operations of convolution, shift, modulation classical convolution $$(f * g)(t) = \int_{-\infty}^{\infty} \underbrace{f(t - \tau)} g(\tau) d\tau$$ classical convolution $$(f * g)(t) = \int_{-\infty}^{\infty} \underbrace{f(t - \tau)}g(\tau)d\tau$$ $$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$ classical convolution $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ $$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$ graph convolution multiplication in graph spectral domain $$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$ #### classical convolution $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ $$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$ #### graph convolution #### multiplication in graph spectral domain $$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$ ### Vertex-domain shift classical shift $$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$ ### Vertex-domain shift original signal classical shift $$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$ graph shift convolution with a "delta" on graph $$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$ $$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$ ### Vertex-domain shift shifted version of the signal to different centring vertex (in green) classical shift $$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$ graph shift #### convolution with a "delta" on graph $$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$ $$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$ ## Modulation classical modulation $$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$ ### Modulation classical modulation $$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$ graph modulation multiply by a graph Laplacian eigenvector $$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$ ### Modulation classical modulation $$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$ graph modulation multiply by a graph Laplacian eigenvector $$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$ With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT) classical windowed Fourier atom $$g_{u,\xi}(t) := (M_{\xi}T_{u}g)(t) = e^{j2\pi\xi t}g(t-u)$$ 39/60 With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT) classical windowed Fourier atom $$g_{u,\xi}(t) := (M_{\xi}T_u g)(t) = e^{j2\pi\xi t}g(t-u)$$ windowed graph Fourier atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT) classical windowed Fourier atom $$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$ windowed graph Fourier atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ With the shift and modulation operators for graph signals we can define a windowed graph Fourier transform (WGFT) classical windowed Fourier atom $$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$ windowed graph Fourier atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ windowed graph Fourier transform $$Sf(i,k) := \langle f, g_{i,k} \rangle$$ 39/60 ## Wavelets on graphs With the shift and scaling operators for graph signals we can define a spectral graph wavelet transform (SGWT) **Fig. 4.** Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)–(f) wavelets, scales 1–4. ## Wavelets on graphs With the shift and scaling operators for graph signals we can define a spectral graph wavelet transform (SGWT) Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J=4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-(f) wavelets scales 1-4 #### **WGFT** atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N \chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ $$\psi_{i,s}(n) := (T_i D_s g)(n)$$ $$= \sum_{\ell=0}^{N-1} \hat{g}(s\lambda_{\ell}) \chi_{\ell}^*(i) \chi_{\ell}(n)$$ #### **WGFT** atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ $$\psi_{i,s}(n) := (T_i D_s g)(n)$$ $$=\sum_{\ell=0}^{N-1}\hat{g}(s\lambda_{\ell})\chi_{\ell}^{*}(i)\chi_{\ell}(n)$$ #### **WGFT** atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ $$\psi_{i,s}(n) := (T_i D_s g)(n)$$ $$=\sum_{\ell=0}^{N-1}\hat{g}(s)\chi_{\ell}(i)\chi_{\ell}(n)$$ #### **WGFT** atom $$g_{i,k}(n) := (M_k T_i g)(n)$$ $$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$ $$\psi_{i,s}(n) := (T_i D_s g)(n)$$ $$=\sum_{\ell=0}^{N-1}\hat{g}(s)\chi_{\ell}^*(i)\chi_{\ell}(n)$$ ### Outline - Graph signal processing (GSP): Basic concepts - Graph spectral filtering: Basic tools of GSP - Representation of graph signals - Convolutional neural networks on graphs - Applications #### classical convolution time domain $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ | 30 | 3 | $2_2$ | 1 | 0 | |----|-------|-------|---|---| | 02 | $0_2$ | $1_0$ | 3 | 1 | | 30 | 1, | 2 | 2 | 3 | | 2 | 0 | 0 | 2 | 2 | | 2 | 0 | 0 | 0 | 1 | | 12.0 | 12.0 | 17.0 | |------|------|------| | 10.0 | 17.0 | 19.0 | | 9.0 | 6.0 | 14.0 | #### classical convolution time domain $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ | 30 | 3 | $2_2$ | 1 | 0 | |----|-------|-------|---|---| | 02 | $0_2$ | $1_0$ | 3 | 1 | | 30 | 1, | 2 | 2 | 3 | | 2 | 0 | 0 | 2 | 2 | | 2 | 0 | 0 | 0 | 1 | | 12.0 | 12.0 | 17.0 | |------|------|------| | 10.0 | 17.0 | 19.0 | | 9.0 | 6.0 | 14.0 | #### classical convolution time domain $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ frequency domain $$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$ | 30 | 3 | $2_2$ | 1 | 0 | |-------|-------|-------|---|---| | $0_2$ | $0_2$ | $1_0$ | 3 | 1 | | 30 | 1, | 2 | 2 | 3 | | 2 | 0 | 0 | 2 | 2 | | 2 | 0 | 0 | 0 | 1 | | 12.0 | 12.0 | 17.0 | |------|------|------| | 10.0 | 17.0 | 19.0 | | 9.0 | 6.0 | 14.0 | #### classical convolution convolution on graphs time domain $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ frequency domain $$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$ graph spectral domain $$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$ #### classical convolution time domain $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ frequency domain $$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$ #### convolution on graphs spatial (node) domain $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ graph spectral domain $$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$ #### classical convolution time domain $$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$ frequency domain $$\widehat{(f * g)}(\omega) = \widehat{f}(\omega) \cdot \widehat{g}(\omega)$$ #### convolution on graphs spatial (node) domain $$f*g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ convolution = filtering graph spectral domain $$\widehat{(f * g)}(\lambda) = ((\chi^T f) \circ \hat{g})(\lambda)$$ #### A parametric filter $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ parametric filter as polynomial of Laplacian $$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1} \qquad \qquad \hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$ ### A parametric filter $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ parametric filter as polynomial of Laplacian $$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$ $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ what do powers of graph Laplacian capture? #### Powers of graph Laplacian #### $L^k$ defines the k-neighborhood Localization: $d_{\mathcal{G}}(v_i, v_j) > K$ implies $(L^K)_{ij} = 0$ (slide by Michaël Deferrard) #### A parametric filter $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ parametric filter as polynomial of Laplacian $$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_{j} \lambda^{j}, \ \theta \in \mathbb{R}^{K+1} \qquad \qquad \hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ ### A parametric filter $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ parametric filter as polynomial of Laplacian $$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta_j \lambda^j, \ \theta \in \mathbb{R}^{K+1} \qquad \qquad \hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$ $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$ - convolution is expressed in the graph spectral domain - localisation within K-hop neighbourhood $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ (localisation within 1-hop neighbourhood) $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_{j} L^{j}$$ (localisation within 1-hop neighbourhood) $$\alpha = \theta_0 = -\theta_1$$ $$= \alpha (I + D^{-\frac{1}{2}} W D^{-\frac{1}{2}})$$ $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\theta}(L) = \sum_{j=0}^{K} \theta_j L^j$$ (localisation within 1-hop neighbourhood) $$\alpha = \theta_0 = -\theta_1$$ $$= \alpha (I + D^{-\frac{1}{2}} W D^{-\frac{1}{2}})$$ renormalisation $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$ $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$ $$y_i = \alpha f_i + \alpha \frac{1}{\sqrt{d_i}} \sum_{j:(i,j)\in\mathcal{E}} w_{ij} \frac{1}{\sqrt{d_j}} f_j$$ $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$ $$y_i = \alpha f_i + \alpha \frac{1}{\sqrt{d_i}} \sum_{j:(i,j)\in\mathcal{E}} w_{ij} \frac{1}{\sqrt{d_j}} f_j$$ unitary edge weights $$y_i = \alpha f_i + \frac{1}{4} \alpha \sum_{j:(i,j)\in\mathcal{E}} f_j$$ $$f * g = \chi \hat{g}(\Lambda) \chi^T f = \hat{g}(L) f$$ simplified parametric filter $$\hat{g}_{\alpha}(L) = \alpha(I + D^{-\frac{1}{2}}WD^{-\frac{1}{2}})$$ $$y_i = \alpha f_i + \alpha \frac{1}{\sqrt{d_i}} \sum_{j:(i,j)\in\mathcal{E}} w_{ij} \frac{1}{\sqrt{d_j}} f_j$$ unitary edge weights $$y_i = \alpha f_i + \frac{1}{4} \alpha \sum_{j:(i,j)\in\mathcal{E}} f_j$$ | 30 | 3, | 22 | 1 | 0 | |-------|-------|---------|---|---| | $0_2$ | $0_2$ | $1_{0}$ | 3 | 1 | | 30 | 1, | 2 | 2 | 3 | | 2 | 0 | 0 | 2 | 2 | | 2 | 0 | 0 | 0 | 1 | | 12.0 | 12.0 | 17.0 | |------|------|------| | 10.0 | 17.0 | 19.0 | | 9.0 | 6.0 | 14.0 | $$\hat{g}_{\theta^{(k+1)}}(L)\Big(\mathrm{ReLU}(\hat{g}_{\theta^{(k)}}(L)f)\Big)$$ $$\hat{g}_{\theta^{(k+1)}}(L)\Big(\mathrm{ReLU}(\hat{g}_{\theta^{(k)}}(L)f)\Big)$$ 52/60 Input #### Outline - Graph signal processing (GSP): Basic concepts - Graph spectral filtering: Basic tools of GSP - Representation of graph signals - Convolutional neural networks on graphs - Applications ## Application I: 3D point cloud analysis ## Application II: Community detection spectral graph wavelets at different scales: multi-scale community detection: 55/60 #### Application III: Neuroscience #### Application IV: Drug discovery #### Application V: Fake news detection The spread of true and false news online Twitter buys Al startup founded by Imperial academic to tackle fake news # Application VI: Traffic prediction #### References David I Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre Vandergheynst ### The Emerging Field of Signal Processing on Graphs Extending high-dimensional data analysis to networks and other irregular domains Applied and Computational Harmonic Analysis David I Shuman \*\*\*, Benjamin Ricaud b, Pierre Vandergheynst b,1 #### A Comprehensive Survey on Graph Neural Networks Zonghan Wu<sup>©</sup>, Shirui Pan<sup>©</sup>, Member, IEEE, Fengwen Chen, Guodong Long<sup>©</sup>, Chengqi Zhang<sup>©</sup>, Senior Member, IEEE, and Philip S. Yu, Life Fellow, IEEE #### **Graph Signal Processing:** Overview, Challenges, and Applications techniques (transforms, sampling, and others) that are used for conventional signals. By Antonio Ortega $^{0}$ , Fellow IEEE, Pascal Frostard, Fellow IEEE, Jelena Kovačević, Fellow IEEE, José M. F. Moura $^{0}$ , Fellow IEEE, and Pierre Vandergheynst GRAPH SIGNAL PROCE #### **Graph Signal Processing for Machine Learning**