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Going beyond graph structure

* Very often data comes with additional features
- Not only graphs, but attributes on the nodes of the graph
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Weather networks Social networks

Transportation networks

Biological networks

Electric grid networks
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Graph structured data

e Data live on a regular domain

Amplitude
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Domain: line

Domain: grid

 Weighted graphs capture the geometric structure of complex, i.e.,

iIrregular, domains
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Processing graph structured data

RN

- R
<

How can we extract useful information by taking into account both
structure (edges) and data (values/features on vertices)?
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In this lecture...

e How can we infer useful information from graph structured data”
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Outline

* Traditional ML on graphs

Graph-based feature engineering

 Recent ML on graphs

Feature learning on graphs
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Traditional ML pipeline on graphs

 How can we learn useful information from graph structured data?
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Traditional ML pipeline on graphs

 Feature engineering is a way of extracting meaningful information

from graphs

Feature engineering

Data
(graphs)

—>

Graph-
based
features

4

Test data

4

Performance

—>

Train data

4

ML model
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Traditional ML pipeline: Input
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* Input:
e Graph: 6 =(V,&E, W)
e Graph with attributes: G, X
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Traditional ML pipeline: Features

Graph-
based
features

O(X,0)

Should reveal important information regarding the

graph structure

Key to achieving good model performance

Features can be defined at different scales
- At a node, edge, sets of nodes, entire graph level

The choice of the features depends on
- the end task
- prior knowledge on the data

cPL
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Traditional ML pipeline: Learning tasks

ML model

f(o(X,G)) mmp

—>

e.g., node/graph classification,
signal inpainting/denoising

Actionable
knowledge

Y

 The features are given as input to an
ML model

e Examples: logistic regression, SVM,
neural networks, etc.

e Training phase:

e Given a set of graph-based features,
train a model f that predicts the
correct Y

e Testing phase:

e Given a new node/link/graph,
compute its features, and give them
as an input to [ to make a prediction
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Extracting information at different
levels

Node Ffeatures

- =
- —

Edge features =
A 4

G;raph features
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Node level features

* Typically useful for node classification/clustering tasks

* Aim at characterizing the structure and position of a node in the
network
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Common node level features

Dg =3

* Node degree

* Node centrality /

Color: Betweenness

e Clustering coefficient

ccccccc
neighborhood neighborhood

e Graphlets
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From node level to graph level task

Node feotures
]

—

TTIT

Edge_ features

G;r‘axph feotures

How can we design features that characterize the structure of the
entire graph”?

I
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lllustrative example: Graph
classification

e Common assumption: Graphs with similar structure have similar label

Training data Test data

& e O
Class 1 w
Class -1
/ \ O—O—Q—I Class ?
Class 1 -
Class 1 %

; ) Class ?

Class -1 Class -1

What is a good similarity metric between graphs?
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Graph level features

 Bag of nodes
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Limitations of hand-crafted graph
features

 Hand-engineered features are defined a priori: no adaptation to
the data

e Designing graph features can very often can be a time consuming
and expensive process

* Not easy to incorporate additional features on the nodes

* More flexibility can be achieved with an end-to-end learning
pipeline

: : Dr Dorina Thanou
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Graph representation learning

* Intuition: Optimize the feature extraction part by adapting it to
the specific instances of the graphs/data

Learned
Actionable
- h - ML del #
fcg;taupres modae knowledge

e.g., node/graph classification,
signal inpainting/denoising

Feature Learning

G = oG) = f($(G) = Y

: : Dr Dorina Thanou
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Graph representation learning

* Intuition: Optimize the feature extraction part by adapting it to
the specific instances of the graphs/data

Learned components

Learned

- graph

features

—~

ML model

Feature Learning

G = ¢(9)

f(o(9))

# Actionable

knowledge

e.g., node/graph classification,
signal inpainting/denoising

- Y
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Graph representation learning: basic
pipeline

* Feature learning is a way of extracting data-adaptive graph representations

Data
(graphs)

4

Test data

—>

Feature learning

Train data

—>

Graph-based feature
learning

4

Learned
model

¥

Performance
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Learning features on graphs

e | earned features convert the graph data in a (low dimensional)
latent space (i.e., embedding space) where hidden/discriminative
information about data is revealed

3 3 3 3
1 2 e, ©23
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5 | 0.0 15 30 0.0 1.5 3.0 0.0 1.5 30 0.0 1.5 3.0
Node embedding Edge embedding Subgraph embedding Graph embedding
Original space Embedding space

How can we learn the embedding space?
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Supervised graph representation
learning

e |earn low-dimensional embeddings for a specific downstream
task, e.g., node or graph classification

Learned

- graph - ML model - ML task

features

e.g., nhode/graph classification,
signal inpainting/denoising
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Supervised graph representation
learning

e |earn low-dimensional embeddings for a specific downstream
task, e.g., node or graph classification

Joint learning

~ )
Learned
- graph - ML model - ML task
features
\_ _J

e.g., nhode/graph classification,
signal inpainting/denoising
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Unsupervised graph representation
learning

 Representations are not optimized for a specific downstream task

They are optimized with respect to some notion of “closeness” in the graph
The notion of “closeness” defines the design of the embedding algorithm

e Potentially used for many downstream inference tasks

Learned embedding vector Example of tasks

1. Node/graph classification

2. Node/graph clustering
# 3. Link prediction

4. Visualization

5. ...

E P F L Dr Dorina Thanou 23



Embeddings on graphs: Definition

e Given an input graph G = (V, &, W), and a predefined
dimensionality of the embedding d << |V|, the goal is to convert G
(or a subgraph, or a node) into a d—dimensional space in which
graph properties are preserved

w Learning algorithm

g Embedding vector/Representations

* Graph properties can be quantified using proximity measures on
the graph (e.g., K—hop neighborhood) ”'

E P F L Dr Dorina Thanou o4



lllustrative example: Node embeddings

V1 76

Original network ¢ Embedding space Y

What is the similarity in the graph that should be preserved in the
embedding space?

simg(v1,v2) ~ simy (Y7, Y5)

: : Dr Dorina Thanou
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Example 1: Laplacian Eigenmaps

* Intuition: Preserve pairwise node similarities derived from the
adjacency/weight matrix

simg(vi,v;) = Wi;

 Measure similarity in the embedding space using the mean
square error

simy (Y3, Y;) = ||Y: = ;|3

e Impose larger penalty if two nodes with larger pairwise similarity
are embedded far apart

[(stmg(vs,vj), simy (Y, Y;)) = simg(vi,v;) - simy (Y, Y;)
= Wy 1¥i - Vi

: : Dr Dorina Thanou
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Laplacian Eigenmaps - reminder

 Compute embeddings that minimize the expected square distance
between connected nodes

. 2
Centered embeddings YeRNXK E Wz’j Hifz — Y} ”
| (2,7)€E

Uncorrelated

embedding coordinates [} Graph smoothness

min tr(YTLY)
YERN XK.y T1=0;YTY =1

|l  Lagrangian

min tr(Y'LY — (Y'Y — Ig)D)
YERNXK.YyT1=(

l} Gradient

LY =YD = |u; = (x2(¢), ..., xx+1(2))

Laplacian Eigenmaps: K first non-trivial eigenvectors of the Laplacian!

[Belkin et al, 2003, Laplacian Eigenmaps for Dimensionality Reduction and Data Representation, Neural Comp.]
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Example 2: DeepWalk

* Intuition: Nodes have similar embeddings if they tend to cooccur
on short random walks over the graph

simg (v, v;) = p(v;|v;)
 Objective: Given node v; learn a mapping ¢ : v; — R%; &(v;) = Y;

such that the feature representation Y; are predictive of the nodes
in its random walk neighborhood N,,,| g

m(?x Z log simy (Y;,Y;) = m(?x Z log P(Y; for vj € Ryjprw|Ys)

v; €V vi €V Maximum likelihood
 Measure the similarity in the embedding space in a probabilistic
manner eV Y
My (Y”’ YJ) — eY,L.TYk Softmax
keV

E P F L Dr Dorina Thanou 8



DeepWalk - Algorithm

* Run fixed length random walks starting from each node of the
graph

 For each node v; define its random walk neighborhood N, |rw

* Find embeddings to maximize the likelihood of random walk co-

OCccurrences
YLY;
ZOSS(Uiavj)ENTTain — Z Z _lag(z QYiTYk )
V; ENTrain V4 ER’U“RW UV ENTT‘ain

Predicted probability of two nodes
co-occurring in a random walk

* Embeddings are optimized using stochastic gradient descent

: : Dr Dorina Thanou
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DeepWalk - Schematic overview

Original graph Sampled

random walks

gV, ¢)
vj walk length (t)
N
- ~
O > >

O—>(—0O-»0 embed

generate

._»O_b RIS

Random walk: R,, = RW (v;,G,T)

Encoder
(i.e., SkipGram model)

Input Output
layer /

ﬁ

SkipGram( ¢, Ry, w)

A
° O
O
O%O @)
e ©0°
@)
© 0§
o)
latent vector space
output

¢(v;) =Y; € R

[Perozzi et al. 2014. DeepWalk: Online Learning of Social Representations. KDD]
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Application of node embeddings:
Node clustering/Community detection

* The karate-club example

- Compute node embeddings
- Apply any clustering algorithm (e.g., K-means) on the learned embeddings

™ - ——0,

& o L _

SR - Node - Clustering o
. embeddings algorithm . ®

e.g., K-means

o. \'
s

: : Dr Dorina Thanou
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Summary so far

 Feature learning on graphs is a data-driven (and ofter more
flexible) alternative to designing hand-crafted features

* Unsupervised learning on graphs provides representations i.e.,
embeddings, that are not adapted to specific tasks

e Different assumptions lead to different ways of preserving
information from the original graph in the embedding space (e.qg.,
weight matrix, random walks...)

 The choice of what structure information to preserve depends on
the application

E P F L Dr Dorina Thanou
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Limitations of the (discussed) node
embedding algorithms

e Usually transductive not inductive
- Learned embedding models often do not generalize to new nodes

* Do not incorporate node attributes
* |ndependent of downstream tasks

* No parameter sharing:
- Every node has its own unique embedding

E P F L Dr Dorina Thanou 33



Graph neural networks (GNNs)

e A different way of obtaining ‘deeper’ embeddings inspired by deep
learning

* They generalize to graphs with node attributes

GNN-based - Actionable
- embeddings - WL model knowledge

e.g., node/graph classification,
signal inpainting/denoising
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Graph neural networks (GNNs)

e A different way of obtaining ‘deeper’ embeddings inspired by deep
learning

* They generalize to graphs with node attributes

Learned components

- )
GNN-based - Actionable
- embeddings - WL model knowledge

\— _J

e.g., node/graph classification,
signal inpainting/denoising

E P F L Dr Dorina Thanou 34



GNNs: A growing trend

ICLR Keyword Growth 2018-2020

graph neural network
adversarial robustness
robustness
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Computing embeddings from graphs
with node attributes

e A naive approach:

- Embed graph and node attributes into a Euclidean space

- Feed them into a deep neural net (e.g., MLP)
. . i & fanas hidden layer

. npu Y
o a ~
& -
c?)\s K > I ' /\§c:_fz§5\~ m
2 o e P 0 @
L—0a \\. / KA al i Qe _{2393 : “i"ﬁ
| N / = . . J(\‘?
S S | N @ iee
C’) / \ (?) Q;‘a. A S 'E‘;_O\;-Z; %
' | o OBy
n B s 2 Y
- o 9]
Graph with node . )
:ttributes Node embedding Node attributes Predicted labels

e |ssues with that:
- Computationally expensive
- Not applicable to graphs of different sizes
- Not invariant to node ordering: if we reorder nodes the representations will be different

Can we do better? Yes!

: : Dr Dorina Thanou
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Good priors are key to learning

e We build intuition from classical deep learning algorithms
 CNNSs exploit structure in the images

Translation invariance

Composability
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CNN architecture: lllustrative example

 CNNs hierarchically aggregate (through convolution) and pool
(i.e., subsample) images along pixel-grid

Feature maps

https://en.wikipedia.org/wiki/File:Typical _cnn.png

E P F I Dr Dorina Thanou 38
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How can we extend CNNs on graphs?

* Desirable properties

- Convolution: how to achieve translation invariance

- Localization: what is the notion of locality

- Graph pooling: how to downsample on graphs

- Efficiency: how to keep the computational complexity low

- Generalization: how to build models that generalize to unseen graphs

: : Dr Dorina Thanou
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Towards a convolution on graphs:
A spectral viewpoint

e Key intuition: Convolution in the vertex domain is equivalent to multiplication in
the spectral domain

e Recall that: The graph Fourier transform of a graph signal  is defined usmg the
eigenvectors and the eigenvalues of the Laplacian matrix (L = XAX )

* We define convolution on graphs starting from the muiltiplication in the GFT
domain

Classical convolution Convolution on graphs

zxg=xg(AN)x ©=g(L)x

@rg)®) = [ alt-rgryar

FT @ ﬁ IGFT
A

(z % g)(w) = 2(w) - §(w) (zxg)(A) = ((xTz) 0 g)(A) ©F

How can we interpret graph convolution?

E P F L Dr Dorina Thanou 40



Reminder: Graph spectral filtering

e |tis defined in direct analogy with classical filtering in the
frequency domain

Filtering a graph signal = with a spectral filter §(-) is performed in the graph
Fourier domain

GFT IGFT

- X' @ g(A)x" XG(A)X"
‘ Low-pass £ 4 ‘ High-pé—z || L@E

Convolution on graphs is equivalent to filtering!
zxg=xg(A)x" z=g(L)x

Shuman et al., “The emerging field of signal processing on graphs”, IEEE Signal Process. Mag., 2013
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: Jo(\) = Z 0; N, § c RET! :\’> go(L) = Zﬁj[ﬂ
=0

7=0
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K .
Example: Jg(A) = Zﬁj)\j, p e RET :\’> go(L) = Zﬁj[ﬂ

7=0

. LK defines the K -hop neighborhood: dg (v, vj) > K — (L*);; =0

Lo L1 L2 L3 L4
0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20 0 5 10 15 20
0 -il I I I I 0 f:l il I I ! 0 EEE EER =l l I
54 s, 54, =, 5 ey mmeitze s
10 - 104 ", Tm e, 10 o, “Tum "Cwamum s
15 i I.- 15 i I.. Il==. l.. 15 - | | [ ] | | 1 1] | | | L
20 - 20 - "u "um J 20 -
|||||||||||| -
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: §o(\) = Z 0; N, § c RET! :\’> go(L) = Zﬁj[ﬂ
=0

7=0

. LK defines the K -hop neighborhood: dg (v, vj) > K — (L*);; =0
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Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: Jo(\) = Z 0; N, § c RET! :\’> go(L) = Zﬁj[ﬂ
=0

7=0

. LK defines the K -hop neighborhood: dg (v, vj) > K — (L*);; =0

o—

E P F L Dr Dorina Thanou 42



Is the graph convolution localized?

_ s T _ -
* In general the answer is no! rxg=xgA)x @ =g(L)
 However, if we consider polynomial filters, the answer is yes

K K |
Example: Jg(A\) = Zﬁj)\j, h e RET :"> go(L) = ZQjLJ
j=0

7=0

- L defines the K -hop neighborhood: dc(vi,v;) > K — (L"*);; =0
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A spatial interpretation of graph

convolution

* Localization of the Laplacian polynomials leads to a spatial interpretation

K=1

on the graph
K K
X * (g = Q(L)x — Z QkLkib — Z szk
k=0 k=0

e Note that:

20 — I
z1 = Lzg

29 = LZl — L2ZO

ZK:LZK—lz"':LKZO

e Graph convolution can be computed recursively by exchanging
information in a local neighborhood (i.e., message passing)

» The kernel §(-) does not depend on the order of the nodes: permutation

Invariant!

cPL
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The receptive field of graph convolution

* Node embeddings are based on local neighborhood propagation

 Due to the irregular nature of the graph, there is no fixed size
neighbourhood

* The degree Kof the polynomial defines the receptive field of each

node
,‘. - B ..
= = ..V. ‘.
s -
F k=) - .“ -
s.. - ﬂ"w - ..
" -~ ‘ :.
‘__f _.Q.V,.' ;.
T i
.’. ® - - o.. -
~. .'._ ;? . ..
= ’_‘
Receptive field on an image Receptive field on a graph
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The basic GNN: a spectral viewpoint

* Typical GNN architectures consist of a set of graph convolutional
layers, each of which is followed by elementwise nonlinearity

§(L)h©® g1 (L)A
. Nonlinearity . Nonlinearity Predictive
- 0 (0) 1 1 - #
M L) ‘L(e.g., ReLU)J - g5(L)h {(e.g., ReLU)J - { task J
RO = x g, (LAY g, (L)Y

* By learning the parameters of the each convolutional filter, we
learn how to propagate information on a graph to compute node
embeddings

: : Dr Dorina Thanou
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Spectral approaches in one slide

e Convolution is defined in the graph Fourier domain
rxg g =xg(0)x" x

* Spectral GCNN: g(A) =260 :,> zxg=x0x"x

K K
e ChebNet: g(A) = Z 0; 15 () ;’> Tk g = Z 0, 1;(L)x
k=0 k=0

« GCN: =1 > rxg= (00— 0D V2WD )z

 Parameters 0 are learned through the network

E P F L Dr Dorina Thanou 46



Graph Convolutional Networks (GCN)

 Main intuition: Design a scalable architecture with first-order
approximation of spectral graph convolution

gxx~box+0,(L—In)x =0z — 91D_1/2Wp_1/233

@ 0 =0, = —0,

e A convolutional layer is defined as:

Rl O(D_l/QWD_1/2hl9l+1)

Learned parameters

E P F L Dr Dorina Thanou
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GCN architecture

* Very often, it consists of two GCN layers

Hidden layer Hidden layer
- N s
] ]
o s}
e S |
® ¢ ®
o o
Input ® o ® e Output
- » o
< > ° @
° | G— RelLU | g RelLU
® ® o ~ g
o« ® i IS ¢ " e * ‘_’""’ ) 4
@ o
‘ ¢ ¢ o(-) ¢ o) ¢ ¢
AN J \_ J
h® =X . °
o o
® e ¢ o
« * o« °
o o
e % ® %
\ J . J

B+l — U(f)—l/zwf)—l/zh191+1)

[Kipf et al., Semi-Supervised Classification with Graph Convolutional Networks, ICLR, 2017]

Dr Dorina Thanou
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Each layer increases the receptive field
of each node

 Each layer increases the receptive field by K hops

e Example: K =1

Layer 0 Layer 1 Layer 2

I I— I Dr Dorina Thanou
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Towards a graph convolution:
A spatial viewpoint

* Key intuition: Generalize the notion of convolution from images
(grid graph) to networks (irregular graph)

 Example of a single CNN layer with 3x3 filter

- Fixed neighbourhood
6
0y + o0

- Canonical order across neighbors

—>
6y
® G
8
Animation from V. Dumoulin zz.(l+1) = Z le)zz(l)
1=0

Can we exploit similar structure for graph data?

I
u
"1
—
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Spatial graph convolution

 Main issue: We cannot have variable number of weights; it
requires assuming an order on the nodes
LD =3 9<1> (l)

e Solution: Impose same filter weights for all nodes JEN;

(l+1) Z o), (l)

FjEN;

.

AT =902 1 N7 g0
JEN;

Update embeddings by exchanging information with 1-hop neighbors
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The basic GNN: a spatial viewpoint

* Consists of a set of graph convolutional layers, each of which is
followed by elementwise nonlinearity, i.e., A" = g(2)

Wh(O)ggo Wh(l)egl
0) 5(0) Nonlinearity 1) o(1) Nonlinearity Predictive
M‘ Wh®, -L(e.g., ReLU)J m) Who, -{(e.g., ReLU) |"""==P| MLP | mm) | Tk
L0 — x WO SRS

e Each layer increases the receptive field by 1-hop neighbors
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Message Passing Neural Network
(MPNN)

 Main intuition: Each node exchange messages with its
neighbors and update its representations based on these

mesSages

* The message passing scheme runs for T time steps and updates
the representation of each vertex based on its previous
representation and the representation of its neighbors

l—|—1 2 : N/
@hz7 h‘j? e’L]

FjEN;

i LU m )
Learned differentiable functions!

[Gilmer et al, Neural Message Passing for Quantum Chemistry, ICML, 2017]
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MPNN - Example

* At each iteration, the embeddings are updated as follows:

it =04nY + 6Lnk + 6L hk

Rt = 6L R + 6L RL + 0L RL + 0L R
At = oLnk + 0L nt + 6LhL + 6t
At =6 R, + 0 R + 0L nh + 0l ht
hit! = 0L Rt + 0L nl, + 0L he

hitt = @ hL + 6L hl

* The output of the message passing is:

lma,:n lmaac lma,:n lmax lma,:zz lmam
{hl ) h2 y h3 ) h4 Y h5 y h6 }
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Comparison between spatial and
spectral design

e Spectral convolution: Generalizes the notion of convolution by
following a frequency viewpoint

e Spatial convolution: Generalizes the notion of convolution by
following a spatial viewpoint

e Strong links exist between both; The practical difference usually
relies on the receptive field

- Spectral approaches: Every layer can ‘reach’ K-hops neighbors
- Spatial approaches: Each layer can ‘reach’ 1-hops neighbors
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A summary of the GNN landscape

 Convolutional GNNs can be generalised as:

h; = Qb(Xi,jE@Niw(Xj))

* Message passing GNNs:
hi = o( X, X, X
O(Xi, & V(Xi, X;)
e Attentional GNNs:

hi = ¢(Xi, @ Xy, X;5) (X))

JEN; Functions to be learned!

* Depending on how these functions are instantiated, different
architectures are obtained

[Slide inspired from P. Veli¢kovic]
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How to use GNNs?

 GNNs typically provide embeddings at a node level
 These embeddings can be used for learning a downstream task

Node
classification

7 N

[ yi = f(hs)
-
- Graph
= ]

classification

\ yg = J (,?th’)
1
g, X Gg,H
Link prediction
GNN-based
embeddings

Ui,j = f(hi, hj, Wij)
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Neuroscience: learn to compare brain
networks

Network input

.
labelled graph |

[Ktena et al., Metric learning with spectral graph convolutions on brain connectivity networks, Neurolmage, 2018]
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Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces

Approach, systematic
Protein molecular surface Interaction fingerprint extraction of patches

Hydrophobic
Electron donor
Pocket
Knob

Positive charge

» Patch center points
== Patch radius

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]
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Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular

surfaces
Geometric features N Chemical features
e d > | ~
J ‘ 4 K2 5 ' -
> , - :
— ' , l'
R oL e 49
Shape Distance-dependent Hydropathy Continuum Free electrons/
index curvature 1 electrostatics protons

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]

: : Dr Dorina Thanou
e E 59




Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces

Polar . _ |
7~ coordinates T\ Ve MaSIF-geometric deep learning N N
{ | N filters ( N

%

”@ﬂ’

Angular coordinates| __,

aé

=
65

K rotations

N

Map features <%
to learned )
soft grid Convolutional layers Fmgerpnnt Appll_catlon-
_Radial coordinates | L descriptor | specific layers VY
. AN

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]
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Protein-protein interactions

* Predicting interactions between proteins and other biomolecules
solely based on structure remains a challenge in biology

e Exploit GNNs to learn interaction fingerprints in protein molecular
surfaces

Applications
/ . o Y \
ADP -~ QR -
CoA s “‘ - NN - |
FAD — | ) !
Heme | o ’ " ’
NAD ’ 7 L B B
NADP Interface (7 RN By
SAM Noninterface ' Eod
Pocket classification Interface site prediction Ultra-fast PPI search
MaSIF-ligand MaSIF-site MaSIF-search W

[Gainza et al, Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning, Nature methods, 2019]
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Medical imaging

e Digital pathology: Graph based representations provide a flexible
tool for modelling complex dependencies at different levels of
hierarchy (e.g., cells, tissues)

In Tissue detection | Tissue graph \ Tissue GNN Embedding

put image
"Pﬂ’"_{'y r-lv T —_—
»
) L
v

; Y
, # —> 1' )
& PN > K
o - - I:I
TR o i Mo I o C1C2C3 C4
. Stain normalization ) | Nuclei detection ) Cell graph )\ Cell GNN Prediction

Preprocessing Entity detection Graph construction Hierarchical GNN Classification

[Pati et al, “Hierarchical graph representation in digital pathology,” MEDIA, 2022]

[Li et al, Representation learning for networks in biology and medicine: Advancements, challenges, and opportunities, arXiv, 2021]
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Spherical imaging

» Spherical data has specific spatial and statistical properties that cannot
be captured by regular CNN models

-0.00025 0.00025

Cosmic microwave
background temperature

Brain activity (MEG) Omnidirectional images

« Sphere is modelled as a graph and classical operation (convolution,
translation, pooling...) are performed on the graph

[Perraudin et al., “DeepSphere”, Astronomy and Computing, 2019]
[Bidgoli et al, OSLO: On-the-Sphere Learning for Omnidirectional images and its application to 360-degree image compression, arXiv, 2021]
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Point cloud semantic segmentation

* Graph attention convolution are successful in capturing specific
shapes that adapt to the structure of an object

— EdgeConv —

point cloud A- O’{J*_ d.*—

segmentation
output

multi-layer perceptron)

[Wang et al., Graph Attention Convolution for Point Cloud Semantic Segmentation, CVPR, 2019]

=PFL
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Point clouds semantic segmentation

Ground Truth PlainGCN-28 ResGCN-28 DenseGCN-28

Floor D | Board @I

[Li et al., DeepGCNs: Can GCNs Go as Deep as CNNs?, ICCV 2019]
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Recommender systems

= click
- - -» collect

Gender: male
Age: 23
Location: Beijing

Price: $1000
Brand: Lenovo

Gender: female

Age: 26 Price: $800
Location: Bangalore Brand:Apple
Gender: male oy
. rice:
A.ge. =0 Brand: Nike
Location: Boston
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Recommender systems: Aligraph

 The system is currently deployed at Alibaba to support product
recommendation and personalized search at Alibaba’s E-
Commerce platform

, Algorithm

e e \ D

|

System

Important Storage of

[Zhu et al., AliGraph: A Comprehensive Graph Neural Network Platform, 2019]
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Self driving cars

 GNNs provide probabilistic estimates of future trajectories

- A CNN detects objects
- A GNN captures interactions between objects and predicts behaviors

LiDAR point cloud

o e g . . Spatially-Aware

. G Fused features and c:bject detections  RRol pooled features Graph Neural Marginal distribution
i l,t _ \‘ y = Network over future trajectories

3 o& . s >

- - ‘ . 2
HD MOQ - Yo - . i - : - |l » >
> . o ) ,! - .n‘ »
= \\ - &

[Casas et al, Spatially aware graph neural networks for relational behaviour forecasting for sensor data, ICRA, 2020]
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Molecular graph generation

Reel Worklife Travel

* Recent advances in antibiotic discovery ... g ——

Home | Coronavirus | Climate | Video | World | UK | Business | Tech | Science | Stories | Entertainment & Arts

Chemcal space

Health | Coronavirus

Drected mesaage Ambbic predicions
pasang neural network {upper it 108 #)
, = Do we ask too , - O
. } much of our planef? —
2~
g /

Scientists discover powerful
antibiotic using Al

®© 21 February 2020

) "I 9 a‘
[ B a
i A

N2
2 N | Training set
(10* molecules)
A Bl :
~ v
f LAl \ Deoop learning
L W 42
255000 l\ {
» .
! 4 \ Mode! valdaton
\ (T Y2 ' '
a ’ y
* bl ~ L Now q Searchjobs @ Signin O, Se|
- e : Sl - y > | Achcsics Support the Guardian
LR J .."l:l(l’lil | 4 5 Available for everyone, funded by readers
;
News Opinion Sport Culture Lifestyle More v
Dfuﬂ RODU'DOOII’\Q Hw ZlNC1 5 mwc Education Schools Teachers Universities Students
HALICIN
” N. = & O Antibiotics © This article is more than 1year old
g M; 0" Powerful antibiotic discovered using
O € ) o S Fagidly hactericidal machine learning for first time
N =3 J)—_,\: " yl..y = Jn Y ‘\‘, [ Broad-spectum g
(’J S <N ’lr -'." ] \\4 ~"'1’ Team at MIT says halicin kills some of the world's most dangerous
‘ O oM Ny strains
H.N :' ..‘”'5;4. 4 tans :cleScienceeditor
Bacterial cell death d f/ i o thu20feb 2
ity S Low MKC DOC
p— N N N Hrcad-spechrum
Acnsbobacter beumsnny [ o 3 B e
Clastrdiochs Afcie Y ) ol ' l >
= ) L

[Simonovsky et al, 2017, De Cao et al 2018, Stokes et al 2020]
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Traffic prediction

e As the road network is naturally modelled by a graph of road
segments and intersections, ETA prediction can be improved with
graph representation learning

Google Maps ETA Improvements Around the World

Denver Chicago Copenhagen sangkok
29% 27% 16% L2 10/:
Londan
‘26' 16%
%
New Yor
. .. 21% i Osoka
San Joze —e M . Washington, DC % . o
22% 1 . onenge | 29% ey 37/0
3 40/ e— Taichung City
° o
22% 20%  opapore
31%
Sao Paulo Aza;:/:
23%
(o)
43%

[Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, 2021]
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Traffic prediction

e As the road network is naturally modelled by a graph of road
segments and intersections, ETA prediction can be improved with
graph representation learning

4' | .. =y ; L
R Predictions
Anonymlsed ; Supersegments ; Graph neural : Google Maps

travel data Analysed Training network API
data

/N

%Surfaced

A\

Google.Maps Candidate Google Maps
routing user routes SBE
system A-B

[Derrow-Pinion et al., ETA Prediction with Graph Neural Networks in Google Maps, 2021]
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Drug repurposing for COVID-19

 Deep GNN approaches have been used to derive the candidate
drug’s representation based on the biological interactions

a SARS-CoV-2-related interactions b SARS-CoV-2 Knowledge graph ¢ Knowledge graph representation
g @ SARS-Cov-2bat @ Drug SA?S(:';C;\?/Z Host genes H (322) L Varational graph autoencoder
aits C (27) S
35| draome @t - 985 LG0s
-;. 3 I A Pathways G (609) E . o
<} SARS-CoV-2 and host gene interaction d L:,‘ :
c A-A A
§ S ® A a2 Targets T ® (] —> @ ®
~ 8 A A A AW o g
>' a Pathways Drug-target
‘3 x A A ® v
= ® o 00 i s [
& g- Gene-phenotypes Drug-phenotypes - e0 00 ¢ * : - ; ‘E‘
g 0 A > . &£ 4 & Reconstruct
Phenotypes Drugs D (3,635) < the edges
P(1.285)
d Drug ranking e External validations f Validated drug ranking g Drug combination search
c Drug Clinical triais? Gene set enrichment score (GSEA) SARS-CoV-2-
0 A Ae associated genes
= (& True *® . .
= ‘ £ - g Drug A _Drug B's
R Cee) alse A A EHR hmg ?ﬂqel
= Trus ) invitro treatment Clinical rge
S| a -iro drug scresning efficacy Rank  Drug  GSEA efficacy effect trials '
v | ‘om0 “? . 20 Azith =
270 . * + + il
5 1o rank v (o2 + & > §i—— e Complementary Exposure pattern
- Rank Drug - £ — 44 Alorvastatin . + .
B 1 ] Vi e g 75 Acetaminophe
% 1 Toicoplanin Large-scale electronic haallh records — - - - Rank Drug A Drug B
s o - 189 Asphin = = . i 1 Eloposide  Sirolimus
< 2 Mefloquine m 13 Melatonin * + a +
g 2 Mefloquine  Sirolimus
o
(=]

-
B Toremifene — 1 3 Losartan Ribavirin

[Hsieh et al, Drug repurposing for COVID-19 using graph neural network and harmonizing multiple evidence, Nature Sc. Rep., 2021]
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Learning physical simulations

* Mesh-based simulations are central to modeling complex physical
systems

* High-dimensional scientific simulations are very expensive

e GNNSs have been used to learn mesh-based simulations and
predict the dynamics of physical systems

(a) Xtt) X~¢K

Learned simulator, sy

_
d

0

ENCODER 1 PROCESSOR aNM DECODER

® = (T4
X — G° G! -e. GM! H—cM Y
(c) Construct graph W0 (d) Pass messages (¢) Extract dynamics info
J
- e() : \teuy \tef_n_-H b
(- ® — i,J < ® i,J . [ ® i,J ® — [ ®
¢ ¢ X (™ V? ¢ v o6 V:n+1 Vi“ ¢ © yi
. ¢ ¢ < > et « > i . «
[ o C [

[Sanchez-Gonzales et al, Learning to Simulate Complex Physics with Graph Networks, ICML 2020]
[Pfaff et al, Learning mesh-based simulation with Graph Networks, ICML 2021]
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Useful resources

e Toolboxes

- https://github.com/rusty1s/pytorch _geometric
- https://github.com/dmlc/dgl

- https://github.com/deepmind/jraph

- https://github.com/tensorflow/gnn

 Datasets
All GNN libraries contain different datasets
- https://chrsmrrs.github.io/datasets/
- https://chrsmrrs.github.io/datasets/
- https://ogb.stanford.edu

'
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Some interesting links

https://towardsdatascience.com/graph-ml-in-2022-where-are-we-now-f718242599e0#2ddd

https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc

E P F L Dr Dorina Thanou 79


https://towardsdatascience.com/graph-ml-in-2022-where-are-we-now-f7f8242599e0#2ddd
https://towardsdatascience.com/graph-ml-in-2022-where-are-we-now-f7f8242599e0#2ddd
https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc
http://www.apple.com/uk
https://towardsdatascience.com/predictions-and-hopes-for-geometric-graph-ml-in-2022-aa3b8b79f5cc

Summary

 Machine learning on graphs/networks requires developing new
tools that extract information (i.e., features) from complex
structures

 Graph-based features (i.e., embeddings) can be designed based
on some prior, or learned from data

* Graph neural networks: A very active area of research

Different architecture designs, most of them can be categorized as
convolutional, message passing, attentional

e A variety of applications, and probably many more to come!
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Thank youl!

E P F L Dr Dorina Thanou 75



