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Introduction to Graphs
Signal Processing

2/72



Graphs are everywhere

social network brain network
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Graph-structured data are everywhere

e vertices
- geographical regions
e edges
- geographical proximity between
regions
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Graph-structured data are everywhere

e vertices
- geographical regions

Mean Yearly Temperature (degC) 1981-2010

: e edges
- geographical proximity between

| OO~

boblLsbbbbli

regions

e signal
- temperature records in these

regions

4/72



Graph-structured data are everywhere

e vertices
- road junctions

e edges
- road connections
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Graph-structured data are everywhere

| | e vertices
e edges
- road connections

-----

: e signal
N ey - traffic congestion at junctions
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Graph-structured data are everywhere

° e vertices
c?:\g “ - individuals
i el
c/“’\@ - friendship between individuals
ST T2
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Graph-structured data
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are everywhere

e vertices

- individuals
e edges

- friendship between individuals
e signal

- political view
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Graph-structured data are everywhere

e vertices
- brain regions

e edges
- structural connectivity between
brain regions
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Graph-structured data are everywhere

e vertices
- brain regions

e edges

[ C/MWMWW - structural connectivity between

brain regions

e signal
- blood-oxygen-level-dependent
(BOLD) time series

Richiardi et al., "Machine learning with brain graphs,” IEEE SPM, 2013. 7/72



Graph-structured data are everywhere

e nodes
- pixels

e edges
- spatial proximity between pixels

e signal

- pixel values
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Graph signal processing

e Graph-structured data can be represented by signals defined on graphs
or graph signals

RN
+
0
U1
V3 V4

takes into account both structure (edges) and
data (values at vertices)
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Graph signal processing

sin(mx)

how to generalise classical signal processing tools
on irregular domains such as graphs?
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Graph signal processing

e Graph signals provide a nice compact format to encode structure within
data

e Generalisation of classical signal processing tools can greatly benefit
analysis of such data

e Numerous applications: Transportation, biomedical,
social, economic network analysis

e An increasingly rich literature
- classical signal processing
- algebraic and spectral graph theory

- computational harmonic analysis

- machine learning
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Outline

Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tools of GSP
Connection with literature

Representation of graph signals

Applications
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Two paradigms

e Main GSP approaches can be categorised into two families:

vertex (spatial) domain designs

- [frequency (graph spectral) domain designs)

important for analysis of signal properties
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Need for notion of frequency

e Classical Fourier transform provides frequency domain representation of
signals

R /\/\/\/ - “building blocks" of signal
’WVAV% 4/ - different frequency (oscillation)

f:V—-~R

e What about a notion of frequency for graph
signals?

we need the graph Laplacian matrix
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Graph Laplacian

weighted and undirected graph:

g = {Vv 5}

D = diag(d(vy), -+ ,d(vn))
L=D—-—W equivalent to W!
Lyorm = D~ 2(D — W)D™ 2

000000 01000000 1 -1 0 0 0 0 0 0 :
000000 /10100100\ (—1 3 -1 0 0 -1 0 0\ e symmetric

400000 01010110 0 -1 4 -1 0 -1 -1 0

00200 00) 400101000} 10 0 -1 2 -10 0 0 o off-diagonal entries non-positive
002000 00010100 0 0 0 -1 2 -1 0 0

000400 01101010 0 -1 -1 0 -1 4 -1 0

000030 00100101 0 0 -1 0 0 -1 3 -1 e rows sum up to zero
0000001 \0 0 0000 1 0/ \o 0 0 0 0 0 -1 1)

3
=
~
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Graph Laplacian

Why graph Laplacian?

- approximation of the Laplace operator

(L)) = (4f() — fG1) — fG2) — f(Us) — f(Ga))/(6)?

standard 5-point stencil for approximating —V?f

- converges to the Laplace-Beltrami operator (given certain conditions)

- provides a notion of “frequency’ on graphs
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Graph Laplacian

graph signal f : ) — R

1 -1 0 0 0 0 0 0 £(1) £(1) T/1 10 0 0 0 0 o0 £(1)
(—1 3 -1 0 0 -1 0 o\ (f(Q)\ /f(Q)\ (—1 3 -1 0 0 -1 0 0\ (f(2)\
0 -1 4 -1 0 -1 -1 0 7(3) £(3) 0 -1 4 -1 0 -1 -1 0 £(3)
0 0 -1 2 -1 0 0 0 f(4) £(4) 0 0 -1 2 -1 0 0 O £(4)
0 0 0 -1 2 -1 0 0 f(5) £(5) 0 0 0 -1 2 -1 0 O F(5)
0 -1 -1 0 -1 4 -1 0 £(6) £(6) 0 -1 -1 0 -1 4 -1 0 7(6)
o 0 -1 0 o -1 3 —1|/{re £(7) 0o 0 -1 0 0 -1 3 —1|/|7£®
\o 0 0 0 0o 0 -1 1) \s®) \/®)/) \o 0o 0o o o o -1 1) \5®)
N
N . . T . AN 2
Lf(i) = E Wi () — f(5)) foLf = § Wii (f () = F(J))
7=1 1,7=1

a measure of “smoothness”

Zhou and Scholkopf, “A regularization framework for learning from graph data,” ICML Workshop, 2004. 17/72



Graph Laplacian
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Graph Laplacian

e L has a complete set of orthonormal eigenvectors: L = yAx”

- X(?_-

T
L Xyi— -

XT

Eigenvalues are usually sorted increasingly: 0 = A\g < Ay < ... < An_1
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Graph Fourier transform

AN s

low frequency high frequency S
ngxO =X =0 XgoLXm) = As0

e Eigenvectors associated with smaller eigenvalues have values that vary less rapidly
along the edges

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.
Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011. 20/72



Graph Fourier transform

AN s

low frequency high frequency S
T
X0 LXO =X =0 ><5TOL><50 = A50
graph Fourier transform:
_ i T‘ O
FO) = e f): |Xo - Xy f == .
| | | Tif-- 1,
AOAT A2 A3 A+ 0 AN
low frequency high frequency

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013.
Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011. 20/72



Graph Fourier transform

e The Laplacian L admits the following eigendecomposition: Lxs = Apxy

one-dimensional Laplace operator: —V/? . graph Laplacian: L

$

$

eigenfunctions: e7%% ' eigenvectors: X/

$ $oF

Classical FT: f(w) = Ilteij)*uf(iﬁ)‘dﬂf ; Graph FT: f(f) = (X0, f) = Z XZ(@“f(Z)

1=1

N—-1

fo) = 5 [ Fper o fiy =Y o

=
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Two special cases

S

m (Unordered) Laplacian eigenvalues: Ay =2 — 2 cos (2‘%)

m One possible choice of orthogonal Laplacian eigenvectors:

— 2mj
Xe = [l,we,w%, e ,w(N 1)6] , Where w = e N
| |
B | xo --- xn_1 | isthe Discrete Fourier Transform (DFT) matrix

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011.
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Two special cases

wil )\g:2—2cos(%) 0 xo(/) = ﬁ Xg(i):\/%cos(“e(';o's)), (=1,2,...,N—1

Eigenvector 0

. n n . . n n n

03 2 3 4 5 6 7 8
0 Eigenvector 1

05 1 1 I t ‘.%—!

1 2 3 4

Eigenvector 2

X — —— y

H— —r—-.f |
035 2 3 - ! 7 8

Eigenvector 3

6
°'¥\!-\_! —— n Y
-85, 2 r : 5 -

Eigenvector 4

Eigenvector 5

?\ ,/'\-:gemecm:./_'\,
Eigenvector 7

-o:§\~ /_!\1/’\! 4/!—'—\!

2 3 5 7 8

is the Discrete Cosine Transform matrix (DCT-II, Strang, 1999),
which is used in JPEG image compression

Vandergheynst and Shuman, “Wavelets on graphs, an introduction,” Université de Provence, 2011. 23/72



Graph Fourier transform

e Example on a simple graph

. . sensor
elgenvector U elgenveCtor u; o G.N=60 nodes, G.Ne=302 edges
’ 2.0
0.6
0.8 - S 15 2.0
0.4 ‘ )\j 1.0
0.2 0.6 - v;\:\\‘ /4 05 151
““'é‘\‘“' ~ /‘ 0.0
0.0 0.4 1 @:;'7%3,11» i“ 1.0 4
0.2 i oeal \~
SN (% ‘\ \ 0
0.4 o ‘“"}‘4}7 o T e
e SIS | s
-0_6 0.0 A 2.0 0.0 -
00 02 04 06 08 10 0 2 4 6 8 0 1
sensor
Lo G.N=60 nodes, G.Ne=302 edges
0.6 ) 0.1 0.6
0.4 ] 00 059
0.2 0.6 —0.1 0.4
0.0 -0.2 0.3 1
0.4 -
-0.2 -0.3 0.2
0.2
-0.4 -0.4 0.1
-0.6 0.0 05 0.0 1 W‘
00 02 04 06 08 10 0 2 4 6 8 0 1
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Outline

e Graph signal processing (GSP): Basic concepts

e Graph spectral filtering: Basic tools of GSP
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Classical frequency filtering

Classical FT:

fw)

FT

[y t@de f@) =5 [ fued

=)

Jﬁ

(W)

=)

(@) f(w)

[ [T

IFT

=)

f*g
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Graph spectral filtering

N

GFT: f(0) = (xe, f) =Y x5 (i) (i)

GFT

1=1

0.0

2.00

1.50 A
1.25 4
1.00 A1
0.75 1

0.50 A

0.25 A L
0.00 ~— T

1.01

0.8 1

0.6

0.4 1

0.2 1

0.0 A

1.25
1.00
%74
\\Y, 0.75
ANV ‘ 0.50
g \'/:wr IS5\
i U/ %\
| = \?‘(’Ji\i‘ﬂs!’(/é /i 0.00
TR /\
"“\%{7/
W 0.25
P
0.50
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Graph Laplacian revisited

GFT: f(0) = (v f) = i) )= 3 FOxl)
1=1 £=0

The Laplacian L is a difference operator: Lf = xAx" f

GFT GFT

foomp T om | ANTr | om AT

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: fTLf = ||Lz f||2 = ||xAzxT f]|?

28/72



Graph transform/dictionary design

e Transforms and dictionaries can be designed through graph spectral

filtering: Functions of graph Laplacian!

GFT

T

X' f

g(A)
=)

gA)X" f

IGFT

=)

Xg(A)x

SR IS R AR

g(L): function of L!

e Important properties can be achieved by properly defining g(L) , such
as localisation of atoms

e Closely related to kernels and regularisation on graphs

Smola and Kondor, “Kernels and regularization on graphs’, COLT, 2003.
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A practical example

GFT g(A) IGFT

f| = ' f = | gAY f| = Wf

problem: we observe a noisy graph signal f = yo +n and wish to recover

— data fitting term

y =T +~vL) " f =x(T+~yA) "N f remove noise by low-pass filtering

N in graph spectral domain!
g(L)

“smoothness’ assumption

30/72



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 31/72



A practical example

e noisy image as observed noisy graph signal

e regular grid graph (weights inversely proportional to pixel value difference)

Gaussian Filtered Gaussian Filtered
(Std. Dev. = 1.5) (Std. Dev. = 3.5)

Original Image Noisy Image Graph Filtered

[FIGS2] Image denoising via classical Gaussian filtering and graph spectral filtering.

Shuman et al., “The emerging field of signal processing on graphs,” IEEE SPM, 2013. 31/72



Graph transform/dictionary design

g(A)

-»

Graph-based
regularisation

Graph filters
& transforms

Learning models
on graphs

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 32/72



Outline

e Graph signal processing (GSP): Basic concepts
e Graph spectral filtering: Basic tools of GSP

e Connection with literature
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GSP and the literature

there is a rich literature about data analysis and learning on graphs

network science (node centrality)

unsupervised learning (dimensionality

) . semi-supervised learnin
reduction, clustering) P g

34/72



Network centrality

eigenvector centrality degree centrality

- Google's PageRank is a variant of eigenvector centrality

- eigenvectors of W can also be used to provide a frequency
interpretation for graph signals

PageRank: http://www.ams.org/publicoutreach /feature-column /fcarc-pagerank
Sandryhaila and Moura, “Discrete signal processing on graphs,” IEEE TSP, 2013. 35/72



http://www.ams.org/publicoutreach/feature-column/fcarc-pagerank

Diffusion on graphs

..Ul 1731

~~~~~~ U3 _..el4 heat diffusion ‘~~..J?_J§____lq4.
Vg . l2@=5="""T == v 2..-707T T el Us
vo el ’ e
Us V7 g Vg U7 g 1
@-=====-=- :,-. """ @=====-= ::,1" I

/09‘¢" [ /09',"’

o’ ®

Ox

heat diffusion on graphs is a typical physical process on graphs
other possibilities exist (e.g., random walk on graphs)

- many have an interpretation of filtering on graphs

Smola and Kondor, “Kernels and regularization on graphs,” COLT, 2003. 36/72



Graph clustering (community detection)

WA, A)
Zv(o)

NCUt(Al,

l\DIr—\

1=1

- first k eigenvectors of graph Laplacian provide solution to
graph cut minimisation

- eigenvectors of graph Laplacian enable a Fourier-like analysis
for graph signals

von Luxburg, “A tutorial on spectral clustering,” Statistics and Computing, 2007. 37/72



Semi-supervised learning

: 2 T
min ||y — + L
Inin |y — z||5 + o 2" Lz,

- learning by assuming smoothness of predicted labels (label

propagation)

- this is equivalent to a denoising problem for graph signal y

Zhu, “Semi-supervised learning with graphs,” Ph.D. dissertation, CMU, 2005. 38/72



GSP and the literature

centrality, diffused information, cluster membership, node labels
(and node features in general) can ALL be viewed as graph signals

network science

unsupervised learning (dimensionality

: : semi-supervised learnin
reduction, clustering) P g

39/72



Outline

e Graph signal processing (GSP): Basic concepts
e Graph spectral filtering: Basic tools of GSP
e Connection with literature

e Representation of graph signals
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Why representations for graph signals?

Railway map of China

Colored lines showing CRH and other
high speed rail services
Last update: 2016-09-10

traffic analysis (e.g.,
denoising, compression) mobility, congestion)

image analysis (e.g.,

social network analysis (e.g.,

neuroscience (e.g.,
brain analysis) community, recommendation)

41/72



Classical vs. Graph dictionaries

classical signal — X

graph signal — X
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GFT as a first graph dictionary

f:V—=~R

©-
A0A1A2 A3 4 A5

A6 A7Ag

vertex domain

frequency (graph spectral) domain

A

43/72



GFT as a first graph dictionary

0.6
0.4
0.2
0.0
-0.2

-0.4

X0 X1 X2 X3 X4

GFT atoms (corresponding to discrete frequencies)

44/72



GFT as a first graph dictionary

0.6 0.6 r 0.6 0.6

7' {"""‘,,_ 0.4 0.4 /"' d;;':,— 0.4 0.4

a N\ 0.2 0.2 '. ; 0.2 0.2

\ ,/" 0.0 0.0 \ 0.0 0.0
’, %/"IA 0.2 02 e 02 o
o \\’g\\[“"/ o4 _0.4 O 0.4 -0.4

X0 X1 X2 X3 X4
W k (frequency index)

- like complex exponentials in classical FT, eigenvectors in GFT have global support

- can we design localised atoms on graphs?

45/72



Basic operations for graph signals

basic operations in Euclidean domain

p(t —m) R(e?* (1)) p(27")

- recall that we used a set of structured functions (e.g.,
shifted and modulated) to produce localised items
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Basic operations for graph signals

recall that we used a set of structured functions (e.g.,
shifted and modulated) to produce localised items

- we need to define for graph signals the basic operations
of convolution, shift, modulation

46/72



Convolution

classical convolution (f*g)(t) = /_OO(T)dT
f(w) - §(w)

(f * g)(w) =

graph convolution multiplication in graph spectral domain

(Fg)(N) = (foi)(N)

N—-1

) (f*g)(n f(0)

£=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 47/72



Vertex-domain shift

i
original signal
classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)
graph shift convolution with a “delta” on graph
(Tif)(n) = VN(f *6;)(n)

VN Y F0xi (xen)
¢=0

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 48/72



Vertex-domain shift

e R
shifted version of the signal to different centring vertex (in green)
classical shift (Tuf)(t) := f(t —u) = (f *0,)(¢)
graph shift convolution with a “delta” on graph
(T;£)(n) := VN(f *8;)(n)
N—-1
= VN Y fO)xz(1)xe(n)
£=0
Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 48/72



Modulation

classical modulation (Me f)(t) := €727 f(t)

graph modulation multiply by a graph Laplacian eigenvector

(Mif)(n) :== VN f(n)xi(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 49/72



Modulation

Ayogo =4.03

original signal modulated signal
classical modulation (Me f)(t) := €727 f(t)
graph modulation multiply by a graph Laplacian eigenvector

(Mif)(n) :== VN f(n)xi(n)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 49/72



Windowed graph Fourier transform

e With the shift and modulation operators for graph signals we can now
define a windowed graph Fourier transform

classical windowed gu,g(t) = (MgTug)(t) @in

Fourier atom

windowed graph gik(n) :
Fourier atom

windowed graph Fourier Sf(i, k) := (f, g; k)
transform (WGFT)

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 50/72



Windowed graph Fourier transform

g27.11 |§27,11|
1F - - . -
I °
0.8}
- r > . 0.6} '
d——AAL s s—"
O ’-\; ‘ ,;,?. r“
L= SR N
° “.\. : J\:x‘ . .':7

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016. 51/72



Fourier vs wavelet atoms

Fourier atoms

(time shift and modulation)

wavelet atoms

w

(time shift and scaling)

(15‘_1)

w
(_2.’ 3) - . .
- . 1.2)
- — [0 t
Orm(t) = TPl p(t —mty) k,m€Z

Vetterli et al., “Foundations of signal processing,” Cambridge University Press, 2014.

©1.m (1) = go(a_lt —mtg) l,m e Z
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Spectral graph wavelet transform

SGWT atom

¥s,i(n) := (T40:)(n) = Zg(sAe)Xe(Z)xe(n)

L

X—d
wsa(x)——‘//( )

spectral graph wavelet transform (SGWT)

w»%w(%)
o (T () = Y (s e)f (Oe(n)
(T°f)@ = / ;!” (x a)f(x)dx /llls(a—x)f(x)dx £=0

= (s * f)(Q) t

,‘pAf(w):@s(w);(w):J,«sw)f(w) Gy (T:7)(0) = §(she) f (0)

o0

1 —=
(T°f)e) = —— f e"“’iw*(sw)uT(w)dw

—00

Fourier multiplier operator: scaled kernel *(sw)

Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011. 53/72



Spectral graph wavelet transform

15— —h

—t=3.41

—1=1.00

—1=0.29

—t=0.09
—= locations of eigenval

1 =
// \ //V
o]
M [
\ \"‘\ //
] L]
e >‘ ™
05 | )
h‘\..__

/ P

// \\\ -’// — ~—~
[ -
\-. I 1
__.-—-—""'-: [ —
““'h—_ ___——'-"""-‘-—--
oL — — - |

SGWT kernel functions §(s)\;)
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Spectral graph wavelet transform

-0.01

H ]
0.01 -0.02 0 0.02

-d 5 : ..?& o e

£ '
s 2 “ R X

(a) (b) (c)
[ ] [ ] [ x |
-0.15 0 0.15 =04 0 0.4 -0.2 0 0.2
(d) (e)

(f)

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, | = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function,
(c)—(f) wavelets, scales 1-4.

Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011. 55/72



Spectral graph wavelet transform

0.05

-0.05

0.05

-0.05

0.15

-0.15

-1

0.2

-0.2

...". °

4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)-

Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J

(f) wavelets, scales 1-4.

56,72

Hammond et al., “Wavelets on graphs via spectral graph theory,” ACHA, 2011.



Spectral graph wavelet transform

//_\\ s
></ \\‘ ,/’//
e Ll L el Rilimn scale 1
A
T
scale 2
(U8
J
- different “subbands” capture behaviour at scale s
different scales
C c RY®

- SGWT is an overcomplete transform

57/72



WGFT vs SGWT atoms

Classical Windowed

Fourier Atoms

WGFT atom 0 N

gik(n) = (MiTig)(n)

frequency

time

Classical Wavelets

SGWT atom LIl

v

is(n) := (TiDsg)(n)

frequency

time

Shuman et al., “Vertex-frequency analysis on graphs,” ACHA, 2016.

Windowed Graph
Fourier Atoms

170
160
150
140
130
120
110
100
24 90
80
70
60
50
40
30
20
10

40.5

40.4

20 40 60 80 , 100 120 140 160 180
|

Spectral Graph
Wavelets

L 40.08

L 40.06

’IHu‘.
[

20 40 60 80 , 100 120 140 160 180
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From analytical to trained graph dictionaries

|
X

analytical graph . B e
dictionaries P(G) =g(L) =

trained graph (I>(g X)
)

. . - . - . 7
dictionaries dictionary learning on graphs?

59/72



From analytical to trained graph dictionaries

|
X

analytical graph A o T
dictionaries (I)(g) o g(L) o

trained graph . . .
dictiona?iesp (I)(Q,X) M) lecarning §()\) by adapting to x

59/72



A parametric graph dictionary

powers of graph Laplacian
guarantee localisation

go(A) = 20(3'),\3‘, p cREY mm go(A) = ZH(J’@

3=0

learning a parametric kernel:

consider the following dictionary:

| D=[Dy Dy - Du) = [xdo, ()XT xdo,(WXT -+ xdo, (M)X] |

4 \
111l
- several filters to identify e
different localised spectral eoe i Dy
components : : :
.
Ns

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 60/72
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A parametric graph dictionary

objective: regularisation

min |X — DCOI|5 +
{ei}le ERK+1 CeRNSXM

subject to D = [xde, (L)x" xGao,(L)x" -+ xgo.(L)x"]
lemllo <To (C=ler e --eul)

constraints guaranteeing that D is a frame

two-stage iterative approach:

sparse sparse

fixing D and fixing C and fixing D and
solve for C solve for D solve for C

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014.

dictionary
approximation updating approximation

adaptation to data

structured graph
dictionaries

sparsity constraint

convergence
reached

61/72



Comparison with non-graph dictionaries

non-graph dictionary atoms parametric dictionary
(KSVD) atoms

- non-graph dictionary atoms adapt to data but ignore
the structure (hence are not localised)

- graph dictionary atoms adapt to data and can also be
designed to be localised

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 62/72



Decomposition using parametric dictionary

s,

W

!
%

‘;/‘

g

- the dictionary atoms adapt to localised patterns in
different regions of the graph

Thanou et al., “Learning parametric dictionaries for signals on graphs,” IEEE TSP, 2014. 63/72



Graph dictionary design - Summary

e Analytical vs trained graph dictionaries
- mathematical modelling of data on graphs
- adaptation to data on graphs

e Both approaches focus on design or learning of the kernel function
- shift, modulation, scaling, learning-based

e This lecture has focused on Laplacian spectrum based designs
- other possibilities exist (e.g., purely vertex-domain designs)

e Connection with other fields
- representation learning on graphs (e.g., node embedding)
- deep learning on graphs

64/72



Outline

Graph signal processing (GSP): Basic concepts
Graph spectral filtering: Basic tools of GSP
Connection with literature

Representation of graph signals

Applications

65,72



Application |: 3D point cloud analysis

(a) It + Ty+1 (b) Correspondence between Z; and Z; 1 (€) Zt.me + Le4+1
(a) (b) ()

Thanou et al., “Graph-based compression of dynamic 3D point cloud sequences,” IEEE TIP, 2016. 66/72



Application |I: Community detection

spectral graph wavelets D.(a.b)—1— Yiatbsh
at different scales: 195 all.||1¥s.pll,

é‘ﬂ‘%
NODE /
A: @
NODE 5?
B Q

CORR.
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Application Ill: Mobility inference
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Application Ill: Mobility inference
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Application IV: Neuroscience
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Future of GSP

e Mathematical models for graph signals
- global and local smoothness / regularity
- incorporating underlying physical processes

e Graph construction
- how to infer graph topology given observed data?
- how to handle temporal dynamics?

e Fast implementation
- fast graph Fourier transform
- distributed processing

e Connection with other fields
- machine learning on graphs
- complex networks and systems

e Applications
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Resources

e Graph signal processing
- MATLAB toolbox
= https://github.com/epfl-lts2 /gspbox

» https://github.com/STAC-USC/GraSP
- Python toolbox

= https://github.com/epfl-lts2 /pygsp

e More at: http://www.robots.ox.ac.uk/~xdong/resource.html|
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