AIMS CDT - Signal Processing Michaelmas Term 2022

Xiaowen Dong

Department of Engineering Science

Introduction to Graphs Signal Processing

Graphs are everywhere

geographical network

social network

traffic network

brain network

- vertices
 - geographical regions
- edges
 - geographical proximity between regions

- vertices
 - geographical regions
- edges
 - geographical proximity between regions
- signal
 - temperature records in these regions

- vertices
 - road junctions
- edges
 - road connections

- vertices
 - road junctions
- edges
 - road connections
- signal
 - traffic congestion at junctions

- vertices
 - individuals
- edges
 - friendship between individuals

- vertices
 - individuals
- edges
 - friendship between individuals
- signal
 - political view

- vertices
 - brain regions
- edges
 - structural connectivity between brain regions

- vertices
 - brain regions
- edges
 - structural connectivity between brain regions
- signal
 - blood-oxygen-level-dependent
 (BOLD) time series

- nodes
 - pixels
- edges
 - spatial proximity between pixels
- signal
 - pixel values

Graph signal processing

 Graph-structured data can be represented by signals defined on graphs or graph signals

takes into account both structure (edges) and data (values at vertices)

Graph signal processing

how to generalise classical signal processing tools on irregular domains such as graphs?

Graph signal processing

- Graph signals provide a nice compact format to encode structure within data
- Generalisation of classical signal processing tools can greatly benefit analysis of such data
- Numerous applications: Transportation, biomedical, social, economic network analysis
- An increasingly rich literature
 - classical signal processing
 - algebraic and spectral graph theory
 - computational harmonic analysis
 - machine learning

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Connection with literature
- Representation of graph signals
- Applications

Two paradigms

- Main GSP approaches can be categorised into two families:
 - vertex (spatial) domain designs
 - frequency (graph spectral) domain designs

important for analysis of signal properties

Need for notion of frequency

Classical Fourier transform provides frequency domain representation of signals

 What about a notion of frequency for graph signals?

we need the graph Laplacian matrix

weighted and undirected graph:

$$\mathcal{G} = \{\mathcal{V}, \mathcal{E}\}$$
 $D = \operatorname{diag}(d(v_1), \cdots, d(v_N))$
 $L = D - W$ equivalent to W!
 $L_{\operatorname{norm}} = D^{-\frac{1}{2}}(D - W)D^{-\frac{1}{2}}$

Why graph Laplacian?

- approximation of the Laplace operator

$$(Lf)(i) = (4f(i) - f(j_1) - f(j_2) - f(j_3) - f(j_4))/(\delta x)^2$$

standard 5-point stencil for approximating $-\nabla^2 f$

- converges to the Laplace-Beltrami operator (given certain conditions)
- provides a notion of "frequency" on graphs

graph signal $f:\mathcal{V}
ightarrow \mathbb{R}$

$$\begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$\begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix} \begin{pmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 3 & -1 & 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 4 & -1 & 0 & -1 & -1 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 2 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & -1 & 4 & -1 & 0 \\ 0 & 0 & -1 & 0 & 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{pmatrix} \begin{pmatrix} f(1) \\ f(2) \\ f(3) \\ f(4) \\ f(5) \\ f(6) \\ f(7) \\ f(8) \end{pmatrix}$$

$$Lf(i) = \sum_{j=1}^{N} W_{ij}(f(i) - f(j))$$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{N} W_{ij} (f(i) - f(j))^{2}$$

a measure of "smoothness"

$$f^T L f = 21$$

• L has a complete set of orthonormal eigenvectors: $L = \chi \Lambda \chi^T$

$$L = \begin{bmatrix} 1 & & & 1 \\ \chi_0 & \cdots & \chi_{N-1} \end{bmatrix} \begin{bmatrix} \lambda_0 & & 0 \\ & \ddots & \\ 0 & & \lambda_{N-1} \end{bmatrix} \begin{bmatrix} & & & \chi_0^T & \\ & & \ddots & \\ & & & \chi^T & \end{bmatrix}$$

$$\chi \qquad \qquad \Lambda \qquad \qquad \chi^T$$

• Eigenvalues are usually sorted increasingly: $0 = \lambda_0 < \lambda_1 \leq \ldots \leq \lambda_{N-1}$

$$\boxed{L = \chi \Lambda \chi^T}$$

$$L = \chi \Lambda \chi^T$$
 $\chi_0^T L \chi_0 = \lambda_0 = 0$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

Eigenvectors associated with smaller eigenvalues have values that vary less rapidly along the edges

low frequency

high frequency

$$L = \chi \Lambda \chi^T$$

$$L = \chi \Lambda \chi^T$$
 $\chi_0^T L \chi_0 = \lambda_0 = 0$

$$\chi_{50}^T L \chi_{50} = \lambda_{50}$$

graph Fourier transform:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle : \begin{bmatrix} \chi_0 & \cdots & \chi_{N-1} \end{bmatrix}^T \\ \lambda_0 & \lambda_1 & \lambda_2 & \lambda_3 & \lambda_4 & \cdots & \lambda_{N-1} \\ \text{low frequency} & \text{high frequency} \end{bmatrix}$$

The Laplacian L admits the following eigendecomposition: $L\chi_{\ell} = \lambda_{\ell}\chi_{\ell}$

one-dimensional Laplace operator: $abla^2$: graph Laplacian: L

eigenfunctions: $e^{j\omega x}$

$$\hat{f}(\omega) = \int (e^{j\omega x})^* f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{j\omega x} d\omega \qquad \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

eigenvectors: χ_ℓ

$$f: V \to \mathbb{R}^N$$

Classical FT:
$$\hat{f}(\omega) = \int e^{j\omega x} f(x) dx$$
 Graph FT: $\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}^{*}(i) f(i)$

$$f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}(i)$$

Two special cases

- (Unordered) Laplacian eigenvalues: $\lambda_\ell = 2 2\cos\left(\frac{2\ell\pi}{N}\right)$
- One possible choice of orthogonal Laplacian eigenvectors:

$$\chi_{\ell} = \left[1, \omega^{\ell}, \omega^{2\ell}, \dots, \omega^{(N-1)\ell}\right], \text{ where } \omega = e^{\frac{2\pi j}{N}}$$

Two special cases

• Example on a simple graph

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Connection with literature
- Representation of graph signals
- Applications

Classical frequency filtering

Classical FT:
$$\hat{f}(\omega) = \int{(e^{j\omega x})^* f(x) dx} \qquad f(x) = \frac{1}{2\pi} \int{\hat{f}(\omega) e^{j\omega x} d\omega}$$

Graph spectral filtering

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

0.2

Graph Laplacian revisited

$$\mathsf{GFT:} \quad \hat{f}(\ell) = \langle \chi_\ell, f \rangle = \sum_{i=1}^N \chi_\ell^*(i) f(i) \qquad f(i) = \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_\ell(i)$$

The Laplacian L is a difference operator: $Lf = \chi \Lambda \chi^T f$

The Laplacian operator filters the signal in the spectral domain by its eigenvalues!

The Laplacian quadratic form: $f^T L f = ||L^{\frac{1}{2}} f||_2^2 = ||\chi \Lambda^{\frac{1}{2}} \chi^T f||_2^2$

Graph transform/dictionary design

 Transforms and dictionaries can be designed through graph spectral filtering: Functions of graph Laplacian!

- Important properties can be achieved by properly defining $\hat{g}(L)$, such as localisation of atoms
- Closely related to kernels and regularisation on graphs

A practical example

problem: we observe a noisy graph signal $f = y_0 + \eta$ and wish to recover y_0

data fitting term

"smoothness" assumption

remove noise by low-pass filtering in graph spectral domain!

A practical example

- noisy image as observed noisy graph signal
- regular grid graph (weights inversely proportional to pixel value difference)

A practical example

- noisy image as observed noisy graph signal
- regular grid graph (weights inversely proportional to pixel value difference)

Graph transform/dictionary design

$$\begin{array}{c|c} & \widehat{g}(\Lambda) & \text{IGFT} \\ \hline f & & & \\ \hline \chi^T f & & & \\ \hline \hat{g}(\Lambda) \chi^T f & & \\ \hline \hat{g}(L) & & \\ \hline \end{array}$$

smoothing/low-pass filtering:
$$\hat{g}(L) = (I + \gamma L)^{-1} = \chi (I + \gamma \Lambda)^{-1} \chi^T$$

Graph-based regularisation

windowed kernel: windowed graph Fourier transform shifted and dilated band-pass filters: spectral graph wavelets $\hat{g}(sL)$

Graph filters & transforms

adapted kernels: learn values of $\,\hat{g}(L)\,$ directly from data

parametric kernel:
$$\hat{g}(L) = \sum_{k=0}^K \theta_j L^k = \chi(\sum_{k=0}^K \theta_j \Lambda^k) \chi^T$$

Learning models on graphs

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Connection with literature
- Representation of graph signals
- Applications

GSP and the literature

there is a rich literature about data analysis and learning on graphs

network science (node centrality)

unsupervised learning (dimensionality reduction, clustering)

diffusion on graphs

semi-supervised learning

Network centrality

- Google's PageRank is a variant of eigenvector centrality
- eigenvectors of W can also be used to provide a frequency interpretation for graph signals

Diffusion on graphs

- heat diffusion on graphs is a typical physical process on graphs
- other possibilities exist (e.g., random walk on graphs)
- many have an interpretation of filtering on graphs

Graph clustering (community detection)

$$NCut(A_1, ..., A_k) = \frac{1}{2} \sum_{i=1}^{k} \frac{W(A_i, \overline{A_i})}{vol(A_i)}$$

- first k eigenvectors of graph Laplacian provide solution to graph cut minimisation
- eigenvectors of graph Laplacian enable a Fourier-like analysis for graph signals

Semi-supervised learning

$$\min_{x \in \mathbb{R}^N} ||y - x||_2^2 + \alpha \ x^T L x,$$

- learning by assuming smoothness of predicted labels (label propagation)
- this is equivalent to a denoising problem for graph signal y

GSP and the literature

centrality, diffused information, cluster membership, node labels (and node features in general) can ALL be viewed as graph signals

 v_1 v_2 v_3 v_4 v_8 v_7 v_6 v_5 v_9 v_9 v_9 v_1 v_2 v_3 v_4 v_6 v_7 v_6 v_7 v_8 v_9

network science

diffusion on graphs

unsupervised learning (dimensionality reduction, clustering)

semi-supervised learning

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Connection with literature
- Representation of graph signals
- Applications

Why representations for graph signals?

image analysis (e.g., denoising, compression)

neuroscience (e.g., brain analysis)

traffic analysis (e.g., mobility, congestion)

social network analysis (e.g., community, recommendation)

Classical vs. Graph dictionaries

classical signal

GFT as a first graph dictionary

GFT as a first graph dictionary

GFT atoms (corresponding to discrete frequencies)

GFT as a first graph dictionary

- like complex exponentials in classical FT, eigenvectors in GFT have global support
- can we design **localised** atoms on graphs?

Basic operations for graph signals

basic operations in Euclidean domain

- recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items

Basic operations for graph signals

- recall that we used a set of structured functions (e.g., shifted and modulated) to produce localised items
- we need to define for graph signals the basic operations of convolution, shift, modulation

Convolution

classical convolution

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - \tau)g(\tau)d\tau$$

$$\widehat{(f * g)}(\omega) = \hat{f}(\omega) \cdot \hat{g}(\omega)$$

graph convolution

multiplication in graph spectral domain

$$\widehat{(f*g)}(\lambda) = (\hat{f} \circ \hat{g})(\lambda)$$

Vertex-domain shift

original signal

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

graph shift

convolution with a "delta" on graph

$$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$

$$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

Vertex-domain shift

shifted version of the signal to different centring vertex (in green)

classical shift

$$(T_u f)(t) := f(t - u) = (f * \delta_u)(t)$$

graph shift

convolution with a "delta" on graph

$$(T_i f)(n) := \sqrt{N} (f * \delta_i)(n)$$

$$= \sqrt{N} \sum_{\ell=0}^{N-1} \hat{f}(\ell) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

Modulation

classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

graph modulation

multiply by a graph Laplacian eigenvector

$$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$

Modulation

classical modulation

$$(M_{\xi}f)(t) := e^{j2\pi\xi t}f(t)$$

graph modulation

multiply by a graph Laplacian eigenvector

$$(M_k f)(n) := \sqrt{N} f(n) \chi_k(n)$$

Windowed graph Fourier transform

 With the shift and modulation operators for graph signals we can now define a windowed graph Fourier transform

classical windowed Fourier atom

$$g_{u,\xi}(t) := (M_{\xi} T_u g)(t) = e^{j2\pi\xi t} g(t - u)$$

windowed graph Fourier atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N\chi_k(n) \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

windowed graph Fourier
$$Sf(i,k) := \langle f, g_{i,k} \rangle$$
 transform (WGFT)

Windowed graph Fourier transform

Fourier vs wavelet atoms

Fourier atoms (time shift and modulation)

wavelet atoms (time shift and scaling)

$$\varphi_{k,m}(t) = e^{jk\omega_0 t} \varphi(t - mt_0) \quad k, m \in \mathbb{Z} \qquad \varphi_{l,m}(t) = \varphi(a^{-l}t - mt_0) \quad l, m \in \mathbb{Z}$$

$$\varphi_{l,m}(t) = \varphi(a^{-l}t - mt_0) \quad l, m \in \mathbb{Z}$$

$$\psi_{s,a}(x) = \frac{1}{s} \psi\left(\frac{x-a}{s}\right)$$

$$W_f(s,a) = \int_{-\infty}^{\infty} \frac{1}{s} \psi^* \left(\frac{x-a}{s} \right) f(x) dx$$

$$\bar{\psi}_{S}(x) = \frac{1}{s} \psi^{*} \left(\frac{-x}{s} \right)$$

$$(T^{s}f)(a) = \int_{-\infty}^{\infty} \frac{1}{s} \psi^{*} \left(\frac{x-a}{s}\right) f(x) dx = \int_{-\infty}^{\infty} \bar{\psi}_{s}(a-x) f(x) dx$$
$$= (\bar{\psi}_{s} \star f)(a)$$

$$\widehat{T^s f}(\omega) = \widehat{\psi}_s(\omega) \widehat{f}(\omega) = \widehat{\psi}^*(s\omega) \widehat{f}(\omega)$$

$$(T^{s}f)(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{i\omega x} \hat{\psi}^{*}(s\omega) \hat{f}(\omega) d\omega$$

SGWT atom

$$\psi_{s,i}(n) := (T_g^s \delta_i)(n) = \sum_{\ell=0}^{N-1} \hat{g}(s\lambda_{\ell}) \chi_{\ell}^*(i) \chi_{\ell}(n)$$

spectral graph wavelet transform (SGWT)

$$(T_g^s f)(n) = \sum_{\ell=0}^{N-1} \left[\hat{g}(s\lambda_\ell) \hat{f}(\ell) \chi_\ell(n) \right]$$

$$(\widehat{T_g^s f})(\ell) = \hat{g}(s\lambda_\ell)\hat{f}(\ell)$$

Fourier multiplier operator: scaled kernel $\hat{\psi}^*(s\omega)$

SGWT kernel functions $\hat{g}(s\lambda_{\ell})$

Fig. 4. Spectral graph wavelets on Minnesota road graph, with K = 100, J = 4 scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)–(f) wavelets, scales 1–4.

Fig. 3. Spectral graph wavelets on Swiss roll data cloud, with J = 4 wavelet scales. (a) Vertex at which wavelets are centered, (b) scaling function, (c)– (f) wavelets, scales 1–4.

WGFT vs SGWT atoms

WGFT atom

$$g_{i,k}(n) := (M_k T_i g)(n)$$

$$= N \underbrace{\chi_k(n)} \sum_{\ell=0}^{N-1} \hat{g}(\lambda_\ell) \chi_\ell^*(i) \chi_\ell(n)$$

SGWT atom

$$\psi_{i,s}(n) := (T_i D_s g)(n)$$

$$=\sum_{\ell=0}^{N-1}\hat{g}(s)(1)\chi_{\ell}^{*}(i)\chi_{\ell}(n)$$

From analytical to trained graph dictionaries

analytical graph dictionaries

$$\mathbf{\Phi}(\mathcal{G}) = \hat{g}(L) = \chi \hat{g}(\Lambda) \chi^{T}$$

trained graph dictionaries

 $\Phi(\mathcal{G},\mathbf{x})$ dictionary learning on graphs?

From analytical to trained graph dictionaries

analytical graph dictionaries

$$\mathbf{\Phi}(\mathcal{G}) = \hat{g}(L) = \chi \hat{g}(\Lambda) \chi^{T}$$

trained graph dictionaries

$$\Phi(\mathcal{G}, \mathbf{x})$$
 learning $\hat{g}(\lambda)$ by adapting to \mathbf{x}

A parametric graph dictionary

learning a parametric kernel:

powers of graph Laplacian guarantee localisation

$$\hat{g}_{\theta}(\lambda) = \sum_{j=0}^{K} \theta(j)\lambda^{j}, \ \theta \in \mathbb{R}^{K+1}$$

$$\hat{g}_{\theta}(\Lambda) = \sum_{j=0}^{K} \theta(j)\Lambda^{j}$$

$$\hat{g}_{ heta}(\Lambda) = \sum_{j=0}^K heta(j) \Lambda^j$$

consider the following dictionary:

$$D = [D_1 \ D_2 \ \cdots \ D_s] = [\chi \hat{g}_{\theta_1}(\Lambda) \chi^T \ \chi \hat{g}_{\theta_2}(\Lambda) \chi^T \ \cdots \ \chi \hat{g}_{\theta_s}(\Lambda) \chi^T]$$

several filters to identify different localised spectral components

A parametric graph dictionary

objective:

regularisation

$$\min_{\{\theta_i\}_{i=1}^s \in \mathbb{R}^{K+1}, C \in \mathbb{R}^{NS \times M}} ||X - DC||_F^2 + \mu \sum_{i=1}^s ||\theta_i||_F^2$$

adaptation to data

subject to
$$D = [\chi \hat{g}_{\theta_1}(L)\chi^T \ \chi \hat{g}_{\theta_2}(L)\chi^T \ \cdots \ \chi \hat{g}_{\theta_s}(L)\chi^T]$$

structured graph dictionaries

$$||c_m||_0 \le T_0 \quad (C = [c_1 \ c_2 \ \cdots c_M])$$

sparsity constraint

constraints guaranteeing that D is a frame

two-stage iterative approach:

Comparison with non-graph dictionaries

- non-graph dictionary atoms adapt to data but ignore the structure (hence are not localised)
- graph dictionary atoms adapt to data and can also be designed to be localised

Decomposition using parametric dictionary

- the dictionary atoms adapt to localised patterns in different regions of the graph

Graph dictionary design - Summary

- Analytical vs trained graph dictionaries
 - mathematical modelling of data on graphs
 - adaptation to data on graphs
- Both approaches focus on design or learning of the kernel function
 - shift, modulation, scaling, learning-based
- This lecture has focused on Laplacian spectrum based designs
 - other possibilities exist (e.g., purely vertex-domain designs)
- Connection with other fields
 - representation learning on graphs (e.g., node embedding)
 - deep learning on graphs

Outline

- Graph signal processing (GSP): Basic concepts
- Graph spectral filtering: Basic tools of GSP
- Connection with literature
- Representation of graph signals
- Applications

Application I: 3D point cloud analysis

Application II: Community detection

spectral graph wavelets at different scales:

multi-scale community detection:

Application III: Mobility inference

Application III: Mobility inference

Application IV: Neuroscience

Future of GSP

- Mathematical models for graph signals
 - global and local smoothness / regularity
 - incorporating underlying physical processes
- Graph construction
 - how to infer graph topology given observed data?
 - how to handle temporal dynamics?
- Fast implementation
 - fast graph Fourier transform
 - distributed processing
- Connection with other fields
 - machine learning on graphs
 - complex networks and systems
- Applications

References

• Four tutorial/overview papers and one textbook

Resources

- Graph signal processing
 - MATLAB toolbox
 - https://github.com/epfl-lts2/gspbox
 - https://github.com/STAC-USC/GraSP
 - Python toolbox
 - https://github.com/epfl-lts2/pygsp
- More at: http://www.robots.ox.ac.uk/~xdong/resource.html